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OPEN

ORIGINAL ARTICLE

CBFB–MYH11/RUNX1 together with a compendium

of hematopoietic regulators, chromatin modifiers and basal

transcription factors occupies self-renewal genes in inv(16)

acute myeloid leukemia
A Mandoli1, AA Singh1, PWTC Jansen2, ATJ Wierenga3,4, H Riahi1, G Franci5, K Prange1, S Saeed1, E Vellenga3, M Vermeulen2,

HG Stunnenberg1 and JHA Martens1

Different mechanisms for CBFb–MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of

RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all

resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFb–MYH11-binding site analysis and

quantitative interaction proteomics, we found that CBFb–MYH11 localizes to RUNX1 occupied promoters, where it interacts with

TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1

and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset

of the CBFb–MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority

of CBFb–MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1,

are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for

CBFb–MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype.

Leukemia (2014) 28, 770–778; doi:10.1038/leu.2013.257
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INTRODUCTION

Core-binding transcription factors (CBFs) have roles in stem cell
self-renewal, tissue differentiation and cancer.1 They are
heterodimeric complexes consisting of two subunits, alpha and
beta, in which the alpha subunit binds to DNA and is encoded by
one of the RUNX1 (AML1, CBFa2), RUNX2 (CBFa1) and RUNX3
(CBFa3) genes, whereas the beta subunit (CBFb) is thought not to
bind to DNA but to stabilize the DNA binding of the alpha subunit.
RUNX1 is the CBF alpha subunit that is predominantly expressed
during hematopoietic development, and both RUNX1 and CBFb
are frequently involved in chromosomal alterations associated
with hematopoietic diseases, for example, in t(8;21) and inv(16)
acute myeloid leukemia (AMLs).2

The translocation involving chromosomes 8 and 21 fuses the
RUNX1 and the ETO genes, leading to the expression of AML1-ETO.
Expression of the AML1-ETO oncofusion protein in hematopoietic
cells results in a stage-specific arrest of maturation and increased
cell survival, predisposing cells to develop leukemia.3 Whereas
the AML1-ETO translocation is usually observed in AML subtype
M2, the inversion of chromosome 16, inv(16)(p13q22), is
associated with AML-M4Eo.4 This inversion generates a
chimeric gene CBFb–MYH11, which encodes a fusion protein
between CBFb and smooth muscle myosin heavy chain
(SMMHC/MYH11).5–8

Heterozygous Cbfb-Myh11 knock-in mice are embryonic lethal,
with definitive hematopoiesis blocked at the stem-cell level.
Moreover, adult hematopoietic stem cells fail to differentiate to
myeloid and lymphoid lineages,9 a phenotype similar to that of
Runx1� /� and Cbfb� /� mice10,11 and suggesting that CBFb-
MYH11 is a dominant repressor of RUNX1/CBFb function. Still,
mutagenesis studies using Cbfbþ /MYH11 knock-in mice indicate
that CBFb-MYH11 is necessary, but not sufficient, for
leukemogenesis12,13 and that additional genetic events,
for example, c-KIT, RAS pathway or NDE1 mutations14–17 are
required for the onset of the disease.
At the molecular level, CBFb–MYH11 has been suggested to

exert its transcriptional regulator functions by several mechan-
isms. These include altering the normal RUNX1 transcription
program through the tethering of RUNX1 outside the nucleus,
interfering with transcription factor assembly, recruitment of
histone deacetylases and inhibiting the RUNX1 activity.4,18–20

However, many of these studies were based on in vitro and
overexpression experiments. In addition, in vivo studies were
hampered by the lack of knowledge on high-confidence binding
sites of CBFb–MYH11 and identification of the target gene
program.
Here we performed genome-wide-binding analysis in cell lines

and patient blasts and identified many previously unknown
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CBFb–MYH11-binding sites. In addition, we used mass spectrometry
to identify new interactors of the CBFb–MYH11/RUNX1 complex.
We show that CBFb–MYH11 binds DNA in a RUNX1-dependent
manner and preferentially localizes to promoter regions. In
addition, our study reveals that CBFb–MYH11 operates in the
context of a hematopoietic regulator complex consisting of
various transcription factors linked to transcriptional activation.
Finally, our study reveals that, in contrast to previous suggestions
of CBFb–MYH11 functioning as a transcriptional repressor,
CBFb–MYH11 binding can also be linked to transcriptional
activation.

MATERIALS AND METHODS

Chromatin immunoprecipitation (ChIP)

Patient cells and cell lines (see Supplementary Information) were cross-
linked with 1% formaldehyde for 20min at room temperature, quenched
with 0.125M glycine and washed. Sonicated chromatin (Bioruptor,
Diagenode, Liege, Belgium) was centrifuged at maximum speed for
10min and then incubated with specific antibodies. Beads were washed
sequentially with four different wash buffers and chromatin was eluted
from the beads. Protein–DNA crosslinks were reversed, after which DNA
was isolated and used for quantitative PCR or sequencing analysis.

Illumina high-throughput sequencing

End repair was performed using the precipitated DNA of B6 million cells
(3-4 pooled biological replicas) using Klenow and T4 polynucleotide kinase
(T4 PNK). A 30 protruding A base was generated using Taq polymerase and
adapters were ligated. The DNA was loaded on gel and a band
corresponding to B300 bp (ChIP fragmentþ adapters) was collected.
The DNA was isolated, amplified by PCR and used for cluster generation on
the Illumina GAII or HiSeq genome analyzer. The 35–45 bp tags were
mapped to the reference human genome using the Burrows-Wheeler
Alignment Tool (BWA) or eland program allowing one mismatch. For each
base pair in the genome, the number of overlapping sequence reads was
determined, averaged over a 10 bp window and visualized in the UCSC
genome browser (http://genome.ucsc.edu). All ChIP-seq and RNA-seq data
can be downloaded from Gene Expression Omnibus accession number
GSE46044, and the bioinformatic analysis of the data is described in the
Supplementary Information.

SILAC labeling, pulldown and LC-MS/MS (liquid chromatography-
mass spectrometry) analysis

ME-1 cells were SILAC (Stable Isotopes Labeling by Amino Acids in Cell
Culture) labeled using RPMI1640 (-Arg, -Lys) medium (Gibco/Invitrogen,
Paisley, UK) supplemented with either 13C6

15N4 L-arginine and 13C6
15N2

L-lysine (Isotec, Sigma, St Louis, MO, USA) or non-labeled L-arginine and
L-lysine. Cells were cultured in SILAC medium for at least eight doublings to
ensure full incorporation of the labeled amino acids. Nuclear extract
preparation and pulldown were performed as previously described.21

RESULTS

CBFb–MYH11 binding to DNA is RUNX1 dependent

CBFb–MYH11 is the oncofusion protein that results from an
inversion on chromosome 16. The oncogenic activities of this
protein are thought to be related to its binding to RUNX1 (also
named CBFa2 or AML1), thereby altering its function. Indeed,
coimmunoprecipitation experiments using ME-1 cells,22 which
express the CBFb–MYH11 variant type A, show that RUNX1
interacts with CBFb–MYH11 (Figure 1a). CBFb–MYH11 has also
been suggested to be localized both inside as well as outside the
nucleus thereby diverting RUNX1 out of the nucleus and altering
the normal RUNX1 transcription program.4 To examine the cellular
localization of CBFb–MYH11, we fractionated ME-1 cells into a
nuclear and a cytoplasmic fraction.23 Western analysis of the two
fractions (Figure 1b) revealed that CBFb–MYH11 and CBFb are
localized both in the cytoplasm as well as in the nucleus, whereas
RUNX1 is primarily localized in the nucleus. These results suggest
that CBFb–MYH11 might indeed be involved in tethering some

RUNX1 protein outside the nucleus, but that the vast majority of
RUNX1 is still nuclear localized.
To identify CBFb–MYH11-binding sites, we used two antibodies

against CBFb and two antibodies against MYH11 in ChIP-seq
experiments (Figure 1c; Supplementary Figures S1A, B). The use of
two antibodies for each of the fusion partners that each recognize
a different epitope minimizes the risk of identifying nonspecific-
binding sites that arise due to cross reactivity of the antibodies.
Moreover, as wt MYH11 is not expressed in ME-1 cells,24 the
MYH11 antibodies allow specific identification of fusion protein
binding. For all four tracks, we used model-based analysis of
ChIP-Seq (MACS) with a P-value of 10� 6 to identify signal
enrichment. Overlapping the two antibodies for each of the fusion
partners identified 11 517 CBFb- and 2145 MYH11-binding sites
(Figure 1d). Intersection of these two sets of binding regions allowed
us to identify a set of 1874 regions (Supplementary Table S1) that
are occupied with high confidence by the CBFb–MYH11 oncofusion
protein. A subset of these binding sites was validated through
re-ChIP experiments on targeted loci, confirming that the two parts
of the fusion protein occupy the same genomic region (Figure 1e).
Moreover, ChIP-seq experiments using a specific antibody against
RUNX1 revealed RUNX1 colocalization with CBFb–MYH11 essentially
at all high-confidence CBFb–MYH11-binding regions (Figure 1c and
Supplementary Figure S1C), reinforcing the suggestion that inv(16)
leukemogenesis is RUNX1 dependent.
To validate the CBFb–MYH11-binding regions, we used ChIP-

seq to analyze the CD34þ population of a newly diagnosed
inv(16) patient. Because of the low amount of patient cells, we
could only perform one ChIP-seq experiment with a CBFb and one
with a MYH11 antibody (Figure 1c; Supplementary Figure S1D).
Nevertheless, this analysis showed increased tag density for both
CBFb as well as MYH11 at all of the high-confidence CBFb–MYH11-
binding sites (Figure 1f), thereby confirming the binding results
obtained in the cell line. Comparing the genomic location of
CBFb–MYH11 with PML-RARa and AML1-ETO, two other
AML-associated oncofusion proteins,25,26 revealed a preferential
localization of CBFb–MYH11 to promoter regions as compared
with AML1-ETO and PML-RARa, which both target mostly
non-promoter regions (Figure 1g). To further evaluate this finding,
we partitioned our newly discovered binding sites in three
categories. One category containing the 1874 CBFb–MYH11 (and
RUNX1) binding regions, one containing all the CBFb and RUNX1
occupied regions (CBFnoMYH) and one containing the RUNX1
only binding regions (RUNX1noCBF). Examining the genomic
localization of these three categories revealed that B75% of
CBFb–MYH11/RUNX1 and CBFb/RUNX1 are enriched at transcription
start sites, whereas 80% of RUNX1 only binding regions were
non-promoter sites (Figure 1h), suggesting that CBFb–MYH11 and
CBFb are mainly involved in regulating promoter activity, whereas
RUNX1 can also regulate the activities of enhancer regions.
Moreover, the results suggest that the interaction with RUNX1
alone cannot explain the localization of CBFb and CBFb–MYH11,
as this would result in a different, more RUNX1-like genomic
distribution. Hence additional factors are in place to guide CBFb
and CBFb–MYH11 to promoter regions.

TAFs bind the CBFb–MYH11/RUNX1 complex

Next we set out to assess which proteins act together with CBFb–
MYH11 in transcriptional regulation. As CBFb–MYH11 in vivo is
localized to RUNX1-binding sites, it allowed us to identify the
CBFb–MYH11 protein complex using DNA pull-down analysis
followed by mass spectrometry. For this we performed DNA pull-
down experiments using a specific nucleotide sequence bound by
CBFb–MYH11 in ME-1 cells (Supplementary Figure S2A) that
contains the RUNX1 core consensus motif TGTGGT (RUNX1 oligo)
and a control sequence with a scrambled RUNX1 motif (control
oligo) (Figure 2a). We could show that the oligonucleotide with
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the RUNX1 motif efficiently pulls down CBFb–MYH11 as well as
CBFb from a ME-1 cell lysate, whereas the control sequence
showed significantly reduced affinity for CBFb–MYH11 (Figure 2b),
confirming in vitro that CBFb–MYH11 binding to DNA is largely
RUNX1 dependent.
To characterize the interactome of the CBFb–MYH11/RUNX1

complex, we used previously described SILAC-based technology,21

using extracts derived from ME-1 cells grown in ‘light’ or ‘heavy’
medium, incubated with oligonucleotides containing the RUNX1
or a scrambled RUNX1 motif (see Materials and Methods). Of the
4900 identified proteins, over 40 had highly significant ratios

(44) (Figure 2c; Supplementary Table S1) indicating specific
binding to the CBFb–MYH11/RUNX1 complex, whereas over 100
additional proteins, including previously identified RUNX1
interactors TAL1, FLI1 and BMI1,27 had lower ratio’s (42) and
might represent transient- or context-dependent interactions
(Supplementary Table S1).
Interestingly, our pull-down analysis also suggested interaction

of CBFb–MYH11 with eight different TAFs (TBP-associated factors),
TAF1, 3, 4, 5, 6, 7, 9 and 10 (Figure 2c; Supplementary Table S1).
Subsequent coimmunoprecipitation experiments using ME-1
cells showed an interaction between CBFb–MYH11 and TAF7
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(Supplementary Figure S2B), corroborating the pull-down results.
Together these results suggest that interaction with TAFs might
guide the localization of CBFb or the fused CBFb–MYH11 to
promoter sites.
As TAFs form a stable complex with TBP and RNAPII to form a

preinitiation complex, we wondered whether in vivo these two
factors would bind similar genomic regions as the CBFb–MYH11
complex. Indeed, genome-wide analysis revealed the occupancy
of CBFb–MYH11/RUNX1, TBP and RNAPII at similar genomic
regions (Figure 2d). Moreover, further analysis of TBP and RNAPII
occupancy at CBFb–MYH11 (CM) regions as compared with
RUNX1/CBFb (CBFb) and RUNX1 only regions revealed highest

levels of TBP and RNAPII at CBFb–MYH11 sites located in promoter
regions (Figure 2e).
To further validate that they bind the same genomic regions,

we performed re-ChIP experiments. This confirmed TBP and CBFb–
MYH11 binding to the same genomic loci (Figure 2f). Together
these results suggest that the CBFb–MYH11/RUNX1 complex
interacts with basal transcriptional factors and occupies similar
genomic regions.

CBFb–MYH11/RUNX1 bound regions are occupied by ETS factors,
TAL1, GATA2 and HEB

To examine whether CBFb–MYH11-binding sites harbor specific
DNA elements, we investigated the presence of consensus
binding motifs for various hematopoietic regulators such as
E-box proteins, GATA and ETS factors, TAL1 and RUNX. This
analysis revealed that most binding sites harbor DNA motifs for
RUNX1, ETS and E-box factors (Figure 3a), while also TAL1, GATA
and NFkB consensus binding sequences can be found in a high
number of sites. These results suggest that CBFb–MYH11 might
function in the context of other hematopoietic regulators.
The pull-down analysis suggested interaction of the CBF

complex with TAL1 and the ETS factor FLI1, in line with the
presence of the RUNX1, ETS and TAL1 motif at CBFb–MYH11-
binding sites. Our motif analysis further revealed the presence of
the E-box and GATA motif at CBFb–MYH11-binding sites.
To investigate whether TAL1, E-box and GATA factors are present
at CBFb–MYH11 bound regions, we extended our ChIP-seq analysis
and included specific antibodies to TAL1, GATA2, the GATA factor
highest expressed in ME-1 cells, HEB, a protein previously
implicated in CBF leukemogenesis,26,28,29 and also included
several ETS factors, such as ELF1, FLI1, ERG and PU.1/SPI1 in our
analysis. This revealed the increased occupancy of all factors at the
CBFb–MYH11/RUNX1 occupied promoters of the C8ORF55 and
SOCS1 genes (Figure 3b) whereas, in contrast, not all factors were
enriched at the CBFb/RUNX1 occupied TAL1 or RUNX1 occupied
PSMC3 gene. For all transcription factors, we identified the
genome-wide binding regions using model-based analysis of
ChIP-Seq (MACS), and the resulting peak files were, together with
the different sets of CBF-binding sites (CBFb–MYH11/RUNX1,
CBFb/RUNX1 and RUNX1 only), used as input for unsupervised
segmentation analysis using ChromHMM.30 ChromHMM is based
on a multivariate hidden Markov model that allows modeling of
the presence or absence of a transcription factor by integrating
multiple data sets to discover de novo the major re-occurring
combinatorial and spatial patterns of transcription factors. Here, it
allowed the identification of 23 distinct transcription factor
co-occupancy patterns within the inv(16) cells (Figure 3c). In line
with our observations at the TAL1 and PSMC3 genes, various
transcription factor patterns could be detected at CBFb/RUNX1 or
at RUNX1 only occupied regions (Figure 3c). In contrast, at the
CBFb–MYH11/RUNX1 occupied regions (state 9), enrichment for all
transcription factors was found (Figure 3c and Supplementary
Figure S3), suggesting that CBFb–MYH11 functions in the context
of many other hematopoietic transcription factors.
To further validate that CBFb–MYH11 binds the same genomic

regions as other hematopoietic regulators, we performed re-ChIP
experiments. This confirmed that ELF1, FLI1, PU.1, ERG and CBFb–
MYH11 bind the same genomic locus (Figure 3d).

HATs and HDACs regulate CBFb–MYH11 occupied regions

CBFb–MYH11 has been reported to recruit HDACs to its target
sites,31 similar as for other oncofusion proteins such as AML1-ETO
and PML-RARa. To assess whether CBFb–MYH11 binding
correlates with histone (de)acetylation, we performed ChIP-seq
analysis using an antibody that recognizes H3 acetylation.
Examining the average profile of this histone mark at our
previously defined binding sites revealed highest H3 acetylation
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at the 1874 CBFb–MYH11/RUNX1-binding sites (CBFMYH11),
whereas the sets of unique CBFb/RUNX1 (CBF) and RUNX1 only
sites harbor lower levels of H3 acetylation (Figure 4a).
Histone acetylation levels have been suggested to be the result

of the dynamic interplay of histone acetyl tranferases (HATs) and
histone deacetylases (HDACs).32–35 To examine whether both
enzymatic activities are recruited to CBFb–MYH11 sites, we
performed ChIP-seq using specific antibodies against HDAC1
and the HAT EP300. This analysis revealed the presence of both
EP300 and HDAC1 at the CBFb–MYH11 sites at the HDAC1 and
HM13 genes (Figure 4b). Intersection of the EP300 and HDAC1
sites confirmed that on a genome-wide scale both HAT and HDAC
activities are recruited together at many sites (Figure 4c).
Examining the occupancy of EP300 and HDAC1 as well as H3
acetylation specifically at all CBFb–MYH11-binding sites revealed
increased levels at all high-confidence sites (Figure 4d). Together
these results suggest that H3 acetylation levels at CBFb–MYH11
are the result of the activities of counteracting HAT and HDAC
proteins.

CBFb–MYH11 binds at the promoters of active genes

As our results reveal that CBFb–MYH11 (and CBFb) targets
promoter regions that harbor increased H3 acetylation, we

wondered whether CBFb–MYH11 target genes are expressed.
For this we assigned genes to each binding site and analyzed the
expression of these target genes through RNA-seq. RPKM (reads
per kilobase exon per million tags sequenced) analysis revealed
that although the expression of genes associated with
CBFb–MYH11/RUNX1 occupied promoters can vary extensively
(Figure 5a, outer whiskers in boxplot), RPKM values are generally
higher in this context than for genes that bind only CBFb/RUNX1
(CBFb) or RUNX1. As RPKM measurements are derived from RNA,
which could have been alternatively regulated through post
transcriptional processes, we decided to also examine RNAPII
occupancy as a measurement for ongoing transcription.36 Analysis
of the same gene sets revealed highest RNAPII occupancy at
genes targeted by CBFb–MYH11 (Figure 5b), whereas CBFb/
RUNX1 and RUNX1 only target genes have reduced RNAPII
occupancy.
Finally, we analyzed the expression status using available

microarray expression data37 of the target genes in patients
(n¼ 33) harboring an inv(16) translocation. This analysis confirmed
that CBFb–MYH11 target genes are higher expressed than CBFb/
RUNX1 or RUNX1 only target genes (Figure 5c). Together, these
results suggest that although CBFb–MYH11 has been suggested to
repress transcriptional activity, CBFb–MYH11 binding can also be
associated with gene activity.
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CBFb–MYH11 is involved in gene activation and repression

To further examine the effects of CBFb–MYH11 binding on gene
expression, we made use of an inducible U937 cell line that upon
tetracycline (Tet) depletion expressed CBFb–MYH11 (Tet-off).38

Indeed, 72 h after Tet was removed the expression of
CBFb–MYH11 was detected both at the level of RNA (Figure 6a)
and protein (Figure 6b), although lower as observed in the ME-1
cell line. ChIP-seq using antibodies against CBFb and MYH11 after
CBFb–MYH11 expression allowed the identification of 2312 novel
binding sites occupied by both CBFb and MYH11 (Figure 6c).
Assigning these binding sites to genes and subsequent RNA-seq

analysis revealed that, of the 263 genes twofold or more
upregulated or downregulated, 67% are twofold or more
upregulated (Figure 6d), whereas 33% are lowly expressed,
suggesting that CBFb–MYH11 is involved both in transcriptional
activation and repression.
To examine the effect of CBFb–MYH11 knockdown on inv(16)

cells, we constructed a CBFb–MYH11 inducible knockdown system
using ME-1 cells. Reverse transcription-quantitative PCR and
western analysis of ME-1 cells carrying an inducible CBFb–
MYH11 knockdown construct revealed, after induction, decreased
RNA and protein levels of CBFb–MYH11 in the ME-1 cells carrying
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the knockdown hairpin (Figures 6e and f). Subsequent genome-
wide transcriptome analysis using RNA-seq confirmed lower
CBFb–MYH11 RPKM levels after knockdown (Figure 6g).
Upon CBFb–MYH11 knockdown, we observed increased attach-

ment of cells to the culture dish suggesting the initiation of a
differentiation/cell adherens program (Supplementary Figure S4A).
To further assess this knockdown phenotype, we examined the
expression of CD markers. This revealed that ME-1 cells with
lowered CBFb–MYH11 have decreased levels of myeloid stem cell
marker genes such as CD34 and CD133 (Figure 6h), whereas

various markers for differentiated myeloid cell types are increased
(Figure 6h; Supplementary Table S1), suggesting that CBFb–
MYH11 knockdown results in a more differentiated myeloid
phenotype. In addition, we examined which CBFb–MYH11 target
genes are differential expressed upon CBFb–MYH11 knockdown.
Using a twofold change cutoff, 194 genes were identified for
which the expression is lower upon knockdown, whereas 103
CBFb–MYH11 target genes are higher expressed (Figure 6i;
Supplementary Table S1), suggesting that the oncofusion protein
is involved both in gene expression and repression. Apart from
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CBFb–MYH11 target genes also many CBFb/RUNX1 and RUNX1
only target genes were differentially expressed (Supplementary
Figure S4B; Supplementary Table S1), suggesting that the effects
of CBFb–MYH11 extend to the complete CBF gene network.
Although for the CBFb–MYH11 target genes that were highly

expressed, many receptors, such as GPRs, CHRM5, GRIN1 and
GRID1, were detected (Figure 6i), genes that were lower expressed
include suppressors of cytokine signaling (SOCS3) and members of
the WNT (JUP) and NOTCH (JAG1, JAG2 and NOTCH3) pathways
(Supplementary Figure S4C). Interestingly, JAG1, but also LMO1
and ID1, have been implicated in hematopoietic stem cell
expansion,39–42 suggesting that reduced expression of these
genes in CBFb–MYH11 knockdown cells affects its self-renewal
capacity. Indeed, hypergeometric testing of a combined set of
self-renewal pathways involved in myeloid malignancies43

revealed significant enrichment (P-value 1.59e� 4) (Supplementary
Figure S4C) for genes downregulated upon CBFb–MYH11 knockdown.

DISCUSSION

Many breakpoints involved in specific chromosomal translocations
have been cloned over the years. In most cases, however, the role of
the chimeric oncofusion proteins in tumorigenesis has not been
elucidated. In the case of AML, our analysis of PML-RARa and AML1-
ETO were among the first to report on the genome-wide actions of
oncofusion proteins.25,26,44 Here, we analyzed the genome-wide-
binding pattern of CBFb–MYH11 and its interplay with other
regulators of hematopoiesis in cell lines and patient primary blasts.
As CBFb–MYH11 has been suggested to localize primarily in the

cytoplasm45,46 thereby tethering RUNX1 outside the nucleus, we
first examined the cellular localization of both proteins through
fractionation experiments. This revealed CBFb–MYH11 presence
both in the cytoplasm as well as in the nucleus, whereas RUNX1
was predominantly localized in the nucleus, suggesting that
CBFb–MYH11 could tether some RUNX1 outside the nucleus, but
that it also has a role within the nucleus.
To identify CBFb–MYH11 binding, we used two antibodies

specifically recognizing the CBFb part as well as two antibodies
recognizing the MYH11 part of the CBFb–MYH11 protein in
ChIP-seq and identified 1874 high confidence, mostly promoter
binding sites in ME-1 cells. In addition, we analyzed genome-wide
CBFb-MYH11 binding in a patient blast and could validate
enrichments of both CBFb and MYH11 at all high-confidence
binding sites. Moreover, we could detect RUNX1 at all
CBFb–MYH11-binding sites in line with previous reports suggesting
that the presence of RUNX1 is required for CBFb–MYH11 binding.
We used a SILAC-based mass spectrometry approach to identify

components of the CBFb–MYH11 complex and confirmed
previous observations on the presence of TAL1 and FLI1 in the
CBF RUNX1/CBFb complex. In addition, the interaction study
revealed the presence of eight TAFs. As CBFb–MYH11 localizes
primarily to promoter regions, these results suggest that the
preferential localization of CBFb–MYH11 to promoters may be a
result of the interaction with TAFs.
The presence of binding motifs for all major hematopoietic

regulators in CBFb–MYH11-binding regions prompted further
investigation on the presence of hematopoietic regulators. This
investigation, which included the analysis using specific HEB,
GATA2, ERG, PU.1 and ELF1 antibodies in ChIP-seq, revealed the
presence of all these important regulators at CBFb–MYH11
occupied regions. Although it was previously suggested that
CBFb–MYH11 interferes with the RUNX1 transcription program
through steric hindrance of transcription factor complex assem-
bly4,5 the MYH11 moiety of CBFb–MYH11 apparently does not
preclude the interaction and co-occupancy of the transcription
factors examined in this study.
In addition, our analysis revealed that at the epigenetic level

CBFb–MYH11 occupied regions are enriched for H3 acetylation

and most likely regulated by the balanced interplay of the
antagonistic activities of histone-modifying enzymes such as HATs
and HDACs (but most likely also methyltransferases and demethy-
lases).32–35 Together these results suggest that genes important
for maintaining leukemogenic potential (as evident from the
targeting of CBFb–MYH11 to these regions) are regulated by many
different transcription factors and coregulators and that most
likely their interplay determines the transcriptional output.
Previously, CBFb–MYH11 has been proposed to act as a

transcriptional repressor of its target genes. To assess this, we
examined the expression of CBFb–MYH11 target genes in the
ME-1 inv(16) cell line, in a U937 cell line harboring an inducible
CBFb–MYH11 construct and in patient cells. Comparing all genes
targeted by CBFs (CBFb–MYH11/RUNX1, CBFb/RUNX1 and RUNX1
only), we found those that have CBFb–MYH11 binding to be on
average the highest expressed, whereas those genes bound by
CBFb/RUNX1 or RUNX1 alone were lowly expressed, suggesting a
role for CBFb–MYH11 in transcriptional activation. CBFb–MYH11
overexpression as well as knockdown confirmed that subsets of
target genes are repressed by the oncofusion protein, but that for
a large set CBFb–MYH11 is involved in maintaining increased
transcriptional activity. What causes this difference is currently
unclear, but it might be dependent on the presence of not yet
identified proteins, interactions with enhancer elements, signaling
cascades and/or spatial localization. Among the genes that
are actively transcribed in inv(16) cells and repressed after
CBFb–MYH11 knockdown are JAG1, LMO1 and ID1. Interestingly,
enforced expression of LMO1 induces leukemia’s,39 and LMO1 null
mutations in mice can lead to severe reduction of steady-state
hematopoietic stem cell numbers,41 a phenotype also observed in
ID1-deficient hematopoietic stem cells.42 Finally, inducing JAG1
expression results in the expansion of hematopoietic precursor cell
populations,39 suggesting that reduced expression of these genes in
CBFb–MYH11 knockdown cells affects their self-renewal capacity.
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