 CB3 0HA and Mount Wilson and Las Campanas Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

 and R passbands, and the isophotes fitted by ellipses. The $\cos (4 \theta)$ component of the isophotes has also been measured to investigate the degree to which the isophotes may be boxy or contain an edge-on disc component. Comparison with other observers shows that the surface brightness profiles and geometrical are sџวə⿰ə ธี! not important. A future paper will use these data to investigate some important aspects of elliptical galaxy structure and dynamics.

1 Background

Our understanding of elliptical galaxies has experienced a profound change in the past few years. Prior to 1975 , they were considered to be very simple objects, consisting of an ensemble of stars
 galaxies being the most flattened. The work of Liller $(1960,1966)$ went almost unnoticed in this respect, as in the observation of ellipticity changes and isophote twisting more complex behaviour

 র̆ұəว

748 R. I. Jedrzejewsk

certain extent, fallen behind and of the 50 galaxies in Davies et al. (their table 3), less than half have had accurate surface photometry performed on them.

The introduction of CCD's as astronomical detectors has led to considerable improvements in photometry. These detectors have (almost) ideal characteristics for astronomical imaging, and with the advance of technology the situation can only improve. Since it is relatively simple to acquire almost 'perfect' data (limited only by the effects of seeing and sky brightness), the need is for methods of data reduction that make most use of the accuracy of the data.

There are several properties of elliptical galaxies that are particularly amenable to investigation using CCD detectors. Since the noise can be very low, it is possible to investigate the shapes of isophotes in more detail than can be accomplished with photographic work. Are they always perfectly elliptical, or is it possible to detect distortions due to, for example, faint edge-on discs, dust absorption or even weak spiral structure? Are there objects analogous to the 'box-shaped'
bulges? The wide dynamic range allows the investigation of the core properties, and in particular whether Schweizer's (1979) suggestion that most elliptical galaxies have apparent core sizes that are purely an artefact of 'seeing' is correct. The radius-luminosity relation is also measurable, and one might hope that the photometric accuracy of CCD's might offset the weakness of a small
 uncertainty in the night sky brightness is not important.

In this paper, a programme of CCD surface photometry of elliptical galaxies is described, and the methods of reduction and results are presented in some detail. A future paper will describe
 above. The selection of objects is described in Section 2, the observations in Section 3, the data
reduction methods in Section 4, and the results in Section 5 . Section 6 includes an investigation into the accuracy of the results, and comparisons are made with previously published work. Section 7 sums up.

2 Choice of galaxies

The main criterion for selection of programme objects was that kinematic data be available for them; either already published rotation curves and velocity dispersion profiles, or else collected and unreduced spectra from ongoing projects at Cambridge. A special effort was made to observe the low-luminosity ellipticals studied by Davies et al. (1983). Some additional qualities were
 the major catalogues, and there should be some overlap with previous investigations in order to check the accuracy of the results obtained in this work. The objects should cover a wide range of
intrinsic luminosities, should populate the spread of ellipticities evenly, and come from a wide variety of environments (cluster, field, group). A small number of objects with photometric peculiarities that were known at the time of observation were also included; these were M87 (jet),
 observed are listed in Table 1.
Of the 49 programme galaxies, all but two (IC 2597 and A1515-23) are classified in the Second Reference Catalogue of Bright Galaxies (de Vaucouleurs, de Vaucouleurs \& Corwin 1976,
hereafter RC2). Forty-one of these 47 are classified as ellipticals, two (NGC 4486 and 4696) are

$\stackrel{7}{7}$
\vec{m}

N
8
\sim
\sim
 $00 \varepsilon 2$

$$
\begin{aligned}
& \text { ๓ }
\end{aligned}
$$

N
0
0
0
0
0
$\therefore=9$
$\therefore=-$

The magnitudes in Table 1 are on the B_{T} scale of the RC2. For the galaxies without an RC2 magnitude, those of the RSA were used, converted to the RC2 system using the best-fit straight

line for the galaxies that have magnitudes in both catalogues. The relation is:

$B_{\mathrm{T}}(\mathrm{RC} 2)=0.9784 B_{\mathrm{T}}(\mathrm{RSA})-0.0176$,

with a dispersion of 0.13 mag. For NGC 3260 , the unpublished photometry of Burstein et al. was used, while for IC 2597 that of Smyth \& Stobie (1980) was adopted. Group assignment was from Huchra \& Geller (1982, HG), Geller \& Huchra (1983, GH), de Vaucouleurs (1975, DV) and Abell (1958, A, redshift from Sandage 1975). For galaxies with no group assignment in these catalogues, the individual galaxy redshift was used. The greatest discrepancy between catalogue redshifts arose for the galaxies NGC 3377 and 3379 , where there was nearly a factor of 2 disagreement between the redshifts of the group assignments of HG and DV. The work of HG was adopted in this case. The redshift of the Virgo cluster was taken to be $1100 \mathrm{~km} \mathrm{~s}^{-1}$, and absolute magnitudes were calculated using $H_{0}=50 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, with no correction for virgocentric infall. Since the most distant galaxy is at $z=0.014, K$-corrections were not applied [$K_{B}<0.1$ (Pence 1976)].
Histograms of the distribution of ellipticities and absolute magnitude are plotted in Fig. 1, and

 no means complete, it is believed to be reasonably typical of the set of elliptical galaxies.

 parameters describing the performance of the telescope/CCD combination are given in Table 3. The weather was clear throughout the two nights, and dark until the Moon rose at 1.30 and
ame
 pпnoo ans

Table 2. Details of the filters.

[^0]NㅡN CCD surface photometry of elliptical galaxies

 incandescent lamp were taken, and also exposures of the twilight sky. Zero-duration exposures were recorded to determine the electronic offset applied to the counts; these are called bias including 49 galaxies, in two nights.

4 Data reduction

4.1 PRELIMINARY REDUCTIONS

The bias level was removed from the data by subtracting pixel-by-pixel a high signal-to-noise average of several zero-length exposures. Since the camera electronics does not overscan the
 successive bias frames indicates stability to about $+/-1 \mathrm{ADU}(1 \mathrm{ADU}=1$ Analogue-to-Digital
 time (~ 1 day). The bias frames had considerable structure that was fortunately accurately repeatable over the whole run, hence the need for pixel-by-pixel subtraction. Since the surface brightness measurements involve the subtraction of the night sky contribution, in general the uncertainty in bias level manifests itself as an uncertain sky brightness.

The R-frames suffered from fringeing due to the thinness and transparency at these wavelengths and the presence of strong night-sky emission lines. However, the fringe pattern is relatively stable, so can be removed by subtracting the correct multiple of the fringe pattern. A
 subtracting multiples of this pattern interactively using a colour graphics display it was possible to Кןио s! uıə
 perfectly satisfactory, as it was then well below the readout noise level.
 each of the pixels, except in one corner where there is a region of enhanced dark current. This was treated as an 'interfering star' in subsequent analysis and removed, and the rest of the dark counts assumed to be the same for all the pixels.
To remove cosmic rays, which appear as si

R. I. Jedrzejewski

and 'cold' pixels, a routine was written to find pixels of more than four standard deviations from the local mean, and to replace them with zeros (or 'don't know' values)
The next step in the preparation is to detect and remove interfering stars and other cosmetic defects missed by the previous step. In many other studies, this has been dealt with by replacing interfering images by the local mean, but this can be criticized in that increased weight is given to areas near to interfering stars. As well as including pixels near stars in any isophote fitting algorithm (and these are quite likely to be slightly high with respect to the intrinsic galaxy intensity), these pixels enter into the interpolated intensities in the substituted area. Thus, possible discrepant pixels are given greater weight in any subsequent analysis. In the analysis in this work, interfering stars are replaced by zero, a 'don't know' value, and then given zero weight in the ellipse-fitting procedure.
The last step is to inspect the centre of the galaxy image for small ($1-2$ pixel) defects and
evidence of bad columns. Column 231 occasionally appeared very noisy, and if this interfered with the galaxy image, it was set to zero.
Finally, a word about the display of CCD frames of bright elliptical galaxies on a graphics monitor. The intensity contrast between the bright central regions of ellipticals and the low surface brightness outer parts is very difficult to portray using a linear relation between the CCD pixel value and the TV intensity (or colour, if a 'false colour' image is displayed). It has been found by the author and many other investigators that a better method is to display the picture with a logarithmic transformation, with an offset subtracted. In other words, instead of displaying the scaled pixel value, it is better to display $k \log (I-$ offset $)$. The offset should be chosen so that areas of 'blank sky' are several tens of counts above the offset level, and the constant k chosen to
 display device. A look-up table that cycles through light and dark (or through the colour spectrum) several ($2-5$) times then provides a 'pseudo-contour' display that allows inspection of
detail at all intensity levels.

4.2 ISOPHOTE FITTING

A CCD frame obtained for this study consists of 320×512 pixels which, in good seeing conditions, are all virtually independent. When chip defects, interfering stars, cosmic rays, etc. have been Кхвге image along a limited number of directions, for example, the major and minor axes only, as the rest of the image is then completely redundant. There is much more information to be had, especially if the noise in the data is small, by a more thorough investigation of the galaxy light distribution.
Many of the algorithms used for isophotometry extract an intensity level from the galaxy frame, and then fit an ellipse to all the points with that intensity level to determine the X and Y centre,
ellipticity, position angle and semi-major axis length. It is always assumed that the isophotes are representable by ellipses, but there have been very few studies that measure any departure from pure ellipse shape. Carter (1977) worked out the coordinates of points on an isophote and then

 angle, ϕ, to determine the quantities

$$
\begin{aligned}
& A_{n}=\frac{1}{\pi} \int R(\phi) \sin (n \phi) d \phi, \\
& B_{n}=\frac{1}{\pi} \int R(\phi) \cos (n \phi) d \phi .
\end{aligned}
$$

CCD surface photometry of elliptical galaxies 753

 isophotes, but the most interesting is B_{4}. If this is negative, then the isophote will appear 'boxy',
while if positive, the isophote has pointed ends, much like an edge-on disc galaxy would produce

 1985b). Similarly, pointed isophotes will be present if the galaxy contains a nearly edge-on disc. Carter's results, using photographic data, were too noisy to allow any firm statements to be made about whether any of his detections of non-zero B_{4} were secure.
A method was therefore sought which uses all of the data for a galaxy image, and calculates the
 A_{3}, B_{3}, A_{4} and B_{4}. Such an algorithm has been developed at Cambridge by M. Cawson (now Steward Observatory), and, after some testing, a variant of his procedure was adopted. The
method is similar to that described in Kent (1983) in his examination of the centre of M31. For a given semi-major axis length, an initial guess at the ellipse parameters $X 0, Y 0, \varepsilon$ and ϕ is made, and the intensity in the galaxy image around this ellipse is sampled at equal intervals in the eccentric anomaly E. If the sampling ellipse is a good description of an isophote, then the intensity
will be the same value at all sampling points within the noise. However, if the sampling ellipse has one or more of its parameters wrong, then the resulting intensity function will have low-order harmonics superposed. The amplitude of the harmonics gives information about which ellipse parameters are wrong, and by how much.
The intensity measurements around the trial ellipse are fitted by weighted least-squares to: $I=I_{0}+A_{1} \sin (E)+B_{1} \cos (E)+A_{2} \sin (2 E)+B_{2} \cos (2 E)$
If an interpolated point had been set to a 'don't know' value, the weight assigned was zero,
otherwise it was 1 . The interpolation process will be described in more detail later.
From the amplitudes of the coefficients A_{1}, A_{2}, B_{1} and B_{2}, correction factors to each of the
sampling ellipse parameters can be calculated. For small errors in the ellipse parameters:

Δ major axis position $=\frac{-B_{1}}{I^{\prime}}$

Δ minor axis position $=\frac{-A_{1}(1-\varepsilon)}{I^{\prime}}$

Δ ellipticity $=\frac{-2 B_{2}(1-\varepsilon)}{a_{0}^{\prime}}$

Δ position angle $=\frac{}{a_{0} I^{\prime}\left[(1-\varepsilon)^{2}-1\right]}$,

where I^{\prime} is the derivative of the intensity along the major axis direction evaluated at a semi-major axis length of a_{0}
The ellipse parameter corresponding to the harmonic with the largest amplitude is then changed by the amount given by the above equations, which should reduce the amplitude of the harmonic to zero, and the galaxy is sampled using the corrected parameters iteratively until a

754 R.I.Jedrzejewski
around the isophote have been averaged azimuthally, and this increases the signal-to-noise ratio by effectively using all of the pixel information.
A minimum of eight iterations is performed, and the criterion for a fit is that the largest
harmonic amplitude be less than 4 per cent of the rms residual of the intensity distribution from
 resulting intensity distribution are measured by a least-squares fit to

$I=I_{0}+A_{n} \sin (n E)+B_{n} \cos (n E)$

where $n=3$ or 4 .

Clearly, making $A_{1}, \mathrm{~A}_{2}, B_{1}$ and B_{2} zero does not constrain the amplitudes of the third and fourth harmonics, due to the fact that the orders are all orthogonal. To interpret the amplitudes obtained, they are transformed from intensity coefficients to coefficients describing deviations from a unit circle as in Carter (1977), by dividing by the local slope of the intensity profile and by
the semi-major axis length.
The ellipse parameters for that semi-major axis length are then output to file, the semi-major axis length increased by 10 per cent, and a new iteration commenced using the best-fit parameters from the previous isophote. If a satisfactory fit is not obtained after 20 iterations, the parameters which gave the smallest amplitude for the largest coefficient are output to file. The slope of the intensity profile is found by sampling the intensity on ellipses with the same parameters as the
guess ellipse, but with semi-major axis lengths of 1.05 and 0.95 times the sampling axis length.
 ellipse is not a very good approximation to an isophote, then the slope found this way will be slightly wrong, but this is a second-order effect and the iterative process converges rapidly.
When the outer parts of the frame are reached, some of the ellipse lies outside the frame. However, it is still possible to attempt to fit the harmonic function to the intensity distribution and
 sampling ellipse. Also, the slope of the galaxy profile becomes small and very difficult to measure accurately. This would make the ellipse parameter corrections large and uncertain, as they all
 values. In practice, for a large galaxy, the ellipse parameters could be determined for all but the outermost few radii. If over half of the sampled points either have zero weight or are outside the frame, iterations are ceased and fitting restarts in the central regions. The ratio between successive radii is inverted, and ellipse fitting carries on from 10 pixels to the centre of the galaxy. The process is stopped at 1 pixel.

4.3 INTERPOLATION

For semi-major axis lengths of less than 20 pixels, a bilinear interpolation scheme is used to estimate the intensity of the galaxy at a point intermediate between pixels. This uses the nearest four pixels to the interpolation point, and is equivalent to placing a square 'pixel' on the galaxy

This is clearly not accurate in regions where the slope of the galaxy brightness profile is changing rapidly, or where the curvature of the isophotes is large. It also has the physically unrealistic properties of:

> (i) Discontinuities in the slope of the interpolated intensity
(ii) The integrated sum of the interpolated intensity over a pixel is in general not equal to the
pixel value. An ideal interpolator would fulfil this criterion.

Abstract

$S \subseteq L$

 between sampling points equal to $1 / a$, where a is the semi-major axis length.
For semi-major axis lengths of more than 20 pixels, a different routine was used which performs spatial averaging (to improve the signal-to-noise ratio for a given interpolated intensity) while still
retaining the elliptical symmetry of the spatial bin. An elliptical annulus of width 10 per cent of the semi-major axis length is divided into 64 sectors equally spaced in E, and the mean pixel value calculated in these sectors. A method was found that takes into account pixels that lie partially within a sector. If any of the pixels had been set to zero (i.e. were zero-weight pixels), then the sector for that azimuthal angle is itself given zero weight. It was found that this method was not significantly slower than the less complicated approach of taking only pixels that are more than half inside the sector. It is necessary to perform this spatial averaging, otherwise the large amount
of noise makes the detection of small harmonics very difficult. of noise makes the detection of small harmonics very difficult.
The X and Y centre parameters are a good diagnostic for anyt
The X and Y centre parameters are a good diagnostic for anything interfering with the image
that had not been detected in the star deletion process. If there is a region of very diffuse emission
 with respect to the inner ones. The effect of a linear graduation over the frame affects only the X and Y centre parameters, and thus a sky gradient would not affect the ellipticity and position angle (to first order). However, measurement of averages of rows and columns for flat-fielded sky frames showed that any gradients were small enough to be inconsequential.
For each galaxy image, at radii spaced by 10 per cent, the 18 parameters in Table 4 were Because it is very difficult to determine the accuracy of the measurements of intensity, ellipticity, position angle and higher harmonics, it was decided to construct artificial 'frames' of simulated data with known geometrical and photometric parameters, and then to degrade them to make them resemble closely the real CCD data. Then any systematic effects produced, for example by

pixels in the central regions and noise in the outer parts, can be identified.

R. I. Jedrzejewski

different interpolators were tried in an attempt to remove this effect, but none were successful. It was thus decided to leave it in, and note its effects. Since the discrepancy only arises if the

 measurements of $\pm 0.02 \mathrm{mag}$, for ellipticity, ± 0.02 for $a>5$ pixels, and for position angle, ± 2 degrees, for ellipticities >0.2. The rms deviation of the B_{4} term about zero is 0.001 for bright galaxies, and 0.005 for faint galaxies. These figures refer to intensities and noise levels comparable to those of galaxies of average brightness observed in this study. Clearly, very large and bright galaxies, such as M87 and NGC 3379 , will measure better than these errors, while smaller galaxies like NGC 5845 and 5638 will be measured less accurately

4.5 DETERMINATION OF SKY LEVEI

To transform the intensities on to an absolute scale, the sky value and photometric offset constant for each frame must be known:
where $\mu(a)$ is the surface brightness of the isophote of semi-major axis length a and $I(a)$ is the measured intensity of this isophote. Note that the offset constant C, as well as containing information about the exposure time, camera sensitivity in counts photon ${ }^{-1}$ and extinction, also includes a component due to the fact that μ is normaily expressed in mag $\operatorname{arcsec}^{-2}$, while I is the intensity measured per pixel. Clearly C is the surface brightness that is obtained when the isophote intensity is 1 count above the sky level.
It has already been mentioned that the determination of the sky level in CCD observations is difficult. For the big, bright galaxies such as NGC $4486,4696,5813,1549$ etc., we obtained a sky frame in each colour of an area ~ 25 arcmin from the galaxy. To determine how useful the sky frames are, it is necessary to find out how much the sky level drifts between exposures, and how linear the response of the astronomical system (atmosphere + telescope + camera) is.
The order in which the frames were taken was $R_{\mathrm{g}}, R_{\mathrm{g}}, R_{\mathrm{s}}, B_{\mathrm{s}}, B_{\mathrm{g}}, B_{\mathrm{g}}$, where the subscript g refers to a galaxy observation and s to a sky frame. The offset sky exposures are generally of shorter length than the galaxy exposures, as it was considered wasteful to spend any more time than necessary to obtain a statistical estimate accurate to a few tenths of a per cent for the whole
frame. Since these frames are almost completely readout-noise dominated, the 'error on the frame. Since these frames are almost completely readout-noise dominated, the 'error on the
mean' from the $N=320 \times 512$ estimates of the sky value should be

$\frac{\sigma_{\mathrm{pix}}}{\sqrt{N}}=\frac{\sim 5}{\sqrt{320 \times 512}}=\sim 0.02$.

Hence, to obtain a 'signal to noise' of <0.1 per cent, the sky level need only be ~ 20 counts. This
 uncontaminated, and the bias frame must be subtracted), sky exposures were generally 40 s in R and 100 s in B. The anticipated statistical accuracy is <1 per cent. However, the bias level
instability of $\sim 1-2$ counts adds on a few per cent to the sky level uncertainty, so the adopted figure is ± 5 per cent. gure is ± 5 per cent.
Since the surface br
(apart from an offset due to the different values of C), the sky values in the two frames can be adjusted until the difference profile $\mu_{1}-\mu_{2}$ is flat against $\log (r)$. The behaviour of the difference

 (ㅇ)

profile at large radii is very sensitive to the change in sky brightness between the two observations, and almost completely insensitive to the absolute 'accuracy' of the sky determinations. At small radii, any differences are due to a change in the seeing between the two frames, any non-linearities being much below 1 per cent in magnitude. A histogram of the differences in sky surface brightnesses between two frames in each colour is presented in Fig. 2. In $B, 2 / 3$ of the data points are in the interval $(-0.04,+0.02)$, while in $R, 2 / 3$ of the differences are in the range $(-0.05,+0.03)$. Thus we may take the rms sky change between consecutive frames as

 these are mainly due to the Moon rising or else astronomical twilight approaching. Other pairs had no such explanation, and the reason for their anomalously large differences is unknown possibly related to the bias level instability mentioned in Section 4.1. Clearly, the histograms in Fig. 2 include the contribution from this effect.
 contamination by the galaxy that a good estimate of the sky value could be determined by working

 to a surface brightness 5 mag below sky, or $\sim 27 \mathrm{mag}_{\operatorname{arcsec}}{ }^{-2}$ in B.

The random noise in the profiles is completely swamped at large radii by the uncertainty that incorrect sky subtraction introduces, and this must be seen as the major weakness of this study. For some objects, the sky level could not be reliably established as the offset sky frames gave results that appeared to indicate the presence of enormous colour gradients which are clearly not present in the data.

4.6 PHOTOMETRIC OFFSET CONSTANTS

Determination of the photometric constant for each frame involves the use of published aperture photometry. If the magnitude of a galaxy within a circular aperture of radius r is M, the following relation must apply:

$M(r)=C-2.5 \log _{10}\left[I(r)-\pi r^{2} S\right]$

where $I(r)$ is the total intensity (galaxy+sky+faint stars) within the radius r and S is the sky intensity per pixel. Applying the same equation to different apertures gives several estimates of the photometric constant C.

[^1]

 (ㅇ)

CCD surface photometry of elliptical galaxies 759
 changes or sky brightness differences. The linearity of the camera is therefore demonstrated to better than 1 per cent.
 on the chip. The sky level in these observations was nearly always greater than 500 electrons pixel ${ }^{-1}$, well above the level at which TI CCDS suffer problems. The deduced sky surface
brightnesses for long and short exposures of the same galaxy agree to a few per cent, as demonstrated in Fig. 2, which implies that non-linearities are less than a few per cent even at the lowest charge levels encountered here.
For some objects, the first exposure of the galaxy showed that the object was not ideally placed in the frame - sometimes appearing to one edge and at other times so that the centre of the galaxy was very close to the bad column. The second exposure was offset to improve the positioning. This affords an opportunity to test the flat-fielding; the galaxy parameters should be independent of the position of the galaxy on the chip. In each case where the telescope was moved between successive observations, the results are relatively free from systematic differences
4.8 PLATE-SCALE AND CHIP ORIENTATION
A check was made on the pixel scale for the CCD and the true orientation of the chip with respect to the sky by measuring the positions of stars on SERC-J sky survey transparencies for some of the fields. The solution for the stars on the corresponding CCD frames relative to stars with known positions on the Sky Survey gave the plate-scale as 0.4915 ± 0.0003 arcsec pixel for three SIEıS fo suoul! on B - and R-frames showed that any scale differences amount to less than 0.1 arcsec over the whole chip, and can thus be ignored. The orientation of the chip's longer axis was found to be at 1.5 from north-south, and the position angles given in the figures and tables have been corrected for this.

5 Results

 4486 are often observed as surface photometry standards, the results for these two galaxies are

 galaxy surface photometry, galaxies with the most significant profiles are shown.

 reducing all profiles to 'equivalent circular' profiles. The profiles are offset by $2 \mathrm{mag} \mathrm{arcsec}^{-2}$ from each other.
The profiles are similar in general shape to each other, but in detail they differ markedly. Some galaxies have power-law profiles outside seeing-dominated cores (e.g. NGC 3557, 3608, 5903),

 function with a small number of free parameters fit the profile of, among others, NGC 4489.

 (c)

ભ்き

).

The $\cos (4 \theta)$ component plots are presented in Fig. 4. Most galaxies have isophotes that are very well fit by ellipses, in particular NGC 3379, which deviates from pure ellipse shape by less have strongly positive terms over part of the measured range, implying the presence of an edge-on disc component. Other objects have negative coefficients, which means that the isophotes are 'boxy', notably NGC4387, 4478 and 6909. NGC 1549 changes from boxy interior to 30 arcsec to

 frames), showing the internal consistency and relative insensitivity of this parameter to colour.

6 Comparison with other work

The sample includes several objects in common with recent published surface photometry, and
allows a check on the results obtained here. Not every previous observation is compared, only the
192
o
号
寸
0
0
0
0
0
0
$\begin{array}{cc}\text { Ellipticity } & \text { Position } \\ \text { i－b／a } & \text { Angle } \\ & N \text { thru } E\end{array}$

 Table 6．（b）Surf
Semi－Major
Axis Length
（Arcsec）
〒M二开

$r_{45}=\frac{a_{r j}(1-\varepsilon) \sqrt{2}}{\sqrt{1+(1-\varepsilon)^{2}}}$

ssəutub! fg әoDtans

ssautubilg avofans

ssautubile zootuns

ssautybug aodfuns

Figure 4. Profiles of $\cos (4 \theta)$ component for selected galaxies. This parameter measures deviations from perfe ellipse shape in the isophotes, such that if the term is positive, then the isophotes are 'pointed' compared to an ellipse,
while if negative, then the isophote is 'boxy'. An amplitude of 1 per cent means that the isophote 'semi-major axis' is 1

Table 7. Sources of comparison of surface photometry.
Observations

Reference	Observations	Profile type
Kormendy (1977)	G	Const ϕ
King (1978)	B, ε	45 degrees
Young et al. (1978)	B, R	Azimuthally averaged
Burstein (1979)	B	Const ϕ
de Vaucouleurs \& Capaccioli (1979)	B	Const ϕ
de Vaucouleurs \& Nieto (1979)	B	Equivalent radius
Boroson et al. (1983)	B, R	Azimuthally averaged
Kent (1984)	r, ε, ϕ	Major axis
Davis et al. (1985)	B, R, ε, ϕ	Major axis
Lauer (1985a)	R, ε, ϕ	Major axis

 galaxies. Comparison of his B measures with mine show excellent agreement for $20 \leqq \mu_{B} \leqq 23 \mathrm{mag}$

TixTo
ownloaded from https://academic.oup.coro/mnras/article/226/4/747/1003560 by guest on 16 August 2022

(

Figure 5. Comparison with surface brightness and geometry measurements of other investigators for NGC 3379. (a) Comparison of B surface brightness profile with photographic or photoelectric works: Burstein ($B \square$), de Vaucouleurs \& Capaccioli ($\mathrm{DVC}+$) and Kormendy ($\mathrm{Ko} \times-G$ band). (b) Comparison of B surface brightness profile with CCD work: Davis et al. (DCDI). (c) Comparison of R surface brightness profile with CCD works:
Lauer $\left(\mathrm{L}+\right.$), convolved Lauer (\triangle), $\operatorname{Kent}\left(\mathrm{Ke} \square-r\right.$-band) and Davis etal. (DCDI $-R_{C}$-band). (d) Comparison of ellipticity profiles with Lauer $(\mathrm{L}+), \operatorname{Kent}(\mathrm{Ke} \square)$ and Davis et al. (DCDI $)$. The lines refer to the results obtained in ellipticity profiles with Lauer $(\mathrm{L}+), \operatorname{Kent}(\mathrm{Ke} \square)$ and Davis et al. (DCDIO). The lines refer to the results obtained in
this work - solid lines are B-band and dashed lines are R-band. (e) Comparison of position angle profiles, legend as in (d). Position angles are in degrees measured from north to east. 18 mag arcsec $^{-2}$ is fully 5 arcsec from the galaxy centre.
(v) de Vaucouleurs \& Capaccioli (1979) presented an exhaustive study of NGC 3379 with the
high surface brightness levels. The former explanation is unlikely, as the minimum at (v) de Vaucouleurs \& Capaccioli (1979) presented an exhaustive study of NGC 3379, with the
view to establishing this galaxy as a photometric standard. They collected together all known sources of photometry and transformed them on to a uniform scale, rejecting the less precise
Downloaded from https://academic.oup.conomnras/article/226/4/747/1003560 by guest on 16 August 2022

[^2]

M87. The comparison with this work is again very favourable, with much lower random errors than in DVC $(\sim 0.02 \mathrm{mag})$ and systematic excursions of +0.1 mag in the centre (seeing?) and -0.1 mag at the outside (sky?) (Fig. 6a).
(vii) Boroson et al. (1983) used a CCD in
(vii) Boroson et al. (1983) used a CCD in a drift-scan mode, which allows accurate flat-fielding
and includes more uncontaminated sky. They obtained azimuthally averaged profiles for three and includes more uncontaminated sky. They obtained azimuthally averaged profiles for three
galaxies, including M87. In both B and R, the random fluctuations are of order 0.01 mag , but both filters showed a systematic trend of nearly 0.1 mag over the region of overlap (Fig. 6 b and c). The
(viii) Kent (1984) uses the same technique for ellipse fitting (except that he keeps the centre fixed), so one might expect the results to be directly comparable. His r-band CCD profile shows systematic trends of $\geqq 0.1$ mag at the low and high brightness levels (Fig. 5c). One possible reason is the disagreement in ellipse parameters (Fig. 5a and b); his ellipticities are ~ 0.01 low for
(ix) Lauer (1985a) and (x) Davis et al. (1985, hereafter DCDI) are the two most recent comparisons, so special attention is paid. Both investigators use an ellipse-fitting programme, but Lauer, like Kent, considers the ellipse centres to be fixed. The comparisons for NGC 3379 are shown in Fig.5(c-d). In B, the agreement with DCDI is reasonable (Fig. 5b), with a zero-point difference of 0.1 mag and a small trend at the high surface brightness end, which is probably due to seeing differences. There is a strong fall-off below $23 \mathrm{mag} \mathrm{arcsec}^{-2}$, which cannot be removed
 slightly higher surface brightness level. Noticeable also is the strongly deviant point at $B=21.2$, which is possibly an error in transcription of DCDI's table VIII. The zero-point difference arises
 different studies.

In R, there is a systematic trend of about 0.1 mag over the range of surface brightnesses from 16 to $22 \mathrm{mag}_{\operatorname{arcsec}}{ }^{-2}$ (Fig. 5c) which is probably not an effect of seeing as the FWHMs were similar ervations. The zero-point difference arises because the magnitudes of DCDI are reduced to the Cousins system, while those in this work are on the Johnson scale. The comparison with Lauer seems less favourable (Fig. 5c), showing a rise in the residuals of more than 0.2 mag at

 trend of about 0.1 mag remains, similar in slope and magnitude to the comparison with DCDI and Boroson et al

The comparison of the geometrical profiles is presented in some detail here, as the results of these three studies should be very similar to those in this work. The ellipticity profiles of Kent, DCDI and Lauer are plotted in Fig. 5(d), along with the ellipticity profiles of all four frames reduced here. The agreement is good over the whole radius range, apart from the high-resolution observations of Lauer in the central few arcseconds. Seeing is almost certainly the cause of this.
 changed between observations.

 'spueq-y uоsuчог pue su!snoつ иәәмұәq әәиәдәң!

 agree very well (Fig. 6e), and interestingly the blue position angle profiles here are different from

 Overall, the comparisons with previous work strengthen the belief that the surface brightness
profiles are accurate to +0.05 mag wherever sky uncertainties and seeing effects are not profiles are accurate to $\pm 0.05 \mathrm{mag}$ wherever sky uncertainties and seeing effects are not
important. The mostserious limitation is the sky level uncertainty, and, unfortunately, there is no way around this with the present data. A combination of photographic and CCD photometry would be a powerful method of obtaining very accurate surface brightness profiles even to very large radii.

7 Conclusions

This paper reports the CCD surface photometry of a sample of 49 early-type galaxies in the B and R passbands. The galaxy isophotes have been fitted by elliptical isophotes, and higher order harmonic terms have been measured to evaluate the importance of non-ellipticities in the isophotes. The data have been reduced to a uniform magnitude system, and shown to be of comparable precision to the best recent measurements. A future paper will analyse the data in more detail

Acknowledgments

This work was done while a research student at the Institute of Astronomy, Cambridge. Special thanks go to my supervisors, Roger Davies and George Efstathiou for their help and guidance throughout the course of this work. I have also greatly benefited from discussions with Mike Cawson, Donald Lynden-Bell, Martin Rees and Mike Irwin. The Panel for Allocation of Telescope Time is thanked for two productive nights of AAT time. Financial support was through a SERC studentship, and in the latter stages of this work came from an Isaac Newton Studentship and the DHSS.

> References
Abeli, G. O., 1958. Astrophys. J. Suppl. Ser., 3, 211.
Bertola, F. \& Capaccioli, M., 1975. Astrophys. J., 200, 439. Bertola, F. \& Capaccioif, M., 1975. Astrophy. J., Boroson, T. A. Thompson, I. B. \& Shectman S. A., Burstein, D., 1979. Astrophys. J. Suppl. Ser., 41, 435. Carter, D., 1977. PhD thesis, University of Cambridge. Davies, R. L., 1981. Mon. Not. R. astr. Soc., 194,
Davies, R. L., Efstathiou, G. P., Fall, S. M., Illingworth, Davies, R. L., Efstathiou, G. P., Fall, S. M., Illingworth, G. D. \& Schechter, P. L., 1983. Astrophys. J., $266,41$.
Davis, L. E., Cawson, M., Davies, R. L. \& Illingworth, G., 1985. Astr. J., 90, 169. M. $\begin{aligned} & \text { M. Kristian, J., University of Chicago Press. }\end{aligned}$. 1975 . In: Stars and Stellar Systems, Vol. 9, Galaxies and the Universe, eds Sandage, A., Sandage
M. de Vaucouleurs, G. \& Capaccioli, M., 1979. Astrophys. J. Suppl. Ser., 40, 699.
de Vaucouleurs, G. \& de Vaucouleurs, A., 1972. Mem. R. astr. Soc., 77, 1.

768 R.I.Jedrzejewski

$$
\begin{gathered}
111 p+1 \\
1-b / a
\end{gathered}
$$

$$
[x
$$

∞

0
\pm

$$
\infty
$$

n
∞

Semi-Major	Surface	Ellipticity	Position	Cos (40)
Axis Length	Brightness	$1-b / a$	Angle	Component
$($ Arcsec $)$			Nhru	tioo

人

Øo = o

№

 $\ddot{\sim}$

 $\dot{0} 0^{\circ 0} 0^{\circ 000000000000000000000000000000}$
 --nNNNNNNNNMNMNNNMNMNNM

 000000000000000000000000000

м下xy

Semi-Major	Surface	E1IIptiolty	Position	$\cos (40)$
Axis mereth	Brightress	$1-b / a$	Angle	Component.
($\mathrm{Ar}^{\text {CSCO}}$)			M theru E	$\times 100$
	R	$B \quad R$	B R	$B \quad \mathrm{R}$

$$
\begin{aligned}
& 0 \infty 0 \infty 0 \infty 0 \infty+\infty
\end{aligned}
$$

 ¢
Єの

∞
 $\dot{\circ} \dot{\circ}$

Semi-Mejor Axis Length (Arcsec)	Surface Brigntness	Ellipticity 1-b/a		Position Angle		$\begin{gathered} \operatorname{Cos}(4 \theta) \\ \text { Component } \\ \times 100 \end{gathered}$	
	8 R	B	R	B	R	B	R

 ज6

禺

∞
∞
\pm

0
∞

\qquad
 m

Sem-Major	Surface	Ellipticity	Position
Axis Length	Brightness	l-b/a	Angle
$($ Arcsec			N thru
	B	R	B

Suriace
Brightress

Semi-Major
Axis Length
$(A r c s e c)$

一 $\leftarrow \mathrm{R}$

 -

∞
∞
Position
Angle
Thru E Ellipticity

 -

 -

以

Cos(40)
Component
$\times 100$
Axis Length
(Arcsec)

 mmmz=un

 MN二.

Sur ace
Brightness

 -

Semi-Major Axis Length	Surface		Ellipticity		Position		$\cos (4 \theta)$	
(Arcsec)	Brightness					E		
	B	R	B	R	B	R	B	8

 ¢

Tab1e A24: Surface Photometry of NGC 4478
Seeing $0=0.6$ arcsec (R) and 0.9 arcsec (B)

0
$\operatorname{Cos}(4 \theta)$
Component
$\times 100$
$B \quad R$
osition
Angle
thru E
$B \quad R$
∞
Suriace
Brigntness Semi-Major
Axis Length
(Arcsec)

Table A25: Surface Photometry of NGC 4486

№w

Surface	Ellipticity	Position	Cos(40)	
Brightness	$1-b / a$	Angle	Component	
		Nthru E	Xloo	
B	R	R	B	R

○

Semi-Major	Sundace	Eldipticity	POSition	$\operatorname{Cos}(40)$
Axis Length	Brightness	$1-b / a$	Angle	Component
(AMCSCC)			V thru ${ }^{\text {P }}$	$\times 100$
	D R	B	$B \quad \mathrm{R}$	$\mathrm{B} \quad \mathrm{R}$

 $0 \infty 0$ D-

ия

Semi-Major	Surface	ELILpticicy	Position	$\cos (4 \theta)$
Axis Length (Arcsec)	Brightness	$1-b / a$	Angle N thru E	Component $\times 100$
	$B \quad \mathrm{~B}$	$B \quad \mathrm{R}$	$B \quad R$	B \quad R

 -ntonnoo-omarorbr-mn-nminn-n

 ∞

a

ipt
G
∞
∞

内人以

Secing $0=0.9$ arcsec (R) and 0.65 arcsec (B) Angle
thru E
∞
∞
α_{0}

 $\dot{O}^{\circ} 0^{\circ} 0^{\circ}$
 ๓M@

5	[1]	∞
-	(1) 5	
H	Hid	
-2	80	
n	\cdots	
\bigcirc	<	
0.	z	∞
\geqslant		
4		
cm		n
0		
-04	ธ	
$3{ }^{3}$	\checkmark	
Q	5	
Pex	1	
\cdots	-	
\square		
[2]		m

$\cdots \div 0000000$

 м内

 ooooooooooooo

Surrace
Brightness
∞
Arcsec

Semi Majon
Axis Length
$($ Arcsec $)$

 กை

--

 ∞

Semi-Major Axis Length (Arcsec)	Surface		Ellipticity		Position		$\operatorname{Cos}(40)$			
	Brightness		1-b/a		Angle		Component			
				E						
	B	R			B	R	B	R	B	R

Noooosw

 © 0 上

Semi-Major	Sunface	ElIIpticity	Position	$\operatorname{Cos}(40)$
Axis Length	Brightness	$1-b / a$	Angle	Component
(Arcsec)			N whru E	$\times 100$
	B	B	B R	$B \quad \mathrm{~B}$

 $\therefore \circ 00000000000000000000000$

$\infty \operatorname{mon} \pi$ 눈

Table A42: Surpace Photometry of NGG 7029

Eliipticity		Position		$\operatorname{Cos}(4 \theta)$	
$1-b / a$		Angle		Component.	
		N			
B	R	B	8	8	R

FNFF-NNOMNMFNF-TOOWNZ-NNOMO

 NNNNNMMMMMMMMMMM.M. $\therefore 0000000000000000000000000000$

[^0]: $2 \mathrm{~mm} \mathrm{GG} 385+1 \mathrm{~mm} \mathrm{BG12+1mm} \mathrm{BG18+2mm} \mathrm{KG3}$
 $2 \mathrm{~mm} \mathrm{RG} 610+2 \mathrm{~mm} \mathrm{BG} 20+2 \mathrm{~mm} \mathrm{KG} 3$

[^1]: Rather than search for every possible aperture measurement for these objects, it was decided to select a few relatively recent and (hopefully) reliable works that include a large fraction of the galaxies studied here. The sources used are given in Table 5

 The observations in this study can thus be considered to be normalized to a photometric system that is a composite of these works. The most notable omission from this list is the work of Sandage \& Visvanathan (1978). This was because their measurements are in the $u b V r$ system, and results in the $B R$ system were required. While they give equations for the transformation from their system to the $U B V R$ system, the discrepancy between the magnitudes derived using the transformation equation for stars and the equation for galaxies was, at a few per cent, considered slightly too large. Of course it is realized that most other works involve (unspecified) transformations from their magnitude system to the $U B V R$ scale, and these almost certainly introduce at least as much uncertainty into the results.

 Since each aperture gives one measurement of the photometric constant, a plot of the scatter of these estimates with magnitude can pinpoint suspect measurements (that deviate by more than
 observers: these were discarded. Some measurements were clearly of the wrong galaxy; the measurements of NGC 3258 in W79 are really NGC 3257, and similarly Sandage's (1975)

 Most of the edited measurements were either for very small apertures (where mis-centering and seeing effects are the major source of error), or for very large apertures (where the sky brightness dominates). Clearly, unless the photometer chops between object and sky at rates of

 observations were placed on to a uniform scale formed from the best-fit coefficients. Rms residuals of measured photometric constants from the assumed relations were 0.03 mag in B and 0.04 mag in R.

 $$
 4.7 \text { CHECKS OF CAMERA LINEARITY AND FLAT-FIELDING }
 $$

 By comparing two exposures of the same galaxy in the same colour but with different exposure times, the linearity of the camera can be demonstrated. Since the CCD does not suffer from

[^2]: Figure 6. Comparison with surface brightness and geometry measurements of other investigators for NGC 4486. (a)
 Cing Comparison of B surface brightness profile with photographic or photoelectric works: King (Kiص), de Vaucould Davis et al. (DCDI), Young et al. (YWKWL+) and Boroson et al. (BTSD). (c) Comparison of R surface brightness profile with CCD works: Young et al. (YWKWL +), Boroson et al. (BTSD) and Davis et al. (DCDI -R_{C}-band). (d) Comparison of ellipticity profiles with Davis et al. (DCDI $)$ and King (Ki \square). The lines refer to the

 angles are in degrees measured from north to east.
 studies. The comparison of their profile with mine is very favourable; no systematic trends and a random component with $\mathrm{rms} \sim 0.05 \mathrm{mag}$ (Fig. 5a). Despite this agreement, the profile deviates significantly at large radius ($\geqq 20 \mathrm{arcsec}$) from an $r^{1 / 4}$ law, which they find to be such a good fit. (vi) de Vaucouleurs \& Nieto (1979) presented a photographic and photoelectric profile of

