
Title
CCFinder : A Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source
Code

Author(s) Inoue, Katsuro

Citation
Annual report of Osaka University : academic
achievement. 2001-2002 P.22-P.25

Issue Date

Text Version publisher

URL http://hdl.handle.net/11094/51063

DOI

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Engineering

IU " • • • ••

SOt ~ I'WARE

ENG INEER ING

CCFinder: A Multilinguistic Token-Based Code Clone Detection System for Large Scale Source Code

Paper in joumals: this is the firsl page of a papar published in JEEE Trallsactiolls 011 Software Ellgilleerillg.
~ '= .. _ . .;=0

[IEEE Trallsactiolls 011 SO/flVare Ellgilleerillg] 28, 654-670 (2002)

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.

CCFinder: A Multilinguistic Token-Base
Code Clone Detection System
for Large Scale Source Code

Toshihiro Kamiya , Member, IEEE, Shinji Kusumoto, Member, IEEE, and Katsuro Inoue, Member, IEEE

Abstract-A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce

the maintainability of software, several code clone detection techniques and lools have been proposed. This paper proposes a new

clone detection technique, which consists of the transformation of input source text and a token·by·token comparison. For its

implementation with several useful optimization techniques, we have developed a tool, named CCFlnder, which extracts code clones in

C, C++, Java, COBOL, and other source flies. As well, metrics for the code clones have been developed. In order to evaluate the

usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK,

FreeBSD, NetBSD, Linux, and many other systems, As a result, CCFinder has effectively found clones and the metrics have been able

to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone

detection techniques.

Index Terms-Code clone, duplicated code, CASE 1001, metrics, maintenance.

1 INTRODUCTION

A code clone is a code portion in source files that is
identical or similar to another. Clones are introduced

because of various reasons such as reusing code by "copy~
and~paste /' mental macro (definitional computations fre
quently coded by a programmer in a regular style, such as
payroll tax, queue insertion, data structure access, etc.), or
intentionally repeating a code portion for performance
enhancement, etc, [51. A conservative and protective
approach for modification and enhancement of a legacy
system would introduce clones. Also, systematic generation
of a set of slightly different code portions from a single basis
will bear clones. Clones make the source files very hard to
modify conSistently. For example, let's assume that a
software system has several clone subsystems created by
duplication with slight modification. When a fault is found
in one subsystem, the engineer has to carefully modify all
other subsystems (15]. For a large and complex system,
there are many engineers who take care of each subsystem
and then modification becomes very difficult. If the
existence of clones has been documented and maintained
properly, the modification would be relatively easy; how
ever, keeping all clone information is generally a laborious
and expensive process. Various clone detection tools have

• T. Knmiya is with Fllllctiolls alld COllfigllratioll Grollp, RPESTO, 1ST.
Gradllate School of Ellgillccrillg Science, Osaka Ulziucrsity, 1-3 Machika
IIeyama-c!zo, Toyonaka, Osaka 560-8531, Japan.
E-mail: kamiya@ics.es.osaka-Il.ac.jp.

• S. Kllsllmoto mzd K. tnolle are UJitlz tlu: Graduate School of Engineering
Science, Osnka University, 1~3 Mnc!zikmleyama-c!/O, Toyonaka, Osaka
560-8531, Japan. E-mail: Ikllsllmoto.illolleJ@ics.es.OSJJka-ll.ac.jp.

Manuscript received 19 lilly 2000; revised 28 Mar. 2lXH; accepted 17 Sept.
2001.
Recommended for acceptmlce by L. Briand.
For inf()rmation on obtaining reprillts ()f this article, please send e~mail to:
tse@compllter.org,and reference lEEECS Log Number 112550.

+

been proposed and implemented [1], [2], [3], [4], [5], [7], [11],

[141, {15], [171 and a number of algorithms for finding clones
have been used for them, such as line~by~line matching for
an abstracted source program II] and Similarity detection
for metrics values of function bodies [17].

We were interested in applying a clone detection

technique to a huge software system for a division of

government, which consists of one million lines of code in
2,000 modules written in both COBOL and PL/I-like

language, which was developed more than 20 years ago

and has been maintained continually by a large number of
engineers [18], [21]. 1t was believed that there would be

many clones in the system, but the documentation did not

provide enough information regarding the clones. It was
considered that these clones heavily reduce maintainability

of the system; thus, an effective clone detection tool has

been expected.
Based on such initial motivation for clone detection, we

have devised a clone detection algorithm and implemented

a tool named CCFinder (Code clone finder). The underlying

concepts for designing the tool were as follows:

• The tool should be industrial strength and be
applicable to a million-line size system within
affordable computation time and memory usage.

• A clone detection system should have the ability to
select clones or to report only helpful information for
user to examine clones since large number of clones
is expected to be found in large software systems. In

other words, the code portions, such as short ones
inside single lines and sequence of numbers for table
initialization, may be clones, but they would not be
useful for the users. A clone detection system that
removes such clones with heuristic knowledge
improves effectiveness of clone analysis process.

0098·5589102J$17.00 t} 2002 IEEE

Ii

"

.... Reprinted from IEEE TrUlIsacliofls 011 Software Ellgilleeritlg, 28, KAMIYA, T., KUSUMOTO, S., INOUE, K. , CC Finder: A Mullilinguislic Token- Based Code Clone Detection
System for large Scale Source Code, 654-670. Copyright 2002, with permission from IEEE.

22

Osaka University 100 Papers: 10 Selected Papers

The following is a comment on the published paper shown on the preceding page.

A New Code Clone Detection
Tool for Large Scale Source
Code
INOUE Katsuro
(Graduate School of Information Science and Technology)

Introduction

A code clone is a code portion in source files that is identical

or similar to another. Clones are introduced because of var

ious reasons such as reusing code by 'copy-and-paste', etc [4]. Clones

make the source files very hard to modify consistently. For exam

ple, let's asswne that a software system has several clone subsys

tems created by duplication with slight modification. When a fault

is found in one subsystem, the engineer has to carefully modify all

other subsystems[7]. Various clone detection tools have been pro

posed and inaplemented [1] [2] [4].

In this paper, we have devised a clone detection algorithm and

inaplemented a tool named CCFinder(Code clone finder). The under

lying concepts for designing the tool were as follows.

(l) The tool should be industrial strength, and be applicable to a

million-line size system within affordable computation time and

memory usage. (2) A clone detection system should have ability

to select clones or to report only helpful infonnation for user to

examine clones, since large nwnber of clones is expected to be

found in large software systems. (3) Renaming variables or edit

ing pasted code after copy-and-paste makes a slightly different pair

of code portions. These code portions have to be effectively detect

ed. (4) The language dependent parts of the tool should be limit

ed to a small size, and the tool has to be easily adaptable to many

other languages.

Source files

Lexical Analysis

Token Sequence

Proposed clone-code detection technique

A clone relation is defined as an equivalence relation (Le., reflex

ive, transitive, and symmetric relation) on code portions. A clone

relation holds between two code portions if (and only if) they are

the same sequences. For a given clone relation, a pair of code por

tions is called clone pair if the clone relation holds between the

portions. An equivalence class of clone relation is called clone class.

That is, a clone class is a maximal set of code portions in which a

clone relation holds between any pair of code portions.

Clone detection is a process in which the input is source files

and the output is clone pairs. The entire process of our token-based

clone detecting technique is shown in Figure 1. The process con

sists offour steps:

(1) Lexical analysis

Each line of source files is divided into tokens corresponding to

a lexical rule of the programming language. The tokens of all

source files are concatenated into a single token sequence, so

that finding clones in multiple files is perfonned in the same

way as single file analysis. At this step, the white spaces (includ

ing In and \t and comments) between tokens are removed ITom

the token sequence, but those characters are sent to the fonnat

ting step to reconstruct the original source files.

(2) Transformation

The token sequence is transfomaed with sub-processes (2-1) and

(2-2) described below. At the same time, the mapping infor

mation from the transfonned token sequence into the original

token sequences is stored for the fonnatting step which comes

later.

(2-1) Transformation by the transformation rules

The token sequence is transfonned, Le., tokens are added,

removed, or changed based on the transfonnation rules.

(2-2) Parameter replacement

After step 2-1 each identifier related to types, variables, and

constants is replaced with a special token. This replacement

Clone Detection ______________________ • ____ _ .

Mapping from

Transformation
~-----,------~

Transformed Token Sequence

!
Match Detection

Transformed Sequence ------....

into Original

Clones on
Transformed Sequence I

,
Formatting I

,

Figure 1. Clone detecting process

Clone-pairs/

Clone-classes

23

makes code-portions with different variable names to become

clone pairs.

(3) Match Detection

From all the sub-strings on the transfonmed token sequence, equiv

alent pairs are detected as clone pairs. Each clone pair is repre

sented as a quadruplet (LeftBegin, LeftEnd, RightBegin,

RightEnd), where LeftBegin and LeftEnd are the beginning and

tenmination positions (indices in the token sequence) of a lead

ing clone, and RightBegin and RightEnd belong to another fol

lowing clone for a clone pair.

(4) Formatting

Each location of clone pair is converted into line numbers on

the original source files.

Tool CCFinder has been implemented in C++ and runs under

Windows 95fNT 4.0 or later. CCFinderextracts clone classes from

C, C++, Java, FORTRAN, LISP and COBOL source files. The

tool receives the paths of source fi les, and writes the locations of

the extracted clone classes to the standard output. CCFinder uses

a suffix-tree algorithm [6] with both time and space complexities

O(m 11) , where 111 is the maximwn length of involved clones and

n is the total length of the source file. Ifwe would naturally assume

that 11/ does not depend on n and it is bounded by some fixed length,

the time and space complex.ities will practically be O(n).

o

100000

.00000

o 100000

~~A
~

"-.. \ \..
.~

..
. ;:!.~::,

': ' .:":(.

~ • ,'II,

,
~ . '. ',':-;-,

, '.
;. :!~'~~

-.'. I>x
.:'~.

!! _ . lt~~
, ' .. :';::',

". "":-. .. -
. ~

. F:l
:l. .

Case study

The purpose of the case studies was to evaluate our token-based

clone-detecting teclmique and the metrics. The target source files

were widely available files of 'industrial ' size. In all the case stud

ies, CCFinder was executed on a PC with Pentium III 650MHz

and 640MB RAM, which seem to be moderate, non-special hard

ware specification for PC these days. In the following discussion

we wi ll use elapsed time on this Pc.

JDK 1.3.0 [8] is a commonly used Java library, and the source

files are publicly available. Tool CCFinder has been applied to all

source files ofJDK, about 570k lines in total, in 1877 files. It takes

about 3 minutes for execution on the PC. Figure 2 shows a scat

ter plot of the clone pairs having at least 30 same tokens (about 13

lines). Both the vertical and horizontal axes represent lines of

source fi les. The fi les are sorted in alphabetical order of the file

paths, so that files in the same directory are also located nearby on

the axis. A clone pair is shown as a diagonal line segment. Only

lines below the main diagonal are plotted. [n Figure 2, each line

segment looks like a dot since each clone pair is small (average

39, up to 628 lines) in comparison to the scale of the axis. Most

line segments are located near the main diagonal line, and this means

that most of the clones occur within a file or among source fi les at

the near directories.

There are several crowded areas, marked A, B, C, D, and E.

B
Figure 2.
Seatter pial lor JDK 1.3.0

: '. _., . ®
, .. --'" . -.. ..

..... .:. .. -", , . - -~.

<.. ,'. ~.-~::~~£

24

Osaka University 100 Papers: 10 Selected Papers

311 */
321 public class MultiButtonUI extends ButtonUI {
33 I

public static ComponentUI crea teUr (JComponent a)
ComponentUI rnui = new MultiButtonUI () ;
return MultiLookAndFeel . createUIs (roui ,

1601
1611
1621
1631
1641

((MultiButtonUI)
a) ;

roui) . ui 5 ,

1 Ii'i 1

(a) MultiB uttonULj ava

311 * /
321 public c l ass MultiColorChooserUI extends ColorChooserUI {
331

1601
1611
1621
1631
1641
16.'i1

public static ComponentUI crea teUl (JComponent a)
Cornponent UI mui = new MultiColorChooserUI () ;

\

return MultiLookAndFeel . createUIs (roui ,
((MultiColorChoose rUI)

a) ;

(b) MultiColorChooserULj ava

These two files are identical except fo r three identifie rs shown in bold style.

Figure 3. Example of clone found in JDK

roui) . uis ,

Area A corresponds to source files of j ava/ awtl * . java, B,

C, and D to javax/swing/* . java, and E to org/omgl

COREA/ * . java. Dcontains many 'clone files', that is, very sim

ilar source fi les. Some of them contain an identical class defini

tion except for their different parent classes. Figure 3 shows parts

of the two fi les as examples, namely Mul tiBu t tonUr. java

and Mul tiColorChooserUI . java. Differences are only in

lines 32, 161, and 163. According to the comments of the source

files, a code generator named AutoMul ti has created these files.

To modi fy them, the developer should obtain an automatic code

generation tool called AutoMult i (it is not included in JDK),

edit, and apply it correctly. Ifthe developer does not have the tool,

all the files have to be updated carefully by hand. In this case, these

code portions have two different names : the base classes and the

type oflocal variables named mui. Redesign techniques for Java

are presented in [3] and might be applicable to this case. Also, using

generic type for Java, as proposed in [5], would enable to rewrite

them as a shared code.

in the case studies. Our current clone detection tool does not accept

source files written in two or more programming languages.

However, today some software systems are implemented in multi

languages (e.g., C and C++, Java and HTML, etc). We are trying

to extend the tool to accept source programs written in several pro

gramming languages at the same time.

The longest clone (1647 token, 627 lines) was found between

src/comlsun/javal swingiplaflwindowslWindowsFileChooserUlJava

and src/javaxlswingiplaflmetallMetalFileChooserUlJava (marked

F in Figure 2). Each of the two classes WindowFileChooserUl

and MetalFileChoosrUl has nine internal classes, one constructor,

and 45 methods, all of which, except three of the metllods, are clones.

Conclusions

In this paper, we have presented a clone detecting technique

with transformation rules and a token-based comparison, as well

as important optimization techniques to improve peiformance and

efficiency. We have also proposed metrics to select interesting clones.

They have been applied to several industrial-size software systems

References

[I] B.S. Baker, "A Program for Identify ing Duplicated Code", Proc. Com

puting Science and Statistics: 24th Symposium 011 the In telface, 24, pp.

49-57 Mar. 1992.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lns.-c, and K.A. Kontogian

nis, "Measuring Clone Based Reengineering Opportunities", Proc. 6th

[EEE [nt'/ SymposiulII011 SojtwareMetrics (METR[CS '99), pp. 292-303,

Boca Raton, Florida, Nov. 1999.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and K.A. Kontogian

nis, "Partial Redesign of Java Software Systcms Based on Clone Analy

sis", Proc. 6tll IEEE Workillg COli!, 011 Reverse Eng. (WCRE '99), pp.

326-336, Atlanta, Georgia, Oct. 1999.

[4) I.D. Baxter,A. Yallin, L. Moura, M. Sant' Anna, and L. Bier, "Clone Detec..

tion Using Abstract Syntax Trees", Pl'oc. [EEE [111'/ COli! on Software

Mailllenalice ([CSM) '98, pp. 368-377, Bethesda, Maryland, Nov. 1998.

[5] G. Bracha, M. OdersJ..."Y, D. Stoulamire, and P. Wadler. "GJ Specifica

tion". http://cm.bell-labs.comlcrnlcslwholwadler/pizzalgj/

[6) D. Gusfield, Algorithms 011 Strillgs, Trees. and Sequences, pp. 89- 180.

Cambridge University Press 1997.

[7] B. Lague, E.M. Merlo, J. Mayrnnd, and 1. Hudepohl. "Assessing the Ben

efits oflncorporating Function Clone Detection in a Development Process",

Proc. IEEE lilt'! COIlf. 011 Software Mailllelltlnce ([CSM) '97, pp. 31 4-

32 1, Bari, Italy. Oct. 1997 .

[8] The source for Java Technology. http://java.sun.coml

25

