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Abstract. The Cipher Block Chaining (CBC) Message Authentication Code (MAC)
is an authentication method which is widely used in practice. It is well known that the
use of the CBC MAC for variable length messages is not secure, and a few rules of
thumb for the correct use of the CBC MAC are known by folklore. The first rigorous
proof of the security of CBC MAC, when used on fixed length messages, was given only
recently by Bellare et al. [3]. They also suggested variants of CBC MAC that handle
variable-length messages but in these variants the length of the message has to be known
in advance (i.e., before the message is processed).

We study CBC authentication of real-time applications in which the length of the
message is not known until the message ends, and furthermore, since the application is
real-time, it is not possible to start processing the authentication until after the message
ends.

We first consider a variant of CBC MAC, that we call theencrypted CBC MAC
(EMAC), which handles messages of variable unknown lengths. Computing EMAC on
a message is virtually as simple and as efficient as computing the standard CBC MAC
on the message. We provide a rigorous proof that its security is implied by the security
of the underlying block cipher. Next, we argue that the basic CBC MAC is secure when
applied to a prefix-free message space. A message space can be made prefix-free by also
authenticating the (usually hidden) last character which marks the end of the message.
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1. Introduction

The Cipher Block Chaining (CBC) Message Authentication Code (MAC) is an au-
thentication method which is widely used in practice. To authenticate a messageX =
(x1, x2, . . . , xm) amongst parties who share the secret keya, the following tag is added
to the message:

f (m)a (X)
def= fa( fa(· · · fa( fa(x1)⊕ x2)⊕ · · · ⊕ xm−1)⊕ xm).

We sometimes denote the tagf (m)a (X) asMACa(X). The functionfa: {0,1}`→ {0,1}`
is some underlying block cipher such as the Data Encryption Standard (DES) anda is
the secret key. Thus,f (m)a is a function that takes a message ofm≥ 1 blocks (orm` bits)
and assigns it a tag of one block. The CBC MAC is a widely used International Standard
[10], especially with DES as the underlying block cipher.

It is well known that the use of the CBC MAC for variable-length messages is not
secure, and a few rules of thumb for the correct use of the CBC MAC are known by
folklore. For example, it is easy to show that after examining a few authentications,
an adversary that does not know the secret key can produce a valid authentication of a
message that has not yet been authenticated.

Until recently, no solid theoretical ground was suggested to deal with the security
of this method. The main interest is whether the security of the block cipherf (e.g.,
DES) implies the security of the CBC MACf (m). Bellare et al. [3] were the first to
study this problem. They showed that CBC MAC is secure when applied to messages
of fixed length. They also showed variants of CBC MAC that are secure for the case
of variable-length messages when the length of the message is known in advance (i.e.,
before the message is given to the authentication procedure).

1.1. This Work

We study the case of real-time applications, in which the length of the message is not
known in advance. These include many important uses such as fax, real-time speech
transmission, real-time camera sources of video transmission, and other human-driven
multimedia interactions. We study how to use the popular CBC MAC approach in this
scenario.1

First, we consider the following variant of CBC MAC to deal securely with the problem
of variable (unknown) length messages. This variant was first suggested in [5]. We use
the secret keya to produce two secret keysa′ = fa(0) anda′′ = fa(1). Usinga′ anda′′

we define

EMACa′,a′′(X)
def= fa′′( f (m)a′ (X)),

wherem is the number of blocks inx. Namely, we first usea′ to compute the CBC MAC
of the message. This can be done block by block as they are input to the authentication
procedure. Givenf (m)a′ (X)we perform one more encryption and getEMACa′,a′′(X). Note
that for each blockxi we only use the encryption function once. The additional invocation

1 Actually, a different method to deal with unknown lengths was suggested in [3]. The method seems to
have a flaw. See the Appendix for details.
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of fa′′ is done only once at the end. Therefore, the efficiency of this authentication is
virtually the same as the standard CBC MAC. We call this authenticationEMAC (for
encrypted CBC MAC). We then provide a rigorous proof that this method is secure. Our
proof is an extension of the proof in [3].

Next we argue that the CBC MAC is secure when applied to a prefix-free message
space. If the authentication is computed on all the message including the (usually hidden)
“end of message” character, then this condition (of prefix-free messages) holds. More
formally, suppose the message space is drawn from an alphabet of blocks which excludes
a distinguished block⊥ and if we encode each authenticated message by appending the
⊥ block to the end of the message, then we get that the encoded messages form a prefix-
free set of messages. The proof that CBC MAC is secure when invoked on a prefix-free
message space is an easy augmentation of the proof for fixed-length messages given
in [3].

We make an important point here. The security of the system guarantees only that the
adversary cannot forge a legal message taken from the prefix-free space. The adversary
is capable of forging messages that are not from the predetermined prefix-free message
space and it must be made sure that the legal users accept only authentications on
messages from the predetermined message space.2

We remark that making such assumptions on the behavior of the system is on the one
hand reasonable, but on the other hand risky, since it relies on the system being used as
it was meant to be used. The security of the system would be compromised if the system
is later modified to authenticate the concatenation of a few messages (treating it as if it
was a single message to authenticate), thus losing the prefix-free property. Therefore,
we recommend using EMAC in spite of the need to keep a second key.

1.2. The Theoretical Framework

We follow the approach suggested by Bellare et al. [3]. We describe it here briefly, and
we refer the reader to their paper for details and motivation.

We would like to show that if the underlying block cipher is secure, then a message
authentication code is also secure. We call a block cipher secure if it is a pseudorandom
function family with respect to efficient computation. Namely, consider the block cipher
as a family of functions, so that each key determines a function in the family. Then
we assume that this family is a pseudorandom family of functions. This approach to
modeling the security of a block cipher was suggested by Luby and Rackoff [11], [12],
and the notion of a family of pseudorandom functions was suggested by Goldreich et
al. [6].

We say that a MAC is secure if it resists existential forgery under adaptive message
attack. This adopts the viewpoints of Goldwasser et al. [7] with regard to signature
schemes. We follow [3] and actually show that the message authentication code is secure
in a very strong sense, that is, we show that both EMAC and the application of CBC
MAC on a prefix-free message space, are actually families of pseudorandom functions.

Bellare et al. have also provided anexact securityanalysis. Namely, instead of argu-
ing that if the underlying cipher block is robust against polynomial time attack, then the

2 For example, upon seeingt0 = MACa(0) the adversary knows thatt0 = MACa(0, t0).
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authentication procedure is robust against polynomial time attack, they actually make
a more exact statement. They state that if the authentication can be attacked by an ad-
versary running in timet , makingn queries to the authentication scheme, and achieving
“advantage”ε (for the definition of advantage see Section 2), then there exists an ad-
versary which attacks the underlying cipher in timet ′, makes at mostn′ queries to the
cipher, and achieves advantageε′, wheret ′,n′, andε′ are explicitly given as functions
of n, t , andε. In this way, it is possible to study nonasymptotic ciphers schemes, such
as DES (which is only defined on a block of 64 bits). We follow this approach.

1.3. Related Works

The ANSI standard X9.19 suggests a different extension of CBC MAC (in particular, for
the DES cipher) that achieves length variability. The standard suggests using two keys
like our EMAC. The first is used to get a CBC MAC on the message using DES, then
the second is used todecryptthe result with DES, and last, the first key is used again
to encrypt the outcome. This was done primarily to prevent exhaustive key attacks, but
has the same effect on variable-length message attacks that EMAC does. Our analysis
may be augmented to argue for the security of this method as well. The construction of
ANSI X9.19 involves an extra operation which, in view of our result, is not necessary if
the underlying block cipher is secure (as a pseudorandom function family). To the best
of our knowledge, there is no published rigorous proof of security for the ANSI X9.19
construction, which is different from EMAC.

There are various approaches to authentication other than CBC MAC. Wegman and
Carter [19] suggested hashing a message using an almost universal2 family of hash
functions and then encrypt it (using probabilistic encryption). Following that, efficient
applications of this procedure were suggested by Krawczyk [9], Stinson [17], Shoup
[16], and Rogaway [15]. See [15] for more details and references.

We also mention the work of Bellare et al. [2], who suggested a new type of (provably
secure) authentication based on performing exclusive-or’s on encryptions of the input
blocks. This allows parallelizability and incrementality.

Bellare et al. [1] introduce two methods for message authentication codes: NMAC
and HMAC. Both bear resemblance to our EMAC, but are also different. The codes
NMAC and HMAC make very different assumptions about the underlying cryptographic
primitives. These primitives are obtained from collision-intractable hash functions rather
than block ciphers. Their constructions and proofs are not applicable to the EMAC
construction since EMAC deals with an iteration that is not (weakly) collision resistant
for nonfixed size inputs. This bad property of CBC MAC foils the proof in [1] and
therefore a proof is needed that EMAC is indeed secure.

Bellare and Rogaway [4] discuss relaxing the requirements of the hash function: “ask
less of a hash function and it less likely to disappoint.” In this context, they suggest
a few constructions of hash functions achieving a weak form of collision resistance
with respect to equal-length messages. They then add a mechanism to allow variable-
length messages, by performing a first hash with one key, to gethk1(X), and a second
hash with a second key, on the concatenation of the result to the message length to get
hk2(hk1(X), |X|). This construction is closely related to our EMAC. It needs a bit more
work in the second stage, but the proof of security becomes easier.
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Last, we mention the birthday attacks of Preneel and van Oorschot [13]. They show that
MACs of a particular form can be broken if enough (and/or long enough) messages are
authenticated so that acollisionoccurs. Namely, the breaker finds two different messages
that get the same hash value. These attacks are applicable to CBC MAC and to EMAC
as well. Of course, the security parameters of EMAC (or CBC MAC) should be set so
that birthday attacks become infeasible. Our proof of security should be considered as
complementing these birthday attacks. We remark that these attacks are the best known
today for CBC MAC or for EMAC and that there is still a gap between the proven security
of these authentication schemes and the known attacks. For truncated CBC MAC (i.e.,
when the result of CBC MAC is truncated to get less bits for the authentication code)
Knudsen suggests the best attack known today [8]. We do not consider this model.

1.4. Outline of the Paper

In the following section we give the definitions and notations used throughout the paper.
In Section 3 we show that EMAC is (almost) as secure as the underlying block cipher
used, and in Section 4 we argue that it is secure to use CBC MAC on a prefix-free
message space (given that the underlying family is secure).

2. Preliminaries

We (basically) use the notation of [3]. The set of all functions from{0,1}` to {0,1}` is
calledR`→`. Also, let the (infinite) set of all functions from({0,1}`)∗ to {0,1}` be called
R`∗→`.

Recall that we defined

EMACa1,a2(X) = fa1( f (m)a2
(X))

for two randomly chosen keysa1,a2. In what follows it will be convenient for us to think
of EMAC as using two functionsf1 and f2 instead offa1 and fa2. We do this by denoting
f1 to be fa1 for a randomly chosen keya1 and f2 to be fa2 for a randomly chosen second
keya2. Now, we may write

EMACf1, f2(X) = f1( f (m)2 (X)).

This notation is more convenient especially since we compare the behavior of this dis-
tribution with a really uniform choice off1 and f2.

Let A be a probabilistic oracle Turing machine with access to an oraclef (think of f
as an authentication function whichA can access, or alternatively as a random function)
then we denote by Prob[Af = 1] the probability thatA outputs 1 when accessing the
function f as an oracle. For a finite family of functionsF , we denote by Prob[AF = 1]
the probability thatA, when accessing an oraclef which is randomly chosen fromF ,
outputs 1. We also consider the infinite set of functions from({0,1}`)∗ to {0,1}`. In this
case, instead of thinking ofAR`∗→` as a machine which uses a random function in this
infinite set, one may think of the oracle answering each question of the machine with a
random string in{0,1}`. Of course, if the same question is asked twice, the same answer
will be given.



320 E. Petrank and C. Rackoff

In many cases, we consider a set of functions, and a random choice of a function in the
set. We define afamily of functionsto be a pairC = (S, D) whereS is a set of functions
andD is a corresponding distribution by which a function in the set is picked. The three
families of functions that are discussed with relation to theEMACscheme are:

1. The familyEMACR`→` is the set of functionsEMACf1, f2 for all f1, f2 ∈ R`→`.
The corresponding distribution is a uniform and independent random choice of
f1, f2 ∈ R`→`.

2. The familyEMACF for a block cipherF is the set of functionsEMACf1, f2 for
all f1, f2 ∈ F . The corresponding distribution is an independent random choice
of two encryption functionsf1, f2 ∈ F according to the distribution of the block
cipherF . (As explained before, this means selecting uniformly and independently
two random keysa1,a2 for the cipher and definingf1 = fa1 and f2 = fa2.)

3. The familyR`∗→` is the set of all functions inR`∗→` and the corresponding
distribution is a uniform random choice of a function in the set. Similarly, the
familyR`→` is the set of all functions inR`→` and the corresponding distribution
is a uniform random choice of a function in the set.

One may define the familiesCBC-MACF andCBC-MACR`→` in a similar manner. We
sometimes abuse notations by referring to the family as the set of functions. When we
say that we pick a function at random from a familyF according to the distribution of
F , we mean that for a familyF = (C, D) we pick a function inC according to the
distributionD.

In this paper we would like to check the ability ofA to tell between a function
chosen from one specific familyC1 and a function chosen at random from a second
family of functionsC2. We denote theadvantageof A in making this distinction by
advantageA(C1,C2), and define it as

advantageA(C1,C2)
def= |Prob[AC1 = 1]− Prob[AC2 = 1]|.

The distribution is a random choice of a function in the familyC1 or C2 according to the
distribution defined for the family. (This notation follows [6].)

A message spaceÄ is a set of strings in{0,1}∗. We say that a message spaceÄ is
prefix-free if there are no two distinct stringsX1, X2 ∈ Ä such thatX1 is a prefix ofX2.

Finally, we talk about block ciphers and denote the block length by`. We assume
that this parameter is input to all machines discussed in this paper. In particular, each
of the adversaries gets̀in its input. We also assume that the key lengthk is efficiently
computable giveǹ. (Efficient here is in a liberal sense: polynomial in` and not in the
length of the (binary) representation of`).

2.1. CBC MAC

Given a block cipher which uses a random keya ∈ {0,1}k, we define a family of functions
F which includes a function for each possible key in{0,1}k. Note that two different keys
may indicate the same function. The corresponding distribution is a uniform random
choice of a key in{0,1}k and using the key to determine the function of the block cipher.

Given a family of functionsF from {0,1}` to {0,1}` (denoted the underlying family
of functions) the CBC MAC authentication schemeCBC-MACF is defined by choos-
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ing at random a functionf ∈ F (unknown to the adversary) according to the distri-
bution of the family, and then the authentication of a messageX of m blocks (i.e.,
X = (x1, x2, . . . , xm)), is defined as

f (m)(x1, . . . , xm) = f ( f (· · · f ( f (x1)⊕ x2)⊕ · · · ⊕ xm−1)⊕ xm).

It will also be convenient to definef (0)(ε) = 0` (for the empty stringε). Sometimes, we
prefer not to specify the length ofX, and then we writef (∗)(X), which means the same
as above withm being the number of blocks in the input messageX.

2.2. Encrypted CBC MAC

A variant of CBC MAC which we callEMAC (encrypted CBC MAC) is defined as
follows. LetF be a family of functions. Choose two functionsf1, f2 ∈ F independently
according to the distribution of the family. For a messageX = (x1, x2, . . . , xm) as above,
we define

EMACf1, f2(X) = f2( f (m)1 (X)).

We denote byEMACF the family of functions obtained by using EMAC with the family
F . We remark that if only one secret functionf is given instead of the pairf1, f2, one
may use the stringsf (0) and f (1) to specify the two functionsf1, f2. (We assume that
the length of a block is larger than the length of a key and thatf (b) (b = 0,1) is truncated
to get the keys. Otherwise, one may take more values off (0), f (1), f (2), . . . .) It is
easy to show that ifF is a pseudorandom family of functions, then this additional step
does not foil the security of the system, and we ignore this point in what follows.

We would like to make a remark about the empty string. As in Section 2.1 above, we
define f (0)1 (ε) to be the zero string 0`, and thusEMACf1, f2(ε) is defined to bef2(0`).
Our proof of security assumes this handling of the empty string.

3. Encrypted CBC MAC is Secure

In this section we show that the security of the familyEMACF is implied by the security
of the family F . In the main theorem of [3] (where all messages had the same length)
and also in case the message space is prefix-free, the adversary is limited in his queries,
and this is used in the proof. Here, the adversary is allowed to make any query. (Actually,
we do not allow more than a reasonable (i.e., an exponential) number of queries, and we
do not allow queries of exponential length.)

To state the theorem we define what it means by that the adversary succeeds in breaking
the authentication scheme. Our definition is parameterized to allow quantitative analysis
later. In what follows, we denote bỳthe length of the blocks in the block cipher. Namely,
the functions in the familyF are from{0,1}` into {0,1}`. Also, we denote by|X| the
number of blocks in the stringX.

Definition 3.1. Let F ⊆ R`→` be a family of functions. LetA be a probabilistic oracle
Turing machine (the adversary). Consider the following stochastic experiment. First, two
functions f1, f2 are selected according to the distribution on the familyF . ThenA gets
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to see theEMACf1, f2 authentication of messagesX1, X2, . . . , Xn−1 which it chooses
adaptively, i.e.,Xi is chosen based upon the valuesEMACf1, f2(Xj ), j = 1, . . . , i − 1,
and upon the random tape ofA. We say that an adversaryA (ε, t, σ ) succeeds in breaking
theEMACF scheme if the following three conditions hold:

1. Probability of success:With probability at leastε, over the choice off1, f2 ∈ F
and over the random coins of MachineA, MachineAoutputs(Xn,EMACf1, f2(Xn))

for Xn which is different from all the previous queriesX1, . . . , Xn−1.
2. Time complexity: MachineA runs in time at mostt .
3. Query complexity: The number of queries and their length satisfy

∑n
i=1 |Xi | ≤ σ .

(Note that the length of the forgery also counts.)

We also defineTF to be the time complexity of the block cipherF . Namely,TF is the
maximum over allg ∈ F and allω ∈ {0,1}` of the time it takes to computeg(ω). Also,
let CF be the time required to choose a function according to the distribution of the
family F . We now state our main theorem.

Theorem 1. Let F ⊆ R`→` be a family of functions. If there exists an adversary
A that (ε, t, σ ) succeeds in breaking EMACF , then there exists an adversary A′ for
distinguishing a randomly chosen function according to the distribution of F from a
uniformly chosen random function inR`→` with the following properties. Adversary A′

achieves an advantage of at leastε/2−σ 2 ·2−`−2−`/2 after making at mostσ queries
and working in time at most

t + c · σ · ` · log(σ )+ σ · TF + CF

for some small constant c.

Remark 3.2. The constantc is a small number which depends on the computational
model. The advantage ofA′ (see Section 2) is defined over the random tape ofA′ and
the random choice off ∈ F .

Proof of Theorem 1. We extend the proof in [3] to deal with EMAC. The proof in [3]
consists of two main parts:

1. Bellare et al. start by checking the possibility of distinguishing a random function in
R`∗→` from a random function inCBC-MACR`→` . Intuitively, this can be thought of
as using CBC MAC with the best block cipher: a random function inR`→`. They
show that even a computationally unbounded adversary cannot gain too much
advantage in this case.

2. Second, they use the first step to show that if an adversary can distinguish the
family R`∗→` from CBC-MACF , then this adversary can be used to build another
adversary that breaks the underlying familyF with comparable resources and with
comparable advantage.

We follow these steps for EMAC. The main difficulty (in both cases) is in the proof of
Step 1.
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3.1. The Information Theoretic Case

We start with Step 1 showing that it is hard to distinguishEMACR`→` from the family of
random functionsR`∗→`, even if the distinguisher is computationally unbounded.

Lemma 3.3. Let ` ≥ 1 be the block length. Let A be a probabilistic oracle Turing
machine(an adversary) that makes queries to either a random instance of EMACR`→`

or to a random instance ofR`∗→`. Supposing Machine A makes queries X1, . . . , Xn,

the cumulative length of which, σ
def= ∑n

i=1 |Xi |, is less than2(`+1)/2, then Machine A
has an advantage at mostσ 2 · 2 · 2−`.

Remark 3.4. The advantage (as defined in the preliminaries) is measured over a ran-
dom choice of a function in the corresponding family and over the coin tosses of the
adversary. More specifically, in addition toA’s coin tosses, when MachineA gets a
random oracle from the familyEMACR`→` , then the probability is taken over a random
choice of f1, f2 ∈ R`→`, and when MachineA gets an oracle to a random function in
R`∗→`, then the probability is taken over the choice of a random function inR`∗→`. The
queriesX1, . . . , Xn are determined by the coin tosses ofA and the answers of the oracle
to its queries.

Loosely speaking we prove the lemma using the following steps. First we show that
when there are no collisions (i.e., the adversary gets a different value for each query)
then the adversary knows “nothing” except for the fact that there were no collisions.
Then we show that the probability that the adversary can “cause” a collision based on its
view (even when using its unbounded computational capabilities) is small. We conclude
with deducing that the adversary has little advantage in breaking the system.

We start with formalizing the first argument. Since the adversaryA is not limited in
computational power we may assume it is deterministic. Namely, its queries and final
output are set deterministically according to the answers it gets from the oracle. For
example, if the oracle is a random function in the familyEMACR`→` , then the runs of
MachineA (i.e., the queries it makes and the responses it gets) are completely determined
by the random selection off1 and f2 in R`→`. We prove a bit more than stated, in the
sense that we let adversaryA see all the authentications of all the prefixes of its queries:
when the adversaryA makes a queryX = (x1, x2, . . . , xt ), then it not only gets the value
of EMACf1, f2(X) but it also gets all the EMACs of all the prefixes ofX. Specifically,A
gets to seef2( f1(x1)), f2( f1( f1(x1)⊕x2)), . . . , f2( f1(· · · f1( f1(x1)⊕x2)⊕· · ·⊕xt )).

Definition 3.5. We denote the nonempty prefixes of a queryX by thesubqueriesof
X. Namely, ifX = (x1, x2, . . . , xt ), then the subqueries ofX are(x1), (x1, x2), . . . , (x1,

x2, . . . , xt ). If X = ε, then it has no subqueries. LetX1, . . . , Xn ben queries in({0,1}`)∗.
We define thedistinct subqueriesof X1, . . . , Xn to be all distinct subqueries of all queries
X1, . . . , Xn.

To make the following discussion clear, we also need to define what collisions and inner
collisions are.
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Definition 3.6 (A Collision). LetX1, . . . , Xn ben strings in({0,1}`)∗, and letf1, f2 be
two functions inR`→`. We say that there occurs acollisionof EMACf1, f2 on the queries
X1, . . . , Xn if there exists a pair of indices 1≤ i < j ≤ n for which EMACf1, f2(Xi ) =
EMACf1, f2(Xj ). We say that there is aninner collision if the collision occurs before
invoking f2. Namely, if there exists a pair of indices 1≤ i < j ≤ n for which f (∗)1 (Xi ) =
f (∗)1 (Xj ). If there is no collision, we say thatf1, f2 arecollision-freefor the given queries.
If there is no inner collision, we say thatf1 is innercollision-freefor the given set of
inputs.

Note that an inner collision is determined byf1 (and does not depend on the choice of
f2). Note also, that if there is an inner collision on queriesX1, . . . , Xn with respect to
f1, then for anyf2 there is a collision onX1, . . . , Xn with respect tof1, f2.

In the first lemma (see Lemma 3.7 below) we assert that if there is no collision on
the queries done so far (including on their distinct subqueries), then anyf1 that does
not cause an inner collision on these queries is equally likely to be the one used, given
all the EMACf1, f2 values on all the distinct subqueries. Intuitively, this means thatf2

“hides” whatever happened before it was invoked, unless there was a collision. In the
second lemma (see Lemma 3.10 below) we use this first lemma to show that given
theEMACf1, f2 values on all the distinct subqueries of the queries made so far, there is
almost no information on the intermediate values thatf2 was computed on. Recall that

in EMAC we first computeαi
def= f (∗)1 (Yi ) on a subqueryYi , and then we invokef2 once

on the value obtained to getf2(αi ). The claim in this second lemma is that given the
EMACf1, f2 values of all the subqueries of the queries made so far (and assuming there
was no collision), it is “impossible” to tell what the intermediateαi ’s values are. Using
this, we show in the third lemma (see Lemma 3.12 below) that the probability that a new
query will cause a collision, given theEMACf1, f2 values on all subqueries of the queries
made so far, is small. Intuitively, any specific query will only cause a collision to a small
fraction of all the possiblef1’s. After showing this, we finally prove that Lemma 3.3
holds. We start with the first lemma.

Lemma 3.7. Fix any n queries X1, . . . , Xn ∈ ({0,1}`)∗. Let Y1, . . . ,Ym be the distinct
subqueries of X1, . . . , Xn. Let β1, . . . , βm be any distinct strings in{0,1}`. Consider
the probability space of picking uniformly at random f1, f2 ∈ R`→`. Then for any two
functions g, g′ ∈ R`→` such that there is no inner collision on Y1, . . . ,Ym for f1 = g
nor for f1 = g′, it holds that

Probf1, f2[ f1 = g | EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m]

= Probf1, f2[ f1 = g′ | EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m].

Remark 3.8. Note that theβi ’s are distinct and thereforef1’s that cause an inner
collision onY1, . . . ,Ym have probability 0 to be the ones used.

Remark 3.9. The intuition of the assertion in this lemma is that when given queries
whose authentications are distinct, all functionsf1 that do not cause an inner collision
on these queries are equally likely to be used in the authentication.
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Proof of Lemma 3.7. Note that theβi ’s, the Xi ’s, and theYi ’s are arbitrary and pre-
determined. They are not random variables. The distribution is taken over the choice of
f1, f2 ∈ R`→`. In what follows, we only discuss the conditional distribution in which
EMACf1, f2(Yi ) = βi , for i = 1,2, . . . ,m.

Fix a g ∈ R`→`, which does not cause an inner collision onY1, . . . ,Ym. Let αi
def=

g(∗)(Yi ) for i = 1, . . . ,m. If f1 = g, then the output of theEMACf1, f2 is actually
β1 = f2(α1), β2 = f2(α2), . . . , βm = f2(αm). Note that theαi ’s must be distinct since
it is given that theβi ’s are distinct.

Now we compute the probability thatf1 = g given the output of the authentication.
Using Bayes rule:

Probf1, f2

[
f1 = g | EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m

]
= Probf1, f2[EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m| f1 = g]

· Probf1, f2[ f1 = g]

Probf1, f2[EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m]

= Probf2[∧m
i=1 f2(αi ) = βi ]

· Probf1[ f1 = g]

Probf1, f2[EMACf1, f2(Yi ) = βi , ∀i = 1,2, . . . ,m]
.

Since allαi ’s are distinct, and sincef2 is uniformly chosen inR`→`, the first factor
is exactly 2−`m: we fix m different values of the functionf2. The numerator is exactly
1/|R`→`| since f1 is picked uniformly at random fromR`→`. The denominator is inde-
pendent of the functiong. Thus, we get that this expression is the same for all functions
g which are inner collision-free, and we are done.

Recall that the valueEMACf1, f2(X)consists of an intermediate computation off (∗)1 (X)
on the queryX, and then a final computation off2( f (∗)1 (X)). In what follows, we
show that the intermediate valuesf (∗)1 (Xi )’s are almost random even if the final val-
ues of theEMACf1, f2(Xi )’s are fixed. Furthermore, we show that the exclusive-or of
two intermediate values are also almost random. We formalize this in the following
lemma.

Lemma 3.10. Fix any n queries X1, . . . , Xn ∈
({0,1}`)∗.Let Y1, . . . ,Ym be the distinct

subqueries of X1, . . . , Xn. Letβ1, . . . , βm be any distinct strings in{0,1}`. Consider the
probability space of picking uniformly at random f1, f2 ∈ R`→`. Suppose the number
of all the distinct subqueries is bounded by m2/4+m− 1 ≤ 2`/2, then for any string
α ∈ {0,1}` it holds that:

1. For any1≤ i ≤ m,

Probf1, f2[ f (∗)1 (Yi ) = α | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m] ≤ 2 · 2−`.
2. For any pair of indices i6= k, 1≤ i, k ≤ m,

Probf1, f2[ f (∗)1 (Yi )⊕ f (∗)1 (Yk) = α | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m]

≤ 2 · 2−`.
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Remark 3.11. Note that the empty string is not a subquery even if one of the queries
is the empty string. The lemma does not hold forY = ε since f (∗)(ε) = 0`.

Proof of Lemma 3.10. Since all the output stringsβj ’s, 1 ≤ j ≤ m, are distinct, it

then follows that the stringsαj
def= f (∗)1 (Yj ), 1≤ j ≤ m, must also be distinct. Namely,

the function f1 must be inner collision-free on these queries.
Note, again, that theβj ’s, theXj ’s, and theYj ’s are arbitrary and predetermined. They

are not random variables. The distribution is taken over the choice off1, f2 ∈ R`→`. In
what follows, we only discuss the conditional distribution in whichEMACf1, f2(Yj ) = βj ,
for j = 1,2, . . . ,m. By Lemma 3.7, we know that all inner collision-free functionsf1 in
R`→` are equally likely in this distribution. Define byA the set of all inner collision-free
functions for the predetermined subqueries. Note that the classA is determined by the
subqueriesY1, . . . ,Ym. Using Lemma 3.7 and the new notation, we may rewrite Part 1
of the lemma as,

∀1≤ j ≤ m, Probf1∈A[ f (∗)1 (Yj ) = α] ≤ 2 · 2−`. (1)

Here, the probability is over the random uniform choice of a functionf1 ∈ A.
We fix an arbitrary index 1≤ i ≤ m and fix an arbitraryα ∈ {0,1}`. We show

Part 1 of the lemma for the fixedi andα. We have a distribution of randomly chosen
f1 in A. For this distribution, what is the probability thatf (∗)1 (Yi ) equalsα? It may
depend on the values set on the other queries. To deal with the dependencies here, we
use a standard trick. We compute the probability of the eventf (∗)1 (Yi ) = α, after fixing
values of all the other valuesαj , j 6= i . We will show that for any distinct values
α1, . . . , αi−1, αi+1, . . . , αm all different fromα, it holds that

Probf1∈A[ f (∗)1 (Yi ) = α | f (∗)1 (Yj ) = αj , ∀ j = 1, . . . , i − 1, i + 1, . . . ,m]

≤ 2 · 2−`. (2)

Once we have shown (2) then we get that for randomly chosenαj ’s the same also holds
(no matter what the distribution by which theαj ’s are chosen is). Thus, (1) also holds
and we are done.

So it remains to show (2). We now use the fact thatY1, . . . ,Ym contain all the distinct
subqueries. This fact implies that each (nonempty) prefix of any queryYi is another query
in the setY1, . . . ,Ym. We look into the termf (∗)1 (Yj ). Recall thatf (∗)1 (Yj ) translates to
a series of operations off1. Denote the blocks ofYj by Yj = (Y1

j ,Y
2
j , . . . ,Y

s
j ). We

have

f (∗)1 (Yj ) = f (s)1 (Yj )

= f1( f (s−1)
1 (Y1

j , . . . ,Y
s−1
j )⊕ Ys

j ).

(Recall our convention thatf (0)1 (ε) = 0` for the empty stringε, and that the subqueries
are only strings withs ≥ 1.) If s= 1, we get

f (∗)1 (Yj ) = f1(Yj ).
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If s> 1, then sinceYw,w = 1,2, . . . ,m, are all the distinct subqueries, then there must
be a queryYk in the set that equals the prefix(Y1

j , . . . ,Y
s−1
j ) of Yj , wherek satisfies

1≤ k ≤ m, k 6= j . The indexk depends on the indexj and we denote it byk( j ). Thus,
we get

f (∗)1 (Yj ) = f1( f (∗)1 (Yk( j ))⊕ Ys
j ).

We denote byγj the input to the final computation off1: γj
def= f (∗)1 (Yk( j ))⊕Ys

j if |Yj | > 1
and γj = Yj otherwise. Namely, it holds that

EMACf1, f2(Yj ) = f2( f1(γj )), i = 1, . . . ,m.

We look at the stringγj . Is it a predetermined string or does it depend on the choice of
f1 ∈ A?

The stringYs
j is predetermined. It is part of the set of subqueries. The stringαk( j ) =

f (∗)1 (Yk( j )) is predetermined iffk( j ) 6= i . Thus, for all queriesYj that are not one-block
extensions of the special queryYi , the termγj = αk( j )⊕Ys

j is a predetermined string. It

is determined by the values ofYj andαk( j ). (We call queryZ ∈ ({0,1}`)∗ a one-block
extension of queryW ∈ ({0,1}`)∗ if queryZ equalsW zfor some blockz ∈ {0,1}`.) Note
thatγi is completely predetermined, since thei th subquery is not a one-block extension
of thei th subquery. However, the value off1(γi ) is not predetermined. Actually, we are
interested in the probability thatf1(γi ) = α.

Once the value off1(γi ) is determined, then the values of allγj , j = 1, . . . ,m, are
determined, and so are the values of allf1(γj ), j = 1, . . . ,m. We first observe that the
string assigned tof1(γi ) causes an inner collision with probability 0. This follows from
the fact that f1 is chosen inA. Our second observation is that any string assigned to
f1(γi ) that does not cause an inner collision has the same probability. In other words, let
Ä ⊆ {0,1}` be the set of strings that do not cause an inner collision when set tof1(γi ).
The probability thatf1(γi ) = ω for any stringω ∈ Ä is exactly 1/|Ä|. To see that this
is true we have to count the number of functionsf1 ∈ A for which f1(γj ) = αj for
j = 1, . . . , i −1, i +1, . . . ,m and f1(γi ) = ω. All values involved are now determined.
This includes allγj , j = 1, . . . ,m, all αj , j = 1, . . . , i − 1, i + 1, . . . ,m, and the
stringω. All other entries off1 can be set to any value without any restriction (the only
restriction of the classA is that there is no inner collision on the setY1, . . . ,Ym). Thus,
the number of functionsf1 ∈ A that agree withf1(γi ) = ω, for ω ∈ Ä, and with
f1(γj ) = αj for all j = 1, . . . , i − 1, i + 1, . . . ,m does not depend on the actual value
of ω.

If α 6∈ Ä, then the probability thatf1(γi ) = α is 0, since we know that there is no inner
collision for f1 ∈ A, and we are done. Otherwise, in order to bound the probability that
f1(γi ) = α from above, we must bound the cardinality ofÄ from below. Which strings
are not inÄ? First, all the stringsα1, . . . , αi−1, αi+1, . . . , αm are not inÄ since setting
f1(γi ) to any of these strings would cause an inner collision. Second, we check the values
that are determined byf1(γi ). All the γj ’s such thatYj is a one-block extension ofYi

are determined by the setting off1(γi ). We must have allγj , j = 1, . . . ,m, distinct.
Otherwise, an inner-collision is bound to happen. Therefore, any setting off1(γi ) that
will cause a collision in the values ofγj ’s is also not inÄ.
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What is the cardinality ofÄ? From the 2` strings of{0,1}` we must subtract them−1
stringsα1, . . . , αi−1, αi+1, . . . , αm. Next we have to subtract the number of strings that
may cause collisions in the set ofγj ’s. We compute an upper bound on the number
of such forbidden strings. Suppose there aret one-block extensions ofYi andm − t
queries that are not one-block extensions ofYi . A value is forbidden forf1(γi ) if there
exists an extension blockω ∈ {0,1}` of Yi such thatYiω is one of thet one-block
extension queries ofYi or the valuef1(γi )⊕ω equals one of theγj ’s for them− t values
that are already set. We gett · (m− t) forbidden values at most. Sincet · (m− t) ≤
m2/4 we get that the cardinality ofÄ is at least 2` − m2/4− (m− 1) ≥ 2`/2. Thus,
the probability that f1(γi ) = α is at most 2· 2−` and we are done with Part 1 of
Lemma 3.10.

To show Part 2 of the lemma we use (2) again. LetT be the set of values in{0,1}`
that are not equal to any of theαj , 1≤ j ≤ m, j 6= k, j 6= i . Summing over possible
αk’s in T , we get

Probf1, f2[ f (∗)1 (Yi )⊕ f (∗)1 (Yk) = α | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m]

=
∑
αk∈T

Probf1∈A[ f (∗)1 (Yk) = αk]

· Probf1∈A[ f (∗)1 (Yi ) = α ⊕ αk | f (∗)1 (Yj ) = αj ,

∀ j = 1, . . . , i − 1, i + 1, . . . ,m].

The above is an averaging expression over terms that, by (2), are each smaller than 2·2−`,
and we are done with the proof of Lemma 3.10.

We now want to use Lemma 3.10 to show that it is hard for an adversary to produce a
new query that causes a collision (given that there were no collisions in previous queries
and subqueries). Our next lemma asserts that even given theEMACf1, f2 value on all the
previous queries (and subqueries) the probability thatanynew query will cause an inner
collision is small. Thus, there can be no clever way to construct a new query that will
cause an inner collision.

On the technical level, recall that we are always considering all the distinct sub-
queries for the queries made so far. Intuitively, this means that the adversary is always
given theEMACf1, f2 values of all its subqueries. To preserve this variant, we consider
a new query to be a one-block extension of an existing subquery. Of course, any in-
dependent new query can be built by several block-extensions of the already existing
queries.

The assumption in the next lemma is that the number of subqueries made so far is
smaller than

√
2`/2. Note that, otherwise, there is a good chance that the adversary has

already encountered a collision even if it just randomly selected the queries. (Recall that
` is the block size.)

Lemma 3.12. Fix any n queries X1, . . . , Xn ∈ ({0,1}`)∗.Let Y1, . . . ,Ym be the distinct
subqueries of X1, . . . , Xn.Letβ1, . . . , βm be any distinct strings in{0,1}`,where m2/4+
m− 1 ≤ 2`/2. Consider the probability space of picking uniformly at random f1, f2 ∈
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R`→`. Then, for any stringω ∈ {0,1}`, it holds that:

1. For any pair of indices j, k, 1≤ j, k ≤ m, if Yj 6= Ykω, then

Probf1, f2[ f (∗)1 (Yj )= f (∗)1 (Ykω) | EMACf1, f2(Yj )=βj , ∀ j =1,2, . . . ,m] ≤ 3·2−`.
2. For any index j, 1≤ j ≤ m, if Yj 6= ω, then

Probf1, f2[ f (∗)1 (Yj ) = f (∗)1 (ω) | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m] ≤ 3·2−`.

3. If for all indices j, 1≤ j ≤ m, f (∗)1 (Yj ) 6= 0`, then

Probf1, f2[ f (∗)1 (ω) = 0` | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m] ≤ 2−`.

4. If for all indices j, 1≤ j ≤ m, f (∗)1 (Yj ) 6= 0`, then for any index k, 1≤ k ≤ m,

Probf1, f2[ f (∗)1 (Ykω) = 0` | EMACf1, f2(Yj ) = βj , ∀ j = 1,2, . . . ,m] ≤ 2−`.

Remark 3.13. Note that the distinct subqueriesY1, . . . ,Ym of the queriesX1, . . . , Xn

do not include the empty query even if one of theXi ’s is the empty queryε (see Defini-
tion 3.5). Parts 3 and 4 of the lemma address the case of the empty query. ForX = ε we
get f (∗)1 (X) = 0`, and thus an inner collision of another queryX′ with the empty query
ε happens iff (∗)1 (X′) = 0`.

Proof of Lemma 3.12. We start with Parts 1 and 2. In caseYkω = Yi for some 1≤
i ≤ m, i 6= j , then we are done. The probability in Part 1 of the lemma is zero, since
it is assumed that there are no collisions on the subqueriesY1, . . . ,Ym. The same holds
for Part 2, in caseω = Yi for some 1≤ i ≤ m, i 6= j . In what follows we assume that
Ykω (orω) is a new query different from all given subqueriesY1, . . . ,Ym.

Using the notations from the proof of Lemma 3.10, we denote byA all functions in
R`→` which are inner collision-free with respect to the distinct subqueriesY1, . . . ,Ym.
Also, we denote the blocks of queryYi by (Y1

i ,Y
2
i , . . . ,Y

s
i ) (wheres is the number

of blocks in the queryi ). Finally, for all i = 1, . . . ,m, we denote byγi the string

γi
def= f (∗)1 (Y1

i ,Y
2
i , . . . ,Y

s−1
i ) ⊕ Ys

i . (If s = 1, then by our conventionf (∗)1 (ε) = 0`.)
Thus,EMACf1, f2(Yi ) = f2( f1(γi )).

We now prove the first part of the lemma. Fix the indicesj, k and the stringω. By
Lemma 3.7, we may rewrite the condition of Part 1 of the lemma as

Probf1∈A[ f (∗)1 (Yj ) = f (∗)1 (Ykω)] ≤ 3 · 2−`. (3)

The event that we are interested in isf (∗)1 (Yj ) = f (∗)1 (Ykω) which can be written as

f1(γj ) = f1( f (∗)1 (Yk)⊕ ω). (4)

An equality here can come either from the inputs tof1 on each side of the equation being
equal, or, otherwise, the inputs tof1 are different, butf1 maps them both to the same
value. We bound the probability of the first case by 2· 2−` using Lemma 3.10, and the
probability of the second case by 2−` using Lemma 3.7. We start with the second case.
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First, we use the fact thatY1, . . . ,Ym are all the distinct subqueries. This means that
the computation ofEMACf1, f2 on all these subqueries involves evaluatingf1 on exactly
them stringsγ1, . . . , γm. Since f1 is inner collision-free, then allγi ’s are distinct and
the set of valuesf1(γi ), for i = 1, . . . ,m, is also a set of distinct values. Recall that we

are considering (4) for the case thatγj 6= f (∗)1 (Yk)⊕ ω. If the valueγ
def= f (∗)1 (Yk)⊕ ω

equals one of the otherγi for 1 ≤ i ≤ m, i 6= j , then by the inner collision-free
property, f1(γj )must be different fromf1(γi ) and the probability of (4) holding is zero.
So supposeγ 6= γi for any 1≤ i ≤ m. In this case, the event in mind is that when
picking at randomf1 ∈ A it holds that f1(γ ) equals a given stringf1(γj ). Since the
value of f1(γ ) is independent of allf1(γi ) for i = 1, . . . ,m, and sincef1 is randomly
picked inA, then any string in{0,1}` has probability 2−` to be f1(γ ). In particular
Prob[f1(γ ) = f1(γj )] = 2−`.

The other case to consider is that the inputs off1 in both sides of (4) are equal. In this
case,γj = γ . What is the probability that this happens? Writing this equation explicitly
we get

f (∗)1 (Y1
j ,Y

2
j , . . . ,Y

s−1
j )⊕ Ys

j = f (∗)1 (Yk)⊕ ω. (5)

If the prefix(Y1
j ,Y

2
j , . . . ,Y

s−1
j ) is not empty (i.e.,s> 1), then this prefix must also be a

subquery, since theYi ’s are all the distinct subqueries. We denote the index of this query
by i and we may now rewrite (5) as

f (∗)1 (Yi )⊕ f (∗)1 (Yk) = Ys
j ⊕ ω. (6)

Since the indicesi, j , andk are fixed and sinceYs
j ⊕ ω is a fixed string, we may use

Part 2 of Lemma 3.10 and get that the probability of the event in (6) is at most 2· 2−`.
If the prefix (Y1

j ,Y
2
j , . . . ,Y

s−1
j ) is empty (i.e.,s = 1), then we need to bound the

probability that f (∗)1 (Yk) = Ys
j ⊕ ω. Here, we get the same bound using Part 1 of

Lemma 3.10.
Summing up the two cases, we get that the probability thatf (∗)1 (Yj ) = f (∗)1 (Ykω) is

at most 3· 2−` and we are done with Part 1 of Lemma 3.12.
We now move to proving Part 2 of Lemma 3.12. The argument is quite similar. Again,

fix the index j and the stringω. Sinceω is one block,f (∗)1 (ω) = f1(ω). By Lemma 3.7,
we may rewrite the condition of as

Probf1∈A[ f (∗)1 (Yj ) = f1(ω)] ≤ 3 · 2−`. (7)

The event that we are interested in is

f1(γj ) = f1(ω). (8)

Again, we split the analysis to the casesγj = ω andγj 6= ω. In the latter case, eitherω
equals one of theγi , 1≤ i ≤ m, i 6= j , and then by the fact thatf1 is inner collision-free,
the probability of the event in (8) is 0, orω is a fresh string and each value off1(ω) is
equally probable.

In the first case (i.e.,γj = ω) we get

f (∗)1 (Y1
j ,Y

2
j , . . . ,Y

s−1
j )⊕ Ys

j = ω. (9)
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If the prefix(Y1
j ,Y

2
j , . . . ,Y

s−1
j ) is not empty (i.e.,s > 1), then this prefix must also be

a subqueryYi , and we may now rewrite (9) as

f (∗)1 (Yi ) = Ys
j ⊕ ω. (10)

Using Part 1 of Lemma 3.10 this has probability at most 2·2−`. If the prefix(Y1
j ,Y

2
j , . . . ,

Ys−1
j ) is empty (i.e.,s = 1), thenYj = Ys

j and we ask whetherYj = ω. However, it is
assumed in Part 2 of the lemma that this is not the case, so the probability of this event
is 0 and we are done with Part 2 of Lemma 3.12.

We now move to Part 3 of the lemma. By Lemma 3.7, and using the above notation,
we may rewrite Part 3 of the lemma as

Probf1∈A[ f1(ω) = 0`] ≤ 2−`. (11)

We know that f1(γi ) 6= 0` for all i = 1,2, . . . ,m. Thus, if ω = γi for somei =
1,2, . . . ,m, then Part 3 of the lemma holds. Assume this is not the case, thenω is
independent of all the values by which the setA is determined. In this case the probability
that a random function inA satisfiesf1(ω) = 0` for the givenω is exactly 2−`.

Similarly, we may rewrite Part 4 of the lemma as

Probf1∈A[ f1(Ykω) = 0`] ≤ 2−`. (12)

Again, we get thatγ
def= f (∗)1 (Yk) + ω is either equal to some otherγi and then Part 4

trivially holds, or f (∗)1 (Ykω) equals the value of a random function inA on γ , which
is uniformly distributed in{0,1}`, and we are done with Part 4 and with the proof of
Lemma 3.12.

The implication of this lemma is that, for any possible new query, there is little chance
that a collision will occur. Thus, no matter how powerful the adversary is, based on
seeing the EMAC values of its bunch of queries, it will be “hard” for the adversary to get
a new query that causes collision. By induction, we can now compute the probability that
the (computationally unbounded) adversary sees a collision on queriesXi , i = 1, . . . ,n.

Corollary 3.14. Consider the probability space of picking uniformly at random f1, f2 ∈
R`→`. Suppose that a computationally unbounded machine A is picking queries X1, . . . ,

Xn ∈ ({0,1}`)∗. The choice of query Xi may depend on the EMACf1, f2 values of all the
subqueries of X1, . . . , Xi−1, but not on any other information on f1, f2. Let all distinct
subqueries of X1, . . . , Xn be Y1, . . . ,Ym and suppose the number of distinct subqueries
is bounded by m2/4+ m− 1 ≤ 2`/2. Then the probability that there is a collision of
EMACf1, f2 on the subqueries Y1, . . . ,Ym is at most(

∑n
i=1 |Xn|)2 · 2 · 2−`.

Proof. We prove the corollary by an induction on the subqueries. We use a simple
ordering on the subqueriesY1, . . . ,Ym. We first take all subqueries ofX1 by order of
length, and then we add the subqueries ofX2 not yet encountered (again, by order of
length) and so forth. Since allEMACf1, f2 values on all these subqueries are shown to the
adversary, we may think of these subqueries as being the actual queries of the adversary,
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where at Stepi it chooses a previous subqueryYj , j < i , and a new blockω ∈ {0,1}`
and it produces the new subqueryYi = Yjω.

Suppose, first, that there was no empty query amongst theXi ’s. The probability that a
collision occurs at the first subquery is trivially zero. Now suppose there was no collision
amongst the firsti − 1 queries and we compute the probability that a collision occurs
at thei th query. Since there is no collision among the firsti − 1 queries, we may use
Lemma 3.12. By this lemma, no matter how thei th subquery is computed, the probability
that it will cause an inner collision with any specific previous (nonempty) subquery is
at most 3· 2−`. Now, suppose that one of theXi ’s was the empty query. For this query,
the probability that it causes a collision with any of the previous subqueries equals the
probability that any of the previous subqueries hasf (∗)1 (Xj ) = 0`, 1 ≤ j ≤ i . Since
we assume no collisions so far, and using Lemma 3.12, this is at most(i − 1) · 2−`.
On the other hand, using the same considerations, any further subqueryYj (for j > i )
inner collides with the empty query with probability at most 2−`. Thus, even if the empty
query appears, the probability that a new query will cause an inner collision with any of
its i − 1 preceding subqueries is at most(i − 1) · 3 · 2−`.

However, a collision may also occur when there is no inner collision. Recall that
EMACf1, f2(Yi ) = f2(αi ) for αi = f (∗)1 (Yi ). Given that theαj ’s are all distinct for
j = 1, . . . , i , the probability that a randomf2 ∈ R`→` will map αi to any of thei − 1
distinct stringsf2(α1), . . . , f2(αi−1) is exactly(i − 1) · 2−`. Thus, the probability that
the i th subquery will cause a collision is at most(i − 1) · 4 · 2−` and the probability of
any collision amongst them subqueries is at most

m∑
i=1

(i − 1) · 4 · 2−` = 2 ·m(m− 1) · 2−`.

Sincem ≤∑n
i=1 |Xn|, we get that this probability is bounded above by(

∑n
i=1 |Xn|)2 ·

2 · 2−` and we are done with the proof of the corollary.

We now finish the proof of Lemma 3.3. First, we note that if the queries of the ad-
versary are collision-free, then the view of the adversary is exactly a uniform random
choice ofm distinct blocks. This is clearly true for the familyR`∗→`. As forEMACR`→` ,
fix f1 to be any inner collision-free function on the given queries, and letαi = f (∗)1 (Yi )

be the intermediate values on its queries. The uniform choice off2 ∈ R`→` that does
not cause collisions on the set of inputsα1, . . . , αm results in uniformly chosenm dis-
tinct random strings in{0,1}`. Thus, in both cases, given that no collision occurs, the
adversary seesm uniformly chosen random distinct blocks. Anym distinct blocks have
the same probability. Thus the advantage that the adversary gets in this case is 0. In both
cases, the adversary will output 1 with the same probability since its input is distributed
equally.

We next assume, in a worst case manner, that if a collision occurs, then the adversary
can exactly determine whether the oracle is a random function inR`∗→` or a random
function inEMACR`→` . Namely, if a collision occurs, then the adversary outputs 1 with
probability 1 for an oracle fromEMACR`→` , and it outputs 0 with probability 1 if it gets
an oracle fromR`∗→`. (This is probably not the case and the adversary probably has a
worse distinguishing advantage, but we are only computing an upper bound.) It remains
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to compute the probability that the adversary sees a collision. If the adversary gets an
oracle ofEMACR`→` , then by Corollary 3.14 it gets to see a collision with probability at
most(

∑n
i=1 |Xn|)2 · 2 · 2−`. On the other hand, if the adversary gets a random function

in R`∗→` then the probability that it gets to see a collision is even smaller: at most
(
∑n

i=1 |Xn|)2 · 1
2 · 2−`. Thus, the advantage the adversary may achieve in distinguishing

the two cases is at most(
∑n

i=1 |Xn|)2 · 2 · 2−` and we are done with Lemma 3.3.

3.2. Computationally Bounded Adversaries

In this section we finish the proof of Theorem 1. First, we are given a machineA
that (ε, t, σ ) breaksEMACF (see Definition 3.1). From this machine we can easily
build a machineA′′ that distinguishes between the family of functionsEMACF and
the family R`∗→`. The new machineA′′ uses its oracle to answerA’s queries. Finally,
A′′ takes the output ofA, (Xn, β), and checks if the forgery is successful by asking
its oracle whetherEMACf1, f2(Xn) = β. If the forgery is successful,A′′ outputs 1, and
otherwise 0. The probability thatA′′ outputs 1 if the oracle is fromEMACF is at least
ε and the probability is 2−` if the oracle is a random function inR`∗→`. Thus,A′′ has
advantage at leastε − 2−`. The cumulative length of the queries ofA′′ is exactlyσ and
the running time of MachineA′′ is at mostt + c · σ · `: the time it takes to runA and
copy queries and responses from the oracle tape ofA to the oracle tape ofA′′ forth and
back.

Next, we show that if there is a distinguisherA′′ between the family of functions
EMACF and the set of all functions inR`∗→`, then there exists a distinguisherA′ which
distinguishes a random function inF from a random function inR`→`, and thatA′ has
“similar properties” to those ofA′′ (or of A) as asserted in Theorem 1.

We first examine the behavior ofA′′ on the hybrid family of functionsEMACR`→` . By
Lemma 3.3, the advantage thatA′′ achieves in distinguishing a random function inR`∗→`
from a random function inEMACR`→` is at mostσ 2 ·2·2−` (even ifA′′ is computationally

unbounded). It follows thatA′′must achieve advantage at leastε′ def= ε−σ 2 ·2·2−`−2−`

in distinguishing the family of functionsEMACR`→` and the family of functionsEMACF .
We now show that this advantage can be used to break the block cipherF with advantage
at leastε′/2.

We use a standard hybrid argument. IfA′′ tells with advantageε′ between usingEMAC
with a uniformly chosenf1, f2 ∈ R`→` and usingEMAC with a uniformly at random
f1, f2 ∈ F , thenA′′ can also be used to distinguish any of these two distributions with
a hybrid distribution in whichf1 is uniformly chosen inR`→` and f2 is uniformly
chosen inF . Denote byEMAC(R`→`,R`→`) the first distribution, in which a function
EMACf1, f2 is selected by a uniform choice off1, f2 ∈ R`→`. Denote byEMAC(F,F) the
second distribution, in which a functionEMACf1, f2 is selected by a random choice of
f1, f2 ∈ F according to the distribution of the familyF , and denote byEMAC(R`→`,F)

the hybrid distribution, in which a functionEMACf1, f2 is selected by random choices of
f1 ∈ R`→` and f2 ∈ F . Let εF F be the advantage ofA′′ in distinguishingEMAC(F,F)

from EMAC(R`→`,F), and letεRR be the advantage ofA′′ in distinguishingEMAC(R`→`,F)

from EMAC(R`→`,R`→`). It follows from the definition of advantage thatεRR+ εF F ≥ ε′.
Our new adversaryA′ will use A′′ to perform one of the above two distinguishing pro-

cedures. With probability 1/2 MachineA′ will ask A′′ to distinguishEMAC(F,F) from
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EMAC(R`→`,F), and with probability 1/2 it will ask A′′ to distinguishEMAC(R`→`,F)

from EMAC(R`→`,R`→`). The advantage thatA′ will get is εRR/2 + εF F/2 ≥ ε′/2.
We state each of these two procedures and later analyze why they actually behave as
required.

Procedure 1. (Using A′′ as a distinguisher ofEMAC(F,F) from EMAC(R`→`,F)). Ma-
chineA′ gets an oracle to a functiong. Intuitively, A′ has to decide whetherg is drawn
fromR`→` or from F . To do this,A′ sets f1 = g and chooses at randomf2 ∈ F . It then
runs MachineA′′ using f1, f2 to answer all the questions thatA′′ makes to its oracle
EMACf1, f2. The oracle is used to computef1, and f2 can be computed byA′ since it
chose this function earlier.

Procedure 2. (Using A′′ as a distinguisher ofEMAC(R`→`,F) from EMAC(R`→`,R`→`)).
Here,A′ gets an oracle to a functiong, and again, intuitively,A′ has to decide whether
g is drawn fromR`→` or from F . MachineA′ sets f2 = g and chooses uniformly at
random f1 ∈ R`→`. Actually, it is not possible to have a succinct description off1 for
Machine A′. However, such a description is not really needed.A′ just keeps a record
of all past queries tof1 and answers consistently on repeated queries. Whenever a new
query is made tof1, MachineA′ chooses uniformly at random a stringω ∈ {0,1}` and
sets this string as the answer to the new query, keeping a record of the new valuef1(ω).
Finally, MachineA′ runs MachineA′′ using f1, f2 to answer all the question thatA′′

makes to its oracleEMACf1, f2.

Analysis of Procedure 1. In this procedure, ifg is taken fromF , then A′′ gets an
oracle to theEMAC(F,F) distribution, whereas ifg is drawn fromR`→`, then A′′ gets
theEMAC(R`→`,F) distribution. Thus, the advantage thatA′ has in distinguishingF from
R`→` in this case isεF F . The number of queries thatA′ makes to its oracleg is the
number of calls tof1 needed to computeEMACf1, f2 on the queriesX1, . . . , Xn that A′′

makes. This is at mostσ = ∑n
i=1 |Xi |. Finally, the running time ofA′ is at most the

running time ofA′′ plus the time it takes to compute the answers for the queries ofA′′.
The time it takes to compute these answers consists of three terms:

• First, the time required to copy queries and answers from the oracle tape ofA to
the oracle tape ofA′.
• Second, the time required for choosingf2 ∈ F at random, according to the distri-

bution of F .
• Third, the time it takes to compute the functionf2 ∈ F for each of the queries.
• Finally, the time it takes to computeEMACf1, f2 given all the values off1 and f2 on

the relevant points.

Recall that we denote byTF the worst-case time it takes to compute a function inF on a
string in{0,1}`, and byCF the time it takes to choose at random a function inF . The first
term is at mostc · σ · ` for some small constantc which depends on the computational
model. The second requires timeCF . The third is at mostσ · TF , and the last term is at
mostc ·σ · `. Summing it all up, we get that the time needed byA′ in this case is at most
t + 3 · c · σ · `+ σ · TF + CF .
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Analysis of Procedure 2. In this case, ifg is taken fromF , then A′′ gets an oracle
from theEMAC(F,R`→`) distribution. Whereas ifg is drawn fromR`→`, thenA′′ gets the
EMAC(R`→`,R`→`) distribution. Thus, the advantage thatA′ achieves isεRR. The number
of calls thatA′ makes tog equals the number of queries made byA′′. (The function f2

is used once per query.) The running time ofA′ is computed similarly to the first case
except that we now compute a functionf1 ∈ R`→` rather than a function inF . What is
the cost of computing a value off1(ω) for a stringω ∈ {0,1}`? In practice, one would
use a hash table to keep a record of previousf1 values and get a good expected behavior.
However, for the sake of worst-case analysis we assume that previous values set tof1

are kept in a balanced binary tree. In this case, finding an old value requires time at most
c · ` · log(σ ), and the time for choosing a random new value isc · `. Summing up all the
steps in Procedure 2 (computed similarly to the analysis of Procedure 1), we get that the
running time ofA′ in this case is at mostt + 3 · c · σ · `+ c · σ · ` · log(σ ).

Combining both cases, we get thatA′ breaksF with advantage at leastε′/2, makes at
mostσ queries, and its running time is bounded by

t + 3 · c · σ · `+ c · σ · ` · log(σ )+ σ · TF + CF .

Settingc appropriately, this fits the parameters of Theorem 1, and we are done with the
proof of Theorem 1.

4. Prefix-Free Message Space Guarantees Security

In this section we observe that if the message space is prefix-free, then the security of
CBC MAC with an underlying family of functionsF is implied by the security of the
family F . Recall that prefix-free means that if a messageX is authenticated, then a
prefix or an extension ofX is never authenticated. We can obtain a prefix-free space
of messages by encoding each message with a special last block that can never occur
inside a message. More formally, suppose the message space is drawn from an alphabet
of blocks which excludes a distinguished block⊥ and if we encode each authenticated
message by appending the⊥ block to the end of the message, then we get that the
encoded messages form a prefix-free set of messages.

In this setting the adversary is allowed to forge only messages from the prefix-free
message space. The CBC MAC is not secure if we allow the adversary to forge un-
restricted messages. It is possible to construct examples in which the adversary sees
authentications on messages from a prefix-free space, and then efficiently forges a new
message that does not belong to the prefix-free space.

Theorem 2. Suppose there is an adversary A that(ε, t, σ )-breaks CBC MAC with
an underlying block cipher F such that the answered queries and the output query
of A form a prefix-free message space, and such thatσ ≤ 2(`+1)/2. Then there exists
an adversary A′ that distinguishes the family F from the familyR`→` with advantage
ε′ = ε−6 ·σ 2 ·2−`−2−`, running time t+c · ` ·σ (for a small constant c), and number
of queries at mostσ .
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The proof of this theorem is a simple extension of the proof given by Bellare et al.
[3] for a message space of fixed-length messages. We choose not to repeat their proof
(which is quite different from the one presented in the previous subsections.) The main
modification required in their proof is in redefiningborder nodes. Instead of border nodes
being exactly the nodes at depthm, border nodes are defined to be the nodes which the
adversary asks to see their content. The rest is an exercise.

5. Conclusion

We have shown that theencrypted message authentication code(EMAC) is secure: if
there is an attack on this scheme, then an attack with comparable parameters can be
set on the underlying block cipher. The EMAC scheme provides a secure solution for
authenticating variable-length messages with almost no additional cost on that of using
CBC MAC. Finally, we have also remarked that the standard CBC MAC is secure if all
authenticated messages are drawn from a prefix-free message space.
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Appendix. A Flaw in One of the Authentications Suggested in [3]

In their conference version, Bellare et al. [3] suggest a few ways to deal with the au-
thentication of variable-length messages. One of these suggestions appears to be good
also for the case when the length of the message is not known in advance. However, this
suggestion has a flaw and it is not secure. In this appendix we point out this insecurity.
We stress that this is not the major result in [3] but only one of a few suggestions meant
to deal with variable-length authentication.

The suggested authentication is calledTwo steps MACand it uses two secret keys

a′,a′′ (or, alternatively, uses one secret keya to produce the two secretsa′ def= fa(0) and

a′′ def= fa(1)). The tag is defined as follows:

MACa′,a′′(x) = ( f (m)a′ (x), f (2)a′′ (m, f (m)a′ (x))),

wherex = x1 · · · xm. We present a counterexample to the security of this suggestion.
Note that our suggestion for a secure protocol is a simplification of this. Namely

EMACa′,a′′(x) = fa′′( f (m)a′ (x)).

In order to show that the suggestion in [3] is not secure, we present an adversarial pro-
cedure which asks to see authentications of three messages, and then it produces a fourth
message (not equal to any of the first three messages) together with its authentication.
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The adversarial procedure follows:

1. The adversary asks to see the authentication of the message 0. It gets the pair

( f (1)a′ (0), f (2)a′′ (1, f (1)a′ (0))). Defineβ0
def= f (1)a′ (0) = fa′(0).

2. The adversary asks to see the authentication of the message 1. It gets the pair

( f (1)a′ (1), f (2)a′′ (1, f (1)a′ (1))). Defineβ1
def= f (1)a′ (1) = fa′(1).

3. The adversary asks to see the authentication of the message(0, β0). It gets the pair
( f (2)a′ (0, β0), f (2)a′′ (2, f (2)a′ (0, β0))).

4. The adversary outputs the message(1, β1) with the authentication got in the pre-
vious query, i.e.,( f (2)a′ (0, β0), f (2)a′′ (2, f (2)a′ (0, β0))).

In order to see that this forgery is indeed valid, note first that it is enough to show that
f (2)a′ (0, β0) = f (2)a′ (1, β1) (regardless of the value ofa′′). Now, by definition of f (2):

f (2)a′ (0, β0) = fa′( fa′(0)⊕ β0)

= fa′(0)

= fa′( fa′(1)⊕ β1)

= f (2)a′ (1, β1)

and we are done.
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