
CCL2: An Important Mediator
Between Tumor Cells and Host
Cells in Tumor Microenvironment
Jiakang Jin1,2, Jinti Lin1,2, Ankai Xu1,2, Jianan Lou1,2, Chao Qian1,2, Xiumao Li1,2,

Yitian Wang1, Wei Yu1,2* and Huimin Tao1*

1 Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China,
2Orthopedics Research Institute of Zhejiang University, Hangzhou, China

Tumor microenvironment (TME) formation is a major cause of immunosuppression. The

TME consists of a considerable number of macrophages and stromal cells that have been

identified in multiple tumor types. CCL2 is the strongest chemoattractant involved in

macrophage recruitment and a powerful initiator of inflammation. Evidence indicates that

CCL2 can attract other host cells in the TME and direct their differentiation in cooperation

with other cytokines. Overall, CCL2 has an unfavorable effect on prognosis in tumor

patients because of the accumulation of immunosuppressive cell subtypes. However,

there is also evidence demonstrating that CCL2 enhances the anti-tumor capability of

specific cell types such as inflammatory monocytes and neutrophils. The inflammation

state of the tumor seems to have a bi-lateral role in tumor progression. Here, we review

works focusing on the interactions between cancer cells and host cells, and on the

biological role of CCL2 in these processes.
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BACKGROUND

Many immune cell subtypes, including myeloid-derived monocytes and macrophages, neutrophils,

and T cells, are found to be considerably abundant in the tumor microenvironment (TME). Tumor-

infiltrating cells are considered to favor tumor progression and immunosuppression, hampering the

anti-cancer immune response.

Abbreviations: EGF, Epidermal Growth Factors; HRG, heregulins; HER2, Human Epidermal Growth Factor Receptor 2;

NEDD8, Neural Precursor Cell Expressed, Developmentally Down-Regulated 8; IFN, interferon; IL, interleukin; GM-CSF,

Granulocyte-macrophage Colony Stimulating Factor; LNMAT1, Lymph Node Metastasis Associated Transcript 1; hnRNPL,

Heterogeneous Nuclear Ribonucleoprotein L; MMP9, Matrix Metallopeptidase 9; 5-LOX5-Lipoxygenase; LTB4, Leukotriene

B4; PD-1, programmed cell death protein 1; AT1R, Angiotensin II type-1 receptor; TGF, transforming growth factor; TRIF,

TIR-domain-containing adaptor inducing interferon-b; uPAR, urokinase-type plasminogen activator receptor; FAK, Focal

Adhesion Kinase; PKC, protein kinase C; COX2, Cyclooxygenase 2; PYK2, proline-rich tyrosine kinase 2; TKI, tyrosine kinase

inhibitor; ESCC, esophageal squamous cell carcinoma; GC, gastric cancer; TNBC, triple negative breast cancer; HCC,

hepatocellular carcinoma; BC, breast cancer; LUAD, lung squamous cell carcinoma; IBC, inflammatory breast cancer; GBC,

gallbladder cancer; LLC, Lewis lung carcinoma; LUSC, lung squamous cell carcinoma.
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The mechanisms of immune resistance and escape are

complex and vary among different tumor types. Recently, the

role of the chemokine–chemokine receptor axis in tumor

progression has attracted interest (1). CCL2, also known as

monocytic chemotactic protein 1 (MCP-1), was one of the first

chemokines to be discovered and was found to possess strong
chemotactic capability to recruit monocytes and macrophages.

There is abundant evidence that overexpression of CCL2

promotes tumor metastasis, invasion, and immune resistance;

however, some findings indicate that CCL2 expression can also

initiate infiltration of anti-tumor inflammatory monocytes (1).

The diverse mechanisms by which CCL2 regulates the tumor
immune microenvironment are precisely regulated by tumor

cells, tumor-infiltrating immune cells, and the tumor stroma.

Thus, despite a considerable amount of work on the role of

CCL2 in tumors, there is still no clear understanding or

global consensus.

For this review, we collected studies from recent years
focusing on CCL2 in the TME. These studies have enormously

enriched our understanding of the origins and targets of this

mysterious chemokine. This review is intended to summarize

their findings and clarify the functions and regulation of CCL2 in

tumors of different stage and different immunogenic status.

REGULATION OF CCL2 PRODUCTION

CCL2 is synthesized and secreted mainly by monocytic cells.

These have been the most commonly researched cell type

in this context in recent years. Tumor cells have also been

found to express CCL2, and multiple transcription factors

overexpressed by cancer cell have been identified to affect

CCL2 transcription (Figure 1).
Two NF-kB binding sites in the CCL2 gene in the distal

enhancer region were successfully identified by Ueda in 1994 (4).

The proximal GC box located at positions −64 and −59 was

thought to be responsible for basal CCL2 gene expression,

whereas the distal NF-kB binding site located between −2612

and −2603 was required for stimulation and enhanced cytokine
production. Typical stimulations leading to CCL2 expression

include TNFa , IL-1b , and phorbol-12-Myristate-13-

Acetate (PMA) treatment. Tumor antigens can reprogram

inflammatory cells and promote tumor immune invasion via

NF-kB-induced CCL2 production. CCL2 production has been

reported to be more inducible in HER2+/ER− breast carcinoma

cells compared with HER2+/ER+ cells under EGF/HRG
stimulation, and enhanced NF-kB transcription levels were

detected in HER2+/ER− breast carcinoma cells (5). Emerging

evidence indicates that the JAK/STAT pathway can also promote

CCL2 production under stimulation (6–13). Neddylation is a

reversible protein modification process mediated by NEDD8.

Activated neddylation was involved in carcinogenesis, which
indicated that neddylation could be a potential target for

cancer therapy (14). Zhou et al. found that the neddylation

process mediated by NEDD8 was positively correlated with

CCL2 expression in lung cancer. Inhibition of the neddylation

process significantly reduced levels of cancer-associated

macrophages and tumor growth (15).

In recent years, many non-canonical factors have been

reported to directly bind to the cis-element of the CCL2 gene

or protein independent of classical pathways. Anders et al. (16)
found that the globular C1q receptor (p33), a binding partner of

C1q in the complement system, could stabilize CCL2 protein. In

vitro studies have revealed high-affinity binding between CCL2

protein and p33, and recombinant p33 greatly enhanced CCL2

persistence and the migration capacity of THP-1 monocytes.

Choi et al. identified NFAT5 as an independent factor that
promotes CCL2 secretion in rheumatoid arthritis, leading to

apoptosis resistance of macrophages (17). Lennard Richard et al.

detected binding of Fli-1, a member of the Ets transcription

factor family, to an Ets binding site within the CCL2 promoter,

which activated gene expression. They also found that Fli-1 may

work synergistically with NF-kB signaling to promote CCL2
gene transcription (18). Hacke et al. proposed a p53 binding site

2.5 kb upstream of the start site of the CCL2 gene, based on in

silico analysis. This finding was confirmed in vitro by

electrophoretic mobility shift assay and in vivo by ChIP assay

(19). In summary, studies have unveiled several non-canonical

pathways of CCL2 gene regulation that may contribute to pro-

inflammatory responses.

NON-CODING RNAS INVOLVED IN
CCL2 REGULATION

Non-coding RNAs have attracted considerable attention owing to

their roles in regulating tumor behavior and have been shown to be
closely correlated with CCL2 production and TAM

reprogramming. Tumor-derived microRNA-375 was found to

mediate tumor cell–macrophage interplay via CCL2; specifically,

microRNA-375 could promote CCL2 production in tumor cells

and induce macrophage migration (20). Hsu et al. studied miR-

122, an anti-inflammatory microRNA, and found that its
inhibition induced activation of RelB and subsequent release

of pro-inflammatory chemokines, including CCL2, by

macrophages (21). Long non-coding RNA LNMAT1 was shown

to epigenetically activate the CCL2 gene by attracting hnRNPL to

the CCL2 promoter, leading to histone trimethylation (22).

Decreased CCL2 levels and macrophage infiltration density

were observed in the LNMAT1-silenced TME. Circular RNA
hsa_circ_0110102 functions as a molecular sponge to inhibit

CCL2 transcription in hepatocellular carcinoma (HCC) cells,

which further inhibits macrophage recruitment. Downregulation

of hsa_circ_0110102 is closely related to poor prognosis in

HCC patients. Thus, non-coding RNAs, owing to their functions

as additional regulators in the TME, are emerging as potential
therapeutic targets and as a focus of anti-cancer drug investigations

(23). Other non-coding RNAs modulating CCL2 expression are

listed in Table 1.
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TABLE 1 | Non-coding RNAs and mechanisms involved in CCL2 regulation.

Name Cancer Type Target Up- or down-regulation of CCL2 Ref.

miR-339-5p OSCC TSPAN15 Down (24)

miR-122 HCC – Down (25)

MiR-124 OC – Down (26)

miR-1246 BC PRKAR1A, PPP2CB Up (27)

miR-1, miR-206, miR-31 LC OXO3a/VEGF/CCL2 Up (28)

miR-122 HCC C/EBPa Down (29)

miR-511 AML cyclin D1 Up (30)

MiR-19a GC IkB−a Up (31)

miR-126/miR-126(*) BC SDF-1a Down (32)

miR-16 BC IKKa Down (33)

miR-200c BC p65/RelA, JNK2 Up (34)

LncHOTAIR CRC miR-206/CCL2 Up (35)

Antisense IL-7 – NF-kB/MAPK Up (36)

LncHOTAIR HCC – Up (37)

FIGURE 1 | Transcription factors and post-translational factors in the regulation of CCL2 expression. Several transcription factors binding to CCL2 regulating

sequences were identified in the 5’ UTR. The classical NF-kB signaling molecule RelA binding site locates approximately from position -2650 to position -2600

and Sp-1 binds to the promoter of the CCL2 gene, which are major activators of CCL2 expression. AP-1 was thought to be another major promotor of CCL2

transcription, but AP-1 binding activity appears irrelevant to CCL2 transcription activity. Additionally, p53 molecule binding to the enhancer sequence in cooperation

with NF-kB signaling activation and stabilize NF-kB signaling. Apart from this, signal transducer and activator of transcription 1 and 3 dimers, which are also

significant inflammatory signal molecules, transcriptionally prompt CCL2 expression. Moreover, Stress stimuli-induced factor ATF3 also binds to three ATF/CRE

sites in the enhancer region and attenuates CCL2 transcription (2). Non-coding RNA like LNMAT1 recruits hnRNPL for H3K4me3 and enhances the CCL2

transcription (3).
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THE BIOLOGICAL ROLE OF CCL2
IN THE TME

The TME has a supportive role in tumor progression and immune
suppression (38). Myeloid cells and stromal cells have been found to

abundantly accumulate in the TME (39, 40). The mechanism of

immunosuppression varies; in recent years, chemokines and

chemokine receptors have been found to have strong correlations

with cancer-associated chronic inflammation and were thought to

be responsible for the recruitment of immune cells. Emerging results

indicate a considerable concentration of CCL2 in tumor tissue,
suggesting that the presence of CCL2 may contribute to tumor

spreading and pre-metastatic niche formation (Table 2). Here, we

review several studies focusing on the effects of CCL2 on different

host cells in the TME.

TUMOR-INFILTRATING MYELOID
LINEAGE CELLS

Tumor-Associated Macrophages
Macrophages have long been considered to form the major

component of the TME of many tumors. Evidence from

clinical samples and in vitro studies illustrates the

contributions of TAMs to tumor progression, invasion,

metastasis, and immunosuppression (60). Wei et al. showed

that crosstalk between tumor cells and TAMs promotes cancer

metastasis, which could be hampered by blocking of CCL2 (20).

There is also evidence that high levels of CCL2 promote
polarization of TAMs to an immune-regulatory phenotype,

which is considered a consequence of tumor cell-mediated

immune modulation. Interactions between tumor cells and

macrophages often promote the immunoregulatory function of

the host immune cell, thereby facilitating tumor progression

(61–63).

Influence of CCL2 on TAMs in Cooperation With

Multiple Signaling Molecules
Interactions of signaling molecules and signal transduction in the

TME dynamically regulate tumor behavior and reprogramming

of TAMs. CCL2 may enhance the phagocytotic ability of tumor-

entrained macrophages and initiate the subsequent release of
cell-death-related molecules such as RANTES, MIF, CXCL-12,

and IFNg (64). The process is activated by platelet-derived

microparticles; however, macrophages of this subtype may also

promote epithelial-to-mesenchymal transition, making the

tumor more prone to metastasis.

TABLE 2 | The significance of CCL2 in tumor metastasis.

Origin of CCL2 Cancer type Signaling involved Mechanisms of metastasis Ref.

Tumor cells ESCC NK-kB regulatory T cells recruitment (41)

Mesenchymal stem cells GC Wnt/b-catenin GC-MSCs recruitment (42)

CAFs ESCC TGFb2-ERK Paracrine capacity and pro-metastatic ability of fibroblasts (43)

CAAs Ovarian cancer PI3K/AKT/mTOR CCL2-CCR2 axis favorable for omental metastasis (44)

TAMs TNBC Activation of the p-Src and p-Erk1/2

signaling

Enhanced proteolytic effect and invasion (45)

Tumor cells HCC MYC/Twist1 signaling Polarization of TAMs (46)

Periodontal inflammation BC IL-1b/CCL2 Recruitment of TAMs and MDSCs (47)

CAFs BC Activation of p-FAK and p-STAT3 Epithelial-mesenchymal transition (48)

Tumor cells LUAD KLF6-SV1/Twist1/CCL2 Epithelial-mesenchymal transition;

polarization of M2 macrophages

(49)

Tumor cells IBC IL8/STAT3 Epithelial-to-mesenchymal transition;

Cancer-stem-cell-like and mesenchymal phenotype;

M2 TAMs derived IL-8 secretion

(50)

Tumor cells Double-Negative Prostate

Cancer

PRC1/CCL2 Recruitment of M2 TAMs and Tregs (51)

Tumor cells GBC PLEK/EGFR/CCL2 Epithelial-mesenchymal transition (52)

Tumor cells LLC CCL2-pulmonary endothelial CCR2 Increased endothelial cells retraction and vascular

permeability

(53)

CAFs ESCC TGFb1/SMAD3 Increased metabolites from CAFs favorable for tumor

progression

(54)

Lung residential

macrophages

– Tumor released micro-particles Recruitment of inflammatory monocytes;

Polarization of macrophages;

Fibrin production and deposition.

(55)

Tumor cells LUSC Tumor cells-inflammatory monocytes

interaction

Recruitment of inflammatory monocytes (IMs) expressing

Factor XIIIA;

Scaffold formation by IMs.

(56)

Interstitial macrophages HCC 5-LOX/LTB4,CCL2-CCR2 Recruitment of CCR2+ alveolar macrophages (57)

Tumor cells & myeloid

cells

BC Wnt1/E-cadherin Recruitment of CD206/Tie2+ macrophage;

Epithelial-mesenchymal transition;

(58)

Tumor cells Bladder cancer LNMAT1/CCL2 VEGF-C secretion;

Recruitment of TAMs;

(3)

Tumor cells BC CCL2/IL-1b/ gdt gdt cell derived IL-17;

induction of immunosuppressive neutrophils.

(59)
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IL-1b is a classic pro-inflammatory cytokine secreted by

TAMs, which has been found to induce immunosuppression in

many tumor types. IL-1b-deficient tumor-bearing mice were

shown to have lower levels of CCL2 in tumor tissue, which

resulted in decreased macrophage infiltration and CD11b+

dendritic cell maturation (65). Conversely, CCL2 was reported
to induce IL-1b expression in TAMs (59). The regulation

mechanism of IL-1b remains unclear. Further, CCL2 could not

activate IL-17+ gd T cells and neutrophils in the absence of

CCR2+ TAMs, indicating that TAMs are important mediators

and targets of CCL2 function.

GM-CSF is a key cytokine responsible for differentiation of
M2 TAMs. Yoshimura et al. identified GM-CSF derived from

4T1 cells as an important inducer of CCL2 expression in

macrophages (66). They also recently reported that GM-CSF-

deficient tumor cells did not show retarded growth rates and had

no effect on overall CCL2 expression levels in 4T1 tumor tissue,

indicating that non-myeloid-cell-derived CCL2 is also influenced
by GM-CSF deletion (21).

Metabolic Dysfunction of Tumor Induces CCL2

Expression and TAM Recruitment
Tumor metabolism is frequently observed to be abnormal in

tumor cells and in non-tumor cells in the TME. Mutations of

isocitrate dehydrogenases 1 and 2 (IDH1/2) have been identified
as specific biomarkers of brain tumors (22). Moreover, 2-

hydroxyglutarate, the major metabolite of IDH1/2, could

initiate activation of pro-inflammatory microglia, a specific

subtype of macrophages in brain tissue. Pretreatment of

primary microglia with glioma-cell-conditioned media

significantly suppressed NF-kB activity and subsequent CCL2
gene expression (23). Anisiewicz et al. demonstrated the impact

of calcitriol, the key metabolite of vitamin D metabolism, on

metastatic mammary gland cancer (67). Administration of

vitamin D compounds increased plasma CCL2 and Arg1

expression in tumors, contributing to increased macrophage

infiltration in the TME.

Mitochondrial dynamics have an important function in the
tumor immune response. Mitochondrial dysfunction is often

observed in various tumor types (68). Dynamin-related protein 1

(Drp1), a protein responsible for mitochondrial fission and

fusion dynamic balance, was found to regulate mitochondrial

DNA (mtDNA) stress (69). Whereas cytosolic mtDNA stress was

reported to significantly abrogate oxidative phosphorylation and
trigger the calcium-dependent adaptive immune response (70),

Drp1 overexpression-induced mitochondrial fission promoted

CCL2 expression, resulting in CD163+ TAM infiltration in HCC.

Similar results were obtained by Grasso et al, who found that

mtDNA deprivation of 4T1 cells greatly hampered tumor

formation ability and decreased CCL2 gene expression (70).

Oncogenic Mutations Contribute to Immune-

Suppressive TAM Recruitment

by Inducing CCL2 Expression
Increasing evidence indicates that oncogenic mutations

participate in tumor angiogenesis and formation of an

immunosuppressive microenvironment. Kazantseva et al.

examined the relationship between TP53 isoform D133p53b

and CCL2 expression and their contributions to glioblastoma

progression. Glioblastomas with high D133p53b expression

exhibited an enhanced hypoxia state, more CCL2 expression,

and increased infiltration of CD163+ TAMs (71).
Abnormal activation of epidermal growth factor (EGFR)

signaling is often found in various cancer types. Correlation

analysis by An et al. showed that EGFRvIII enrichment was

commonly found with high CCL2 expression and positively

correlated with macrophage infiltration (72). A clinical trial

reported that erlotinib, an EGFR inhibitor approved by the
Food and Drug Administration, decreased serum CCL2 levels

in non-small-cell lung cancer (NSCLC) patients (73). Mutation

of the retinoblastoma (RB) tumor suppressor gene enhances

CCL2 production in multiple cell lines, resulting in the

recruitment of TAMs, myeloid-derived suppressor cells

(MDSCs), and regulatory T cells (Tregs).
RB mutation results in increased fatty acid oxidation, which

can upregulate mitochondrial superoxide and activate JNK

signals. This indicates that CCL2 plays an important part in

oncogenic mutation-induced immune escape by regulating fatty

acid metabolism. The crosstalk between oncogenic mutation and

chemokine signals requires further investigation (74).

CCL2 Assists Tumor Metastasis via TAMs
CCL2-induced tumor spreading and metastasis are regarded as

important results of TAMs recruitment and polarization (22).

In colorectal cancer, CCL2 was found to be strongly

correlated with endothelial–mesenchymal transition, and

inhibition of CCL2 significantly reduced macrophage

infiltration and tumor metastasis mediated by circulating

cancer cells (20). Macrophage-derived CCL2 can directly target
non-neoplastic epithelial cells and transform them into more

invasive ones. MCF10A cells receiving CCL2 signals show

enhanced expression of ERO1-a and MMP9, which is crucial

to the invasiveness of MCF10A cells co-cultured with

TAMs (62).

Tissue-resident macrophages or myeloid-derived specific cells
assist metastasis in many cancers. Skeletal metastasis also has

been shown to be driven by CCL2 (23). There is evidence that

CCL2 derived from osteoblasts is responsible for osteoclast

recruitment (67). Synergic effects of parathyroid hormone

derived from tumor cells and CCL2 derived from bone host

cells contribute to bone remodeling and formation of a
premetastatic environment (68). Interstitial macrophages

overexpressing CCL2 are responsible for infiltration of CCR2-

expressing alveolar macrophages from the blood stream, which

facilitates lung metastasis (69).

Tumor-secreted microparticles participate in the modulation

of tumor-infiltrating lymphocytes and myeloid-derived immune

cells. Circulating tumor microparticles can reprogram TAMs;
this is conducive to lung metastasis. Tumor-derived

microparticles assist lung residential macrophages to take up

most of the lung parenchyma and produce more CCL2 (70).

Hypoxia-induced ejection of CCL2-rich exosomes from tumor

cells enhances oxidative phosphorylation in macrophages and
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tumor progression (71). Neoadjuvant chemotherapy was shown

to induce release of microvesicles from breast cancer cells

containing more CCL2 molecules; it also enhanced infiltration

of Ly6C+CCR2+ monocytes recruitment in the lung pre-

metastatic site (72).

Tumor-Associated Neutrophils
Tumor-associated neutrophils (TANs) in the TME function as

both anti-tumor and pro-tumor regulators in tumors with various

immunogenic characteristics (75, 76). The CD66b+, CD117+,

CD11b+ neutrophil subsets are immature TANs. Neutrophils
expressing CD66b, CD11b, PD-L1, and high levels of CD170

represent the pro-tumor subtype, whereas CD66+, CD11b+,

CD170 low, and CD177+ neutrophils have an anti-tumor role

(77, 78). The inflammatory state of the TME is significantly

dependent on the activation state of TANs (79). TANs are

recruited in response to CCL2 secreted by tumor cells and
stromal cells in the tumor environment and may automatically

secrete CCL2 to amplify the inflammation response.

Bilateral Roles of TANs in Tumor Progression
Neutrophils have diverse roles in altering the metastatic ability of

cancer cells in response to different stimulations.
Investigations using multiple metastatic models have

provided evidence that neutrophils entrained by CCL2-

expressing tumor cells are capable of attenuating lung

metastases (80). CCL2 secreted by tumor cells is critical for the

killing capacity of neutrophils. CCL2 knockdown in primary

tumor cells resulted in retarded tumor growth but earlier
development of lung metastases. Enhanced TGFb secreted by

tumor cells was also found to weaken the killing capacity of

tumor-entrained neutrophils and transform TANs into a pro-

tumor phenotype (81). Tumor cells can also induce CCL2

expression in TANs in a paracrine manner, resulting in a

protective effect against chemotherapy (82).

Circulating neutrophils may have the opposite role in tumor
metastasis. In mammary tumors, CCL2 induces crosstalk

between IL-1b-producing TAMs and gd T cells, eventually

results in immunosuppressive neutrophil entrainment to form

a pre-metastatic niche (59). A high level of CCL2 in primary

mammary tumor tissue is the major initiator of the tumor

inflammation state via recruitment of inflammatory monocytes
and release of IL-1b. IL-1b was also found to be responsible for

circulating neutrophil polarization, which is dependent on IL-17

produced by activated gd T cells. The interaction between TAMs

and TANs also maintains the inflammatory balance in the TME.

CCR2-deficient mice did not show reduced tumor inflammation,

but MMP9+ neutrophils were found to be recruited in the
TME (83).

Cytokine-Dependent Regulation of the Killing

Capacity of TANs
CCL2-mediated CCR2+ monocyte recruitment in the tumor was
shown to significantly enhance the killing capacity of neutrophils

(84). Inflammatory monocytes in the TME release high levels of

IFNg, resulting in activation of killer neutrophils (TMEM173+

neutrophils). Yoshimura and Takahashi also identified IFNg as

the critical cytokine for neutrophil survival and the production of

CCL2 by neutrophils (1, 85). Moreover, HCC-secreted CCL2

induced PD-L1 expression in tumor-infiltrating neutrophils,

which hampered T cell-dependent tumor immunity. TNF

family members function as critical signals for neutrophil
activation (86). In 1998, Chuluyan et al. confirmed the

chemoattractant function of TNFa-treated neuroblastoma cell

supernatant for neutrophils, in which CCL2 upregulation was

detected (87). Further, Yamashiro et al. reported that activated

monocytes could effectively stimulate CCL2 expression in

neutrophils, and that this effect could be interrupted by anti-
TNFa-IgG (88). The following year, they confirmed the

indispensable role of TNFa in CCL2 production in neutrophils

(89). Cancer-associated mesenchymal stem cells (CA-MSCs)

interact with neutrophils and enhance their CCL2 and TNFa

production. Reciprocally CA-MSCs are differentiated to cancer-

associated fibroblasts (CAFs) assisted by TANs (90). A similar
finding was reported by Cheng et al. in their research on HCC

(13). IL-6-STAT3 signaling plays an important part in these

crosstalk phenomena.

TUMOR-ASSOCIATED STROMAL CELLS

The tumor stroma is abundant in the TME and functions as a

physical barrier to exhaust the immune response against

tumors (91).

Cancer-Associated Fibroblasts
CAFs express multiple surface antigens and are considered to

participate in intimate crosstalk with tumor cells and immune

cells. In recent years, CAFs were identified as an important

source of CCL2, suggesting that they may regulate tumor

immunity in an inflammation-dependent manner.

Fibroblast Activation Protein Is Closely Associated

With CCL2 Production in CAFs
FAP is the classical biomarker for CAFs. Evidence indicates that

FAPmaintains CCL2 production by CAFs via continuous JAK2–

STAT3 signaling (92). The activation of CCL2 by FAP is

probably due to STAT3 phosphorylation rather than
modification of the CCL2 protein (93). Geng et al. investigated

the anti-tumor effects of a FAPa-targeted tumor vaccine in a

murine model of breast cancer and found evidence that the

FAPa vaccine significantly enhanced CD8+ T cell infiltration.

CCL2 expression decreased, leading to a decrease in the

infiltration rate of MDSCs after vaccine administration (94).
CAFs were also found to directly enhance tumor growth via the

CCL2–CCR2 axis in breast carcinoma (95). CCR2+ cancer cell

invasiveness was enhanced by fibroblast-derived CCL2 via SRC

and PKC activation. Although the CCL2–CCR2 axis is primarily

considered to be a chemokine pathway involved in myeloid

cell-participated immune regulation, CCR2-expressing tumor

cells can also directly interact with CCL2 for itself activation.
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The relationship between the tumor stroma and inflammation in

the TME has aroused increasing interest in recent years.

The TGFb family consists of classical signaling molecules that

are responsible for tumor stroma formation. Xu et al. focused on

the mechanism of TGFb2 in promoting esophageal squamous

cell carcinoma (ESCC) metastasis (43). Collectively, their results
showed that TGFb2 production and secretion had significant

responsibility for tumor angiogenesis and that CAFs have an

important role in this process. Moreover, CAF-derived CCL2

was one of the most probable factors for tumor angiogenesis.

These findings were validated by in vivo studies. Dituri et al.

reported that TGFb1-treated HCC-derived fibroblasts showed
inhibited CCL2 production (43). Patient-derived CAFs were

subjected to single-cell RNA sequencing to identify classical

CAF biomarkers and divided into six subpopulations based on

their top differentially expressed genes. CAF-derived CCL2 was

proved to promote myeloid cell recruitment and maintain a

chronic inflammatory state in the TME (96).

Interaction Between CCL2+ CAFs and Myeloid Cells

Assists Immune Escape
Several recent studies have focused on CAF-derived CCL2 in the

TME and its role in regulating migration and maturation of

myeloid-derived cells in various tumor types. MDSCs are

believed to have an independent role (97). Xiang et al. found
that the abundance of CAFs in lung squamous cell carcinoma

were positively correlated with monocytic myeloid cell

abundance (96). CAFs were able to recruit CCR2+ monocytic

cells and polarize such cells into MDSCs, which hampered CD8+

T-cell-dependent tumor immunity. Early recruitment of

macrophages is correlated with cancer initiation, which
includes formation of a favorable TME. CAF recruitment and

fibrosis stroma formation in tumors are also dependent on

macrophage recruitment (98). The role of fibroblasts in the

early progression of ductal carcinoma in situ remains to be

explored. Brummer et al. identified the CCL2–CCR2 axis as a

critical mediator of this process (99). CCR2 overexpression in

mammary tumor cell line SUM225 significantly enhanced
survival and migration capacity. Increased infiltration of

CCL2+ fibroblasts was also observed.

Cancer-Associated Adipocytes
Epidemiologic research has identified obesity and excessive fat

accumulation as risk factors in tumor patients (100, 101).

Accumulating evidence indicates that high levels of adipocyte

accumulation in the TME may be supportive of tumor
progression, metastasis, and immunosuppression (102).

Adipokines are termed as a bunch of cytokines secreted by

adipocytes, including leptin, adiponectin and CCL2. In recent

years, abnormally increased level of various adipokines was often

observed in various cancer types (103). Various adipokines are

pro-inflammatory, which is activated by NF-kB signaling (104).
CCL2, as an important adipokine, mediates crosstalk between

cancer cell and adipocytes (105, 106).

Infiltration of adipose stromal cells into in tumor tissue

enhance CCL2 production, contributing to more recruitment

of myeloid-lineage cells (98). Uchiyama et al. found that

intermittent hypoxia upregulated CCL2 expression in

adipocytes (107). Interaction between cancer cells and

adipocytes is essential for adipocyte polarization that favors

tumor progression (108). In prostate cancer, tumor-cell-

derived IL-1b could reprogram adipocytes to have a pro-
inflammatory phenotype, as evidenced by upregulation of

CCL2 and COX2 (109). The CCL2–CCR2 axis has an impact

on adipocyte differentiation. CCR2 inhibition by cenicriviroc

significantly reduced expression of proteins related to adipose

differentiation in hepatocytes, which prevented hepatocyte

steatosis and carcinogenesis (110, 111). It was shown that the
CCL2–CCR2 axis linking cancer cells with omental adipocytes

supported peritoneal metastasis of ovarian cancer (44). Data

analysis also showed that the CCL2, which enhanced tumor

migration ability via the PI3K/AKT/mTOR pathway, is

originated from adipocytes, not the tumor cell.

Mesenchymal Stem Cells
The tumor stroma has a supportive role in many tumor types;

this is mainly mediated by cancer-associated MSCs (CA-MSCs)
and cell subtypes differentiated from MSCs (112). TA-MSCs

migrating to tumor regions are involved in multiple mechanisms.

There exists a complicated chemokine network involving CA-

MSCs and tumor cells (8, 50, 113–115). Canonical therapeutic

approaches such as chemotherapy can induce MSC enrichment

in the TME. TA-MSCs also have a bilateral role in the TME,
indicating that such cell subtypes have high plasticity and could

be tuned for anti-cancer therapy (116, 117).

Experimental analysis has demonstrated that MSCs show

enhanced PD-L1, TGFb, and CCL2 expression in tumors

(118). Pasquier et al. reported that CCL2/CCL5 secreted by

MSCs induces chemoresistance in ovarian cancer. CCL2

promoted PYK2 phosphorylation in ovarian cancer cells via
IL-6 secretion in a coculture system.

Biomechanics stimulation has also proved essential for MSC

differentiation by remodeling the tumor matrix (119). Wong

et al. found that soft extracellular matrix remodeled

mesenchymal stromal cells into an inflammatory phenotype by

inducing monocytic CCL2 secretion (120). Forced changes in the
tumor promote pro-invasive remodeling of tumor-associated

mesenchymal stem-like cells via CCL2-mediated activation of

myosin light chain 2 (121). Therapy-induced reaction oxygen

species production was also found to be correlated with MSC

activation. Application of photodynamic therapy to MSCs

resulted in decreased secretion of CCL2, which attracted TAM

infiltration (122).

T CELLS

The hampered anti-tumor response is characterized by

exhaustion of cytotoxic tumor-infiltrated T cells and abnormal

Treg activation (123). Emerging evidence indicates that the

CCL2-CCR2 axis could influence T cell-mediated tumor
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immune response, which is complicated due to the variety of T

cell subtypes (124–126).

Cytotoxic T Cells
The early study revealed that CCL2-null 4T1 cells elicited

enhanced cytotoxic T cell recruitment and IFN-g secretion in

vivo and in vitro, while CCL2-deletion did not show enhanced
immunogenicity of the total tumor (127). Of note, the author

pointed out that increased cytotoxic T cell function could not

necessarily imply increased immunogenicity, which was also

presented by Knight, D. A., et al. (128), but enhanced

immunogenicity, such as immunogenic cell death, often results

in cytotoxic T cell activation (129). CCL2 also could indirectly
reinforce or frustrate cytotoxic T cells by myeloid-derived cells,

like monocytic-derived dendritic cells, MDSCs, or TAMs (124,

125, 130, 131). NF-kB activation is commonly considered as a

signal in favor of tumor cell survival in many cancers. However,

NF-kB-induced CCL2 expression was reported to maintain T

cell-mediated immune surveillance (132). The author also

hypothesized that CCL2 expression level could predict a
patient’s response to immunotherapy.

The anti-tumor ability of gd T cells attracts great attention in

immunotherapy. It was reported that the CCL2-CCR2 axis

possesses chemotaxis property toward cytotoxic type 1 gd T

cells in the TME of B16 melanoma tumor model (133).

Conversely, type 1 gd T cells were also found to be
immunosuppressive in other cancer types (134).

Adoptive T-Cell Immunotherapy
Adoptive T-cell immunotherapy is an emerging therapeutic

strategy attracting increasing attention in recent years. The

early study elucidated the chemotaxis ability of CCL2 toward

adoptively transferred T cells (135). Since CCL2 secreted by

tumors could not become a chemoattractant towards CCR2low

CD8+ T cells, generation of the functional CCR2-expressed
CAR-T cells were reported to better localize in the tumor

microenvironment (136, 137). Enhanced tumor trafficking

effect of CAR-T by expressing CCR2 could be a potential

strategy in combination with other CAR-T modification

approaches to improve CAR-T therapy.

Regulatory T Cells
Regulatory T cell, which refers to CD4+CD25+Foxp3+ T cell, is

the major T cell subtype in response to CCL2. Chang et al. first
reported Treg recruitment in response to TAMs and microglia in

glioblastoma multiforme (133). The CCL2–CCR2 axis has a role

in the process of Treg recruitment (134). Resistance is commonly

encountered in radiotherapy treatment of solid tumors in clinical

settings. Enhanced CCL2 release by irradiated tumor cells

contributes to the recruitment of inflammatory monocytes and
CCR2+ Tregs. Loyher et al. also observed the dominant role of

the CCL2–CCR2 axis in trafficking Tregs; furthermore, they

found that preferential clearance of CCR2-positive Tregs by

low-dose cyclophosphamide significantly improved the

prognosis of pre-clinical models receiving immunotherapies

(138). Liu et al. reported that zoledronic acid could inhibit the

interaction of breast cancer cells with Tregs by downregulating

cancer-cell-derived CCL2 (139). Li et al. found that RB

inactivation not only promoted tumor proliferation but was

also responsible for enhanced Treg recruitment via CCL2

(140). However, conventional T cells accepting tumor antigens
show low CCR2 expression compared with Tregs, which

indicates a specific function of tumor antigens on Tregs. CCL2

blockade was reported to significantly enhance vaccine-mediated

cancer immune response (141). It was also reported that tumor-

specific vaccination induced migration of CCR2+ Tregs into the

tumor region. Che et al. reported that a therapeutic vaccine for
cervical cancer resulted in decreased infiltration of Foxp3+ Tregs

and downregulation of CCL2 (142).

Circulating Tregs are not the only T cell subset to express

CCR2. Ge et al. found that bone marrow (BM)-resident Tregs,

but not naïve T cells in the BM, could specifically express CCR2

under tumor antigen activation (143). These Tregs possess a
strong migration capacity and can infiltrate into TME during

cancer development together with the development of adaptive

tumor immunity. CCL2 levels are not always positively

correlated with abundance of infiltrating Tregs; this varies

according to the tumor type and inflammatory state. Jia et al.

reported that in NSCLC, administration of an EGFR tyrosine

kinase inhibitor significantly reduced Treg infiltration,
accompanied by enhanced CCL2 expression (144).

Cytotoxic T cell abundance and activation state are necessary

parameters during research and clinical immunotherapy.

Effective T cell infiltration and activation require multiple

stimulations and are under complicated control. As discussed

above, CCL2 expression in the TME elicits chemotaxis to
circulating T cells and the CCL2-CCR2 axis contributes to the

trafficking of T cells in the TME. CCL2 even directly regulates

cytotoxic T cell activation. To summarize, the myth of CCL2

mediation in T cell behavior is mainly due to the complex T cell

subtypes. It is necessary to validate the CCR2 expression in

different T cell subtypes.

CONCLUDING REMARKS

The immune response against tumors is compromised for many

reasons, particularly chronic inflammation in the TME. By

reviewing research on multiple tumor-infiltrating host cells, we
have clarified the capability of CCL2 to initiate tumor

inflammation. Pro-inflammatory stimulation and signaling

molecules such as TNFa activate CCL2 transcriptionally, and

oncogenes such as p53 and RB also directly regulate CCL2

expression. Several non-coding RNAs alter the inflammation

state of the tumor through post-transcriptional effects on
signaling pathways such as NF-kB and VEGF signaling.

Tumor cells possess the ability to actively secrete CCL2.

Among the many reasons for this, genetic mutations and

metabolic dysfunction have been most investigated. Classical

chemotherapy and radiotherapy for cancer also stimulate
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CCL2-dependent chronic inflammation and tumor survival.

Drug-induced fibrosis builds barriers against effective

infiltration of tumor-antigen-presenting immune effector cells.

CCL2 is responsible for the recruitment of immune effector cells,

including macrophages, MDSCs, MSCs, and Tregs (Figure 2).

Studies have shown that CCR2+ TAMs, CAFs, and cancer-
associated adipocytes serve as additional sources of CCL2;

these findings demonstrate the non-canonical roles of CCL2

in fibrosis generation, mesenchymal–epithelial transition,

paracrine-induced tumor invasion, and angiogenesis.

Tumor-infiltrating macrophages, MSCs, and neutrophils have

a high potential for plasticity, and their activation states are

highly cytokine-dependent. IL-1b and TGF-b have crucial roles
in CCL2-induced macrophage polarization and tumor-entrained

neutrophil education, which weaken cytotoxic capacity and are

also correlated with inflammation-induced immunosuppression.

IFNg and TNF-family cytokines have been reported to maintain

the anti-tumor subtype of TANs. Other reviewers have also

highlighted the bilateral role of chronic inflammation in cancer
progression (145). Interestingly, increased IFNg and TNF levels

in tumors are considered to represent valid evidence of cytotoxic

T cell activation in the TME, while these cytokines also function

as stimulators of CCL2 production, which could simultaneously

induce regulatory T cell trafficking and immune suppression.

These seemingly contradictory phenomena imply that there exist

more complicated mechanisms of CCL2 regulation. Further
investigation of the underlying mechanisms could focus on the

following aspects: (i). additional transcription factors that may be

involved in CCL2 mRNA synthesis; (ii). potential post-

transcriptional regulators of CCL2 mRNAs, such as circular

RNAs; (iii). unexpected chemical modifications or protein

interaction networks involving CCL2 molecules; and (iv). the

CCL2-CCR2 axis functions diversely according to specific cell
subtypes. The CCR2 functional researches on specific cell

subtypes are required to better explain the CCL2 effect. To

conclude, CCL2 has both anti-tumor and pro-tumor effects,

depending on the interaction between cancer cells and host

cells. To facilitate anti-tumor therapies, the duration and range

of CCL2’s functions should be considered and modified
where necessary.

FIGURE 2 | Host cells are involved in the tumor microenvironment.
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