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CCAAT}enhancer binding proteins (C}EBPs) are a family of

transcription factors that all contain a highly conserved, basic-

leucine zipper domain at the C-terminus that is involved in di-

merization and DNA binding. At least six members of the family

have been isolated and characterized to date (C}EBPα–C}EBPζ),

with further diversity produced by the generation of different

sized polypeptides, predominantly by differential use of tran-

slation initiation sites, and extensive protein–protein interactions

both within the family and with other transcription factors. The

function of the C}EBPs has recently been investigated by a

number of approaches, including studies on mice that lack speci-

fic members, and has identified pivotal roles of the family in the

control of cellular proliferation and differentiation, metabolism,

inflammation and numerous other responses, particularly in

INTRODUCTION

The dramatic change in gene expression that accompanies

processes such as differentiation, proliferation and the execution

of specialized cellular function is controlled mainly at the tran-

scriptional level. Such control is achieved through specific

transcription factors that interact with regulatory sequences

present in the promoter and enhancer regions of target genes.

Studies in the last two decades on the regulation of numerous

such genes have led to the identification of key transcription

factors that act as master regulators of many cellular responses.

Transcription factors belonging to the CCAAT}enhancer-

binding protein (C}EBP) family fall in this category, with many

pathophysiological conditions associated with their defective

function.

The first C}EBP protein was identified in the laboratory of

Steve McKnight as a heat-stable factor in rat liver nuclei that was

capable of interacting with the CCAAT box motif present in

several cellular gene promoters and a ‘core homology’ sequence

found in certain viral enhancers [1]. The C}EBP gene was cloned

in 1988 [2], and detailed studies on it led to the discovery of the

basic-leucine zipper (bZIP) class of DNA-binding and dimer-

ization domain [2–5], which is now known to be present in a

battery of other transcription factors [6]. By 1992, five other
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hepatocytes, adipocytes and haematopoietic cells. The expres-

sion of the C}EBPs is regulated at multiple levels during several

physiological and pathophysiological conditions through the

action of a range of factors, including hormones, mitogens, cyto-

kines, nutrients and certain toxins. The mechanisms through

which the C}EBP members are regulated during such conditions

have also been the focus of several recent studies and have

revealed an immense complexity with the potential existence of

cell}tissue- and species-specific differences. This review deals

with the structure, biological function and the regulation of the

C}EBP family.

Key words: differentiation, inflammation, metabolism, prolif-

eration, transcription factors.

members of the C}EBP family had been identified, all of which

contain a conserved bZIP domain at the C-terminus [7–14]. The

function of the C}EBP family has been investigated in detail over

the last decade and has identified pivotal roles for the proteins

in numerous cellular responses, including the control of cellular

growth and differentiation, immune and inflammatory processes

and various diseases. The expression of the C}EBPs has also

been found to change markedly during a number of physiological

and pathophysiological conditions through the action of extra-

cellular signals. This review summarizes key recent findings in

relation to the structure, function and regulation of the C}EBP

family.

STRUCTURE, PROPERTIES AND EXPRESSION PROFILE

The genes for six C}EBP members have been cloned to date from

several species, with many of them being characterized indepen-

dently in different laboratories and given distinct names (e.g.

[7–14]). However, in order to avoid confusion, a systematic

nomenclature was proposed by Cao and co-workers [12] in

which members are designated as C}EBP followed by a Greek

letter indicating the chronological order of their discovery

(C}EBPα–C}EBPζ). Table 1 lists the C}EBP genes that have

been cloned from different species, along with the alternative
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Table 1 Nomenclature of C/EBP genes

Gene* Alternative name Source References

C/EBPα C/EBP, RcC/EBP-1 Rat, mouse, human, chicken, bovine, Xenopus laevis,
Rana catesbeiana, fish

[2,12,13,17–20]

C/EBPβ NF-IL6, IL-6DBP, LAP, CRP2, NF-M, AGP/EBP, ApC/EBP Rat, mouse, human, chicken, bovine, Xenopus laevis,
Aplysia, fish

[7–10,12,13,20–24]

C/EBPγ Ig/EBP-1 Rat, mouse, human, chicken, fish [11,20]

C/EBPδ NF-IL6β, CRP3, CELF, RcC/EBP2 Rat, mouse, human, Rana catesbeiana, bovine, ovine, fish [12,13,19,20,25–27]

C/EBPε CRP-1 Rat, mouse, human, ovine, fish [13,24,28–31]

C/EBPζ CHOP-10, GADD153 Mouse, rat, human, hamster [14,32,33]

* It has not yet been possible to classify a Drosophila and a novel myeloid-restricted zebrafish C/EBP protein as homologues of these genes [15,16].

nomenclature. The C}EBPα, -β, -δ and -γ genes are intronless,

whereas C}EBPε and -ζ contain two and four exons respectively

[7–14,28–33]. An optimal C}EBP binding site has been deter-

mined to be a dyad symmetrical repeat RTTGCGYAAY, where

R is A or G, and Y is C or T [34]. However, substantial variations

are tolerated, and most sites contain a conserved half-site paired

with a more divergent sequence that contains at least 2 bp of

the consensus [34].

All C}EBP isoforms share substantial sequence identity

(" 90%) in the C-terminal 55–65 amino acid residues, which

contains the bZIP domain [2–14]. This domain consists of basic-

amino-acid-rich DNA-binding region followed by a dimerization

motif termed the ‘ leucine zipper’ [2–14]. Figure 1 shows the

structure of the C}EBPβ bZIP region homodimer bound to

DNA. The leucine zipper of the bZIP domain consists of a

heptad repeat of four or five leucine residues that assume an α-

helical configuration, with two such repeats being able to

interdigitate in a parallel manner to form a coiled-coil structure

[3,4,6]. Electrostatic interactions between amino acids along the

dimerization interface determine the specificity of dimer for-

mation [4,6,37]. Dimerization is a prerequisite for DNA binding,

which is mediated by the basic region, which also assumes an α-

helical structure [4,6]. The basic region is in constant register

relative to the leucine zipper, with changes in the spacing between

the two domains leading to a loss of binding activity [5]. The

specificity of DNA binding is dictated by the sequence of amino

acids within the basic region [38]. According to a model for DNA

binding by bZIP proteins [4,6], the dimer forms an inverted Y-

shaped structure in which each arm of the Y is made of the basic

region, which binds to one half of a palindromic recognition

sequence in the DNA major groove like a fork or a pair of

scissors (Figure 1).

Because of the high conservation in the bZIP domain, the

different C}EBP proteins are able to form heterodimers in all

intrafamilial combinations and, with the exception of C}EBPζ,

interact with an identical recognition sequence, at least in �itro

[7–15,21–22,29]. C}EBPζ, on the other hand, contains two

proline residues in the basic region that disrupts its α-helical

structure [14]. As a result, C}EBPζ can readily dimerize with

other members of the family, owing to the presence of an intact

leucine zipper, but such heterodimers cannot bind to a C}EBP

recognition sequence in the promoter of target genes [14].

However, C}EBPζ}C}EBP heterodimers can bind to a different

DNA sequence [consensus PuPuPuTGCAAT(A}C)CCC, where

Pu is a purine] in the promoter regions of a subset of genes under

conditions of cellular stress, and activate gene transcription [39].

Thus, C}EBPζ can act both as an inhibitor of C}EBP function

and as a direct activator of other genes, depending on the cellular

state.

In contrast with the bZIP domain, the N-termini of the C}EBP

proteins are quite divergent (! 20% sequence identity), except

for three short subregions that are conserved in most members

[40–45]. These three subregions have been shown variously to

represent the activation domains (Figure 2) that interact with

components of the basal transcription apparatus and stimulate

transcription [40–44]. The major exception is C}EBPγ, which

lacks an activation domain and, therefore, represses gene tran-

scription by forming inactive heterodimers with other members

[45]. TheN-termini of someC}EBP proteins also contain negative

regulatory regions (Figure 2) whose precise function remains to

be elucidated in detail [40,42–44,46,47].

Despite the existence of six genes, the number of C}EBP

proteins that can be present in any given tissue}cell type may be

considerably higher (Figure 2). First, different sized polypeptides

can be produced for C}EBPα and -β either by alternative use of

translation initiation codons in the same mRNA molecule due to

a leaky ribosome scanning mechanism, or regulated proteolysis

[48–51], and for C}EBPε via alternative use of promoters and

differential splicing [30,52]. Thus C}EBPα mRNA can give rise

to two polypeptides, 42 kDa and 30 kDa, with the latter having

a lower activation potential [49,50]. C}EBPβ mRNA can pro-

duce at least three isoforms, 38 kDa (LAP*), 35 kDa (LAP) and

20 kDa (LIP), with the LAP and the LIP forms being the major

polypeptides produced in cells [48]. LAP contains both the

activation and the bZIP domains, whereas only the latter is pre-

sent in LIP (Figure 2) [48]. LIP can, therefore, act as a dominant-

negative inhibitor of C}EBP function by forming non-functional

heterodimers with the other members [48]. For C}EBPε, at least

four isoforms can be produced (32 kDa, 30 kDa, 27 kDa and

14 kDa), of which, the activation potential of the 30 kDa form is

lower than the 32 kDa form, and the 14 kDa form lacks an intact

transcriptional activation domain (Figure 2) [30,52]. Secondly, as

stated above, the different members are capable of forming

heterodimers in all intrafamilial combinations [7–15]. Because

the trans-activation potential of the various members differs

[8,25,40,53], such heterodimerization is likely to have a profound

effect on the regulation of target genes. Thirdly, the C}EBPs can

form protein–protein interactions with other bZIP and non-bZIP

transcription factors [54–56].

The tissue}cell expression profile of the different C}EBP iso-

forms has been determined at the level of both mRNA and pro-

tein [7–14,17,28–30,57]. However, some discrepancies between

different reports on the expression pattern exist, which may be

due to species-specific differences and}or the use of different

techniques. In addition, for some members the expression of the

protein does not correlate with that for mRNA (e.g. [9,13]),

thereby indicating the extensive use of tissue-specific post-

transcriptional regulatory mechanisms. In general, C}EBPα is
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Figure 1 Structure of the C/EBPβ basic region/leucine zipper domain
bound to DNA

The two α-helical basic regions (bottom) dimerize through the α-helical leucine zipper domain

(top) to form an inverted Y-shaped structure. Each arm of the Y is formed by a single α helix,

one from each monomer, which binds to one-half of a palindromic recognition sequence. See

the text and [35,36] for more details. The structure was produced from the Protein Data Bank

entry IH8A using the Rasmol program.

expressed at high levels in the adipose tissue, liver, intestine, lung,

adrenal gland, peripheral-blood mononuclear cells and placenta

[12,13,17,57]. In the liver and in adipose tissue, the highest

levels of mRNA are present in the terminally differentiated cells

[12,13,57]. Constitutive expression of C}EBPβ is particularly

high in the liver, intestine, lung, adipose tissue, spleen, kidney

and myelomonocytic cells [7–10,12,13,21,22], whereas that for

C}EBPδ occurs in the adipose tissue, lung and intestine [12,13,25].

On the other hand, C}EBPγ and C}EBPζ are expressed ubiqui-

tously [11,14], and C}EBPε mRNA and protein are restricted

primarily to myeloid and lymphoid cells [28–30,52]. The ex-

pression profile of different members is also regulated during

physiological and pathophysiological changes by a range of

extracellular mediators, and this is described in more detail below

in the relevant sections.

FUNCTION OF THE C/EBP FAMILY

The function of the C}EBP family has recently been investigated

in detail using a number of approaches, including analysis of the

promoter regions of target genes, overexpression or inhibition

approaches in cell-culture-based model systems and studies on

knockout mice. These have identified pivotal roles of the family

in a number of processes, including differentiation, the inflam-

matory response, liver regeneration, metabolism and numerous

other cellular responses. These aspects are addressed below

in detail, with Table 2 listing examples of target genes for

C}EBP action during some of these processes.

Cellular differentiation

Adipocytes

Three classes of transcription factors, peroxisome-proliferator-

activated receptor-γ (PPARγ), C}EBPs and adipocyte de-

termination and differentiation factor-1}sterol regulatory

element-binding protein-1c, have been implicated as key regu-

lators of adipogenesis [65–67]. The roles of these factors in

adipocyte differentiation have been the subject of several ex-

cellent recent reviews [65–67], and thus the importance of only

the C}EBPs will be described briefly. The original observation

that C}EBPα is expressed at high levels in terminally differ-

entiated cells of the adipose tissue promoted numerous studies

investigating the role of the family in adipogenesis. The pre-

adipocyte 3T3-L1 and the related 3T3-F442A cell lines have been

used extensively to study this process [65–67]. Differentiation

of growth-arrested pre-adipocytes is initiated by the addition of

adipogenic hormones, which includes a cAMP elevating agent, a

glucocorticoid, a hormone that interacts with the insulin-like-

growth-factor receptors, and fetal-calf serum [65–67]. This treat-

ment causes the pre-adipocytes to synchronously re-enter the cell

cycle and undergo approximately two rounds of mitosis (mitotic

clonal expansion) [65–67]. Both C}EBPβ and C}EBPδ mRNA

are induced during this phase in response to cAMP-elevating

agents and glucocorticoid respectively [12]. The pre-adipocytes

then exit the cell cycle and begin to express C}EBPα, which is

then followed by the induction of adipocyte-specific markers

[65–67]. Because the proximal promoter of the mouse C}EBPα

gene can be activated by all three C}EBP isoforms (α, β and δ),

owing to the presence of a C}EBP recognition sequence [88], it has

been postulated that C}EBPα expression is activated by the

binding of C}EBPβ and C}EBPδ, which are induced early in

the differentiation programme [12,67,88]. These two C}EBP

isoforms have also been implicated in the induction of PPARγ

expression [89]. In addition, both C}EBPα and PPARγ are able

to induce each other’s expression via a positive-feedback loop,

which then promotes and maintains the differentiated state

[65,66].

The importance of the C}EBP family in adipocyte differen-

tiation has been confirmed by a number of approaches. First,

ectopic expression of C}EBPα and C}EBPβ in 3T3-L1 cells is

able to initiate the differentiation programme in the absence of

adipogenic hormones, whereas overexpression of C}EBPδ accel-

erates the process triggered by these agents [90–92]. Secondly,

expression of antisense C}EBPα RNA in 3T3-L1 cells blocks

differentiation [93]. Thirdly, embryonic fibroblasts lacking both

C}EBPβ and C}EBPδ are unable to initiate the differentiation

programme in response to hormonal stimulation [94]. Fourthly,

C}EBPα-deficient mice, which die soon after birth due to

hypoglycaemia (see below), have dramatically reduced lipid

accumulation in the adipose tissue [61].
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Figure 2 Schematic representation of the C/EBP family members

The leucine zipper is shown in yellow, with black vertical lines indicating the leucine residues,

and the basic region is coloured red. The position of the activation domains (AD) and negative

regulatory domains (RD) [40–44,47] are shown in green and blue respectively. ? indicates that

the N-terminus of C/EBPζ contains an activation domain, although its exact position remains

to be determined [39]. The mechanism for the formation of the different C/EBP α, β and

ε polypeptides is described in the text and [30,48–52].

Despite the advances detailed above, several aspects of C}EBP

function during adipogenesis remain unresolved and require fur-

ther detailed investigation. The first concerns the precise role of

individual C}EBP members in the differentiation of white adi-

pose tissue (WAT) versus brown adipose tissue (BAT) (see [66]).

Some progress in addressing this aspect, however, has been made

recently. For example, C}EBPα-deficient mice rescued from

early death by re-expression of the gene in the liver show an

absence of WAT in many depots, whereas their BAT has minimal

biochemical alteration [95]. On the other hand, mice that lack

either the β or the δ isoform have normal WAT, but their BAT

show reduced accumulation of lipids and expression of uncoup-

ling protein-1 [94]. Mice that lack both these C}EBP genes

have a high rate of mortality in the perinatal period, but those

that survive have drastically reduced BAT, with only slight

decreases in WAT [94]. Another area for further investigation

relates to the different pathways that operate in adipogenesis.

For example, the observation that the WAT and BAT of both

C}EBPβ and C}EBPδ knockout mice express normal levels of

PPARγ and C}EBPα [94] implicates the existence of an alter-

native pathway for the activation of these two genes. Progress in

the identification of the relative roles of C}EBPα and PPARγ

in adipogenesis has been made recently by the demonstration

that whilst PPARγ is able to promote adipogenesis in C}EBPα-

deficient cells, the converse is not possible [96,97]. This suggests

that C}EBPα and PPARγ participate in a single pathway in

adipogenesis, with PPARγ being the most proximal effector of

the process.

Myeloid cells

Binding sites for the C}EBPs are present in the promoter regions

of numerous genes that are expressed in myeloid cells (Table 2).

Indeed, four members of the family (α, β, δ and ε) are ex-

pressed in myeloid cells and show a unique expression profile in

tissue-culture-based myeloid-cell differentiation systems [30,98–

100]. For example, the expression of C}EBPα is relatively high

in early myeloid progenitors and decreases during granulocytic

differentiation [98]. On the other hand, the myeloid-restricted

member, C}EBPε, is preferentially expressed during granulocytic

differentiation [30,99], whereas C}EBPβ is up-regulated during

macrophage differentiation [100]. In addition, ectopic expression

of the C}EBPs has been shown to activate a number of target

genes in myeloid cells [52,71,73,74]. However, the most com-

pelling evidence for a crucial role of the C}EBPs in myeloid-cell

differentiation and maturation has come from studies on

knockout mice. Thus, C}EBPα-deficient mice fail to undergo

myeloid differentiation beyond the myeloblast stage and,

therefore, lack mature neutrophils [77]. This defect correlates

with a lack of receptors for granulocyte colony stimulating factor

(G-CSF) or interleukin-6 (IL-6), and expression of these receptors

in C}EBPα-deficient progenitors restores granulopoiesis [77,78].

C}EBPε-deficient mice, on the other hand, fail to produce

atypical neutrophils, as indicated by morphological analysis,

defective oxidative burst, delayed response to inflammatory

challenge and impaired bacteriocidal responses [72,80]. In ad-

dition, these mice usually succumb to opportunistic infections by

3–5 months of age [72,80]. The phenotype of these mice is very

similar to patients with a rare neutrophil-specific granulocyte

deficiency [52]. Interestingly, two such patients have been shown

to have defects in the C}EBPε gene, which leads to the production

of a non-functional protein [101,102]. More recently, macrophage

functional maturation and cytokine production was found to be

impaired in C}EBPε-deficient mice [81]. Finally, the phenotype

of C}EBPβ-deficient mice indicates a potential role in the

activation and}or differentiation of macrophages [71,103,104].

These mice are highly susceptible to infections by Listeria

monocytogenes, Candida albicans and Salmonella typhi, which,

in part, may be due to defects in macrophage activation and

the escape of phagocytosed bacteria from the phagosome to the

cytoplasm [71,103,104]. Other defects include impaired nitric

oxide production by splenic macrophages, low levels of IL-12

(produced normally by activated macrophages) and impaired

Th1 immune response [71,103,104].

Other cells

The importance of the C}EBP family in cellular differentiation

is not restricted to adipocytes and myelomonocytic cells, but also

extends to other cell types, including hepatocytes, mammary

epithelial cells, ovarian luteal cells, keratinocytes, neuronal cells

and intestinal epithelial cells [57,85–87,105–107]. Binding sites

for the C}EBPs are present in the promoter regions of numerous

genes in hepatocytes that are involved in the maintenance of

normal function and responses to injury (Table 2). In addition,

C}EBPα-deficient mice show profound derangement in liver

structure with acinar formation, resembling proliferative or

pseudoglandular hepatocellular carcinoma [82,108]. These re-

sults, therefore, implicate a pivotal role of the C}EBPs in the

regulation of terminal hepatocyte differentiation and function.

Analysis of C}EBPβ knockout mice has shown that this isoform

is required for the functional differentiation of mammary epi-

thelial cells and the expression of milk protein genes [86,87]. In

addition, the gene is required for the proper proliferation and

# 2002 Biochemical Society



565CCAAT/enhancer-binding proteins

Table 2 Examples of target genes regulated by the C/EBP family

For brevity, further abbreviations have not been defined here ; see the abbreviations footnote.

Tissue/cell type Target gene References

Hepatocytes Albumin, α1-acid glycoprotein, bilirubin UDP-glucuronosyltransferase, C-reactive protein, complement C3,

Factor IX, glucose-6-phosphatase, glycogen synthase, haptoglobin, haemopexin, ornithine-cycle-enzyme

genes, PEPCK, serum amyloid A, tyrosine aminotransferase

[8–10,41,58–64]

Adipocytes Fatty acid binding protein (aP2 or 422), insulin-responsive glucose transporter, leptin, obese, PPAR-γ,

steroyl-CoA desaturase 1, uncoupling protein-1

[58,61,65–70]

Myeloid cells CD14, cyclo-oxygenase-2, G-CSF, G-CSF receptor, GM-CSF receptor, IFN-γ, IL-1β, IL-6, IL-8, IL-12 p40,

inducible nitric oxide synthase, lactoferrin, lysozyme, MCP-1, M-CSF receptor, mim1, MIP-1α, MIP-

1β, myeloperoxidase, neutrophil elastase, TNF-α

[21,52,58,71–81]

Lung Clara-cell secretory protein, surfactant proteins [82–84]

Keratinocytes Keratin 1 and 10 [85]

Mammary gland Milk protein genes [86,87]

morphogenic responses during mammary-gland development

[86,87]. Adult female C}EBPβ-deficient mice also have been

found to be sterile with the ovaries lacking the corpora lutea

[105]. Further studies revealed that the isoform was essential for

periovulatory granulosa cell differentiation in response to lutein-

izing hormone [105]. Finally, the C}EBPs have been implicated

in the differentiation of neuronal cells, intestinal epithelial cells

and keratinocytes on the basis of expression profile and}or

presence of binding sites in the promoter regions of genes

activated during the process, although the link needs to be

investigated in detail [85,106,107].

Control of metabolism

Shortly after the discovery that C}EBPα was expressed at high

levels in the liver, lung and the adipose tissue, McKnight and co-

workers speculated that this isoform will be ‘… a central

regulator of energy metabolism …’ [109]. This proposition has

been found to be true not only for C}EBPα, but also for

C}EBPβ. As mentioned above, C}EBPα-deficient mice die soon

after birth due to severe hypoglycaemia because of reduced

expression of glycogen synthase, leading to undetectable levels of

glycogen in the liver and decreased levels of three gluconeogenic

enzymes [glucose-6-phosphatase, phosphoenolpyruvate carboxy-

kinase (PEPCK) and tyrosine aminotransferase], which impairs

the ability to synthesize glucose de no�o [61]. These mice also

have impaired expression of ornithine-cycle enzymes, leading to

higher blood concentrations of ammonia compared with the

wild-type counterpart [63]. Conditional knockout of the C}EBPα

gene specifically in the liver also leads to major metabolic

derangement due to reduced transcription of several genes, par-

ticularly those involved in glycogen synthesis, gluconeogenesis,

and bilirubin detoxification [59]. As detailed above, the C}EBPα-

deficient mice also have reduced lipid droplets in the adipose

tissue [61].

Investigation of the exact role of C}EBPβ in metabolism has

been difficult because of at least two different phenotypes of

knockout mice (A and B) [62]. Mice with the B-phenotype die

soon after birth owing to hypoglycaemia, because of an inability

to mobilize their hepatic glycogen and express PEPCK [110].

Mice with the A phenotype survive to adulthood, but display

fasting hypoglycaemia, reduced blood lipids and impaired hepatic

glucose production and adipose-tissue lipolysis in response to

stimulation with hormones such as glucagon and adrenaline

[110,111]. This has been attributed mainly to altered levels of

hepatic cAMP production and the activity of protein kinase A

[110,111].

Overall, these studies suggest that C}EBPα plays a more

general role in energy metabolism, whereas C}EBPβ is involved

in fine-tuning responses to nutritional changes.

Inflammation

The activity and}or expression level of three C}EBP members

(α, β and δ) is regulated by a number of inflammatory agents,

including lipopolysaccharide (LPS) and a range of cytokines

[7,8,25,53,60,71,112–115]. For example, the expression of

C}EBPβ and C}EBPδ mRNA is induced by inflammatory stimuli

in a number of cell types, such as hepatocytes, macrophages,

renal mesangial cells and astroglial cells, whereas that for

C}EBPα is inhibited [7,8,25,53,60,71,112–115]. Indeed, C}EBPβ

was first identified on the basis of its ability to regulate gene

transcription in response to IL-1 and IL-6 [7,8]. Subsequent

studies have led to the identification of binding sites for the

C}EBPs in the regulatory regions of a battery of genes that are

involved in the inflammatory response, including those coding

for cytokines and their receptors, acute-phase plasma proteins

synthesized by hepatocytes, and components of signal transduct-

ion pathways (Table 2). Further support for an important role

of the C}EBPs in the inflammatory response has been provided

by studies on knockout mice. For example, C}EBPε-deficient

mice show delayed migration of neutrophils to an in �i�o inflam-

matory challenge along with an impaired bactericidal response

[80]. In addition, a number of genes that are involved in the

immune and inflammatory responses are down-regulated in the

macrophages of these mice [72,81]. C}EBPβ-deficient mice show

impaired expression of serum amyloid A and P proteins, α
"
-acid

glycoprotein, complement C3 component and tumour necrosis

factor-α (TNFα) [71,103,104]. However, not all the targets of

C}EBPβ action during an inflammatory response are affected in

these mice [71]. It is likely that this may be due to functional

compensation by other members that are expressed at normal

levels. In addition, because the induction of both C}EBPβ and

C}EBPδ occurs relatively late following an inflammatory stimuli,

it is possible that factors such as nuclear factor κB (NF-κB) and

STATs (signal transducers and activators of transcription), whose

activation during inflammation is much faster, and only transient,

may be responsible for the primary induction of genes followed

by the C}EBPs a few hours later [71].

Cellular proliferation

The initial observation that C}EBPα was expressed at high levels

in terminally differentiated cells and down-regulated during

proliferation (e.g. following partial hepactomy) suggested an
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antiproliferative role of this isoform [57]. Indeed, C}EBPα is a

strong inhibitor of cell proliferation when overexpressed in

cultured cells [57,116]. In addition, hepatocytes from newborn

C}EBPα-deficient mice display increased proliferative activity,

and similarly, hyperproliferation of alveolar type II cells is seen

in the lungs of the animals [82]. More recently, mutations in the

C}EBPα gene have been described in patients with acute myeloid

leukaemia [117]. Although C}EBPα is a transcription factor, its

ability to arrest growth does not require its DNA-binding activity,

but is mediated via protein–protein interaction [118]. C}EBPα

has been found to interact with several proteins that are involved

in the control of cell-cycle progression, thereby indicating the

existence of multiple pathways through which this isoform medi-

ates growth arrest [118–123]. For example, the C}EBPα-

mediated growth arrest is accompanied by increased expression

of a cell-cycle inhibitor, p21, and the isoform has been shown

to interact with, and thereby stabilize, the protein [119]. More

recently, C}EBPα has been shown to interact with the cyclin-

dependent kinases cdk2 and cdk4 and arrest cell proliferation by

inhibiting their activity [122]. In the case of cdk4, it has been

shown further that this interaction leads to a proteasome-

dependent degradation of the protein [123].

C}EBPβ, on the other hand, appears to play an important role

in promoting proliferation, and its levels are increased in a

number of tumours [124–127]. Partial hepactomy is associated

with increased expression of C}EBPβ, and hepatocytes of mice

deficient in this member do not proliferate normally during this

process [124]. This abnormal regenerative response is associated

with prolonged hypoglycaemia and altered expression of several

genes that are important for hepatocyte gluconeogenesis and

proliferation [124]. More recently, Zhu et al. [125] have shown

that C}EBPβ-deficient mice also are completely refractory to

skin tumour development induced by a variety of carcinogens

and carcinogenesis protocols. In v-Ha-ras transgenic mice,

C}EBPβ deficiency results in a significant reduction in tumor-

igenesis, thereby linking the proto-oncogene ras and C}EBPβ

[125]. In addition, oncogenic ras stimulates C}EBPβ trans-

activation function, with mutation of an extracellular-signal-

regulated-kinase-1}2 phosphorylation site (Thr"))), abolishing

this effect [125]. Indeed, phosphorylation of C}EBPβ is increas-

ingly being found to be critical for its proliferative action

[126,127]. For example, Buck et al. [126] have shown that

an ribosomal protein S-6 kinase (RSK)-mediated phosphoryl-

ation of Ser"!& (rat) or Thr#"( (mouse) of C}EBPβ is required for

hepatocyte proliferation induced by transforming growth factor-

α (TGFα). More recently, they have shown that the hepatotoxin

carbon tetrachloride activates RSK, phosphorylates C}EBPβ on

Thr#"( and causes proliferation of hepatic stellate cells in normal

mice [127]. In contrast, the toxin causes apoptosis of these cells

in C}EBPβ-deficient mice or transgenic animals expressing a

non-phosphorylatable C}EBPβ Ala#"( mutant [127]. They also

showed that both [phospho-Thr#"(]C}EBPβ and the phospho-

rylation mimic [Glu#"(]C}EBPβ-, but not [Ala#"(]C}EBPβ, are

able to associate with procaspases 1 and 8, thereby providing

a potential mechanism of action [127].

Other functions

A novel role for the C}EBPs in long-term synaptic plasticity

underlying memory was identified by studies on the Aplysia

C}EBP homologue, ApC}EBP [23]. Blocking the function of

ApC}EBP by use of either antisense oligonucleotides or specific

antibody leads to a selective inhibition of long-term facilitation

[23]. Several lines of evidence suggest that such a role of C}EBPβ

in memory is not only likely to be conserved in mammals, but

also extend to other members of the family. First, C}EBPα,

C}EBPβ and C}EBPδ have been shown to be widely expressed

in the mammalian nervous system [57,106,128–131]. Secondly,

the expression and DNA binding activities of C}EBPβ and

C}EBPδ are enhanced in hippocampal neurons, which are

involved in long-term memory, by two crucial inducers of the

memory process, cAMP and Ca#+ [129]. Thirdly, using specific

model systems, Taubenfeld et al. [130] have identified a key role

of C}EBPβ in mammalian long-term memory consolidation.

Finally, C}EBPδ-deficient mice display a selectively enhanced

contextual fear response, thereby implicating this isoform in

learning and memory [131].

The expression of C}EBPζ is induced by a number of agents

that cause cellular stress, particularly in the endoplasmic reticulum

(ER) [39,132]. More recently, C}EBPζ has also been implicated

in growth arrest and the control of apoptosis [133–135]. For

example, C}EBPζ-deficient mice are defective in the development

of apoptosis in response to ER stress, such as that produced by

agents that cause destruction of the pancreatic β-cells, and

thereby diabetes [133–135]. In addition, most, if not all, human

myxoid and round-cell liposarcomas are associated with chromo-

somal translocations that lead to gene fusions that specify for

chimaeric oncoproteins consisting of an N-terminus from the

FUS or TLS gene and a C-terminus from the C}EBPζ gene

[136,137]. In contrast with C}EBPζ, the chimaeric protein fails

to cause cell-growth arrest [138].

Finally, C}EBPγ-deficient mice show impaired natural killer-

cell cytotoxic activity and interferon-γ (IFN-γ) production,

thereby indicating a novel role of this isoform in the functional

maturation of these cells [139].

REGULATION OF THE C/EBP FAMILY

The expression of the C}EBPs is regulated under several physio-

logical and pathophysiological conditions through the actions of

a number of factors, including cytokines, mitogens, hormones,

nutrients and agents that cause cellular stress (Table 3). Under-

standing the mechanisms that are involved in the regulation of

the C}EBPs during such conditions has been the focus of recent

research in a number of laboratories, including our own. It is

hoped that such studies will not only contribute to increasing our

knowledge of the molecular basis of these processes but also lead

to the identification of potentially novel targets for therapeutic

intervention of diseases associated with perturbations in C}EBP

gene expression. For instance, targeted suppression of C}EBPζ

expression in pancreatic β-cells has been recently proposed as a

new therapeutic approach for preventing the onset of both type

1 and type 2 diabetes [134,135]. The C}EBPs have been found to

be regulated at a number of levels, including gene transcription,

translation, protein–protein interactions and phosphorylation-

mediated changes in DNA-binding activity, activation potential

and nuclear localization (see Table 3). In addition, the poten-

tial existence of tissue}cell- and species-specific differences in the

mechanisms of regulation has been identified [57,58,113–115,

148,150,164–166]. For example, TNFα induces C}EBPβ mRNA

expression in astrocytes and renal mesangial cells, but modulates

nuclear–cytoplasmic translocation in hepatocytes [113–115,148,

150]. The initial part of this section will describe the different

control points that operate to regulate the C}EBP family and will

be followed by a summary of the mechanisms that are involved

in the global modulation of C}EBP expression in three important

processes : adipocyte differentiation, acute-phase inflammatory

response in hepatocytes and liver regeneration.
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Transcriptional regulation

This represents the main point of control in the regulation of

mRNA expression by factors shown in Table 3 [57,112]. The

promoter regions of C}EBP isoforms α, β, δ, ε and ζ have been

analysed. The role of the different sequence elements in the regu-

lation of gene expression during adipogenesis, inflammation and

hepatocyte proliferation is described below under global gene

regulation, with other aspects addressed here.

C/EBPα

The proximal promoter region of the mouse C}EBPα gene was

first characterized and shown to contain potential binding sites

for C}EBP, Sp1, nuclear factor (NF)-1, NF-Y, upstream stimu-

lating factor (USF), basic transcription element-binding protein

(BTEB) and NF-κB [88,167]. The promoter can be auto-activated

in transfected cells by expression plasmids that specify for C}
EBPα or C}EBPβ, which act via a C}EBP recognition sequence

[88,167]. The proximal promoter region of the rat C}EBPα

gene shows almost complete sequence identity with the mouse

counterpart and also can be auto-activated through the C}EBP-

binding site [141]. On the other hand, the promoter regions of the

human, chicken and Xenopus C}EBPα genes show only limited

sequence identity with the mouse}rat promoter (e.g. 53% identity

in the case of the human promoter) [164,166]. Nevertheless, both

the Xenopus and the chicken promoters contain putative C}EBP

recognition sequences and, in the case of the Xenopus promoter,

we have shown that it can be auto-activated by C}EBPα or

C}EBPβ [164]. On the other hand, the human promoter lacks

aC}EBP recognition sequence, owing to a single base substitution

[166]. However, it can still be auto-activated, although only by

C}EBPα, which acts indirectly via stimulation of the DNA-

binding activity of USF, which interacts with a site present in the

proximal promoter region [166]. These studies, therefore, show

that the C}EBPα gene is auto-activated in a species-specific

manner.

The regulatory sequences that are involved in the tran-

scriptional activation of the C}EBPα gene by thyroid hormones

and suppression by overexpression of the proto-oncogene c-myc

have also been investigated [168–170]. The action of the thyroid

hormone is mediated via a responsive element present at position

®602 to ®589 of the rat C}EBPα promoter [168]. On the other

hand, the c-Myc protein inhibits C}EBPα gene transcription

through interaction with the core promoter region, although

a discrepancy exists on the precise sequence that is involved in

c-Myc action [169,170].

C/EBPβ

The promoters of the mouse, rat, chicken and Xenopus lae�is

C}EBPβ genes have been characterized to date, and all four are

subject to autoregulation [165,171–173]. The transcription factor

CREB (cAMP-response-element-binding protein) also controls

C}EBPβ expression by interacting with two sites near the TATA

box [174]. These cAMP-respone element (CRE)-like sequences

are also required for the IL-6-mediated induction of C}EBPβ

transcription during the acute-phase response (APR) through a

novel pathway involving tethering of STAT-3 to a DNA-bound

complex [175] (see below), and in conjunction with an Sp1 site

for the activation of gene transcription during macrophage

differentiation [176].

C/EBPδ

This isoform is expressed constitutively in osteoblasts, where it

has been shown to activate the synthesis of insulin-like growth

factor I [177]. A binding site for the Runt domain factor (Runx)

2, which is essential for osteogenesis, is present in the 3« proximal

region of the C}EBPδ gene promoter (®175}®147) [177]. The

promoter activity is reduced drastically by mutation of this

Runx-binding sequence or by co-transfection of a Runx2 anti-

sense expression plasmid into osteoblasts [177]. The transcription

of the C}EBPδ gene is also induced in growth-arrested mammary

epithelial cells and in the involuting mammary gland through the

activation of STAT-3, and its subsequent binding to a recognition

sequence present in the promoter region [178,179]. This STAT

site is also required for the IL-6-mediated induction of C}EBPδ

transcription in hepatocytes during the APR [180,181] (see

below).Although the activation of STAT-3 under such conditions

is transient, the C}EBPδ expression levels are maintained for a

longer period of time [25,53,112,180,181]. This is achieved, at

least in part, through autoactivation [27,182,183]. Interestingly,

analysis of the mouse, rat and ovine C}EBPδ promoters has

also suggested the potential existence of species-specific mech-

anisms for autoregulation [27,182,183]. For example, the auto-

regulation of the rat C}EBPδ gene could not be seen with up to

6 kb of upstream promoter region, but instead required two

C}EBP recognition sequences present at the 3« end of the gene

[182]. In contrast, the 5« ends of the mouse and the ovine C}EBPδ

genes are sufficient for auto-activation [27,183]. In the case of the

ovine promoter, no putative C}EBP recognition sequences could

be identified [27], thereby suggesting that, similar to the human

C}EBPα gene [166], it also may be subject to indirect auto-

regulation.

C/EBPε

The C}EBPε gene promoter is transcribed by two alternative

promoters, pα and pβ, which, similar to those of several other

myeloid-cell-specific genes, contains no TATAAA box, but have

a number of purine-rich stretches with multiple sites for the ets

family of transcriptional regulators [29–31]. The promoter

also contains a functional retinoic acid-responsive element that

mediates inducibility by the corresponding ligand [155].

C/EBPζ

C}EBPζ was first identified on the basis of its induced expression

in response to growth arrest and DNA damage [32]. Such an

inducibility was also seen in transfection assays using the

®778}21 promoter fragment from the hamster gene [32]. The

activator protein-1 (AP-1) site present between ®250 and ®225

was found to be essential for this response and also played a role

in the induction by oxidative stress [156]. Exposure of the cells to

either oxidants or UVC irradiation was also shown to stimulate

the binding of the c-Jun[c-Fos heterodimer to this element [156].

However, conflicting results have been obtained in relation to the

induction of the endogenous C}EBPζ mRNA and protein by

UVC irradiation [157]. Because the expression of the C}EBPζ

gene is induced by a range of cellular stresses [39,133–135,

156–163], it is possible that differences in conditions for culturing

of the cells may have been responsible for the discrepancies that

exist. More recently, Schmitt-Ney and Habener [157] have re-

examined the UVC response and shown that whereas the

promoter is activated strongly in transfected cells, only a modest

and transient increase in endogenous gene expression is observed.

In addition, the induction of C}EBPζ expression in response to

other cellular stresses is markedly attenuated by prior exposure of

the cells to UVC [157]. The target of such an inhibitory effect

of UVC on C}EBPζ expression is located in the first exon of the

gene, a 5«-untranslated region that is highly conserved between

different species [157].
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Table 3 Regulators of the C/EBP family

Further abbreviations : DBA, DNA-binding activity ; NL, nuclear localization ; AP, activation potential. For any still-undefined abbreviations, see the abbreviations footnote.

Gene Level Activators Repressors References

C/EBPα mRNA Thyroid hormone, thiazolinediones EGF, glucocorticoid, growth hormone, IFN-γ,

IL-1, IL-6, insulin, LPS, TNF-α
[19,25,112,114,140–143]

DBA EGF, PKC activators [140,141,144]

C/EBPβ mRNA cAMP, glucagon, glucocorticoid, growth hormone,

IFN-γ, IL-1, IL-6, LPS, noradrenaline, NGF, VIP

[7,23,62,92,112–115,128,145–147]

NL cAMP, LPS, TNF-α, TPA TNF-α [21,148–150]

AP Ca2+, IL-6, MAPK activators, PKC activators Insulin [8,53,125,151–153]

DBA TGF-β, EGF [141]

C/EBPδ mRNA Glucocorticoid, growth hormone, IFN-γ, IL-1, IL-6,

insulin, LPS, noradrenaline, PDGF, TNF-α, VIP

[25,53,92,112–115,145,147]

NL cAMP, TNF-α [148,154]

C/EBPε mRNA Retinoic acid [155]

C/EBPζ mRNA Amino acid deprivation, agents that cause ER-,

nutrient- and oxidative stress, Ca2+, nitric oxide,

LPS, prostaglandin A2, UV light

[32,33,39,133–135,156–163]

AP Cellular stress [132]

The promoter region of the C}EBPζ gene contains a conserved

C}EBP recognition sequence, located between positions ®339 to

®320, that plays an important role in its induction during the

APR in hepatocytes [158] (see below), and in response to sodium

arsenite treatment of rat pheochromocytoma PC12 cells [159].

C}EBPζ mRNA expression is induced by arsenite in a biphasic

manner: a rapid increase during the first 4 h of treatment, a

transient decline at 6–8 h, and a pronounced induction thereafter

[159]. A closer examination of the C}EBP recognition site shows

that it is a composite element with one half of each palindromic

sequence comprising of an optimal C}EBP-binding motif and an

activating transcription factor (ATF)}CRE variant site [159].

This C}EBP–ATF composite site interacts with both C}EBPβ

and ATF family members [159]. In addition, time-dependent

changes in the interaction of ATF members with the composite

site are seen following exposure of the cells to arsenite : binding

of the activator ATF-4 at 2 h, when C}EBPζ mRNA levels are

increasing, and enhanced binding of the repressor ATF-3 at 6 h,

when the levels are declining [159]. Thus the arsenite-induced

biphasic induction of C}EBPζ expression in PC12 cells involves

the sequential binding of multiple factors to the C}EBP–ATF

composite site [159].

Amino acid limitation also induces the expression of C}EBPζ

at both the transcriptional and post-transcriptional levels [160].

The decreasing amino acid concentration by itself can induce

C}EBPζ expression independently of a cellular stress produced

by an inhibition of protein synthesis [162]. This induction of

C}EBPζ is mediated through the phosphoinositide 3-kinase (PI

3-kinase) andmammalian target of rapamycin (mTOR) signalling

pathways that converge on the amino-acid-responsive element

present between position ®310 and ®302 [161,162,184]. This

regulatory sequence is related to the C}EBP–ATF-2 composite

site and interacts with ATF-2 [162]. The precise mechanisms

through which amino acid starvation regulates ATF-2 remains to

be determined, but does not occur through any changes in its

DNA-binding activity [162].

More recently, the ®75 to ®104 region of the C}EBPζ pro-

moter has been shown to be essential for both the constitutive

and the ER-stress-inducible expression [163]. The ER stress-

responsive element contains two overlapping regions that share

sequence homology with similar regulatory sites identified in

the glucose-regulated protein 78 (GRP78), GRP94, protein

disulphide-isomerase and calreticulin gene promoters [163]. The

transcription factor NF-Y interacts with the two regulatory

regions and mediates both constitutive and ER-stress-inducible

activation of gene transcription [163].

Translation

Production of different C}EBPα and -β polypeptides by alterna-

tive use of initiation codons represents a major form of trans-

lational control in the regulation of the C}EBP family [18,48–50].

As detailed above, two distinct isoforms of C}EBPα, 42 kDa

and 30 kDa, can be produced from a single mRNA (Figure 2)

[49–50]. In contrast with the 42 kDa form, the 30 kDa poly-

peptide has a lower transactivation potential and lacks anti-

mitotic activity [49,50]. The ratio of the two isoforms has

been seen to change during both adipocyte differentiation and

hepatocyte development [49,50], thereby raising the possibility of

an important regulatory role. Similarly, in the case of C}EBPβ,

the ratio of the activator LAP form to the repressor LIP

polypeptide has been shown to increase under a number of

conditions, and such changes are likely to be functionally

important [48]. For example, the expression of LIP is elevated in

breast cancer, and this is consistent with its ability to induce

epithelial cell proliferation and the formation of mammary

hyperplasia [185]. It has been suggested that a LIP-mediated

growth cascade may be susceptible to additional oncogenic hits,

which could then result in the initiation and the progression of

neoplasia [185].

The C}EBPα mRNA contains an evolutionary conserved

short upstream open reading frame (uORF) that is a fixed

distance of seven bases from the initiation codon that specifies

for the full-length protein [186]. A short conserved uORF is also

present in the C}EBPβ mRNA [186]. Lincoln et al. [187] initially

showed that such an uORF can act in cis to inhibit C}EBP

translation as it is recognized readily by the translation ma-

chinery. It was proposed that, because of the potent differentiative

and antimitotic activities of C}EBPα and, to a certain extent

C}EBPβ, such an inhibitory mechanism could operate to restrict

the expression of the protein in cells that are undergoing

differentiation, and also could have been responsible for the

previously noted differences in the tissue expression profile of

C}EBPα}β mRNA and the corresponding proteins [187]. More
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recently, however, Calkhoven et al. [18] have shown instead that

the integrity of the uORF is essential for the leaky ribosome

scanning mechanism that leads to the production of different

sized polypeptides [18]. The ratio of the different isoforms was

found to be controlled by both an RNA-dependent protein

kinase and the mTOR signalling pathway through the regulation

of the eukaryotic translation initiation factors eIF-2α and

eIF-4E respectively [18].

Modulation of DNA-binding activity, transactivation potential
and/or phosphorylation-mediated changes in nuclear localization

Phosphorylation plays a key role in the modulation of C}EBPβ

function. This isoform is normally a repressed factor in which

negative regulatory regions mask its transactivation domains

[40,46]. Such a repression is abolished by phosphorylation of the

repression domain by several signal transduction pathways,

including those mediated by oncogenic proteins [46]. The trans-

activation potential of C}EBPβ is also induced by phospho-

rylation of Thr#$& by a Ras}mitogen-activated protein kinase

(MAPK) pathway [125,152], Ser"!& via protein kinase C (PKC)

[153], and Ser#(' by Ca#+}calmodulin-dependent protein kinase

[151]. Phosphorylation can also suppress the activation potential

of C}EBPβ. For example, insulin inhibits transactivation by

C}EBPβ via the PI 3-kinase pathway [188]. In contrast, the

PKA-mediated in �itro phosphorylation of a region between

Ser"($ and Ser##$, and Ser#%!, results in a suppression of C}EBPβ

DNA-bindingactivity [189]. Similarly, aPKC-mediatedphospho-

rylation of Ser#%! leads to a decrease in DNA binding [189]. On

the other hand, the forskolin-induced activation of the cAMP}
protein kinase A (PKA) signal-transduction pathway in rat PC12

cells results in the translocation of C}EBPβ into the nucleus,

where it then activates the transcription of the c-fos gene [149].

Antioxidant-induced nuclear translocation of C}EBPβ in a

colorectal cancer cell line DKO-1 is also mediated by a PKA-

dependent phosphorylation, but of Ser#** [190]. Such phospho-

rylation-stimulated changes in the nucleo-cytoplasmic transport

is also likely to be responsible, at least in part, for the regulation

of C}EBPβ during activation of macrophages [21,191] and the

TNFα-mediated regulation of gene expression in hepatocytes

[148,150].

Several studies have also suggested a potential role of phospho-

rylation in the regulation of C}EBP isoforms α, δ and ζ under cer-

tain conditions. For example, PKC can phosphorylate C}EBPα

at several sites (Ser#%), Ser#(( and Ser#**), and leads to an attenu-

ation of its DNA-binding activity [144]. In addition, insulin can

reduce the expression of genes in adipocytes, in part, due to a

dephosphorylation-mediated degradation of C}EBPα [192] (see

below). Furthermore, during cellular stress, C}EBPζ undergoes

an inducible phosphorylation at two adjacent serine residues (71

and 81) via the p38 MAPK pathway, which leads to enhanced

transactivation potential of the factor [132]. Finally, studies on

the regulation of the α
"
-acid glycoprotein and the serum amyloid

A genes during the APR have shown that dephosphorylation of

C}EBPδ results in an inhibition of its DNA binding activity [64].

Additionally, the transactivation potential of C}EBPδ was also

found to be increased when hepatocytes were treated with cellular

phosphatase inhibitors, such as okadiac acid and sodium ortho-

vanadate [64].

Protein–protein interactions

The transactivation potential of the different C}EBP members

differs ; for example, C}EBPα is a stronger transcriptional

activator than C}EBPβ [8,9,53,60,71]. Because the different

C}EBP members can form heterodimers under all intrafamilial

conditions [7–15], such interactions are likely to have a profound

influence on the regulation of gene transcription. In addition, the

C}EBPs can form protein–protein interactions with other bZIP

and non-bZIP factors. For example, C}EBPβ has been shown

to interact with the p50 subunit of NF-κB, CREB}ATF, AP-1,

glucocorticoid receptor, hepatitis B virus X protein, and the

retinoblastoma (Rb) protein [54–58]. Such heterodimers often

have different transactivation potential and}or DNA binding

specificity or affinity compared with the corresponding homo-

dimer [54–58].

Regulation of the C/EBPs during adipocyte differentiation

Both C}EBPβ and C}EBPδ mRNA is induced during the early

phase of differentiation of pre-adipocyte cell lines in response to

cAMP-elevating agents and glucocorticoids respectively [12,140].

The activation of these two members has been implicated, at

least in part, in the later induction of C}EBPα gene transcription

via a C}EBP recognition sequence present in the promoter

region [65–67,88]. Once C}EBPα is induced, auto-activation

ensures high expression levels, and thereby maintenance of the

terminally differentiated state [65–67,88].

Although both C}EBPβ and C}EBPδ are expressed at high

levels at the start of the differentiation programme and through-

out mitotic clonal expansion, C}EBPα is expressed much later

[67]. Such a delayed expression of C}EBPα is crucial, because the

protein is anti-mitotic and its premature expression would block

the mitotic clonal expansion that is vital for differentiation [67].

Several mechanisms have been identified that prevent the prema-

ture early expression of C}EBPα. First, although both C}EBPβ

and C}EBPδ mRNAs are induced early in the differentiation

programme, the DNA-binding activity is not acquired until the

preadipocytes traverse the G
"
-phase}S-phase checkpoint and

initiate mitotic clonal expansion [193]. Concomitant with the

acquisition of DNA-binding activity, C}EBPβ}δ localize to

centromeres by binding to multiple consensus C}EBP-binding

sites in centromeric setellite DNA [193]. The precise mechanism

that is involved in such acquisition of DNA-binding activity is

currently unclear. However, at least C}EBPβ has been shown to

undergo phosphorylation concomitant with the acquisition of

DNA-binding activity [67,193]. In addition, C}EBPζ, which

is expressed by growth-arrested pre-adipocytes, transiently

sequesters C}EBPβ}δ by heterodimerization [194]. As preadipo-

cytes reach the S-phase, C}EBPζ is down-regulated, thereby

releasing C}EBPβ}δ from the inhibitory constraint and, thereby,

allowing activation of the C}EBPα gene [194]. In support of this

proposition, up-regulation of C}EBPζ with a protease inhibitor

N-acetyl-Leu-Leu-norleucinal prevents activation of C}EBPβ,

expression of C}EBPα and adipogenesis [194]. Indeed, meta-

bolic-stress conditions (e.g. low glucose) have been shown to in-

hibit adipogenesis by inducing the expression of C}EBPζ [195].

Secondly, nuclear factor CUP, an isoform of AP-2α, the ex-

pression ofwhich is high in pre-adipocytes and declines drastically

during differentiation, interacts with two repressive elements

present upstream of the C}EBPα translation initiation codon,

one located in the 5« flanking region and another in the 5«
untranslated region [67,196,197]. Both these sites are required to

maintain the promoter in an inactive state prior to differentiation

[67,196,197]. Interestingly, the CUP regulatory element in the

promoter region overlaps a Sp site (GT-element) to which Sp3

(or Sp1) interacts and, therefore, the binding by Sp3 and

CUP}AP2-α is mutually exclusive [198]. Because Sp3 is a strong

transcriptional activator and expressed throughout differen-

tiation, it has been proposed that CUP}AP-2α may delay

the access of Sp3 to the Sp regulatory element, and thereby
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prevent the premature expression of C}EBPα [198]. Finally, the

C}EBP site in the promoter region also overlaps with an Sp1

recognition sequence, with binding between the two factors

being mutually exclusive [199]. Indeed, Sp1 has been demon-

strated to block binding and activation by the C}EBPs both

in �itro and in intact 3T3-L1 adipocytes [199]. Because Sp1 is

expressed in pre-adipocytes and and its levels decrease during

differentiation, this could represent an additional mechanism for

the repression of C}EBPα expression [199]. The decreased

expression of Sp1 during differentiation has been shown to be

due to a cAMP-mediated phosphorylation of the protein, which

triggers its degradation [199].

Several factors have also been shown to modulate the ex-

pression of C}EBP isoforms in adipocytes. For example, insulin

produces both a rapid dephosphorylation of the C}EBPα protein

and reduces its mRNA expression [65,192]. C}EBPα is phospho-

rylated on about six sites in fully differentiated adipocytes, of

which two, Thr### and Thr##', are de-phosphorylated in response

to insulin treatment through inactivation of glycogen synthase

kinase 3 [192]. In contrast, insulin induces the expression of

the C}EBPβ and C}EBPδ gene [65]. Glucocorticoids reciprocally

regulate the expression of C}EBPα (decrease) and C}EBPδ

(increase), mainly at the transcriptional level [140]. Finally, the

expression of C}EBPα is attenuated by TNF-α, retinoic acid and

TGF-β [142,200,201]. The precise mechanisms for cytokine

action are currently unclear, with conflicting results being

obtained with respect to mRNA expression [142,200]. However,

retinoic acid blocks C}EBPα expression, and thus adipogenesis,

by inhibiting C}EBPβ-mediated transcription [201].

Regulation of the C/EBPs during the APR and liver regeneration

Both the APR and liver regeneration are characterized by a

decrease in C}EBPα expression and an increase in that of

C}EBPβ and C}EBPδ [57,58,60,71]. Such reciprocal changes are

mediated primarily through the actions of cytokines such as IL-

6, IL-1 and TNF-α [57,58,60,71]. Analysis of the mouse C}EBPα

promoter has shown that the LPS-mediated transcriptional

suppression occurs through increased binding of the LIP isoform

of C}EBPβ to a C}EBP recognition sequence present in the

promoter region [202]. The increased production of LIP under

such conditions is achieved through regulation of translation by

binding of the CUG repeat binding protein, CUGBP1, to

recognition sites present between the first and second AUG

codons of C}EBPβ mRNA [202,203]. CUGBP1 binding activity

is induced during the APR or liver regeneration, possibly in

response to phosphorylation [202,203]. Although this model is

potentially attractive and can explain the regulation of the mouse

and the rat C}EBPα genes, it is not likely to be applicable to the

human C}EBPα promoter, owing to the lack of a C}EBP

recognition sequence [166]. In addition, Baer and Johnson [204]

have shown recently that the truncated C}EBPβ isoforms can be

generated by in �itro proteolysis during isolation from cells,

thereby indicating that any findings on gene regulation based on

LIP have to be interpreted with caution and need to be confirmed

in �i�o.

The regulation of C}EBPβ during the APR and liver re-

generation is extremely complex, with control being exerted at

both transcriptional and post-transcriptional levels [8,53,58,60,

71]. Increased activity of CREB, which activates C}EBPβ expres-

sion via binding to CRE-like sites in the promoter region, rep-

resents one important mechanism for transcriptional regulation,

especially since an increase in CREB activity has been seen during

liver regeneration [174]. These CRE-like elements are also re-

quired for the activation of C}EBPβ transcription by IL-6, a

major mediator of the APR, via a novel pathway in which

tethering of STAT-3 to a DNA-bound complex contributes to

activation [175]. Post-transcriptional mechanisms, however, play

the most prominent role in the regulation of C}EBPβ during

liver regeneration and the APR, and include increased production

of LIP (see above), changes in nuclear–cytoplasmic transport,

and phosphorylation-mediated modulation of DNA-binding

activity and}or transactivation potential [8,53,60,71,202].

The transcription of the C}EBPδ gene is also activated by IL-

6 and a number of pro-inflammatory factors during the APR

[25,53,71,112]. The IL-6 induced expression is mediated via

STAT-3, which interacts with a recognition sequence present

in the proximal promoter region [180,181]. The activation of

STAT-3 is transient, whereas the expression of C}EBPδ is more

prolonged and therefore likely to be due to autoregulation [182].

Changes in the phosphorylation status of C}EBPδ also play a

role in the regulation of at least some genes during the APR [64].

The expression of C}EBPδ mRNA is also induced during liver

regeneration [57], although the mediator or the transcription

factors that is responsible for such activation remains to be

determined.

The C}EBPζ gene is also induced during the APR, although its

expression is delayed with respect to C}EBPβ and C}EBPδ [158].

Such activation is mediated through the binding of C}EBPβ or

C}EBPδ to a recognition sequence present in the promoter

region [158]. The precise reason(s) for the activation of C}EBPζ

during the APR is currently unclear, but may play a role in the

curtailment of the response.

CONCLUDING REMARKS

Research carried out mainly in the last decade has revealed a

pivotal role of the C}EBPs in numerous cellular responses,

including proliferation, differentiation, apoptosis, control of

metabolism and maintenance of specific functions. Studies on

mice that are deficient in individual C}EBP members have

clearly been instrumental in advancing our understanding of

C}EBP function. However, the early demise of some knockout

mice and functional redundancy between family members has

clearly precluded the identification of the full range of different

functions carried out by a specific gene. Conditional knockouts

and analysis of mice that are deficient in more than one member

will be necessary to resolve these issues. An important role of the

C}EBPs in a number of disease conditions has also been

determined, including the recent identification of specific gene

mutations in patients (see, e.g. [101,102,117]). Thus further

studies on the C}EBP family are essential to address fundamental

questions in a number of areas, such as oncology, diabetes and

haematopoiesis, and for the development of novel therapeutic

strategies. We are only beginning to understand the transduction

pathways that lead to the transcriptional and post-transcriptional

regulation of the C}EBPs by specific signals. It is, therefore,

important that further studies on this aspect are carried out using

the full range of model systems that are available from different

organisms given that species- and cell-type-specific differences in

C}EBP regulation have been identified (e.g. [166]). Finally, the

different C}EBP members have been shown to bind to an

identical recognition sequence in the promoter regions of target

genes, at least in �itro [57,58]. It is, however, possible that differ-

ences in the specificity and}or affinity to various binding sites

may exist in �i�o. This aspect needs to be addressed through the

use of the chromatin immunoprecipitation technique [205], which

has been employed recently to investigate the interaction of speci-

fic factors to recognition sequences in intact cells in the normal

chromatin context.
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