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Abstract

Long non-coding RNAs (IncRNAs) compose a group
of non-protein-coding RNAs - more than 200 nucleo-
tides in length. Recent studies have shown that
IncRNAs play important roles in different cellular
processes, including proliferation, differentiation,
migration and invasion. Deregulation of IncRNAs
has been widely reported in human tumours, in
which they are able to function as either oncogenes
(on the one hand) or tumour suppressor genes (on the
other). Deregulation of CCAT1 (colon cancer—asso-
ciated transcript-1), an oncogenic IncRNA, has been
documented in different types of malignancy, such as
gastric cancer, colorectal cancer and hepatocellular
carcinoma. In this regard, enforced expression of
CCAT1 exerts potent tumorigenic effects by promot-
ing cell proliferation, invasion and migration. Recent
evidence has also shown that CCAT1 may serve as a
prognostic cancer biomarker. In this review, we pro-
vide an overview of current evidence relating to the
role and biological function of CCATI1 in tumour
development.

Introduction

Long non-coding RNAs (IncRNAs) consist of a group of
non-coding RNAs with more than 200 nucleotides in
length (1-4). These RNAs demonstrate limited protein-
coding potential but could regulate gene expression tran-
scriptionally and post-transcriptionally (5—7). Deregulation
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of IncRNAs has been observed in a variety of human dis-
eases, including cancer (8-10). The functional involve-
ment of IncRNAs in tumorigenesis has received much
attention over the past decade (11-13). Pertinent to clinical
practice, deregulation of IncRNAs in many cancer types
has been associated with clinicopathological parameters,
including metastasis, patients’ survival and recurrence
(6,14,15). IncRNA deregulation also contributes to cancer
progression through abnormal regulation of genes
involved in cancer-related cellular processes, including cell
proliferation and invasion (12,16-24).

Colon cancer—associated transcript-1 (CCAT1) is a
newly discovered IncRNA with 2628 base pairs in
length (25-27). CCAT1 gene is located on chromosome
8q24.21 and in the vicinity of c-MYC, a well-known
transcription factor (25,28). CCAT1 was first found to
be upregulated in colon cancer (29). Recently, CCAT1
was found to be consistently deregulated in various can-
cer types (27,30,31). The location of CCAT1 gene on
chromosome 8q24.21 is crucial as this area is a ‘hot
spot’ harbouring multiple genetic alternations in both
colon and prostate cancers (32).

CCATI1 is an enhancer-derived RNAs transcribed
from a distal enhancer 515 kb upstream of the c-MYC
gene (Fig. 1) (33,34). CCAT1 contains two exons and a
poly-A tail and is mainly expressed in the nucleus. In
colon cancer cells, CCATI is localized at its site of tran-
scription (26,29), which is important for mediating the
long-range chromatin interactions between CCATI gene
and ¢-MYC in conjunction with an enhancer 335 kb
upstream of ¢-MYC. In this manner, CCATI transcrip-
tionally activates c-MYC in a cis-acting manner. Deple-
tion of CCAT-1 could, therefore, reduce the
transcription of ¢-MYC gene.

In this review, we discuss the roles of CCATI as
one of the most important regulatory RNAs in human
cancer in relation to its deregulation, molecular functions
and clinical significance (Table 1).
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Figure 1. CCAT1 is an enhancer-derived RNAs transcribed from a distal enhancer 515 kb upstream of the c-MYC gene.

Colorectal cancer

Colorectal cancer is a common malignancy with around
1.2 million newly diagnosed cases worldwide each year
(35-37). Its mortality rate is the third highest among all
cancers, leading to approximately 0.6 million deaths
annually (36,38,39). Currently, CEA and CA19-9 are
the two most frequently used clinical diagnostic
biomarkers (40-42). However, they have little signifi-
cance in early diagnosis of colorectal cancer because of
their lack of sensitivity and specificity. Identification,
validation and clinical application of novel colorectal
cancer-specific biomarkers may, therefore, improve the
diagnostic accuracy, staging, patient follow-up and treat-
ment selection of this prevalent disease.

Nissan et al. demonstrated that the expression level
of CCAT1 was significantly upregulated in colon adeno-
carcinoma as compared with healthy controls (29). The
expression of CCAT1 was significantly increased in
both the early and late stages of colon cancer. CCATI
was also strongly expressed in adenomatous polyps,
tumour-proximal colonic epithelium, liver metastasis and
the associated lymph nodes. Pertinent to non-invasive
diagnosis, CCAT1 overexpression was detectable in
40% of peripheral blood samples of colorectal cancer
patients, while it was largely undetectable in healthy
controls. Alaiyan et al. also identified significant upreg-
ulation of CCAT1 in both pre-malignant and malignant
lesions of the colon, including adenomatous polyps,

Table 1. Functional characterization of the CCAT1 in tumours

primary tumour tissue, normal mucosa adjacent to pri-
mary tumour and lymph node, liver and peritoneal
metastases (27).

In relation to prognostication, Ye ef al. showed that
the expression level of CCATI1 was significantly corre-
lated with tumour staging, local infiltration depth, vascu-
lar invasion and CA19-9 level (43). CCATI1 also
predicted the sensitivity of colon cancer cells to bromod-
omain and extraterminal (BET) inhibition, which prefer-
entially reduced the growth of colon cancer with the CpG
island methylator phenotype. In this regard, CCAT1 was
sensitive to BET inhibition, correlated with ¢c-MYC tran-
script and cell growth, and proposed to be a biomarker for
selecting patients who are most likely to benefit from
BET inhibitors (44). Another study investigated the diag-
nostic ability of a CCAT1-specific peptide nucleic acid-
based molecular beacon (CCAT1 TO-PNA-MB) for
detection of colorectal cancer (26). The data showed that
CCATI1 TO-PNA-MB could serve as a diagnostic tool for
colorectal cancer in vitro, ex vivo and in situ (human colon
biopsies). Hybridization of TO-PNA-MB could detect
CCATTI expression in all (4/4) human colon biopsies with
pre-cancerous adenomas, as well as in all (8/8) patients
with invasive adenocarcinoma (penetrating the bowel
wall). He et al. (45) further demonstrated that c-Myc
could reciprocally increase CCAT1 expression through
binding to its promoter region while overexpression of
CCATI1 promoted colon cancer cell proliferation and

Cancer types Expression Phenotypes affected Related gene Role References
Colorectal cancer Upregulated Proliferation, invasion c-Myc Oncogenic (26,27,29,43-45)
Gastric cancer Upregulated Proliferation, invasion c-Myc, ERK/MAPK Oncogenic (25,52,53)
Hepatocellular carcinoma Upregulated Proliferation, migration let-7, HMGA2, c-Myc Oncogenic (28,30,65)
Gallbladder cancer Upregulated Proliferation, invasion Bmil, miR-218-5p Oncogenic (69)

Ovarian cancer Upregulated Metastasis Oncogenic (77)

Breast cancer Upregulated Oncogenic (31)

Lung cancer Upregulated Proliferation Oncogenic (78,80)
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invasion. To conclude, CCAT1 is a highly specific and
readily detectable diagnostic biomarker for colorectal can-
cer, in which its upregulation contributes to both tumour
growth and metastasis.

Gastric cancer

Gastric cancer is the fourth most frequent cancer and the
second leading cause of cancer-related death worldwide
(46-49). Although Helicobacter pylori and Epstein—Barr
virus are two major aetiological factors of gastric cancer,
our understanding of its molecular mechanisms remains lar-
gely incomplete (50-52). It is, therefore, crucial to identify
novel molecular abnormalities in this deadly disease.
CCATI1 was upregulated in gastric carcinoma tissues
compared with normal tissues (53,54). Similar to col-
orectal cancer, the transcription factor c-Myc increased
the expression of CCAT1 by directly binding to its pro-
moter region (25). The expression level of CCAT1 was
correlated with cancer growth, lymph node metastasis
and distal metastatic disease in gastric cancer. Moreover,
CCAT1 promoted gastric cancer cell proliferation and
migration in vitro. Mizrahi et al. also demonstrated that
the expression level of CCAT1 was significantly higher
in gastric cancer samples than that in the control group.
In addition, CCAT1 expression was elevated in human
gastric carcinoma cell lines. The expression levels of
CCATI1 were found to be highest in tissues from recur-
rent gastric cancer cases (53). In conclusion, expression
of CCATI is increased in gastric cancer, in which it
serves as a potential marker for metastatic disease. Func-
tionally, CCATI acts as an oncogene in gastric cancer,
suggesting its potential utilization as a therapeutic target.

Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the fifth most fre-
quent solid tumour and the third leading cause of cancer
deaths worldwide (55-58). Chronic infection with either
hepatitis B or C virus plays significant roles in the
development of HCC (59-61). Despite recent advances
in surgery and medical treatment, the prognosis of HCC
patients remains extremely poor (62—64). Therefore, it is
crucial to understand the pathogenesis of HCC.

The expression level of CCAT1 was significantly
elevated in HCC tissues compared with matched non-
cancerous hepatic tissues (28,30,65). In addition, the
expression level of CCATI predicted poor prognosis in
HCC, correlated with tumour size, microvascular inva-
sion and alpha foetal protein (AFP) expression. Further-
more, CCAT1 promoted the proliferation and migration
of HCC cells in vitro through binding and antagonizing
let-7, a tumour-suppressive microRNA, and thereby

© 2016 John Wiley & Sons Ltd
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derepressing the expression of let-7 targets HMGA2 and
c-Myec. Taken together, CCATI is involved in the devel-
opment and progression of HCC via functioning as a
let-7 sponge. CCAT1 might act as an oncogene in HCC,
suggesting its potential utilities as a prognostic marker
and a therapeutic target.

Gallbladder cancer

Gallbladder cancer is fifth most frequent gastrointestinal
malignancy (66—-69). The pathogenesis of gallbladder
carcinoma remains largely unknown. Therefore, it is of
great importance to study its molecular mechanisms.

The expression of CCAT1 was higher in gallbladder
cancer tissues compared with adjacent normal tissues
(70). In addition, CCAT1 overexpression increased the
expression of Bmil, which is the target gene of miRNA-
218-5p. Further analysis showed that CCAT1 knockdown
inhibited the proliferation and invasiveness of gallbladder
cancer cells, at least in part, through regulation of Bmil.
In this regard, transcript level of CCAT1 was correlated
with Bmil in gallbladder cancer tissues. In conclusion,
CCAT! functions as an oncogenic IncRNA in gallbladder
cancer in part through sponging miRNA-218-5p.

Ovarian cancer

Ovarian cancer is the most lethal gynaecological cancer
and the fifth leading cause of cancer-related death (71—
74). There has been no improvement in its mortality rate
over the last 20 years (75-77). Much attention has,
therefore, been given to the pathogenic mechanisms,
particularly pathways that regulate metastasis of ovarian
cancer.

Compared with the parental SKOV3 cells, the invasive
ability of the SKOV3.ip1 cell line was significantly higher
(78). Among 4956 detected IncRNAs in SKOV3.ipl cells,
the expression levels of 583 IncRNAs were upregulated
and the expression levels of 578 were downregulated as
compared with SKOV3 cells by microarray. Moreover,
reverse transcription-quantitative PCR confirmed the
deregulation of seven analysed IncRNAs (MALATI,
H19, UCA1, CCATI, LOC645249, LOC100128881 and
LOC100292680). These findings implicated that CCAT1
might play a role in ovarian cancer metastasis. Further
studies are needed to determine the exact role of CCAT1
in ovarian cancer.

Breast cancer

Zhang et al. (31) demonstrated that the expression of
CCAT1 was upregulated in breast cancer tissues
compared with the adjacent normal tissues. The high
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expression of CCATIl was correlated with tumour—
node-metastasis (TNM) staging, differentiation grade
and lymph node metastases. Patients with high CCAT1
expression had a poor overall and progression-free sur-
vival. These results suggested that CCAT1 might func-
tion as an oncogenic IncRNA and serve as a potential
prognostic marker in breast cancer.

Lung cancer

White et al. (79) depicted the landscape of IncRNA
deregulation in lung cancer by integrative analysis of
publicly available transcriptome sequencing data from
567 lung adenocarcinoma and squamous cell carcinoma
tumours. By comparison with matched control, the
authors identified 111 differentially expressed IncRNAs,
including CCATI1. In a subsequent study, the same
group demonstrated that knockdown of CCATI could
potently inhibit lung cancer cell proliferation (80).

Conclusion

CCAT1 is a relatively well-characterized oncogenic
IncRNA, which is upregulated in many types of cancer,
including colorectal cancer, gastric cancer, HCC, gallblad-
der cancer, ovarian cancer, breast cancer and lung cancer.
Functional characterization has also demonstrated that
CCAT!I could promote tumour cell proliferation, migration
and invasion. Although the involvement of c-Myc in the
oncogenic function of CCATI1 has been demonstrated, its
detailed upstream and downstream molecular mechanisms
remain to be systematically studied. Pertinent to clinical util-
ity, the overexpression of CCATI is very often associated
with poor clinical outcomes. Therefore, this IncRNA may
serve a prognostic biomarker. With more efforts being put
forth to the study of IncRNAs especially CCAT]L, it is hope-
ful that CCAT1 will obtain routine clinical utility at last.
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