CBMC — C Bounded Model Checker

(Competition Contribution)

Daniel Kroening! and Michael Tautschnig?

! University of Oxford, UK
2 Queen Mary University of London, UK

Abstract CBMC implements bit-precise bounded model checking for
C programs and has been developed and maintained for more than ten
years. CBMC verifies the absence of violated assertions under a given
loop unwinding bound. Other properties, such as SV-COMP’s ERROR
labels or memory safety properties are reduced to assertions via auto-
mated instrumentation. Only recently support for efficiently checking
concurrent programs, including support for weak memory models, has
been added. Thus, CBMC is now capable of finding counterexamples in
all of SV-COMP’s categories. As back end, the competition submission
of CBMC uses MiniSat 2.2.0.

1 Overview

The C Bounded Model Checker (CBMC) [2] demonstrates the violation of as-
sertions in C programs, or proves safety of the assertions under a given bound.
CBMC implements a bit-precise translation of an input C program, annotated
with assertions and with loops unrolled to a given depth, into a formula. If the
formula is satisfiable, then an execution leading to a violated assertion exists.

For SV-COMP, satisfiability of the formula is decided using MiniSat 2.2.0 [4].

2 Architecture

Bounded model checkers such as CBMC reduce questions about program paths
to constraints that can be solved by off-the-shelf SAT or SMT solvers. With the
SAT back end, and given a program annotated with assertions, CBMC outputs a
CNF formula the solutions of which describe program paths leading to assertion
violations. In order to do so, CBMC performs the following main steps, which
are outlined in Figure 1, and are explained below.

Front end. The command-line front end first configures CBMC according to
user-supplied parameters, such as the bit-width. The C parser utilises an off-
the-shelf C preprocessor (such as gcc -E) and builds a parse tree from the pre-
processed source. Source file- and line information is maintained in annotations.
Type checking populates a symbol table with type names and symbol identifiers
by traversing the parse tree. Each symbol is assigned bit-level type information.
CBMC aborts if any inconsistencies are detected at this stage.

E. Abrahédm and K. Havelund (Eds.): TACAS 2014, LNCS 8413, pp. 389-391, 2014.
(© Springer-Verlag Berlin Heidelberg 2014

390 D. Kroening and M. Tautschnig

Command Line
Front End
| C Parser |_'| Type Checking H GOTO Conversion H Static Ana|y5|§ &
Instrumentation
]
¥

Symbolic Execution CNF Conversion SAT Solver Counterexa.mple
Analysis

Fig. 1. CBMC architecture

Intermediate Representation. CBMC uses GOTO programs as intermediate rep-
resentation. In this language, all non-linear control flow, such as if or switch-
statements, loops and jumps, is translated to equivalent guarded goto statements.
These statements are branch instructions that include (optional) conditions.
CBMC generates one GOTO program per C function found in the parse tree. Fur-
thermore, it adds a new main function that first calls an initialisation function for
global variables and then calls the original program entry function.

At this stage, CBMC performs a light-weight static analysis to resolve function
pointers to a case split over all candidate functions, resulting in a static call
graph. Furthermore, assertions to guard against invalid pointer operations or
memory leaks are inserted.

Middle end. CBMC performs symbolic execution by eagerly unwinding loops
up to a fixed bound, which can be specified by the user on a per-loop basis or
globally, for all loops. In the course of this unwinding step, CBMC also translates
GOTO statements to static single assignment (SSA) form. Constant propagation
and expression simplification are key to efficiency, and prevent exploration of
certain infeasible branches. At the end of this process the program is represented
as a system of equations over renamed program variables in guarded statements.
The guards determine whether an assignment is actually performed in a given
concrete program execution. In [1] we presented an extension to perform efficient
bounded model checking of concurrent programs, which symbolically encodes
partial orders over read and write accesses to shared variables.

Back end. While CBMC also supports SMT solvers as back ends, we use Min-
iSat 2.2.0 in this competition. Consequently, the resulting equation is translated
into a CNF formula by bit-precise modelling of all expressions plus the Boolean
guards [3]. A model computed by the SAT solver corresponds to a path violat-
ing at least one of the assertions in the program under scrutiny, and the model
is translated back to a sequence of assignments to provide a human-readable
counterexample. Conversely, if the formula is unsatisfiable, no assertion can be
violated within the given unwinding bounds.

3 Strengths and Weaknesses

As a bounded model checker, and in absence of additional loop transforma-
tions or k-induction, CBMC cannot provide proofs of correctness for programs

CBMC - C Bounded Model Checker 391

with unbounded loops in general. Yet we decided to enforce termination with
a TRUE/FALSE answer within the time bounds specified in SV-COMP to
provide best-effort answers. Consequently there may be unsound results on cer-
tain benchmarks. To reduce the number of such results, the wrapper script (see
below) runs CBMC with increasing loop bounds of 2, 6, 12, 17, 21, and 40 until
the timeout is reached. These values were obtained as educated guesses informed
by the training phase.

Apart from this fundamental limitation, we observed several errors (both false
positives and false negatives) caused by current limitations in treatment of point-
ers. This affects at least one benchmark in the Concurrency category and possibly
several in MemorySafety.

The strengths of bounded model checking, on the other hand, are its predict-
able performance and amenability to the full spectrum of categories.

4 Tool Setup

The competition submission is based on CBMC version 4.5. The full source code
of the competing version is available at

http://svn.cprover.org/svn /cbmc/releases /cbmc-4.5-sv-comp-2014/.

To process a benchmark F00.c (with properties in FOO.prp), the script
cbmc-wrapper . sh should be invoked as follows:

cbmc-wrapper.sh --propertyfile FOO.prp --32 F0O.c

for all categories with a 32-bit memory model; for those with a 64-bit memory
model, --32 should be replaced by --64.

5 Software Project

CBMC is maintained by Daniel Kroening with patches supplied by the com-
munity. It is made publicly available under a BSD-style license. The source code
and binaries for popular platforms are available at http://www.cprover.org/cbmc.

References

1. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded model
checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS,
vol. 8044, pp. 141-157. Springer, Heidelberg (2013)

2. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer,
Heidelberg (2004)

3. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog
programs using Bounded Model Checking. In: DAC, pp. 368-371 (2003)

4. Eén, N., Sérensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004)

http://svn.cprover.org/svn/cbmc/releases/cbmc-4.5-sv-comp-2014/
http://www.cprover.org/cbmc

	CBMC – C Bounded Model Checker
(Competition Contribution)

	1 Overview
	2 Architecture
	3 Strengths and Weaknesses
	4 ToolSetup
	5 SoftwareProject
	References

