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The intelligent recognition technology for ferrography images is one of the important methods for diagnosis fault and state
detection of machines. In allusion to these questions for the influences of wear particle images’ blurring, background intricacy,
wear particle overlapping and lack of light, and others which lead to be the reason for the difficulty of achieving accurate
identification, missed detection, and false detection, an intelligent recognition algorithm for ferrography wear particle based on
convolutional block attention module (CBAM) and YOLOv5 is proposed. Firstly, it needs enhancement to improve contrast
for ferrography wear particle images and lower background interference by adaptive histogram homogenization algorithm.
Then, under the framework of YOLOv5 algorithm, the depthwise separable convolution is added to improve the detection
speed of the network, and the detection accuracy of the entire network is improved by optimizing the loss function. Moreover,
increase weight ratio on wear particle in images by adding a convolution block CBAM model and increase feature
representative capability in detection network with YOLOv5 algorithm detection network, which can improve detection
accuracy for wear particle. Finally, compare the algorithm with the three classical homologous series object detection
algorithm. The experimental results show that the detection accuracy of the model can reach 96.7%, and the detection speed is
32 FPS for the images with a resolution of 1280 × 720. It can be developed and applied to the fault diagnosis and condition
monitoring of mechanical equipment.

1. Introduction

Fault diagnosis and condition monitoring of mechanical
equipment is a technology for collecting, processing, and
analyzing the information of the mechanical operation state
[1]. Ferrographic analysis is an important part of equipment
fault diagnosis, and the identification of wear particles is the
core of ferrographic analysis. Ferrography image analysis
technology is a technology to extract, classify, and observe
the wear particles in the lubrication system and judge the
lubrication condition, wear mechanism, and wear severity
of the friction pair through its quantity, size, shape, and
texture. Compared with other fault diagnosis technologies,
it has the advantages of strong forward-looking, large detec-
tion range of abrasive particles, and direct reflection of the
main wear mechanism [2, 3]. Ferrography image analysis

technology currently lacks automation, and its application
at this stage relies heavily on expert experience, and it is
time-consuming and expensive [4, 5]. The above shortcom-
ings restrict the large-scale promotion and application of
this technology in the industry [6, 7]. This paper intends
to study an intelligent recognition algorithm of ferrography
wear particle image based on computer vision technology,
to provide technical basis for intelligent and rapid recogni-
tion of ferrography wear particle and intelligent online mon-
itoring system of lubricating oil.

Plenty of tribology experiments and practical applica-
tions show that different forms of wear and tear will produce
different characteristics of wear particle. Apply computer
vision technology, mathematical methods and other
methods, and technology to grind grain shape, texture, and
color of informationize quantification for characteristic
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parameters and then use these feature parameters to train
appropriate classification decision algorithm to realize intel-
ligent recognition of wear particle [8, 9].

Many scholars have conducted in-depth research on this
issue. Peng and Wang and Peng et al. used Inception-v3 to
extract surface texture features of wear particle with high
efficiency for wear particle classification. However, this
model does not have the ability of target detection, and wear
particle should be segmented first in the face of multiabra-
sive images [10, 11]. Zhang et al. proposed a convolution
neural network model based on class center vector and
distance comparison, which adopted two operations: point-
to-point group convolution (PWConv) and channel shuffle.
The number of model parameters is reduced, but the train-
ing speed is not significantly improved [12]. Peng and Wang
used a relatively simple convolutional neural network
FECNN to train with 420 wear particle images and obtained
good accuracy but did not study the problem of wear particle
segmentation under complex background [13]. Wang et al.
have developed similar models to identify and classify cut-
ting, spherical, and fatigue wear particle by combining
CNN and SVM, but the samples used are still single-target
images and the characteristics of spherical and cutting wear
particle are more obvious and easy to be distinguished [14,
15]. Peng et al. proposed a method of ferrospectral image
target detection and recognition based on YOLOV3, using
batch normalization method instead of dropout method,
which achieved good results when applied to small-sized
and low-resolution wear particle images and increases the
generalization ability, but still had some shortcomings such
as low accuracy of similar wear particle classification and
lack of ability to mark wear particle contour [16, 17]. Hong
et al. proposed a novel convolutional neural network
miniGCN. It trains large-scale GCNs in a more flexible
minibatch fashion and can directly predict new input sam-
ples without retraining the network. Three fusion schemes,
including additive fusion, elementwise multiplicative fusion,
and concatenation fusion, were used to achieve better classi-
fication results in HS images [18]. Patel et al. proposed to
design a novel feature descriptor involving multifeature
fusion technology for human action recognition, which
reduces the complexity of detection technology and has high
detection speed and efficiency [19].

Patel et al. proposed a feature fusion technology to rec-
ognize human behavior based on the benchmark ASLAN
data set and UCF11 data set, which has a good recognition
accuracy [20]. Patel et al. and Bhatt et al. proposed an archi-
tecture common to any CNN, DBGC (dimension-based
generic convolution block); provided a network that can
intelligently select convolution kernels of various heights,
widths, and depths; improved the accuracy of the results;
and reduced the computational complexity [21, 22].

In recent years, researchers have been committed to
target detection based on deep learning, so as to realize intel-
ligent analysis of wear particle. This method can effectively
solve the shortcomings of traditional target detection based
on artificial features, such as low detection accuracy, vulner-
able to environmental interference, and weak generalization
ability. Deep learning target detection algorithms include

Mask-R-CNN, Faster-RCNN, UIU-Net network, YOLO
algorithm, and ORSIm detector. UIU-net is a new network
for infrared small target detection, which embeds tiny U-
Net into a larger U-Net backbone network, so as to realize
multilevel and multiscale representation learning of objects.
Compared with the YOLOv5 model, UIU-Net is more suit-
able for the application of accurate image segmentation. This
model learns how to classify each pixel of an image into dif-
ferent object labels, ignoring feature extraction and learning
[23]. Optical remote sensing image detector (ORSIm detec-
tor) integrates multiple channel feature extraction, feature
learning, fast image pyramid matching, and enhancement
strategies [24]. The ORSIm detector uses a novel air-
frequency channel feature (SFCF) that combines the
rotationally invariant channel feature constructed in the fre-
quency domain with the original spatial channel feature
(such as color channel and gradient amplitude) [25, 26].
Compared with YOLOv5, ORSIm detector pays more atten-
tion to feature extraction and learning as well as image
pyramid matching and enhancement, ignoring image seg-
mentation processing. He et al. and Ren et al. proposed a
method based on Faster R-CNN to identify iron ferrography
wear particle in gear boxes, which overcame the problem of
wear particle crossing and could identify multiple wear
particle with high accuracy but slow speed [27, 28]. An
et al. proposed an intelligent segmentation and recognition
method of ferrography wear particle based on Mask R-
CNN, with a detection accuracy of 76.2% and good general-
ization ability, but the segmentation effect of overlapping
wear particle is not ideal [29]. This kind of algorithm is
mainly trained according to the specific position of the abra-
sive particles in the ferrography images, and the candidate
region is extracted in advance. It overcomes the recogni-
tion problem caused by the abrasive particles crossing,
but the recognition speed of the abrasive particles in over-
lapping and blurred images needs to be improved. Zhang
et al. proposed a multitarget ferrography wear particle
intelligent recognition algorithm based on the improved
YOLO algorithm, which realized the recognition of multi-
target wear particle under complex background but could
not improve the recognition rate and detection speed of
similar wear particles, especially layered wear particles
[30]. This kind of algorithm is to target detection as a
regression problem; direct end-to-end training of the net-
work can ensure high detection accuracy and have good
real-time performance [31]. However, such algorithms still
have some shortcomings for wear particle image recogni-
tion with complex background, overlapping wear particles,
and the lack of light and cannot meet the requirements of
online monitoring temporarily.

In order to solve the problems of wear particle blurring,
complex background, wear particle overlap, light effect, fewer
ferrography pictures, and so on, which make it difficult to
achieve accurate target detection, missed detection, and false
detection in ferrography image, an intelligent recognition
method of YOLOv5 ferrography image based on convolution
block attention mechanism model CBAM (convolutional
block attention module) is proposed. The main contributions
and innovations of this paper are as follows:
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(1) Adaptive histogram equalization is used to approach
detect ferrography wear particle image to improve
image contrast and image quality

(2) Aiming at the problems of complex background,
overlap of wear particle, and illumination influence
of wear particle in ferrography images, the convolu-
tion block attention model CBAM is introduced on
the basis of the YOLOv5 detection network to
enhance the weight ratio of the target, so as to
improve the feature expression ability of the target
to be detected and then improve the accuracy of
abrasive particle recognition

(3) Accurately simplify the parameters of the original
detection network model by introducing a depthwise
separable convolution (DWConv). While it makes
the network have high detection accuracy, this
reduces the impact on the network detection speed
after introducing the attention mechanism, thus
improving the detection speed of the network model

(4) By using the method of optimizing the loss function
to reduce the loss value of the network to speed up
the convergence of the network, it can improve the
detection accuracy of the whole detection network

2. Improved YOLOv5 Model Based on CBAM

2.1. YOLOv5 Algorithm Principle. The YOLOv5 model is
mainly composed of four parts: input, backbone, neck, and
prediction. Input generally consists of three parts: mosaic
data enhancement, autolearning bounding box anchors,
and adaptive image scaling [32]. Backbone consists of three
parts: focus, cross-stage partial network (CSP), and spatial
pyramid pooling (SPP). Among them, the focus structure
slices the picture and obtains the sampled feature map under
twice the information. The CSP structure is mainly designed
to solve the problem of excessive computation in the process
of reasoning from the perspective of the network structure
design. The SPP layer is by way of maximizing the pooling
of the characteristic layer after three convolutions and
enlarges the receptive field of vision and enhances the non-
linear expression ability of the network. The neck part is a
further optimization of the FPN structure to improve the
speed of feature fusion and inference information transmis-
sion on a network. In the prediction part, the function GIOU
loss (generalized intersection over union loss) is used, which
is mainly used to evaluate the recognition loss of the target
rectangular box. The overall network structure of the
YOLOv5 algorithm is shown in Figure 1.

2.2. Based on the Improved YOLOv5 Wear Particle Detection
Method. The detection framework of the algorithm pro-
posed in this experiment is shown in Figure 2. Firstly, the
size of the wear particle image obtained by the oil detection
was adjusted to 640 × 640, and dealing with adaptive histo-
gram equalization was performed. Then, it is sent to the
designed detection network for training, so as to obtain the

training weight of the detection model. Finally, the test data
is used to verify the proposed detection network.

2.3. Detection Network Fused with Convolution Block
Attention Model. In order to solve the problem of low signif-
icance to be detected caused by complex background and
overlap of wear particle in ferrography images, channel
and spatial convolution block attention model are intro-
duced after the CSP module of the YOLOv5 network model,
whose structure is shown in Figure 3.

As shown in Figure 3, Mc represents channel attention
in the convolution block attention model and Ms repre-
sents spatial attention. Given a feature map F ∈ RC×H×W ,
where R is the number of channels of the C feature map,
H ×W represents the size of the feature map. The CBAM
module will initially send F into the channel attention
module and at the same time use the average pooling
method and the maximum pooling method to obtain the
information of all channels, and finally, the obtained
parameters are superimposed by the multilayer perceptron
and then activated by the Sigmoid function, the channel
attention characteristics McðFÞ are obtained, and its calcu-
lation formula is shown below:

Mc Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ
= σ W1 W0 Fc

avg

� �� �
+W1 W0 Fc

maxð Þð Þ
� �

,
ð1Þ

where σð•Þ represents Sigmoid function; MLP is a multi-
layer perceptron; AvgPoolð•Þ and MaxPoolð•Þ, respectively,
represent the operation of average pooling and maximum
pooling of the spatial information of the feature map by the
module; and Fc

avg and Fc
max, respectively, represent the global

average pooling and maximum average pooling operations
of the channel attention mechanism. After the given feature
FX is sent into the spatial attention module, spatial informa-
tion is gathered along the channel dimension through average
pooling and maximum pooling; then, the spatial feature map
Favg ∈ R1×H×W and Fmax ∈ R1×H×W are generated. Then, the
spatial attention feature is obtained through 1 × 1 convolution
and Sigmoid function activation. Then, multiply with each FX
element to get the spatial attention feature map Fs. The calcu-
lation formula is as follows:

Fs = σ Conv Cat Favg, Fmax
À ÁÀ ÁÀ Á

⊗ FX = σ f 7×7 Fs
avg ; Fs

max

h i� �� �
,

ð2Þ

where Cat indicates connection operation, f 7×7 represents
a 7 × 7 convolution operation of size, and Fs

avg and Fs
max repre-

sent global average pooling and maximum average pooling
operations of spatial CBAM, respectively. YOLOv5 has no
attention preference during feature extraction and uses the
same weighting method for features of different importance.

In this paper, the original network has no attention pref-
erence problem by introducing the CBAM module after the
CSP module, so that the network can pay more attention to
the target of interest during the detection process [33]. The
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comparison results before and after the introduction of the
CBAM model are shown in Figure 4. The red area in
Figure 4 is the area with high salience, and the darker and
clearer the color, the higher the salience.

As can be seen from the comparison of Figure 4, the
addition of CBAM to the YOLOv5 model can enhance the
saliency of the target to be detected in the complex back-
ground, which can lay a good foundation for the accurate
detection of subsequent intelligent identification of abrasive
grains. In addition, considering the accuracy and real-time
nature of the detection network, three CBAM modules were
finally introduced, as shown in Figure 2.

2.4. Depthwise Separable Convolution. In order to make the
network have higher detection accuracy and reduce the
impact on network detection speed caused by the introduc-
tion of attention mechanism, depthwise separable convolu-
tion (DWConv) is introduced to replace the original
convolution operation in the backbone network, whose
structure is shown in Figure 5.

As shown in Figure 5,M is the number of data input chan-
nels and N is the number of data output channels, Dx is the
data input length, Dy is the data input width, Dk is the size
of the convolutional kernel, and Dw is the data output length,
which is theDh data output width. The original convolution in
the network is mainly to convolution the channel feature map;
the calculation quantity Q1 is as follows:

Q1 =D2
k ⋅Dw ⋅Dh ⋅M ⋅N: ð3Þ

In Figure 5, a depthwise separable convolution splits the
convolution operation into a 3 × 3 deep convolution and a
pointwise convolution of 1 × 1. Suppose the input feature
graph F is M ×Dx ×Dy. After deep convolution operation,

the feature graph G ofN ×Dw ×Dh is obtained, and the calcu-
lation quantity Q2 is as follows:

Q2 =D2
k ⋅Dw ⋅Dh ⋅M +N ×M ×Dw ×Dh: ð4Þ

From formulas (3) and (4), it can be concluded that the
ratio of the calculated quantity of the depthwise separable
convolution to the standard convolution is as follows:

Q2
Q1

= 1
N

+ 1
D2

k

: ð5Þ

By introducing depthwise separable convolution, the cal-
culation amount and parameters of the original network can
be reduced; thus, the detection speed can be significantly
increased [34]. This paper uses 3 × 3 convolution kernel,
input channel 3, and output channel 256, which reduces
the total network calculation to one eighth of that using
standard convolution.

2.5. Optimize the Loss Function. Loss function can well
reflect the difference between model and actual data. The
bounding box regression loss in the YOLOv5 original
network is calculated by GIOU function, and its calculation
formula is shown in

LGIOU = 1 − IOU + C − A ∪ Agt
�� ��

Cj j , ð6Þ

where C is the smallest outer rectangle of two boxes and A
∪ Agt is the union of two boxes.

When the widest and highest aligns contained between
the prediction box and the ground-truth box appear, the loss

Fs

F

Mc

X

+

MaxPool AvgPool

Multilayer
Perceptron

Fx

Ms

Spatial attention feature map

Convolution

AvgPool

MaxPool

Figure 3: The CBAM module.
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function degenerates into the IOU (intersection over union).
At this time, it is impossible to evaluate the relative position
of the prediction box and the ground-truth box, resulting in

inaccurate target positioning, and the prediction box loses its
convergence direction, affecting the detection accuracy.
DIOU (distance intersection over union) takes into account

(a) The original image

(b) Before adding CBAM

(c) After adding CBAM

Figure 4: Comparison results before and after adding CBAM.
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the distance, overlap rate, and scale influence between the
prediction box and the ground-truth box, so as to ensure
that the training process has a good convergence speed and
is not easy to diverge. Thus, this paper uses DIOU replace
of the original loss function to achieve a more efficient loss
calculation between the ground-truth box and the prediction
box, the calculation formula of which is shown in

LDIOU = 1 − IOU + ρ2 a, agtð Þ
C2 , ð7Þ

where a and agt represent the center points of the prediction
box and the ground-truth box, respectively, ρ represents the
Euclidean distance between two center points, and C is the
slant distance covering the minimum rectangle between the
prediction box and the ground-truth box.

2.6. Adaptive Histogram Equalization. Aiming at problems
such as blurry and unclear ferrography images, the adaptive
histogram equalization is used to process the data set,
improve image contrast, enhance image quality, and opti-
mize the image. Adaptive histogram equalization is mainly
to divide the input image into small blocks and equalize the
histogram of pixels within a rectangular range around each
pixel, so as to balance the image gray scale and enhance the
edge of the image. The number of pixels of the input image
is counted as x and takes values in the range ½0, L − 1�, and
L is the discrete gray level in the dynamic range. The histo-
gram pðrkÞ of the input image can be represented as

pr rkð Þ = nk
x
, k = 0, 1, 2, 3,⋯L − 1: ð8Þ

In the formula, rk represents the k gray scale, which nk
represents the number of pixels present in the image. The
grayscale cumulative distribution function Sk can be
expressed as

Sk = 〠
k

j=0
p rj
À Á

: ð9Þ

The histogram equalization transformation function is

rk′ = round L − 1ð Þ, Skð Þ, k = 0, 1, 2⋯ L − 1: ð10Þ

In the formula, the gray level after the histogram rk′ is
equalized and roundð•Þ is rounded. The local effect compar-
ison plot after the adaptive histogram equalization is shown
in Figure 6.

3. Experiments

3.1. Collection and Fabrication of Wear Particle Data Sets.
Various wear particles are made using Bruker’s UMT fric-
tion and wear test mechanism, as shown in Figure 7. The
ambient temperature is 22°C, and the relative humidity is

50%. In the disc-pin experiment, the upper pin is a standard
416 stainless steel cylinder, the disc is alloy steel E52100, and
the lubricant is Mobile Gard 412 lubricating oil, which lasts
at a speed of 900 r/min at a load of 294N for 25 h. The disc-
pin friction experiment is mainly used to generate serious
sliding wear particles and cutting wear particles. In the
four-ball experiment, the material of the ball is GCr15 (hard-
ness 63HRC), the maximum load and speed are set to 900N
and 300 r/min, respectively, and the experimental time is
50 h. Four-ball experiments are mainly used to produce
fatigue wear particles, including spherical wear particles,
fatigue wear particles, and laminar wear particles.

The prepared abrasive particles were passed through the
SPECTRO-T2FM500 ferrography analyzer to make a spec-
trum piece, and then, the original wear pictures are taken
by the microscope observer, and the equipment is shown
in Figure 8. Since the size of the pictures taken by the optical
microscope used in the experiment is 2568 × 1912, the reso-
lution is too high, so these original wear particle images are
rotated and cropped, and the data is expanded by OpenCV,
4867 640 × 640 wear particle image are obtained, 3880 are
randomly selected as the training set, and 987 are the testing
set. Finally, these wear particle images are labeled and classi-
fied by using the labeling tools and organized into VOC data
set format [35, 36]. According to the generation mechanism
and wear severity of the wear particle, the abrasive granules
are divided into six categories, fatigue wear particle, layered
wear particle, severe sliding wear particle, cutting wear par-
ticle, spherical wear particle, and oxidized wear particle,
which can meet the needs of the network model for the
number of training samples, and the data distribution of
the abrasive granules label is shown in Table 1.

3.2. Experimental Platform and Model Training. This exper-
iment builds a deep learning framework based on Ubuntu
18.04 LTS, Python 3.7.7, and PyTorch 1.6.0, and the main
hardware parameters are as follows: GPU is NVIDIA
GeForce GTX 1660Ti and the CPUs are Intel Core i5-
10400F @2.90GHz CPUs, CUDA 10.2, and CuDNN 7.6.5.
During model training, the momentum factor is set to 0.937
to avoid the model falling into the local optimal solution or
skipping the optimal solution. Set the learning rate for the first
300 rounds of network training to 0.01 and the learning rate
for the last 200 rounds of training to 0.001. Set the weight
decay regular term to 0.0005 to prevent overfitting of the net-
work during training. Finally, after 500 rounds of iterative
training of the model, the optimal model weight is obtained.
The overall flowchart of this experiment is shown in Figure 9.

3.3. Evaluation Indicators. In order to verify the effectiveness
and feasibility of this experimental detection model, evaluate
from both qualitative and quantitative aspects [37], and for
qualitative evaluation, the performance of the model will
be evaluated by using the difference between the detection
image of the algorithm in this paper and the control group
algorithm, that is, comparing the positioning accuracy of
the ground-truth box, and whether there is missing or false
detection [38]. For quantitative evaluation, the main selected
indicators are as follows: precision (P), recall (R), average
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precision (AP), and mean average precision (mAP). The
formulas are as follows:

P = TP

TP + FP
× 100%, ð11Þ

R = TP

TP + FN
× 100%, ð12Þ

AP =
ð1
0
P rð Þdr: ð13Þ

Taking the detected fatigue wear particles as an example,
the formula TP indicates the number of correctly recognized
by the detection model, FP represents the number of recog-
nition errors or unrecognized, FN represents the number of
fatigue particle targets incorrectly detected as oxidation or
slip, and r is taken as the parameter function PðrÞ. The

(a) The original image (b) The effect image after processing

Figure 6: Adaptive histogram equalization comparison diagram.

(a) Bruker Universal Mechanical Tester, four-ball module, and pin module

(b) SPECTRO-T2FM500 oil circulation system for simulating online collection of wear particles

Figure 7: Friction experimental equipment.
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(a) Image collection of wear particles using Olympus BX51 (b) Residual lubricating oil in the oil tank after the experiment

Figure 8: Experimental equipment for the friction and wear part.

Table 1: Distribution of grinding label data.

Wear debris Fatigue Laminar Sliding Cutting Spherical Oxide

Training sets 896 793 580 551 634 426

Test sets 254 195 149 153 142 94

Modeling Experimental
study Test analysis

Research on intelligent recognition of
Ferrography image

Friction and wear test

Data acquisition

Evaluation indicators
and methods

Production of
data sets

Validation set
loss min

Training set and verification set Test set

Model training

Model test

Intelligent recognition result of wear particle image

Adaptive histogram
equalization

DIOU

Depthwise Separable
Convolution

YOLOv5

YOLOv5+CBAM

Y

N

Figure 9: The overall flow chart of this experiment.
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average precision (AP) indicates the average score of the
accuracy rate to the recalled value, and the two indicators
of P and R are generally used to judge the good or bad qual-
ity of the model. For each category of APs averaged as the
average accuracy of mAP, mAP can measure the perfor-
mance of the entire detection model.

4. Results and Analysis

4.1. Quantitative Analysis and Results. In order to more
intuitively reflect the performance of the algorithm which
is in the paper, the experimental algorithm is compared with
the YOLOv5 object detection algorithm by randomly
extracting images; in order to ensure the accuracy and rigor
of the test, the two object detection algorithms are trained
and tested on the same test platform, and the results are
shown in Figure 10.

From Figure 10, it can be concluded that the YOLOv5
algorithm iterates to about 40 rounds before the accuracy
rate rises to about 0.80 and finally stabilizes at about 0.84.
However, after 40 rounds of iteration, the accuracy of the
algorithm in this paper is about 0.956 and finally stabilizes
at about 0.967. The comparison result of the mAP curve
and the loss curve is shown in Figure 11.

From Figure 11(a), it can be concluded that the mAP
curve of the proposed algorithm is above the mAP curve of
the YOLOv5 detection algorithm; that is, the value of the
mAP of the proposed algorithm is significantly higher than
that of YOLOv5 networks. As can be drawn from
Figure 11(b), the YOLOv5 loss gradually decreased to about
0.04 after 50 iterations and finally stabilized at about 0.041.
After the introduction of the CBAM module, the initial loss
of the network is about 0.099 and finally stabilizes at about
0.055. After optimizing the loss function, the network loss
value is significantly reduced and the convergence speed is
accelerated, and the initial loss value is about 0.085 and
finally stabilizes at 0.033, which can be summarized that
the detection model proposed in this paper has achieved
good training effect.

4.2. Ablation Experiment. Based on the original YOLOv5
detection framework, the algorithm in this paper carried
out adaptive histogram equalization, introduced CBAM
and depthwise separable convolution, respectively, and opti-
mized the loss function. In order to comprehensively analyze
the advantages of various improved modules in CBAM-
YOLOv5 for abrasive wear particle detection, ablation exper-
iments were designed based on the original YOLOv5. Based
on the original algorithm as the control group, the specific
experimental content and test results are shown in Table 2.
Table 2 analyzes the contribution of each improvement
strategy to the network in this paper. It is found from the
experiment that each module improves the overall perfor-
mance of the model to different degrees.

In model 2, an adaptive histogram equalization module
is added to the original network to improve the local con-
trast of the image, obtain more details of the image, and
reduce the image blur interference. Compared with the data
of model 1, it is easy to find that the introduction of the

adaptive histogram equalization module successfully
increases the detection accuracy by 1.81%, the recall rate
by 1.78%, the average accuracy by 1.07%, and the detection
speed does not change significantly.

In model 3, CBAM was introduced into the backbone
network to enhance the weight ratio of the abrasive region
in the wear particle image, highlight the abrasive features,
improve the feature expression ability of detection wear par-
ticle targets in the complex background, and effectively solve
the problem that the complex background of lubricating oil
image leads to the difficulty in feature extraction and the loss
of network propagation feature information. The introduc-
tion of attention mechanism successfully optimizes the
recognition performance of small targets. Compared with
model 1, the detection accuracy is increased by 5.98%, recall
rate by 6.17%, and average accuracy by 5.87%.

In model 4, after introducing depthwise separable con-
volution into the backbone network, the features of channel
dimension and spatial dimension are mapped, respectively,
and the results are combined. While retaining the learning
ability of ordinary convolution representation, the number
of parameters is reduced and the operational efficiency is
improved. Compared with the original network, the detec-
tion accuracy is only improved by 0.09%, but the detection
speed is improved by 23.95 FPS, in order to meet the new
model more in line with the real-time and concise object
detection needs in industry.

In model 5, the convolution module of model 3 is
replaced by the depthwise separable convolution module,
and its detection accuracy does not change greatly, but its
speed increases by 17.16 FPS. The introduction of this
module can reduce the amount of computation, obtain
more characteristic information, and reduce the influence
of the introduction of attention mechanism on the network
detection speed.

After the loss function was changed to DIOU-LOSS in
model 6, the distance, overlap rate, and scale effects between
the prediction frame and the target frame were taken into
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Figure 10: Accuracy change curve.
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account, so as to ensure a good convergence speed in the
training process while not diverging easily. Based on the
original network, the detection accuracy was increased by
2.71%, the recall rate by 3.68%, and the average accuracy
by 5.24%.

By comparison of ablation experiments, it is found that
the performance improvement of model 7, namely,
CBAM-YOLOv5 proposed in this paper, is the most signifi-
cant after the addition of various improved modules. The
proposed algorithm synthesizes the advantages of each mod-
ule, and the detection accuracy reaches 96.7%, the recall rate
91.6%, and the average accuracy 92.62%. It has greatly
improved the problem of missing and misdetecting overlap-
ping wear particles and fine wear particles, and the six kinds
of detection targets have achieved good detection results.
Based on the original network, the detection accuracy is
increased by 9.14%, the recall rate is increased by 7.3%, the
average accuracy is increased by 10.58%, and the average
detection accuracy value is increased by 6.42%, which
verifies the effectiveness of the proposed algorithm on the
identification of wear particles. And the detection speed
can reach 32FPS, with good real time.

4.3. Qualitative Analysis and Results. In order to verify the
advantages of this algorithm, four kinds of images with typ-
ical image blur, wear particle cross-overlapping, complex
background, and lighting influence are selected for test veri-
fication. For ease of analysis, the objects to be inspected in
the figure have been marked with different colored wire-
frames. The three classic detection algorithms of YOLOv3,
YOLOv4, and YOLOv5 are selected and compared with
the detection algorithm proposed herein, and the results
after detection are shown in Figure 12.

Figure 12(a) is an image of the original ferrography wear
particle, Figures 12(b)–12(e) are a plot of the detection
results of different algorithms, and the experimental results
of the four groups from left to right are analyzed as follows:

From the first set of experiments, it can be concluded
that the proposed algorithm enhances the image contrast
after the adaptive histogram equalization operation and also
improves the clarity of the image, which can reduce the
interference caused by image blur to a certain extent,
YOLOv3, YOLOv4, and YOLOv5 model algorithms have
different degrees of missed detection, and this algorithm
can effectively solve the missed detection behavior in the
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Figure 11: Evaluation indicators.

Table 2: Results of ablation experiments.

Model Baseline network AHE CBAM DWConv DIOU-LOSS P R mAP t/s FPS

1 YOLOV5 0.886 0.843 0.8376 0.029 34.87

2 YOLOV5 √ 0.902 0.858 0.8468 0.029 34.87

3 YOLOV5 √ 0.929 0.842 0.8663 0.038 26.32

4 YOLOV5 √ 0.894 0.875 0.8675 0.017 58.82

5 YOLOV5 √ √ 0.928 0.839 0.8673 0.023 43.48

6 YOLOV5 √ 0.910 0.844 0.8415 0.034 29.41

7 YOLOV5 √ √ √ √ 0.967 0.916 0.9262 0.031 32.26
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intelligent identification of wear particles, and the detection
accuracy is as high as 0.92.

From the second set of experiments, it can be concluded
that there is a strong overlapping interference of the wear
particle and cannot be accurately distinguished. The
YOLOv3 and YOLOv4 model algorithms have missed detec-
tion behavior for the fuzzy overlap of the wear particle. The
YOLOv5 model can accurately identify the a wear particle
type and effectively improve the missed detection behavior,
but the detection accuracy is not high; the algorithm in this
paper joins the CBAM module, by using the channel atten-
tion mechanism of this module to make the network auto-

matically obtain the importance of each channel, and the
information of each channel is superimposed with the mul-
tilayer perceptron sharing weight. The different weights of
each channel given herein are used to strengthen the target
characteristics, which can enhance the weight ratio of differ-
ent wear particles, making the wear particle characteristics
obvious. Then, the type of wear particle can be detected effi-
ciently and with high precision, and there is without missed
detection behavior.

From the third group of experiments, it can be concluded
that the image background is complex and the wear particles
are almost fused with the background. By comparing the

(a) Original drawing

(b) YOLOv3 algorithm detecting results

(c) YOLOv4 algorithm detecting results

(d) YOLOv5 algorithm detecting results

(e) Algorithm detection results in this paper

Figure 12: Comparison of the results of the different algorithms.

12 Wireless Communications and Mobile Computing



images, it can be seen that all the tested algorithm models can
accurately identify the wear particles, but the detection boxes
of the YOLOv3, YOLOv4, and YOLOv5 model algorithms
do not completely include the particles significantly smaller
than the real frame; the detection frame of the algorithm in
this paper is closer to the real size of the real frame. Not only
that, for such complex background images, the proposed algo-
rithm also has high detection accuracy.

From the fourth group of experiments, it can be con-
cluded that the area brightness of the wear particle image
to be detected is low due to the influence of illumination,
especially the wear edge in the image is close to the back-
ground gray level. Model algorithms of YOLOv3, YOLOv4,
and YOLOv5 have some degree of mischecking behavior,
which makes oxidation wear particle mischecked into spher-
ical wear particle. The algorithm in this paper can effectively
solve the impact of light and can accurately identify wear
particles with high detection accuracy.

It can be seen that the algorithm in this paper joins the
CBAM module. By using the space attention mechanism in
the CBAMmodule, all positions in the feature map are gener-
ated weights and output, which can enhance the target specific
area while weakening the irrelevant background area, thus
further enhancing the feature expression ability of the wear
target, so that the target can be detected accurately. And under
the operation of adaptive histogram equalization, it can greatly
reduce the false detection and missed detection and improve
the accuracy. Mean accuracy is also higher than other detec-
tion algorithms, which not only has high detection accuracy
but also can solve more complex background, improve the
detection rate of small wear particle and overlapping wear
particle, and have strong robustness.

4.4. Comparison Experiment. In order to further verify the
advantages of the algorithm in this paper, it is compared
with three different model algorithms in the same series.
To ensure the credibility of the experiment, all experiments
are compared with objective data indicators in the same data
set and the same training environment. The detection and
comparison results are shown in Table 3.

It can be seen from Table 3 that the algorithm in this
paper is significantly higher than the other three detection
algorithms in terms of accuracy and average precision, and
the detection speed is also significantly higher than that of
the other three models. Although the size of the model is
larger than YOLOv5, the recall rate is higher than that of
other detection algorithms, which has obvious advantages
in general.

5. Conclusions

The CBAM-YOLOv5 detection model is proposed to solve
the problems of ferrography wear particle image blurring,
complex background, wear particle overlapping, and illumi-
nation influence in the condition monitoring and fault diag-
nosis technology of mechanical equipment. Through a series
of friction and wear experiments to collect ferrography wear
particle images for intelligent detection experiments, the
following conclusions are obtained:

(1) Adding CBAM attention mechanism to the YOLOv5
detection model can effectively solve the problems
such as ferrography image blurring, wear particle
overlapping, complex background, and lack of light
influence, which lead to weak target saliency, difficult
wear particle detection, missing detection, and false
detection. Using adaptive histogram equalization to
preprocess the image can effectively reduce the inter-
ference of wear particle recognition caused by ferro-
graphy image blurring and improve the quality of
the data set. The detection speed of the network is
improved by introducing the depthwise separable con-
volution, and the detection accuracy of the network
can be improved by optimizing the loss function

(2) Through a large number of experimental results, it is
proved that the accuracy of the algorithm in this
paper can reach 96.7% for images with a resolution
of 1280 × 720, the average accuracy is 92.62%, and
the detection speed is 32 FPS, superior to YOLOv3,
YOLOv4, and YOLOv5 algorithms

(3) Due to the limitation of the number of experimental
data sets, the accuracy of the detection results in the
experimental results is limited. However, with the
expansion of the data sets, the detection accuracy
of the algorithm proposed in this paper will be fur-
ther improved. In consideration of both speed and
accuracy, it has high application value and provides
important reference and theoretical and practical
basis for the subsequent intelligent fast identification
of ferrography wear particles and the intelligent
mechanical equipment oil online monitoring system

In the future research, we will take online monitoring
technology as the center to design a deep learning model
with higher accuracy, smaller model, faster speed, and stron-
ger generalization ability and deploy it into the online oil
analysis system, so as to solve the problem of online

Table 3: Effect comparison of different models in the same series.

Model P (%) R (%) T (s) mAP (%) Model size (MB)

YOLOv3 79.56 75.30 0.1420 82.10 236

YOLOv4 78.68 77.53 0.0851 84.70 156

YOLOv5 88.60 84.30 0.0516 83.76 20.5

Our 96.70 91.60 0.0313 92.62 25.5
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intelligent recognition in the field of ferrographic image rec-
ognition to the greatest extent.
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