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Abstract 

Background: CREB-binding protein (CBP, also known as nejire) is a transcriptional co-activator that is conserved in 
metazoans. CBP plays an important role in embryonic development and cell differentiation and mutations in CBP 
can lead to various diseases in humans. In addition, CBP and the related p300 protein have successfully been used 
to predict enhancers in both humans and flies when they occur with monomethylation of histone H3 on lysine 4 
(H3K4me1).

Results: Here, we compare CBP chromatin immunoprecipitation sequencing data from Drosophila S2 cells with 
modENCODE data and show that CBP is bound at genomic sites with a wide range of functions. As expected, we find 
that CBP is bound at active promoters and enhancers. In addition, we find that the strongest CBP sites in the genome 
are found at Polycomb response elements embedded in histone H3 lysine 27 trimethylated (H3K27me3) chromatin, 
where they correlate with binding of the Pho repressive complex. Interestingly, we find that CBP also binds to most 
insulators in the genome. At a subset of these, CBP may regulate insulating activity, measured as the ability to prevent 
repressive H3K27 methylation from spreading into adjacent chromatin.

Conclusions: We conclude that CBP could be involved in a much wider range of functions than has previously been 
appreciated, including Polycomb repression and insulator activity. In addition, we discuss the possibility that a com-
mon role for CBP at all functional elements may be to regulate interactions between distant chromosomal regions 
and speculate that CBP is controlling higher order chromatin organization.
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Background

CREB-binding protein (CBP) is a transcriptional co-

activator that is conserved in metazoans. In mammals, 

CBP shares functions with the paralogous adenovirus 

E1A binding protein p300. In Drosophila, there is only 

one CBP ortholog and it is called nejire, dCBP, CBP/

p300, or CBP. CBP and p300 interact with multiple tran-

scription factors and are thus associated with regula-

tory DNA sequences [1]. �ey also link enhancer-bound 

transcription factors and the basal transcription machin-

ery. �ese proteins can affect the access of factors to 

DNA through their histone acetyltransferase activity [2]. 

Loss of CBP/p300 gene function leads to cell death in 

flies, mice and worms [3]. CBP plays an important role in 

embryonic development and cell differentiation [3] and is 

associated with some diseases. For example, heterozygo-

sity of p300 or CBP in humans causes Rubinstein–Taybi 

syndrome which is characterized by broad thumbs and 

distinctive facial features [4]. CBP acts as a tumor sup-

pressor in mouse where its inactivation leads to tumor 

formation. CBP and p300 are disrupted by chromo-

somal translocations with mixed lineage leukemia (MLL) 

or other partners in some leukaemias and are targets 

of DNA tumor virus transforming proteins [5]. Recent 
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exome sequencing has revealed frequent inactivating 

mutations in CBP and p300 in B cell lymphoma, relapsed 

acute lymphoblastic leukemia, bladder carcinoma, and 

small-cell lung cancer [6].

Today, over 400 interaction partners have been 

described for CBP including proteins from all major 

transcription factor families. Many CBP binding sites 

are localized in sites known as HOT sites which are 

regions in the genome that bind multiple transcription 

factors [7]. CBP bound regions are generally DNase I 

hypersensitive and most are found in promoters, introns 

and intergenic regions [8]. Studies involving Drosophila 

embryos suggest that CBP is targeted preferentially by 

some transcription factors in the genome [7]. In early 

embryos, CBP co-occupies genomic locations with the 

Rel-family transcription factor dorsal [7]. Early studies 

on p300 in mammalian cells show that p300 has an affin-

ity for specific DNA sequences that are recognized by 

the Rel protein nuclear factor kappa B (NF-KB) [9]. �is 

suggests that the association of CBP/p300 with Rel-fam-

ily proteins is evolutionarily conserved. At active genes, 

CBP can acetylate several lysines on the histones, pre-

dominantly histone H3 on lysine 27 (H3K27ac), histone 

H3 on lysine 18 (H3K18ac), and histone H4 on lysine 

8 (H4K8ac) [10, 11]. It can also acetylate transcription 

factors that recruit RNA polymerase II, function as a 

scaffold for recruiting other proteins and help establish 

a pre-initiation complex by interacting with transcrip-

tion factor IIB and hypophosphorylated RNA polymer-

ase II [12]. Other histone marks, such as acetylation of 

histone H3 on lysine 23 (H3K23ac) and 56 (H3K56ac), 

are also influenced by CBP [13, 14]; the presence of 

H3K23ac is associated with ecdysone induced gene 

activation [13] and H3K56ac has a critical role in the 

packaging of DNA into chromatin following DNA repli-

cation and repair [14]. Additionally, CBP regulates DNA 

replication in Drosophila ovarian follicle cells and Kc 

cells [15, 16].

In humans, CBP/p300 binding regions that are out-

side of genes often overlap with H3K4me1 and are a sig-

nature of transcriptional enhancers [17]. �e genomic 

occupancy of CBP, which has been detected by ChIP-seq 

experiments, has been used to predict novel enhanc-

ers both in human and flies [18, 19]. CBP bound regions 

from different tissues can be used to identify enhanc-

ers that are active in a tissue specific manner [19]. �e 

H3K27ac mark distinguishes active from poised enhanc-

ers [20–22]. Since CBP is responsible for H3K27 acety-

lation, it has been presumed that poised or inactive 

enhancers lack CBP. However, CBP binds to many silent 

regions without histone acetylation [21, 22]. CBP binding 

that does not result in histone acetylation occurs at some 

silent genomic regions lacking active transcription [7], 

and CBP occupancy can in fact be detected at poised or 

inactive enhancers containing H3K27me3 [21, 22].

Although CBP occupancy generally correlates with 

active genes, silent genomic regions with Polycomb-

mediated H3K27me3 prevent histone acetylation but do 

not inhibit CBP binding [7]. Although many protein com-

plexes are involved, Polycomb repression is mainly medi-

ated by the canonical Polycomb repressive complexes 1 

and 2 (PRC1 and PRC2) together with the DNA bind-

ing pleiohomeotic (Pho) repressive complex [23]. Stud-

ies on the antagonistic switch between H3K27ac and the 

H3K27me3 mark show that CBP is involved in the switch 

between the repressed and active chromatin states [10, 

24]. CBP also interacts with the Trithorax (Trx) group of 

chromatin modifiers to maintain the active state of Poly-

comb target genes [10].

�ough most CBP binding sites in the genome are 

at promoters and enhances, not all genomic positions 

bound by CBP are promoters or enhancers. In this paper, 

we have investigated the full range of CBP bound regions 

to determine if CBP is involved in any additional pro-

cesses that have yet to be identified. Our main objective 

was to classify the local chromatin environments where 

CBP is found. We also wanted to identify both the pro-

teins and histone modifications that potentially interact 

with CBP and may modulate CBP activity and recruit-

ment to chromatin. We found that CBP binding sites 

can be classified into Polycomb repressed regions, inac-

tive enhancers, active enhancers, active promoters and 

insulators. At some insulators, we discovered that CBP 

functions to prevent repressive H3K27 methylation from 

spreading into active genes. Our results also suggest that 

CBP has a role in chromatin opening, DNA replication 

and chromosomal interactions.

Results and discussion

Classi�cation of CBP bound chromatin identi�es active 

promoters and enhancers

Using our previously characterized C-terminal CBP anti-

body [7], we mapped CBP by ChIP-seq across the Dros-

ophila melanogaster S2 cell-line genome. Based on these 

data, 2477 high-confidence binding sites of CBP were 

defined. We also used proteins and histone modifications 

mapped by modENCODE [25] in these cells (42 pro-

teins and 27 histone modifications). For all 42 proteins, 

we calculated the amount of binding at CBP sites (within 

150 bp) (see “Methods” section). Using the protein bind-

ing data (CBP binding regions as observations and the 

levels of enrichment of the 42 proteins at the CBP regions 

as variables), we classified all CBP binding sites into 

nine distinct classes using principal component analysis 

(PCA) followed by hierarchical clustering (HCA) (Fig. 1a, 

b). Although the PCA classification yielded fairly distinct 
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classes, binding of several of the 42 proteins are shared 

between some classes. �e different classes should rather 

be interpreted as sub-sets of regions with a distinct com-

bination of factors bound.

To find out where the CBP regions of the nine classes 

are located in the genome, we mapped their positions 

in relation to the following gene features: promoters, 

exons, introns and intergenic regions. Classes V and VI 

CBP binding sites map to promoters of genes that tend 

to be highly expressed (Fig.  1c, d). We therefore con-

clude that Classes V and VI are active promoters. Class 

VI binding sites have more RNA polymerase II (Pol II) 

compared to Class V sites and are associated with higher 

expression levels (Additional file 1: Figure S1; Fig. 1d). In 

addition, factors such as suppressor of variegation 3–7 

(Su(var)3–7), Bre1, CCCTC-binding factor (CTCF) and 

centrosomal protein 190 kD (CP190) were found to bind 

more strongly to Class V than to Class VI regions (Addi-

tional file 1: Figure S1).

Since CBP is commonly used as a marker for enhanc-

ers, we compared the CBP binding classes to H3K4me1 

regions and to enhancers that were experimentally identi-

fied by self-transcribing active regulatory region sequenc-

ing (STARR-seq) in S2 cells [25, 26]. We found that Classes 

III, VII, VIII and IX overlap with STARR-seq enhancers, 

have H3K4me1 and are mostly located in introns (Fig. 1c, 

e, f ). �ey are also situated in highly active genes (Fig. 1d). 

Based on these observations we conclude that Classes III, 

VII, VIII and IX represent active enhancers.

We next looked at the differences between these four 

active enhancer classes and found that Classes VII, VIII 

and IX were bound by different combinations of factors 

(Additional file  1: Figure S1), such as the transcription 

factor GAGA factor (GAF), subunits of the Nucleosome 

Remodeling Factor complex (NURF301), the chromatin 

complex FACT (Spt16), the Nucleosome Remodeling 

Deacetylase complex (dMi-2) and histone deacetylase 

1 (RPD3). Interestingly, the GO annotations for genes 

closest to the CBP sites differed for each of these classes 

(Additional file  2: Table S1). For example, Class VII is 

associated with genes involved in “positive regulation 

of transcription” and Class VIII is enriched with genes 

involved in “negative regulation of transcription”. Class 

IX associated genes are mainly involved in metamor-

phosis while Class III is not associated with any signifi-

cant GO enrichment and contains lower levels of all of 

the modENCODE factors studied. Although it is hard 

to speculate on the function of Class III enhancers, they 

clearly have a very different chromatin composition com-

pared to the other enhancer classes.

We note that Classes I and II also show enhancer-like 

characteristics (Fig.  1e, f ), although Classes I and II are 

mainly situated close to silent genes. �ese regions show 

low levels of H3K18ac and H3K27ac, indicating that they 

may be inactive enhancers (Fig.  1g). Interestingly, we 

find that active enhancers (Classes III, VII, VIII, IX) have 

higher levels of H3K18ac and H3K27ac than active pro-

moters (Classes V and VI) (Fig. 1g).

Since several enhancers could potentially be associated 

with the same gene, we calculated the percentage overlap 

between the genes in each class (Fig. 1h). 9–31 % of the 

genes in Classes III, VII, VIII and IX overlap, indicating 

that despite differences in GO enrichment between the 

classes, there are many examples where several different 

types of enhancers map to the same gene. �is is to be 

expected as it has been estimated that there are about 

four enhancers per expressed protein-coding gene that 

are active during embryogenesis in Drosophila [27].

CBP occupies Polycomb response elements

Our search strategy revealed that, as expected, CBP binds 

to active promoters (Classes V and VI) and active enhanc-

ers (Classes III, VII, VIII and IX). We were also interested 

in exploring the features of the other classes. Surprisingly, 

we find that Class I is highly enriched in Polycomb factors 

such as Polycomb (Pc), Enhancer of zeste (Ez), Pho, Scm-

related gene containing four mbt domains (dSfmbt), Sex 

combs extra (dRing), Polycomb-like (Pcl), Posterior sex 

combs (Psc), and Trx (Fig. 2a; Additional file 1: Figure S1). In 

fact, 66 % of Class I sites overlap with Polycomb Response 

(See figure on next page.) 
Fig. 1 Classification of CBP binding sites and identification of promoter and enhancer classes. a Score plot of the first two components from 
principal component analysis (PCA) of 42 protein binding values within CBP binding sites. b Hierarchical clustering of CBP binding sites based on 
the four significant principal components. The dashed line indicates the cut-off used to define nine classes. These classes represent regions with a 
distinct combination of factors bound, and correspond to various kinds of cis-regulatory regions. The percentages of CBP binding regions from each 
class are given in brackets. c Fraction of CBP peaks in the nine classes overlapping different gene features. d Fraction of CBP peaks in the nine classes 
associated with genes divided into three levels of expression. e H3K4me1 enrichment within 500 bp around the CBP peak centres in the nine CBP 
classes. f Fraction of CBP regions in the nine classes and in random genomic regions (RGR) that are associated with STARR-seq enhancer peaks. g 
H3K27ac and H3K18ac enrichment within 500 bp around CBP peak centres in nine classes of CBP. Values were scaled so that a value of zero corre-
sponds to the genomic mean and a value of one to the genomic maximum in e and g. Error bars represent 95 % confidence intervals. h Percentage 
overlap between the genes associated with each class. Each row represents the percentage of the genes associated with that class that is also asso-
ciated with each of the other eight classes. Within parenthesises the number of CBP regions and number of unique genes assigned to each class
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Elements (PREs) in the repressed state (defined in [28] in 

the S2 related cell-line SG4). Out of the 200 defined PREs in 

Schwartz et al. [28], 94 % have at least twofold enrichment 

of CBP. As expected, Class I sites have high H3K27me3 as 

well as low acetylation levels (Figs.  1g and 2b). �e genes 

close to Class I sites are expressed weakly or not all (Fig. 1d). 

Although it has previously been shown that CBP can bind 

to both active enhancers and to inactive enhancers contain-

ing H3K27me3 [7, 21, 22] such regions are often embedded 

within H3K27me3 domains (usually up to several hundreds 

of kbp long [28]). Importantly, we demonstrate here that 

CBP occupies the short PRE elements (a few hundred bp in 

length) that initially recruit the Polycomb repressive com-

plexes, and that CBP occupancy of PREs does not displace 

Polycomb complexes or lead to gene activation. At these 

sites, CBP may not antagonize Polycomb repression and 

H3K27me3 as it does on a global level [10, 24, 29].

We next compared the enrichment levels of all pro-

teins to those of CBP (±150 bp from the CBP peak cen-

tre). Within Class I binding sites, the enrichment levels 

of CBP correlate (Spearman correlation, p  <  0.05) with 

the enrichment levels of Pho and dSfmbt (members of 

the Pho repressive complex) but not with any PRC1 or 

PRC2 components, indicating that CBP might interact 

with the Pho repressive complex. Of all of the classes, the 

strongest CBP sites in the genome are found in Class I 

(Fig. 2a). Interestingly, Class I regions have a high over-

lap with STARR-seq enhancers and have high H3K4me1 

levels (Fig. 1e, f ). CBP has been implicated in Polycomb/

trithorax regulation. CBP interacts with Trx [30] and was 

thought to be involved in maintaining the active state 

of Pc/Trx regulated genes because it is a histone acetyl 

transferase [10]. Here, we show that CBP occupies PREs 

even when they are in the repressed state which provides 

evidence that CBP can remain attached to chromatin 

without active histone acetylation. It remains to be inves-

tigated, however, if CBP acetylates non-histone targets at 

PREs or if the histone acetyltransferase (HAT) activity is 

blocked.

Class 2 CBP sites are devoid of known proteins and gene 

activity

Class II CBP sites generally lacked mapped proteins and 

histone modifications from modENCODE (Additional 

file  1: Figure S1). Class II regions also are less DNAse 

hypersensitive compared to the other classes (Fig.  3a). 
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Fig. 2 Enrichment of Polycomb factors and H3K27me3 in class I CBP regions. a Polycomb and Trx complex factors as well as CBP enrichment in 
300 bp around CBP peak centres in the nine classes of CBP regions. b H3K27me3 enrichment within 500 bp around CBP peak centres in the nine 
classes of CBP regions. Values were scaled so that a value of zero corresponds to the genomic mean and a value of one to the genomic maximum. 
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�is class has some overlap with STARR-seq enhancers 

and has regions that are slightly enriched in H3K4me1 

(Fig. 1e, f ). Since we found no enrichment of any mapped 

proteins, we performed sequence motif analysis of Class 

II regions using word counting and multivariate mod-

eling as described in [31]. Sequence analysis revealed 

that Class II regions were rich in GAGA motifs which 

suggests that they have the potential to bind GAF. We 

also found that the GATAe and the GTGT motifs were 

enriched in Class II regions (Fig. 3b–d) which is intrigu-

ing because similar dinucleotide repeat motifs are impor-

tant for enhancer function in D. melanogaster [32].

�e genes close to Class II CBP sites become most 

active during pupal stages of development (Fig.  3e), 

and are enriched for the GO terms “plasma membrane” 

and “post-embryonic development” (Additional file 2: 

Table S1). We speculate that Class II CBP sites represent 

poised enhancers that are not yet active and note that 

CBP is recruited to these regions earlier than other acti-

vating factors. CBP HAT activity appears to be blocked 

from acetylating H3K18 and H3K27 when these enhanc-

ers are inactive (Fig. 1g). To investigate if these enhanc-

ers become active later in development, we calculated 

H3K27ac enrichment at Class II sites across the devel-

opmental time points where modENCODE has mapped 

this modification by ChIP-seq (Additional file  3: Fig-

ure S2). However, the H3K27 acetylation levels at these 

sites are very low at all time points tested. �is could be 
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because the relevant time point has not been mapped, or 

that these enhancers are active only in very few cells and 

thus the signal becomes undetectable in the mixture of 

cells assayed. Alternatively, the Class II regions do not 

represent “canonical” enhancers. With the available data 

we cannot distinguish between these alternatives. Inter-

estingly, although the H3K23ac data we used are noisy, 

we observed that the H3K23ac modification is highest in 

Class II (Fig.  3f ). Perhaps the MYST-family HAT Enok 

(KAT6) that acetylates H3K23 is enriched at these sites 

[11, 33], or the inability to acetylate H3K18 and H3K27 

directs CBP activity to H3K23 instead. Indeed, CBP is the 

most promiscuous of the HATs, and reduced global acet-

ylation of one histone residue results in compensatory 

acetylation of other lysine residues [11]. For example, 

knock-down of KAT6 reduces H3K23ac but increases 

H3K18ac, pointing to an interplay between KAT6 and 

CBP [11]. Proteins that have yet to be mapped may redi-

rect CBP HAT activity to H3K23 or recruit KAT6 to 

these regions.

CBP binds to insulators and regulates their activity

Class IV CBP sites are highly enriched in several insula-

tor factors (Additional file  1: Figure S1). Several differ-

ent types of insulators were recently characterized in 

Drosophila by Schwartz et  al. [34]. When we compare 

the Class IV regions with the insulator classes defined 

by [34], about 50 % overlap with CP190 and suppressor 

of Hairy wing (Su-Hw) type insulators. When studying 

all genomic sites of some of the major insulator classes 

defined in [34], we observe that CBP is enriched at least 

twofold over background at most of these sites (Addi-

tional file 4: Figure S3). �is implies that some CBP bind-

ing is present at most insulators in the genome. Note that 

we use a stringent cut-off to define CBP binding sites and 

therefore most of the insulators will not be included in 

the classification in Fig. 1.

When further analysing the Class IV sites we observed 

that some sites have high while others have low levels 

of histone acetylation. We, therefore, performed a PCA 

using Class IV sites as observations and all histone modi-

fications as variables. Interestingly, this analysis resulted 

in two main subclasses one of which had lower acetyla-

tion levels with the exception of H3K23ac (Fig. 4a, b). To 

determine if these insulator-like regions have insulator 

activity, we selected all intergenic Class IV regions (most 

Class IV regions are intergenic) overlapping H3K27me3 

regions in the genome (n = 184) and plotted the average 

methylation 10 kb up and downstream. Regions were ori-

ented so that the highest level of H3K27me3 was to the 

right of the Class IV site. Interestingly, the Class IV CBP 

sites with high levels of acetylation appear to block the 

spread of H3K27me3, whereas Class IV sites with low 

levels of acetylation do not appear to have this capacity 

(Fig. 4c, d).

To investigate whether the HAT activity of CBP is 

directly involved in the regulation of insulator activity 

at these sites, we treated S2 cells with the CBP inhibi-

tor C646 [35] or with C37 (a compound similar to C646 

that shows no effect on CBP HAT activity, [35]) and 

used H3K27me3 antibodies in ChIP-qPCR. We selected 

three Class IV regions with high acetylation levels that 

also showed high H3K27me3 enrichment proximal to 

the insulator, as well as one control region (a Class IV 

region with low acetylation levels but with high proximal 

H3K27me3 enrichment). After 30 min of C646 treatment, 

the H3K27me3 levels significantly increased (2.4-fold on 

average) on the side of the insulators that had lower ini-

tial H3K27me3 levels at all three Class IV regions with 

high acetylation (T test, p < 0.05, Fig. 4e). �is shows that 

the H3K27me3 modification is now able to spread past 

the insulator. No change in H3K27me3 was observed at 

the Class IV region with low acetylation (Fig. 4e) which 

is consistent with the genome-wide data where no block-

ing of H3K27me3 was seen in this subclass. Given the 

relative short treatment (30 min), we suggest that CBP is 

likely to directly regulate insulator activity, at least at the 

three regions studied here.

We note that Class V, and to some degree Class VI, 

are enriched in insulator proteins (Additional file 1: Fig-

ure S1). �ese classes are active promoters, and it has 

been shown that some paused promoters have insulator 

activity [36]. We speculate that these promoters need 

insulation from neighboring repressors or repressive 

chromatin. Indeed, Class V promoters are, on average, 

closer to H3K27me3 domains than other active pro-

moters bound by CBP (~20 and ~35  kb, respectively, 

p < 0.05). We therefore propose that CBP plays an impor-

tant role in insulator function and suggest that the HAT 

activity of CBP regulates insulating activity in some 

instances.

CBP is found at genomic regions involved in long range 

interactions

Once the distinctive features of each CBP binding class 

had been identified, we then examined common features 

of CBP bound regions across the genome. By analysing 

the mean enrichment of all 42 modENCODE factors in 

all classes, we observed that the DNA replication fac-

tors origin recognition complex subunit 2 (Orc2) and 

minichromosome maintenance 2 (Mcm2) were found in 

all classes except Class II. �is was confirmed by over-

lapping CBP regions with defined regions of Orc2 and 

Mcm2 binding (Fig.  5a). CBP is known to co-localize 

with origins of replication and may contribute to their 

regulation [15].
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Taken together, our results show that CBP is bound at 

genomic sites with a wide range of functions. A common 

feature of these functional elements is that they physi-

cally interact with other chromosomal regions. For exam-

ple, promoters, enhancers and insulators interact via loop 

formations that are functionally important [37, 38], while 

PREs interact with the promoters of genes that are to be 

repressed [39]. Furthermore, the origins of replication 

appear to form “replication factories” in eukaryotes [40]. 

�e cohesin complex was recently shown to be important 

for chromosomal interactions and in the formation of 

chromosomal domains [41]. We, therefore, examined the 

overlap between the CBP classes and the cohesin compo-

nents structural maintenance of chromosomes 1 (SMC1) 

and Nipped-B, which have been mapped in the SG4 cell-

line that is closely related S2 cells (data from [42]). All 

classes except Class II and Class IV show a strong over-

lap with the defined cohesin binding sites (Fig. 5b). Since 

Class II regions represent inactive enhancers they are not 

expected to interact with their target promoters. Class 

IV regions, however, are insulators that we expect to be 

involved in chromosomal interactions. Indeed, when we 

looked at the high acetylation subclass of Class IV insu-

lators, we found that they overlap with cohesin sites 

(Fig. 5c). In contrast, Class IV sites that lack histone acet-

ylation and that fail to prevent spreading of H3K27me3 

show little overlap with cohesin (Fig. 5c).

Conclusions

Our study shows that CBP is found at active promot-

ers and enhancers as previously demonstrated [8, 17]. 

In addition, we show that CBP is recruited to inactive 

regions with enhancer-like features that are associated 

with genes that become active at other developmental 

stages. We also show that the strongest CBP sites in the 

genome are found at silent PREs where they correlate 
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with the binding of the Pho repressive complex. Since 

CBP is also found at promoters of Polycomb regulated 

genes that are active [10], it will be interesting to examine 

further the involvement of CBP in Polycomb regulation. 

Another novel finding is that CBP binds to many, if not 

most, insulators across the genome and regulates insulat-

ing activity through its HAT activity at a subset of these 

insulators. We speculate that CBP may control higher 

order chromatin organization at all types of functional 

genomic sites, and that this could be part of the explana-

tion for its cell-autonomous lethal phenotype.

Methods

PCA analysis

To conduct PCA analysis, a matrix was generated with 

CBP bound regions as observations and the amount of 

binding of different proteins in CBP bound regions as 

variables. To calculate the amount of binding of different 

proteins at CBP sites, the top three consecutive binding 

values for each protein within 150  bp of the CBP peak 

centre was averaged. �e genomic mean was used if three 

binding values were not available. All computations were 

done in log2 scale. PCA was applied to the data after unit 

variance scaling. Hierarchical clustering was then applied 

on the first four significant components of PCA, to define 

clusters of CBP bound regions. Ward clustering was used 

to calculate tree distances. Nine classes of CBP bound 

regions were defined in the hierarchical cluster tree.

Expression analysis and annotation

Flybase annotation Release 5.32 [43] was used for all 

annotation. S2 cell-line expression values from [44] was 

grouped into three equally sized bins (low expressed/

unexpressed, medium expressed and high expressed). 

�e closest transcription start site was used to assign a 

gene to each CBP peak for the expression analysis. Gene 

ontology analysis was done using DAVID [45, 46].

Comparing CBP to other data

For each dataset except for the histone modifications, the 

average of the highest three consecutive values within 

150 bp of the CBP peak center was used. For the histone 

modifications, 500 bp from the CBP peak center was con-

sidered. If the calculated value was below the genomic 

mean for the dataset, then the genomic mean was used 

instead. All modENCODE data (42 proteins listed in 

Additional file  1: Figure S1, 27 histone modifications, 

DNAse hypersensitivity and expression data produced in 

Drosophila S2 cells as well as H3K27ac and expression in 

different developmental stages) was obtained from mod-

Mine (http://intermine.modencode.org/). Two additional 

proteins, Trx and M1BP (GEO entries GSM604729, 

GSM1208162), that were not used in the classification, 

were included in the heatmap (Additional file  1: Figure 

S1) for comparison. �e Cluster tool [47] was used to 

generate the heatmap.

DNA motif analysis

Sequences of Class II CBP bound intronic regions and 

random control genomic intron sequences were sub-

mitted to multivariate DNA motif analysis as described 
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in [31]. Control sequences with an A/T content falling 

outside the range of the A/T contents of the CBP bound 

regions was excluded.

ChIP

Drosophila S2 cells were grown to a density of 

0.2–1  ×  107 cells/ml and fixed in 1  % formaldehyde 

for 15  min at ambient temperature. �e reaction was 

quenched by 0.16  M glycine pH 7.0 for 5  min and 

washed in PBS. Cells were sequentially washed with 

ChIP A (10  mM Hepes pH 7.6, 10  mM EDTA pH 8.0, 

0.5  mM EGTA pH 8.0, 0.25  % Triton X100) and ChIP 

B (10  mM Hepes pH 7.6, 100  mM NaCl, 1  mM EDTA 

pH 8.0, 0.5 mM EGTA pH 8.0, 0.01 % Triton X100) for 

10  min at 4  °C followed by resuspension in Sonication 

buffer (50 mM Hepes, 140 mM NaCl, 1 mM EDTA, 1 % 

Triton, 0.1  % sodium deoxycholate, 0.1  % SDS, supple-

mented with proteinase inhibitor tablets, Roche) to a 

final concentration of 5–10 × 107 cells/ml. Nuclei were 

sonicated for 15  min using a Bioruptor (Diagenode), 

rotated for 10 min followed by centrifugation for 10 min 

at 13,000 rpm at 4 °C.

A mix of Protein A and G Dynabeads (Invitrogen) 

blocked with only BSA (Sigma Aldrich) for ChIP-

sequencing or BSA (1  mg/ml) and salmon sperm DNA 

(1  mg/ml) for ChIP-qPCR were mixed with indicated 

antibodies. Beads and antibodies were incubated for at 

least 2 h followed by the addition of 0.5–1 × 107 cells.

Chromatin and antibody bead complexes were formed 

during at least 2 h followed by 5 min washes with sonica-

tion buffer (50 mM Hepes, 140 mM NaCl, 1 mM EDTA, 

1  % Triton, 0.1  % sodium deoxycholate, 0.1  % SDS), 

WashA (as sonication buffer, but with 500  mM NaCl), 

WashB (20 mM Tris pH 8, 1 mM EDTA, 250 mM LiCl, 

0.5 % NP-40, 0.5 % sodium deoxycholate) and TE.

Beads were resuspended in Elution buffer (50 mM Tris 

pH 8, 50  mM NaCl, 2  mM EDTA, 0.75  % SDS, 20  µg/

ml RNase A, 20  µg/ml glycogen) in a new tube. Cross-

linking was reversed at 68 °C for at least 4 h and proteins 

removed by Proteinase K. DNA was purified with phe-

nol–chloroform, ethanol precipitated and finally resus-

pended in 200 µl 0.1 × TE.

Chromatin immunoprecipitation samples were ana-

lyzed by qPCR or sequenced at the Uppsala Genome 

Center. 2  µl of DNA was used as template for qPCR, 

which was run in duplicates using 300 nM primers and 

EvaGreen (Solis BioDyne) on a CFX96 Real-Time sys-

tem (BioRad). Average Cq was calculated for each ChIP 

sample and compared to input. To account for the back-

ground of each individual ChIP, normalization was made 

to two intergenic sites devoid of known histone modifi-

cations and chromatin factors. ChIP values were further 

normalized to the total amount of histone H3.

Ten ChIP samples were pooled and used for SOLiD 

(TM) ChIP-Seq Library preparation, size selection (100–

150 bp + adapters 90 bp) and sequenced using SOLiD4 

50 bp fragment run.

ChIP-seq data processing

CBP ChIP-seq reads were mapped to the D. melanogaster 

genome (release 5) and only those with unique map sites 

were retained. A log2-ratio was calculated between the 

IP and the input samples read densities. After median 

smoothing with 100 bp windows, high-confidence bind-

ing sites were identified as described in [7]. In brief, 

regions of at least 200 bp with a log2-enrichment of more 

than the 95th percentile were considered high-confidence 

binding sites. �e CBP data is available at Gene Expres-

sion Omnibus (GEO, Acc. No. GSE64464).

Antibodies

Two affinity purified antibodies raised against CBP, one 

in guinea-pig [48, 49] and one in rabbit [7] was used for 

ChIP-sequencing. �e following antibodies were used 

in ChIP-qPCR, H3K27me3 (Abcam, ab6002) and H3 

(Abcam, ab1791).

Drug treatment of S2 cells

2  ×  106 cells/ml of S2 cells were centrifuged and dis-

solved in FCS free media. 30 µM of CBP inhibitor (C646) 

or control drug (CM37) in DMSO was added to the cells 

for 30 min before ChIP.
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