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CCL2 Induces Prostate Cancer Transendothelial Cell
Migration Via Activation of the Small GTPase Rac
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Abstract Nearly 85% of the men who will die of prostate cancer (PCa) have skeletal metastases present. The ability
of PCa cells to interact with the microenvironment determines the success of the tumor cell to form metastatic lesions. The
ability to bind to human bone marrow endothelial (HBME) cells and undergo transendothelial cell migration are key steps
in allowing the PCa cell to extravasate from the bone microvasculature and invade the bone stroma. We have previously
demonstrated that monoctyte chemoattractant protein 1 (MCP-1; CCL2) is expressed by HBME cells and promotes PCa
proliferation and migration. Inthe current study, we demonstrate that the CCL2 stimulation of PCa cells activates the small
GTPase, Rac through the actin-associated protein PCNT1. Activation of Rac GTPase is accompanied by morphologic
changes and the ability of the cells to undergo diapedesis through HBME cells. These data suggest a role for HBME-
secreted CCL2 in promoting PCa cell extravasation into the bone microenvironment. J. Cell. Biochem. 104: 1587-1597,

2008. © 2008 Wiley-Liss, Inc.
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Prostate cancer (PCa) skeletal metastasisis a
major clinical concern associated with intract-
able pain, bone fracture, and paralysis resulting
from spinal cord compression and a rapid
degradation in quality of life [Thalmann et al.,
2000]. Of the more than 30,000 men that will die
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of PCa in 2007, nearly 85% will die with
significant skeletal metastases and associated
co-morbidities [Thalmann et al., 2000].

The metastatic cascade is an ordered series
of steps that a cancer cell must successfully
complete to form a tumor at a distant site
[Fidler, 1990]. One key step is extravasation
from the circulation to the distant organ
environment [Fidler, 1990]. PCa cells undergo
transendothelial cell migration (tumor -cell
diapedesis) across a barrier of bone marrow
endothelial cells to extravasate into the bone
microenvironment [Lehr and Pienta, 1998;
Cooper and Pienta, 2000; Cooper et al., 2000].
The molecular mechanisms involved in PCa
tumor cell diapedesis have not been extensively
explored.

Recently, we have reported a role for the Rho
GTPases in PCa bone metastasis [Yao et al.,
2006]. Rho GTPases are molecular switches
involved in reorganizing the actin cytoskeleton
and are key mediators of metastasis [Ridley and
Hall, 1992b; Esteve et al., 1998; Gampel et al.,
1999; Evers et al., 2000; Sahai and Marshall,
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2002; Hall et al., 2006]. Previously, we have
demonstrated a role for RhoC and Rac GTPases
in PCa cell migration and invasion in response
to bone-associated factors, implicating these
proteins in the process of bone metastasis
[Hall et al., 2006; Yao et al., 2006]. Our data
demonstrate specific roles for the individual
GTPases in PCa cell invasion and transendo-
thelial cell migration, suggesting that activa-
tion of differential GTPase activation controls
these events.

Chemotaxis and motility are essential com-
ponents of tumor cell trafficking and metastasis
[Romanov and Goligorsky, 1999]. Therefore,
identifying the key components linking the
connection between the chemoattractant-acti-
vated receptor and cytoskeletal reorganization
is an important part of understanding tumor
biology and may lead to the identification of
novel therapeutic targets. Previously, we dem-
onstrated that human bone marrow endothelial
(HBME) cells secrete high levels of CCL2, a
member of the CCP chemokine family primarily
known to promote monocyte and macrophage
migration to the sites of inflammation [Ohta
et al., 2002; Balkwill, 2003; Loberg et al., 2006].
CCL2 acts as a mitogenic factor for PCa cells,
but also stimulates cellular motility and may act
to recruit PCa cells to the bone microenviron-
ment [Loberg et al., 2006; Loberg et al., 2007].

Like other chemokines, CCL2 potentially
regulates tumor cell motility through the
activation of the Rho GTPases [van Golen,
2003]. This is highly likely since CCL2-stimu-
lated monocyte chemotaxis is linked to the actin
cytoskeleton via the interactions of the putative
CCR2 receptor with PCNT1, a novel actin
regulating protein [Terashima et al., 2005].
Stimulation of CCR2 with its ligand, CCL2,
induces clustering of the receptor and PCNT1
on the leading edge of monocytes and macro-
phages [Terashima et al., 2005] and regulates
the ability of these cells to migrate through
activation of Rac GTPase. Activation of Rac
GTPase is required for lamelipodia formation,
which in turn is required for sensing the
junctions between the endothelial cells [Tera-
shima et al.,, 2005]. Previously, we demon-
strated that CCL2 stimulation of PC-3 PCa
cells led to distinct changes in cellular morpho-
logy [Loberg et al., 2006]. The morphological
changes were consistent with the epithelial to
mesenchymal transition (EMT) observed when
RhoC GTPase activity was downregulated in

PC-3 cells [Yao et al., 2006]. The observed EMT
was accompanied by an increase in sustained
Rac GTPase activity [Yao et al., 2006]. In the
current study, we hypothesized that activation
of the canonical CCL2-CCR-PCNT1 cascade
activates Rac GTPase thus inducing morpho-
logical changes and tumor cell diapedesis. Our
data demonstrate that CCL2 activation of
PCNT1 increases total and active levels of Rac
GTPase, which is required for PC-3 cell binding
and diapedesis through HBME cells. These data
give insights to the molecular mechanisms
potentially involved in PCa extravasation from
the bone microvasculature.

MATERIALS AND METHODS
Cells and Cell Culture and Reagents

PC-3 PCa cells, originally derived from a
human bone metastasis, was obtained from
ATCC (Mannassass, VA). Human bone marrow
endothelial (TTHBMEC) cells were a kind gift
from Babette Weksler, Cornell University
[Schweitzer et al., 1997]. PC-3 cells were
maintained in 10% fetal bovine serum (Gibco),
90% Ham’s F-12 (Invitrogen Corp., Carlsbad,
CA) growth medium at 37°C in 5% COs..
TrHBMECsS, from here out termed HBME cells,
were grown in 10% FBS and 90% DMEM at 37°C
in 5% CO,,

PCNT1 and Rac siRNA

PCNT1 siRNA constructs were purchased
from Ambion, Inc. (Austin, TX) and Rac-specfic
Smart-pools siRNA was purchased from
Upstate Biotechnology (Charlottesville, VA).
For transient transfection of PC-3 cells 10 pg
siRNA or scrambled sequence was introduced
into actively growing PC-3 cells at 40% con-
fluence in 35-mm dishes using Fugene6 trans-
fection reagent (Roche, Indianapolis, IN).
Efficiency of siRNA-mediated downregulation
of PCNT1 and Rac was tested 72 h after
introduction of the siRNA by Western blot
analysis. Previously siRNA targeting of Rac
was shown to decrease Rac protein levels by 75—
80% [Lin et al., 2005]. PCNT1 downregulation
was confirmed by Western blot analysis using
an anti-PCNT1 antibody (Abcam, Inc.) using
standard SDS—PAGE under reducing condi-
tions. All experiments involving siRNA were
conducted 72 h after introduction of the siRNA
into the cells. Matched scrambled controls were
used for both the PCNT1 and Rac siRNAs.
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cDNA Microarray

Two PCa bone metastases and a soft tissue
(adrenal) metastasis were collected from each of
three patients from the rapid autopsy program
at the University of Michigan. Tissue specimens
were verified for purity by a pathologist and
compared at the transcriptome level by cDNA
microarray analysis comprised of 20 K cDNA
clones. Microarrays were hybridized and ana-
lyzed as previously described [Xin et al., 2003].
Briefly, RNA from the PCa specimens was used
to synthesize labeled ¢cDNA (Cy5) prior to
hybridization and analysis. Microarray slides
were processed and scanned with a Genepix
4000B scanner (Axon Instruments, Union City,
CA).

Real Time (RT)-PCR

Total RNA was isolated from cell lines using
Trizol (Invitrogen Corp.) following the manu-
facturer’s specifications. Purified RNA (5 ug)
was converted to cDNA using Super Script II
reverse transcriptase (Invitrogen Corp.) follow-
ing the manufacturer’s instructions and used
for gene expression analysis by RT-PCR using
an ABI Prism 7900 HT thermocycler. Primers
and probes were purchased from Applied Bio-
systems, Inc. and used with TagMan® Univer-
sal PCR Master Mix, No AmpErase®™ UNG.
GAPDH was used as an internal control to
normalize and compare each sample. Cycle
conditions for RT-PCR were 95°C (15 s), 60°C
(1 min), and 72°C (1 min) for 40 cycles. Thresh-
old cycle number for each sample was normal-
ized to GAPDH for that sample and expressed
on a log scale relative to GAPDH expression.

Immunofluorescence

PC-3 cells were plated on glass coverslips and
were stimulated with 100 ng/ml recombinant
human CCL2 (Chemicon Inc.) for 24 h in the
presence or absence of identified inhibitors.
Cells were fixed in 3.7% paraformaldehyde,
methanol-free for 10 min at room temperature
then permeablized with 0.5% Triton X-100 for
5 min at room temperature. Cells were rinsed
twice with PBS and incubated for 30 min at
room temperature with 3% bovine serum albu-
min (BSA) in PBS + 0.05% Tween20 to prepare
cells for staining. Cells were incubated with
anti-PCNT1 (Abcam, Inc.) at a 1:50 dilution in
BSA solution followed by donkey anti-goat
AlexaFluor 488 secondary antibody at 1:100

dilution (Molecular Probes, Inc.). Cells were co-
stained with Rhodamine-phalloidin (Molecular
Probes, Inc.). Cells were washed and mounted
on coverslips with Pro-Long Antifade contain-
ing DAPI (Molecular Probes, Inc.) following
manufacturer’s instructions. Immunofluore-
sence was visualized using an Olympus IX71
inverted microscope.

Rac GTPase Activation Assays
and Western Blot Analysis

The PAK binding assays were performed
as previously described [Hall, 1990]. Briefly,
Escherichia coli BL21 cells transformed with
the glutathione s-transferase (GST)-PAK-CD
(pAK-CRIB domain) construct (a generous gift
from Dr. John Collard of The Netherlands
Cancer Institute) were grown at 37°C over-
night. Expression of recombinant protein was
induced with 100 uM isopropylthiogalactoside
(Sigma Chemical Co., St. Louis, MO) for 2 h.
Cells were pelleted and resuspended in lysis
buffer (50 mM Tris—HCI, pH 8.0, 2 mM MgCl,,
200 pM NayS,0, 10% glycerol, 20% sucrose,
2 mM dithiothreitol, 1 mM benzamide, 1 mM
PMSF, 1 pg/mlleupeptin, 1 pg/ml pepstatin, and
1 pg/ml aprotinin). After sonication, cell lysates
were centrifuged at 4°C for 20 min at 45,000g
and supernatant was incubated with gluta-
thione-coupled sepharose 4B beads (Amersham
Biosciences Corp., Piscataway, NdJ) for 30 min
at 4°C. Protein bound beads were washed
three times in lysis buffer and resuspended in
GST-FISH buffer (50 mM Tris, pH 7.4, 2 mM
MgCl,, 100 mM NaCl, 10% glycerol, 1% NP-40,
1 mM benzamide, 1 mM PMSF 1 pg/ml leupeptin,
1 pg/ml pepstatin, and 1 pg/ml aprotinin). PC-3
cells were starved for 2 h, stimulated with
100 ng/ml recombinant human CCLZ2 for 30 min,
washed three times with ice-cold PBS, and lysed
in GST-FISH buffer. Protein concentration in
the supernatant was determined by Biorad
protein determination dye (Bio-Rad Laborato-
ries, Hercules, CA). Supernatant (1 mg) was
incubated with glutathione-sepharose GST-
fusion protein beads for 30 min at 4°C. Pull
down beads were washed three times in GST-
FISH buffer, resuspended in Laemmli buffer
and analyzed by Western blotting using anti-
Rac (Upstate USA, Inc., Charlottesville, VA)
monocolonal antibody. Bands were visualized
by ECL chemiluminescence (Promega Corp.,
Madison, WI) and autoradiographic intensities
were quantitated using Imaged software (NCI,
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Bethesda, MD). Western blot analysis for
total GDP- and GTP-bound Rac GTPase was
performed as previously described [Yao et al.,
2006].

Quantitative analysis of Rac activation was
performed using the GLISA Rac activation
assay (Cytoskeleton, Inc., Denver, CO). Briefly,
PC-3 cells were grown to 50% confluence and
transfected with 10 pg pooled PCNT1 siRNA or
scrambled control using FuGene6. Cell lysates
were prepared 72 h later and normalized
according to the manufactures specifications.
Protein concentrations of 2 mg/ml and 1 mg/ml
were used to determine Rac activity using a
1:250 dilution of the primary antibody and 1:250
dilution of the secondary antibody. After anti-
body and horse radish peroxidase detection
reagent incubation, signals were detected on a
Dynex MLX microplate spectrophotometer.
Data analysis was performed on GraphPad
Prism 4.01.

Diapedesis

HBME cells (10,000 cells/ml-0.5 ml) were
layered onto a Matrigel™ coated filter (24 well
plate, 8 pm pore) and grown to confluence
(22£2 h). The day prior to the experiment
the PC-3 cells were grown in 6-well plate to
50% confluence. Cells were transfected with
scrambled control or siRNA to PCNT1 or Rac
GTPase (Upstate Biotechnology) using Fu
Gene6 (Roche). siRNA-treated cells were seeded
(2.75 x 10°/ml, 0.5 m]) onto the HBMEs at 48 h
after transfection in serum free medium. The
lower chamber contained serum (10% FBS)
containing growth medium. The cells were
allowed to invade for 24 h (therefore 72 h post
siRNA-treatment), the upper chamber was
aspirated and non-invaded cells and Matrigel ™
wiped away with a Q-tip. The filter was stained
with 0.1% crystal violet in ethanol for 10 min,
rinsed 3x with water and air-dried. The cells
that were attached to the bottom of the filters
were counted on a Zeiss Axioscope.

Statistics

Data was analyzed by a statistician in the
Department of Statistics at The University of
Delaware. A One-way-ANOVA analysis was
used with Bonferroni’s post hoc analysis
for comparison between multiple groups. A
student’s #-test was used for comparison
between two groups. Significance was defined
as a P <0.05.

RESULTS

To determine whether the actin-associated
protein, PCNT1 is preferentially expressed in
PCa bone metastases, cDNA microarray analy-
sis of skeletal versus adrenal metastases from
three independent patients obtained from the
Rapid Autopsy Program at the University of
Michigan was performed. The analysis revealed
significant upregulation of the PCNT1 (FROUNT)
gene in the skeletal versus adrenal metastasis
(Fig. 1A). A search of the Oncomine™ database
revealed upregulation of PCNT1 expression in
advanced/metastatic PCa in three independent
c¢DNA microarray experiments (Fig. 1B) [www.
oncomine.com].

In order to investigate the contribution of
PCNT1 upregulation on PCa metastasis, we
assessed the differential expression of PCNT1
in a panel of PCa cells lines by qRT-PCR. The
analysis demonstrates that PCNT1 is expressed
ubiquitously throughout the panel PCa cells,
with PC-3 cells demonstrating significantly
higher PCNT1 mRNA expression compared to
all other cell lines (P < 0.001; Fig. 2A). Recently,
monocyte migration was shown to be regulated
by activation of CCR2-mediated PCNT1 local-
ization to the lamellipodial protrusions during
chemotaxis [Terashima et al., 2005]. To begin
to test the role of PCNT1, PC-3 cells were
stimulated with increasing concentrations of
CCL2, 1-100 ng/ml for 24 h, and the expression
of PCNT1 mRNA measured by qRT-PCR.
Stimulation of PC-3 cells with CCL2 resulted
in a dose-dependent increase in PCNT1 mRNA
expression compared to the untreated control
(*P<0.001) (Fig. 2B). This suggests that
PCNT1 expression may be directly regulated
by CCL2 stimulation in PCa cells.

To determine whether CCL2 stimulation of
PCa cells results in cytoskeletal changes, PC-3
cells were treated with CCL2 [100 ng/ml for 24 h]
and then stained for actin organization and
PCNT1 localization. Published data suggests
that CCL2 stimulation of monocytes induces
PCNT1 translocation to the CCR2 receptor,
which clustered at the leading edge of migrating
cell [Terashima et al., 2005]. Untreated PC-3
cells have a distinct actin organization that
consists of thick actin bundles with essentially
no organized protrusions (Fig. 3A). In addition,
untreated PC-3 cells displayed focal, punctate
staining of PCNT1 that was primarily perinu-
clear (Fig. 3B). Stimulation of PC-3 with CCL2
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Fig. 1. cDNA microarray analysis identifies FROUNT (pCNT1)
as significant in prostate cancer bone metastasis. A: The results
from a cDNA microarray comparison between prostate cancer
bone metastases and soft tissue (adrenal) metastases from a single
patient are shown. Similarly expressed genes remain around the
(0,0) intersection and extend along a diagonal rising from left to
right. Genes that are differentially expressed appear in the upper
leftand lower right quadrants of the plot. Select genes are marked
for reference. Data from a 20 K cDNA microarray was log2

significantly altered the actin morphology and
resulted in lamellipodia formation and filopo-
dial protrusions (arrow; Fig. 3D) and a more
diffuse cytoplasmic staining of PCNT1 (Fig. 3E).
Taken together these data suggest that CCL2-
induced chemotaxis of PCa cells may, in part, be

transformed and median centered. B: Upregulation of PCNT1
in advanced prostate cancer was further identified in three
independent cDNA microarray analyses by mining the Onco-
mine Database (www.oncomine.com) (N =normal; B =benign
prostatic hyperplasia; G6=Gleason score 6; G9=Gleason
score 9; PCa=prostate cancer; metPCa=metastatic prostate
cancer). The number of patients/specimens analyzed in each
category is represented in parentheses.

regulated by a direct link via the CCL2 receptor
(CCR2) to the actin cytoskeleton and may prove
to be a potential therapeutic target for inhibit-
ing PCa cell migration and metastasis.

The Rho subfamily of monomeric GTPases
play a significant role in reorganizing the actin
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Fig. 2. Expression of PCNT in prostate cancer cells is induced
by CCL2 stimulation. Panel A: PCNT1T mRNA expression was
assessed by real time-PCR in a panel of prostate cancer cell lines
(VCaP AS, androgen sensitive prostate cancer cell line; VCaP Al,
androgen independent daughter prostate cancer cell line of VCaP
AS). Relative expression to internal GAPDH expression is
displayed as mean+SD from three independent experiments
performed in replicates of three. Panel B: PC-3 prostate cancer
cells were serum starved for 16 h prior to stimulation with human
recombinant CCL2 [1-100 ng/ml] for 24 h in serum free media.
PCNT1 expression was assessed by real time-PCR. Relative
expression to internal GAPDH expression is displayed as
mean & SD from three independent experiments performed in
replicates of three (*P< 0.01).

cytoskeleton by translating signals from the
outside environment [Ridley and Hall, 1992a].
The small GTPase Rac has been shown to
actively form growth-factor induced lamellipo-
dia in cells [Ridley and Hall, 1992b]. Previ-
ously, CCL2 was shown to induce translocation
of PCNT1 in THP-1 monocytes leading to Rac
activation [Terashima et al., 2005]. Addition-
ally, we have previously shown that stimulation
of PC-3 cells with CCL2 induces actin cytoske-
letal rearrangement and the induction of lamel-
lipodial formation [Loberg et al.,, 2006]. To
determine if CCL2 stimulation of PC-3 induces

Rac activation, PC-3 cells were either left
unstimulated or stimulated with 100 ng/ml
CCL2 for 30 min and a GLISA Rac activation
assay performed. Data from three individual
analyses are shown in Figure 4A and demon-
strate a significant 3.1-fold increase in active
Rac GTPase levels (P<0.005) in the CCL2
stimulated cells compared to the unstimulated
cells.

To determine the relative levels of total and
active Rac; a time course of Rac activation and
expression was performed from 0 to 30 min.
using the previously described GST-PAK pull-
down assay [Yao et al., 2006]. Protein lysates
were collected, and active GTP-bound Rac
precipitated with a GST-PAK-sepharose con-
jugate. The precipitate was collected by centri-
fugation, resuspended in Laemelli buffer,
separated by SDS—PAGE and immunoblotting
performed with a Rac-specific antibody. Total
GDP- and GTP-bound Rac was detected by
immunoblotting of whole cell lysates Figure 4B.
Densitometry was performed as described
above and the ratio of active GTP-bound Rac
to total Rac determined. The results of triplicate
assays were combined and are described as
relative levels of Rac activation (Fig. 4C).
Stimulation of PC-3 cells with CCL2 induced a
2.4-fold increase in Rac activation over a
30 min time course; suggesting that a potential
mechanism of CCL2-mediated actin cytoskele-
tal rearrangement is dependent upon Rac
activation. Rac is known to play a prominent
role in the initial phase of cell migration and
development of the leading edge and formation
of lamellipodia [Nobes and Hall, 1995]. Addi-
tionally, Rac has been shown to actively recruit
avPB3integrins to the leading edge of a migrating
cell as a mechanism that promotes formation of
new adhesive interactions with the basement
membrane [Kiosses et al., 2001].

We next tested whether Rac is activated
through PCNT1 and in turn contributes to the
ability of PCa cells to interact with HBME cells
undergo transendothelial cell migration. PC-3
cells were transiently transfected with three
independent siRNA constructs specifically tar-
geting PCNT1. Immunoblot analysis confirmed
a 54-96% decrease in PCNT1 protein expres-
sion using all three siRNA constructs compared
to the scrambled siRNA control (Fig. 5A).

Next, a GLISA Rac activation assay was
performed on PC-3 cells transiently transfected
with either the scrambled siRNA control or a
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Fig. 3. Stimulation of PC-3 cells with CCL2 induces PCNTI1 redistribution and actin cytoskeletal
rearrangement. PC-3 cells were treated with CCL2 (100 ng/ml for 24 h in serum free media] and stained for
actin (red) organization and PCNTT1 (green) localization. Representative figures are displayed demonstrating
actin rearrangement in CCL2 treated cells (D) compared to untreated controls (A). In untreated cells PCNT1
was found to be localized in punctuate perineuclear clusters (B) that dissociated and became diffuse
throughout the cytoplasm with CCL2 treatment (E). The merge of actin and PCNTT1 staining is shown (C,F).

pool of the three siRNAs to PCNT1 or Rac
GTPase and stimulated with CCL2 (100 ng/ml)
for 30 min. As shown in Figure 5B, Rac
activation in PC-3 cells expressing siRNA to
PCNT1 was significantly decreased compared
with the control transfectants (P <0.0043),
suggesting that in PC-3 cells, Rac GTPase is
directly activated by CCL2 via PCNT1. Direct
downregulation of Rac GTPase, shown in
Figure 5B(ii), led to a nearly 80% decrease
in Rac activation after CCL2 stimulation
(P <0.001). This demonstrates that inhibition
of CCL2-stimulated Rac activation is similar
when either PCNT1 expression is inhibited or
Rac expression is directly downregulated.

The effect of inhibiting PCNT1 and thus, Rac
activation, on binding of PCa cells to HBME
cells was tested (Fig. 5C). Binding of PC-3 cells
expressing either siRNA to PCNT1 or to Rac

GTPases decreased the cells ability to bind to
HBME cells by 20—40%. Although this was not
significant, the differences approached signi-
ficance. Suggesting that activation of Rac
GTPase through CCL2 stimulation contributes
to the ability of the PCa cells to bind to and
interact with HBME cells.

To determine the role of PCNT1 in PCa
transendothelial cell migration we used the
PCNT1 siRNA transfected PC-3 cells and
assessed their ability to undergo tumor diaped-
esis in vitro. First, HBME cells were grown to
confluence Matrigel in a transwell insert and
cells were allowed to invade for 24 h. Inhibition
of PCNT1 significantly reduced the ability of
PC-3 cells to migrate though the HBME/
Matrigel layer by 50-80% (Fig. 5D). Taken
together these data provide evidence for the role
of CCL2 mediating PCa cell binding to and
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Fig. 4. Activation of Rac GTPase in PC-3 prostate cancer cells
after stimulation with CCL2. Panel A: PC-3 cells were stimulated
for 30 min at 37°C with 100 ng/ml CCL2 and a GLISA Rac GTPase
activation assay performed. Results from three independent
experiments demonstrate that active GTP-bound Rac levels were
significantly higher, *P < 0.005, in the stimulated cells compared
with unstimulated PC-3 cells. Relative levels of active versus total
Rac GTPase were measured in PC-3 over a 30 min time course
after CCL2 stimulation using a GST-PAK pull down. Panel B is a
representative matched immunoblot of active Rac GTP and total
Rac GDP/GTP. Both active and total levels appear to increase
over the 30 min following CCL2 stimulation. Panel C is the
relative levels of active Rac over the 30 min time course of CCL2
activation. Densitometry was performed on the active and total
Rac immunoblots and a ratio of active and total Rac determined.
Quantitation is the result of three independent experiments.

transendothelial cell migration of HBME cells
through PCNT1 activation of Rac GTPase.

DISCUSSION

PCNT1 or pericentrin appears to be of
particular interest for a number of reasons
[Pihan et al., 2001]. Cellular architecture and
genomic stability are controlled in part by
centrosomes; organelles that organize micro-
tubule arrays including mitotic spindles. Pihan
et al. [2001] have demonstrated that centro-
somes are structurally and numerically abnor-
mal in the majority of metastatic prostate
carcinomas. They demonstrated that centro-
some abnormalities increase with increasing
Gleason grade and with increasing levels of
genomic instability and that selective induction
of centrosome abnormalities by elevating levels
of the centrosome protein pericentrin in pros-
tate epithelial cell lines reproduced many of the
phenotypic characteristics of high-grade pros-
tate carcinoma. Pericentrin also has another
interesting property that may be particularly

relevant to PCa metastasis to bone. It has
several helix—sheet—coil domains and has a
sequence homologous to chitanase. Chitinases
were originally described as a family of proteins
that dissolve hard chitin shells found in the
lower phyla [Connor et al., 2000; Fusetti et al.,
2002; Recklies et al., 2002]. Recently, a human
chitotriosidase was described as a marker for
Gaucher disease with plasma levels of the
enzyme elevated up to two orders of magnitude
[Fusetti et al.,, 2002]. Inactivation of this
enzyme is thought to be responsible for the
significant changes in bone metabolism and fat
deposition observed in that disease [Fusetti
et al., 2002]. Fusetti et al. [2002] have been able
to demonstrate how the chitinases have evolved
into mammalian lectins such as human carti-
lage glycoprotein-39 (HC gp-39) by the mutation
of key residues in the active site, tuning the
substrate binding specificity. HC gp-39 appears
to play a significant role in inflammatory
arthritis conditions where it is elevated in the
synovial fluid [Connor et al., 2000; Recklies
et al., 2002]. Furthermore, osteoblasts at sites of
endochondral and intramembranous bone for-
mation were positive for expression of HC gp-39
[Connor et al., 2000]. Taken together, these data
suggest that PCNT1 is elevated in metastatic
PCa and has similarity to other enzymes that
are active in extracellular matrix remodeling.
The role of the GTPases RhoA, RhoC, and Rac
in PCabiology is just beginning to be elucidated,
particularly in the area of bone metastasis. To
date, few studies have attempted to define the
Rho GTPase profile of metastatic PCa cells. A
recent study by Hodge et al. [2003] suggests
that increased RhoA expression and activity
are responsible for NF-kB-mediated PC-3 cell
invasion. NF-xB is known to be an important
transcription factor in regulating the synthesis
of CCL2 [Kim et al., 2005]. RhoA is known to
inhibit invasion and transendothelial cell
migration and to induce stress fiber formation
throughout the cell. We have shown that
activation of RhoC GTPase promotes invasion
and directional migration in PCa cells [Hall,
1990; Xin et al., 2003; Lin et al., 2005]. Rac
activation is known to promote linear move-
ment and diapedesis via the induction of actin
cytoskeletal reorganization and promoting fili-
podial formation. The data presented here
demonstrates that stimulation of PCa cells with
CCL2 induces transendothelial cell migration
that is dependent upon activation of Rac and
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Fig. 5. PCNTT activation of Rac GTPase. Panel A is a Western
blot analysis of PCNT1 expression in PC-3 cells transfected with
PCNT1-specific siRNAs or scrambled siRNA control. Expression
of PCNT1 was decreased by all three siRNAs to PCNTI
compared with the scrambled control. Panel B: (i) Rac activation
in PC-3 cells transfected with a pool of three PCNT1 siRNAs or
scrambled control. siRNA transfected PC-3 cells were stimulated
with 100 ng/ml CCL2 for 30 min and Rac activation measured
using the GLISA assay. Results from triplicate experiments
demonstrate a significant decrease (*P < 0.0043) in Rac activa-
tion in the siPCNT1-treated cells compared with the scrambled
control. These results were similar to what was observed when
Rac was directly downregulated by siRNA (ii) and PC-3 cells

interactions with PCNT1 resulting in cytoske-
letal reorganization.

Previous work in our laboratory has demon-
strated that Rac is an important mediator of
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stimulated with CCL2. Direct downregulation of Rac resulted in
an 80% decrease (**P < 0.001) in Rac activation. Panel C is a
binding assay of PC-3 cells to human bone marrow endothelial
cells. The ability of the PC-3 cells to adhere to HBME cells after
inhibition of Rac GTPase or PCNT1 was slightly decreased but
was not significant. Panel D are the results of a transendothelial
cell migration assay. Introduction of siRNA to Rac significantly
decreased the PC-3 cells ability to undergo tumor cell diapedesis
(*P < 0.003). Similarly, two of the individual siRNAs to PCNT1
significantly reduced the PC-3 cells ability to cross the endo-
thelial cell layer (*P<0.0001 and **P < 0.0032). All analyses
were performed in triplicate.

transendothelial migration of PC-3 cells [Yao
et al., 2006]. To delineate the role of Rac in
invasion versus transendothelial cell migration
we employed the stably siRNA transfected PC-3
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cells in a modified invasion assay. HBME cells
were added to the upper chamber of a transwell
insert containing 8 pm pores. Serum containing
media was placed in the lower chamber on
the day of the assay. PC-3 cells were then placed
in the upper chamber in serum free media for
24 h. Targeted disruption of Rac attenuated the
transendothelial cell migration of PC-3 cells.

Taken together, these data suggest that
CCL2 stimulation of PCa cells induces an
invasive phenotype that is dependent on
PCNT1 upregulation and Rac activation and
are important in the regulation of transendo-
thelial cell migration of PCa cells.
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