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Abstract. CBR is one of the techniques that can be applied to the task
of approximating a function over high-dimensional, continuous spaces.
In Reinforcement Learning systems a learning agent is faced with the
problem of assessing the desirability of the state it finds itself in. If the
state space is very large and/or continuous the availability of a suitable
mechanism to approximate a value function — which estimates the value
of single states — is of crucial importance. In this paper, we investigate
the use of case-based methods to realise that task. The approach we take
is evaluated in a case study in robotic soccer simulation.

1 Introduction

Case-based Reasoning (CBR) is based on the assumption that similar problems
have similar solutions. Systems relying on that paradigm have been successfully
used in several application domains, such as diagnosis, classification, prediction,
control and action planning. Various reasons have contributed to the attractive-
ness of employing case-based methods: They are straightforward to implement,
help in reducing the knowledge acquisition effort and they are noise-tolerant due
to their approximate nature. In this work we will exploit these advantages in the
context of Reinforcement Learning and thus, more specifically, in an application
field that covers the tasks of prediction and action planning.

Reinforcement Learning (RL) follows the idea that an autonomously acting
agent obtains its behaviour policy through repeated interaction with its envi-
ronment on a trial-and-error basis. The experience the agent gathers that way is
then processed and integrated into a mathematical function that tells how much
it is worth aspiring to enter a specific state by performing a specific action. So,
one central issue in RL represents the learning of that function, which reflects the
value of a state and from which a good policy for action choice may be induced.
That task is aggravated when the set of states in which the agent can find itself
is infinite, i.e. when working with a large, continuous state space. Then, storing
states’ values explicitly is impossible and, hence, it becomes indispensable to
make use of a suitable function approximation mechanism.



In this paper we investigate the use of CBR methods for that task. Their
application seems promising insofar as they are considered suitable for handling
noisy data and learning and generalising fast from few training examples. How-
ever, the approximation of a state value function in RL bears some inherent
difficulties to be coped with: In particular, the function that we want to approx-
imate with maximal accuracy is a moving target, i.e. changes over time, since
at the beginning of the learning process only little is known about its shape,
whereas at later stages of learning much more experience about its real shape
will have been collected. Therefore, we present a systematic compilation of vari-
ous CBR techniques to deal with this and other important problems and examine
the capabilities of a CBR-based state value function approximation compared
to a table-based and neural net-based function representation.

In Section 2 we introduce the necessary vocabulary, review some basics of
the Reinforcement Learning paradigm and motivate the use of CBR technol-
ogy to represent and approximate a state value function. Section 3 introduces
our CBR-based approach to state value function approximation. We present a
specialised RL algorithm, that employs a CBR-based function approximator,
as well as necessary methods required for case base management. Furthermore,
we discuss benefits and limitations of the ideas given. Section 4 reveals one of
the underlying motivations of our work: Our research group participates in the
RoboCup championship tournaments in robotic soccer simulation, where one
of our main research goals is to realise an increasing part of our soccer-playing
agents’ behaviour by using machine learning techniques. So, we outline a specific
sub-task — the intercept ball problem — of robotic soccer simulation and present
results in solving that task with RL which we obtained using CBR methods for
approximating the underlying state value function. Finally, Section 5 concludes.

2 The Reinforcement Learning Framework

One of the general aims of Machine Learning is to produce intelligent software
systems, sometimes called agents, by a process of learning and evolving. Re-
inforcement Learning represents one approach that may be employed to reach
that goal. In an RL learning scenario the agent interacts with its initially un-
known environment, observes the results of its actions, and adapts its behaviour
appropriately. To some extent, this imitates the way biological beings learn.

In each time step an RL agent observes the environmental state and makes a
decision for a specific action, which, on the one hand, may incur some immediate
reward (also called reinforcement) generated by the agent’s environment and, on
the other hand, transfers the agent into some successor state. The agent’s goal
is not to maximise the immediate reward, but its long-term, expected reward.
To do so it must learn a decision policy 7 that is used to determine the best
action for a given state. Such a policy is a function that maps the current state
s € S to an action a from a set of viable actions A. This idea of learning through
interaction with the environment can be rendered by the following steps that
must be performed by an RL agent (illustrated and refined in Figure 1):



. the agent perceives an input state s

. the agent determines an action a using a decision making function (policy)

. action a is performed

. the agent obtains a scalar reward r from its environment (reinforcement)

. information about the reward r that has been received for taking action a
in state s is processed
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The basic Reinforcement Learning paradigm is to learn the mapping 7 :
S — A only on the basis of the rewards the agent gets from its environment. By
repeatedly performing actions and observing resulting rewards, the agent tries to
improve and fine-tune its policy. The respective Reinforcement Learning method
(step 5) specifies how experience from past interaction is used to adapt the policy.
Assuming that a sufficient number of states has been observed and rewards have
been received, the optimal decision policy will have been found and the agent
following that policy will behave perfectly in the particular environment.
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Fig. 1. Schematic View on RL Using State Value Functions

2.1 Learning Value Functions

The Reinforcement Learning problem is usually formalised as a Markov Decision
Process (MDP) within the context of Dynamic Programming [3]. An MDP is a
4-tuple M =[S, A, r, p] where S denotes the set of environmental states, A the
set of actions the agent can perform, and r : Sx A — R the function of immediate
rewards (s, a) (sometimes called costs of actions) that arise when taking action
a in state s. The function p : S x A x S — [0; 1] depicts a probability distribution
p(s,a, s’) that tells how likely it is to end up in state s’, when performing action
a in state s.

Being in search of an optimal behaviour in an unknown environment, the
agent needs a facility to differentiate between the desirability of possible suc-
cessor states, in order to decide on a good action. A common way to rank
states is by computing and using a so-called state value function V™ : S — R
which estimates the future rewards that can be expected when starting in a
specific state s and taking actions determined by policy m : S — A. Thus,
V7 (s) = E[}_2or(st,m(s¢)|so = s)], where E[-] denotes the expected value. If we
assume we are in possession of an “optimal” state value function V*| it is easy to



infer the corresponding optimal behaviour policy® by exploiting that value func-
tion greedily according to 7*(s) := argmax,c {7 (s, a)+>_ g p(s,a,5")-V*(s')}.

So, the crucial question is, how to obtain the optimal state value function. To
perform that task, Dynamic Programming methods, e.g. value iteration [2], may
be employed which converges under certain assumptions to the optimal value
function V* of expected rewards. Value iteration is based on successive updates of
the value function for all states s € S according to Vi41(s) := mazeeca{r(s,a)+
Y oegp(s,a,5") - Vi(s')}, where index k denotes the sequence of approximated
versions of V', until convergence to V* is reached.

Research in Reinforcement Learning, however, has generated a variety of
methods that extend those well-known optimisation techniques, aiming at ap-
plicability also in situations where large state spaces must be handled or the
absence of a transition model p prevents the usage of simple value iteration.
Although some details of the RL learning algorithm we use in the scope of this
work are given in Section 2.2, a discussion on progress and state of the art in
RL goes beyond the scope of this paper; the interested reader is referred to [21].

2.2 Temporal Difference Methods

Temporal difference (TD) methods comprise a set of RL algorithms that incre-
mentally update state value functions V (s) after each transition (from state s to
') the agent has gone through. This is particularly useful when learning along
trajectories (sg, s1,...,Sn) that start in some start state sp and end in some
terminal state sy € G, where G is a set of goal state. This means learning can
be performed online, i.e. the processes of collecting (simulated) experience and
learning the value function run in parallel. In this work we update the value
function’s estimates according to the T'D(1) update rule [20], where the new
estimate for V'(s) is calculated as V(sy) := (1 — ) - V(sg) + a - return(sy) with
return(sg) = Z;V:k r(sk,m(sx)) indicating the summed rewards following state
sk and « representing a decaying learning rate. The whole episode-based T'D(1)
learning algorithm to be used in conjunction with a table-based function repre-
sentation of V' (i.e. the state value for each state is stored explicitly) proceeds
as in Algorithm 1.

One inherent feature of this learning algorithm — as well as of any algorithm
that optimises a state value function — is that at the beginning of learning the
estimates for V(s) are typically very coarse. To put it differently, initially V'
represents a rather noisy estimate of the true optimal value function V*, steadily
converging towards V* as long as all criteria for convergence are fulfilled. For the
family of TD()\) algorithms convergence is guaranteed, if each state is visited
by an infinite number of episodes and if the step size parameter « diminishes
towards zero at a suitable rate.

! Note, that often — in particular, in cases where no model p of the environment is
available — state-action value functions @Q : S X A — R are learnt, which provide an
estimation of how desirable it is to choose a specific action in a certain state. The
paper at hand, however, deals with state-value functions only.



1. initialise state value function V arbitrarily, let policy m be given by e-
greedy exploitation of V
2. repeat
(a) generate random start situation sg for current episode, set k := 0
(b) while si ¢ G and k < maxEpisodeLength do
i. choose next action a; by exploiting V e-greedily according to
ax = argmazaee a(r(sk,a) + 3 c s P(k, ak, s") - V(s"))
or choose a random action with probability
ii. perform ay, entering state si+1 and perceiving immediate reward
r(sk, ak)
(c) for all steps si in episode (s1,...,SN)
i. return(sg) := Z;V;kl r(sj,a;) +r(sn)
iil. V(sg):=(1—a)-V(sk)+ a- return(sy) with a as learning rate
until stop criterion becomes true

Algorithm 1:
Episode-Based RL Algorithm Using Table-Based State Value Function

2.3 The Need for Function Approximation

As outlined in the previous sections, the determination of an optimal state value
function is crucial to most RL methods. Intending to show the functioning of
some new RL technique in principle, one usually chooses typical benchmark
problems (grid worlds) that are very limited in terms of state and action space
size. In those cases, having to deal with only a finite number of states, it is fea-
sible to store V(s) for each single state s € S explicitly using a tabular function
representation with |S| table entries. However, when aspiring to apply RL tech-
niques to real world problems — as we do in this paper — and thus working with
high-dimensional and probably continuous state spaces, computational and/or
memory limitations inhibit the use of a tabular function representation. Instead,
the employment of a function approximator becomes inevitable.

Thus, we deal with “suboptimal” methods that approximate the optimal
state value function V*(s): We replace the optimal value function by an appro-
priate approximation V (s,t), where ¢ determines the set of the approximator’s
parameters. In particular, we focus on the use of Case-Based Reasoning as a
suitable technique to approximate V* using k-nearest neighbour regression and
compare it to other function approximation methods.

3 CBR-based Value Function Approximation

When approximating some target function f(z) = y, the system is usually pro-
vided with a set of training data tuples (x;,y;) of f’s desired input-output be-
haviour and tries to reconstruct f so that these data pairs are explained best.
So, for the case of approximating a state value function, an ideal training data
set would be made up of tuples (s, V*(s)) with s covering some subset of S. Un-
fortunately, learning the optimal state value function V* is the overall learning
goal, which is why obtaining such a training set is impossible. In other words, the
approximation of the value function must be conducted in parallel to computing



V*, which complicates the function approximator’s adjustment heavily. As early
estimates of V (s) can be interpreted as noise-afflicted versions of the optimal val-
ues V*(s), the application of CBR to approximate V appears promising in that
respect. Moreover, CBR systems are straightforward to implement and compar-
atively easy to tune. This argument is striking when comparing CBR as function
approximation scheme with the use of neural nets, which are notoriously hard
to tune in the context of RL algorithms. The latter advantage of CBR is sup-
ported by Gordon [7]: A case-based function approximator can be characterised
as a contraction mapping (“averager”) whereas neural nets fall into the category
of expansion mappings (“exaggerators”), that can exaggerate changes in their
training values and cause instability in the respective learning algorithm.

3.1 Related Work

CBR-related (case-based, instance-based, and sometimes so-called memory-based)
techniques have been used in the context of Reinforcement Learning at times.
The idea of using instances of stored experience to predict the value of some
solution attribute of a new unseen example is the main feature of case-based
regression algorithms. In [8] the idea of weighted k-nearest neighbour regression
is introduced. Here, the numerical prediction of a query’s solution attribute is
determined as a weighted average of the solution attribute values of the query’s
nearest neighbours. Peng [13] was one of the first to use a nearest-neighbour
approach in the context of value function approximation for RL. In that work,
however, the important topic of case-base management is not addressed. Suitable
techniques to limit the potentially rapid growth of the case base by remembering
too many cases have been presented later on: For example, in [5] the authors
apply instance-based regression in a relational RL context and develop strategies
to confine the data inflow. Similar ideas are also part of the work of Ratitch [14],
though here Sparse Distributed Memories, which are a specialised application
of CBR using specific similarity measures, are used as the underlying predic-
tion technique. In both [17] and [6], promising results of approximating value
functions in continuous state spaces for dynamic control tasks are presented.
Their special focus is, in the case of the former, to learn from a small amount
of data, boosting the learning process with initial training examples from a hu-
man expert, and, in the case of the latter, relevant extensions that allow their
algorithms’ application also in more complex domains. A comprehensive article
addressing the comparison of several memory-based approaches to function ap-
proximation is the one by Santamaria et. al [16]. Using their terminology the
ideas we present in this paper ought to be classified as instance-based methods,
as they reserve the term “case-based” explicitly for situations where the actions
to be chosen represent the cases’ solutions. Nevertheless, we proceed using the
well-established CBR vocabulary in the following. The contribution of this work
lies in a systematic compilation of various CBR techniques in an RL context and
their application to tasks with real-time constraints. Moreover, we examine the
performance of a CBR-based value function approximation in a case study in
robotic soccer and compare it to other function approximation methods.



3.2 Function Approximation with k-Nearest Neighbour Regression

Our approach to CBR-based state value function approximation is based on the
following main characteristics, that will be discussed in more detail subsequently:

— an attribute-value based state/case representation,
— the local-global principle for similarity assessment and retrieval, and
— k-nearest neighbour regression to predict the cases’ solution attribute.

We assume a continuous, n-dimensional state space S C R™ where each
s = (s1,82,...,8,) € S is a vector of real numbers and each dimension has its
individual domain D; C R. Accordingly, we define a case ¢® for state s to be
an n + 1-dimensional real-valued vector ¢® = (s1,..., $p,c5), where the first n
elements represent the case’s problem part and correspond to state s. The last
entry depicts the case’s solution ¢ = V(s), i.e. the expected reward when the
RL agent starts from s.

Using this notation the global similarity between two cases is defined as
n
sim(c®, ™) == sz - sim(cit, ei?) (1)
i=1

The weights w;, which are normalised so that Y-, w; = 1, are used to strengthen
or weaken the relevance of individual dimensions. For all i € {1,...,n} a local
similarity measure sim; : D; x D; — [0,1] assesses the degree of similarity
along a single dimension. Currently, we use the Euclidian distance for all sim;.
However, as previous research in learning similarity measure has shown [18],
the adjustment of feature weights as well as of local measures may have a sig-
nificant influence on the system’s performance. Therefore, we currently plan to
incorporate some of these ideas into our RL learning framework.

Case value (or state value, respectively) prediction according to k-nearest
neighbour regression is defined as

Si

chi E€NNy(c?) sim(cs, Csi) e
D eN Ny (e SIS, )
so that V (s, CB) stands for the currently predicted value of V*(s) approximated
with help of the CBR system’s case base C'B, where N Nj(c®) is the set of ¢*’s k
nearest neighbours in C'B. Other authors [12] use kernel functions to support the
regression task: The weighted contribution of each neighbouring case’s value ¢, is
then computed using the kernel being parameterised by the similarity function.
Compared to that approach our regression scheme depicts a simplification, which

we chose with regard to the learning of similarity measures we plan.

Working with a CBR-based value function approximation requires slight
modifications to our episode-based RL algorithm given in Section 2.2. If that al-
gorithm needs an estimated value for a specific state s it now computes f/(s, CB)
instead of V' (s). However, the update of a state’s value, i.e. the assignment of a
new value to state s, cannot be realised in such a straightforward manner as in
the case of the algorithm using a table-based representation of V. As can be seen
in Algorithm 2 we add a new case containing the corresponding state’s backed-up
value to the case base, but also call appropriate case base management routines.

V(S,CB) = (2)



1. start with case base CB = @, let the approximated state value function
be f/(s7 CB), and policy 7 be given by greedy e-exploitation of 1%
2. repeat
(a) generate random start situation sg for current episode, set k := 0
(b) while si ¢ G and k < maxEpisodeLength do
i. choose next action aj by exploiting 1% e-greedily according to
ar = arg max, ¢ 4(r(sk,a) + ZS’ES p(sk,ar, s') - V(s',CB))
or choose a random action with probability
ii. perform ay, entering state si+1 and perceiving immediate reward
r(sk, ak)
(c) for all steps si in episode (s1,...,Sn)
i. return(sg) := Z;V;kl r(sj,a;) +r(sn)
ii. create a new case ¢"®" := (sg, return(sg))
iii. CB:=CBUCc™"
iv. call case base management routines
until stop criterion becomes true

Algorithm 2:
Episode-Based RL Algorithm Using CBR-based Function Approximation

3.3 Case Base Management

Starting with an empty case base, the learning algorithm steadily increases its
competence by storing new experiences. However, there are a number of reasons
why the inflow of new cases ought to be limited.

— The more cases the case base contains, the longer the retrieval of the query’s
nearest neighbours takes. Although there exist techniques to reduce the com-
putational effort during retrieval, e.g. kd-trees [6], it is advisable to limit the
growth of the case base’s size when intending to use the system for real-time
control tasks.

— As already noted early estimates of the state value function’s values repre-
sent rather noisy versions of the optimal values. Thus, it is indispensable to
also discard some cases already stored. At this point, the difficulty arises to
differentiate between important outliers and simply wrong estimates.

— Simple instance-based learning by just remembering all cases would not be
applicable since the amount of data the agent collects would become unman-
ageable as the agent continues to learn.

There exist a number of approaches to remove “useless” cases during train-
ing, e.g. the I Bx algorithms by Aha [1]. For learning embedded in an RL context,
however, more specialised techniques are necessary. In [6] it is pointed out that
being selective in adding cases may slow down the learning rate. Furthermore,
we need to stress that each new case ¢"*" = (sy, return(sy)) composed by Al-
gorithm 2 contains the currently most up-to-date estimate for the state value
V(sg). these reasons we insist on explicitly storing this piece of brand-new in-
formation by adding it to the case base and removing its very nearest neighbour
¢ for which it holds sim(c™%, ¢?) > 1 — § with some extremely small § > 0.



Anyway, when the number of cases stored in C'B exceeds some critical value
|CB| > u, so that the realisation of a retrieval /regression within a certain amount
of time cannot be guaranteed, it is inevitable to also remove some cases. A first
approach to tackle that problem would be to remove the oldest or least frequently
used elements of C'B. This idea seems intuitive, as old cases usually contain worse
estimates of the corresponding state’s value than newer ones, but this strategy
might lead to a function approximator that easily “forgets” some of its valuable
experience made in the past. This danger may become particularly problematic,
when some regions of the state space are visited rather rarely during learning
and hence eventually good estimates are erased due to infrequent occurrence.

More complex scoring measures calculating which cases are to be removed
have been proposed by several authors. In [6] it is suggested to remove those cases
that contribute least to the overall approximation. In [5] the authors pursue a
more error-oriented view and propose the deletion of cases that contribute most
to the prediction error of other examples. A considerable flaw of those more
sophisticated measures is their complexity. The determination of the case(s)
to be removed involves the computation of a score value for each ¢! € CB
which in turn requires at least one retrieval and regression, respectively, for each
¢/ € CB (j # i). These repeated entire sweeps through the case base induce an
enormous computational load, although optimisations may find a partial remedy.
Consequently, these approaches are not best suited in systems which are learning
with tight time requirements and handling a high-dimensional state space, which
necessitates the use of larger case bases.

For these reasons, we employ a heuristic scoring measure that is made up
of three components, computationally less demanding, and brought about good
results during evaluation. As formalised in Algorithm 3 this measure’s compo-
nents reflect the distribution of cases throughout the state space, the correctness
of predictions for values of the state value function as well as the case’s age.

3.4 Benefits and Limitations

The main CBR principle, telling similar problems have similar solutions, can
also be utilised when employing case-based methods for function approxima-
tion, provided that the target function to be approximated can be characterised
as locally smooth. So, CBR’s robustness against noisy data also applies when
approximating state value functions. All experience is stored explicitly so that
the negative influence of a wrong state value estimate is only local. In the RL
context the function to be approximated is learnt concurrently with acting and
thus is not static, but changes over time converging towards V*. Hence, early
experience may be considered as “noise” at later stages of learning.

CBR is an approximate technique by nature. Accordingly, the quality of a
case-based value function approximation depends strongly on the number of
cases stored. Aiming to tackle high dimensional state spaces, the case base size
that is needed to obtain high-quality approximations grows exponentially with
the number of dimensions. Then, not only a memory shortage may arise, but
also real-time usage of the system becomes impractical, as the time for case



1. if |CB| < caseBaseMazSize return
2. for all ¢ € CB
(a) compute the set NNy (c') of the k nearest neighbours around ¢’
(b) compute the similarity density around ¢ as
p(c') = % chENNk(ci) sim(c', )

(c) compute the standard deviation of stored state values within c'’s near-

est neighbours as o, (¢/) := \/% D cienny (o) (Ch — cb)?

(d) compute the score components . _ _
i. case neighbourhood score: Sy, (c") := p(c") - ou(c’) _ _
ii. regress error score: Se(c') 1= X jcnn, (i) ST, &) - [cl — &)

where & is the system’s prediction for ¢} using CB\ &
iii. age score: S,(c') := ;‘(ch‘ with t(c') telling how many time steps

ago ¢’ has been added to CB

(e) let the overall score S(c') be the sum of its component
3. delete p cases with highest score values

Algorithm 3: Case Base Management: Deletion of Stored Cases

retrieval /regression grows at least logarithmically with the number of stored
cases. Thus, a trade-off between approximation quality and real-time constraints
has to be found. Another meaningful advantage of CBR systems is the speed
at which they learn. As each piece of experience is remembered explicitly, the
system is capable of representing a quite good, though far from perfect, function
approximation with a rather small number of cases.

To sum up, we can distinguish two main application fields for CBR-based
function approximators: If maximal accuracy in approximating V and/or real-
time application of the policy are not an issue, an RL agent using a case-based
value function representation can become applicable within shortest time. Oth-
erwise, a case-based function approximator might be used for the starting stage
of the learning process: That way, average or even good approximation results
may be obtained within a very short time and used to initialise and speed up the
training of another approximator (e.g. a neural net) with which nearly maximal
accuracy can be attained. As for the experiments presented in the following, we
focus on the latter use of a case-based state value function approximator.

4 Experimental Evaluation

In the previous section we have introduced a number of methods to apply a CBR-
based approach to state value function approximation within a Reinforcement
Learning context. Now, we want to investigate the performance and usability
of the ideas presented, comparing them to two different approaches to function
approximation, viz a table-based representation and neural nets. The application
scenario our evaluation is embedded in is robotic soccer simulation and thus, in
particular, our research group’s RoboCup competition team Brainstormers [10].



4.1 Robotic Soccer Simulation

RoboCup [22] is an international research initiative intending to expedite AT and
intelligent robotics research by defining a set of standard problems where various
technologies can and ought to be combined to solve them. Annually, there are
championship tournaments in several leagues — ranging from rescue tasks to real
soccer-playing robots and simulated ones. The focus of the evaluation at hand
is laid upon RoboCup’s 2D Simulation League, where two teams of simulated
soccer-playing agents compete against one another using the Soccer Server [11],
a real-time soccer simulation system.

Robotic Soccer represents an excellent testbed for Machine Learning and,
particularly, for RL tasks. Several research groups have dealt with the task of
learning parts of a soccer-playing agent’s behaviour autonomously (e.g. [9]), also
relying on case-based methods at times (e.g. [4]). From a learning point of view
it is also our long-term goal to realise an agent that obtains its behaviour by
entirely employing a Reinforcement Learning methodology: Although we made
some progress towards tackling the more complex task of learning a cooperative
team behaviour [10], the most convincing learning results have been obtained
for smaller sub-problems so far, especially for the learning of basic behaviours,
so-called skills.

Intercept Ball Task

One of the most important fundamental capabilities of a soccer player — whether
simulated or real — is to intercept a running ball as quickly as possible. Since
a match’s course of action can only be influenced significantly, if a team is in
ball possession, this skill is crucial for being competitive. In the scope of this
experimental evaluation we focus on the intercept ball task.

The optimal behaviour for ball interception is of course to compute the best
interception point and to move to that point along the shortest path. If the
physical laws of the environment are known and the simulation is deterministic
that calculation may be done exactly. An illustration of the intercept ball task is
given in Figure 2. For more details on analytical solutions the reader is referred to
[19]. However, as already mentioned, it is our aim to realise a growing part of our
agents’ behaviour as modules that were learnt using RL. Hence, we formalised the
intercept task as an MDP, applied Algorithm 2, and learnt a state value function
for this problem. The problem’s state space is continuous and 6-dimensional, i.e.
S ={s= (Vz, Vby: Up.z, Upy, dop, Qbp) } Where vy is the ball’s and v, the player’s
velocity, dy, the distance and oy, the relative angle between ball and player.
Viable actions for the player are, as determined by the Soccer Server, turn (real-
valued from [—180°,180°]) and dash (with dash power parameter within [0, 100]).
A ball is considered to have been intercepted successfully, when the player has
gained “control” over it, which means the player has moved to the point where
the ball is within the player’s kickable area. We here only consider a deterministic
soccer simulation environment where Vs € S and Va € A there is a s’ € S with
p(s,a,s’) = 1, although our algorithms and function approximation techniques
work for stochastic environments as well.
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Fig. 2. Illustration of the Intercept Ball Task

4.2 Results

For the purpose of assessing the quality of learnt policies for ball interception,
we focus on two evaluation measures: The average success rate measures the per-
centage of successful episodes, i.e. of those episodes in which the agent managed
to intercept the ball in less than maxFEpisodeLength = 80 simulation cycles.
Speed brings about competitiveness. Thus, the more relevant measure are the
costs (negative rewards) that are incurred during an episode. For the task at
hand, those are best expressible in terms of the average episode length, i.e. the
number of steps it took the agent to intercept the ball. All evaluation results
presented in this section are based on episodes that we obtained using (a) the
learnt state value function and the policy induced from it and (b) a fixed set of
randomly created starting situations from which the agent had to intercept the
ball.

In a first step we wanted to figure out which case base sizes are sufficient
to gain satisfactory interception results. As Figure 3 shows surprisingly good
results can be obtained with 1000 cases, reaching success rates of more than
90% and average sequence lengths of less than 25 steps. As a trade-off between
accuracy and intended retrieval speed (being proportional to case base size)
during real-time usage of the system we focus on |C'B| = 2000 in the following.

Comparison to Other Function Approximation Methods

The most straightforward way to represent a state value function in a continuous
space is to discretise the state space along each of its dimensions and to use a
table to explicitly store state values. Then, of course each real state has to
be mapped into the grid induced and, the other way round, each table entry
represents an entire subset of the state space. For the intercept ball problem and
the comparison to a CBR-based approach we employed tables of different sizes
(5k, 100k, and 600k entries). Note, that with the exception of only the smallest
table, these approaches exceed the CBR-based approaches’ memory requirements
by far (Figure 3). As to be expected, finer discretisations yield improved results.
Interestingly, the difference between 7100k and 7600k is only marginal and even
the latter does not supersede the results of C' B500/2000. Secondly, we employed
neural nets (feedforward with one hidden layer) to approximate V. After having
experienced a certain number of episodes and states, respectively, the net was
trained at a time with the collected data using the backpropagation variant
RPROP [15]. To generate efficient and stable learning results a considerable



amount of work had to be invested into tuning relevant parameters. Anyway, as
neural nets are capable of representing arbitrarily complex functions, this kind
of function approximator reached the best overall results, at least in the long
run of learning.

Having a look at the speed of the learning process, it becomes obvious that
the CBR-based versions yielded their maximal accuracy after comparatively few
training episodes. Thus, a good state value function approximation could be
obtained very quickly, in general within less than 2000 training episodes (note
the discontinuity in the chart’s abscissa). During that time neither a table-based
nor a neural net-based function approximation could reach comparable results.
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Fig. 3. Intercept Results for Varying Case Base Sizes (left) and for Different Function
Approximators (right)

4.3 Discussion

The intercept case study has shown empirically that a CBR-based state value
function representation can provide an approximation of good quality within
very short learning time. However, it must be acknowledged that there are two
important objections that prevent the employment of a completely CBR-based
function approximator in a highly competitive domain like robotic soccer. First,
the accuracy reached in approximating V' is not sufficient when compared to the
performance of the neural net as function approximator. Second, the time con-
sumption for case retrieval grows with increasing case base size and, hence, with
approximation accuracy. Consequently, it is unrealistic to perform an entire case
retrieval and corresponding state value regression once per simulation cycle?.
Nevertheless, we spot two main application scenarios for a function approx-
imation using CBR in an RL context. On the one hand, its usage appears at-
tractive when a new learning task is tackled: Then, it is usually difficult to
figure out and settle upon relevant task-specific parameters appropriately (ei-
ther when hand-coding or when trying to learn a solution for the task at hand).
Using CBR might help to come to a good, though not optimal, behaviour policy,

2 As far as a competition soccer team is considered, several agent behaviours will have
to be executed (not only a behaviour for ball interception), so the 100ms a simulation
cycle lasts in RoboCup cannot be reserved for the ball interception exclusively.



within little time, for example, when intending to learn more complex and less
well-understood behaviours such as team-play.

70 On the other hand, an existing case
base of state value pairs might be em-
ployed to boost the training of another
function approximator. Investigating
this idea, we first trained a CBR-based
function approximator for a fixed num-
1y + ber of training episodes (750) and then
Swich from CBR 1o Neural Net (at Epsode 750 | switched to using a neural net to rep-
resent the value function. We hereby
used all the stored cases including their
Fig. 4. Usage of CBR to Boost the Neu-  state values as training examples for
ral Net-Based Learning the first training of the net and then
switched to learning using that net.

Figure 4 shows that the learning process could be decisively accelerated.
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5 Conclusions

In this paper we applied case-based methods to approximate state value func-
tions over high-dimensional, continuous state spaces, as required in the context
of Reinforcement Learning. In so doing, we embedded a CBR-based function
approximator into an episode-based T'D(1) learning algorithm, developed ap-
propriate procedures to handle the growth of the case base and, for the purpose
of evaluation, performed an empirical case study in the context of robotic soccer
simulation, where we compared our approach to function approximation with
two different ones. The results obtained showed that using a CBR-based state
value function representation yields good behaviour policies for the RL agent
within a very short time and with comparatively little case data. Almost opti-
mal policies could, however, not be obtained — the quality of policies induced
from neural nets representing the value function turned out to be superior, but
here more tuning effort was needed to produce stable learning results.

In our view, the major strength of the CBR-enhanced learning approach is the
speed with which good, though not optimal, learning results can be achieved.
This refers to the fact that little time is needed to tweak a CBR system as
well as to the little time needed for the learning process to run; after a few
hundred training episodes already good policies are learnt. Furthermore, if one
is interested in a near-optimal agent behaviour using, for example, a neural net-
based state value function approximation, the learning process can be boosted
using CBR as shown in Section 4.3.

An interesting issue for future research is the consideration of more sophisti-
cated similarity measures on the basis of which to perform k-nearest neighbour
retrieval and regression. This might increase the case-based function approxi-
mator’s accuracy, as inherent similarities and dissimilarities of regions within
the state space could be exploited better. Therefore, the incorporation of an ap-
proach to automatically optimise the CBR-based function approximator’s local
similarity measures and feature weights [18] seems promising.
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