
ETH Library

CCM‐SLAM: Robust and
efficient centralized collaborative
monocular simultaneous
localization and mapping for
robotic teams

Journal Article

Author(s):
Schmuck, Patrik ; Chli, Margarita 

Publication date:
2019-06

Permanent link:
https://doi.org/10.3929/ethz-b-000313259

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Journal of Field Robotics 36(4), https://doi.org/10.1002/rob.21854

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-5822-8441
https://orcid.org/0000-0001-5611-7492
https://doi.org/10.3929/ethz-b-000313259
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1002/rob.21854
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


CCM-SLAM: Robust and Efficient Centralized

Collaborative Monocular SLAM for Robotic Teams

Patrik Schmuck

Vision for Robotics Lab
ETH Zurich

8092 Zurich, Switzerland
pschmuck@ethz.ch

Margarita Chli

Vision for Robotics Lab
ETH Zurich

8092 Zurich, Switzerland
chlim@ethz.ch

Abstract

Robotic collaboration promises increased robustness and efficiency of missions with great
potential in applications, such as search-and-rescue and agriculture. Multi-agent collab-
orative Simultaneous Localization And Mapping (SLAM) is right at the core of enabling
collaboration, such that each agent can co-localize in and build a map of the workspace.
The key challenges at the heart of this problem, however, lie with robust communication,
efficient data management and effective sharing of information amongst the agents. To
this end, here we present CCM-SLAM, a centralized, collaborative SLAM framework for
robotic agents, each equipped with a monocular camera, a communication unit and a small
processing board. With each agent able to run visual odometry onboard, CCM-SLAM
ensures their autonomy as individuals, while a central server with potentially bigger com-
putational capacity enables their collaboration by collecting all their experiences, merging
and optimizing their maps or disseminating information back to them, where appropriate.
An in-depth analysis on benchmarking datasets addresses the scalability and the robustness
of CCM-SLAM to information loss and communication delays commonly occurring during
real missions. This reveals that in the worst case of communication loss, collaboration is
affected, but not the autonomy of the agents. Finally, the practicality of the proposed frame-
work is demonstrated with real flights of three small aircraft equipped with different sensors
and computational capabilities onboard and a standard laptop as the server, collaboratively
estimating their poses and the scene on the fly.

Supplementary Material

Video — https://youtu.be/P3b7UiTlmbQ

Code — https://github.com/VIS4ROB-lab/ccm_slam

1 Introduction

Simultaneous Localization And Mapping (SLAM) constitutes one of the most fundamental problems in
Robotics, since ego-motion estimation and map-building are key in enabling autonomous navigation. Ex-
cluding sensors that rely on external tracking, such as GPS, for the sake of generality, SLAM approaches often
choose to rely only on onboard sensing systems. Aiming for sensors that are able to provide rich informa-
tion about their environment, while exhibiting portability and low power, it is no surprise that vision-based



Figure 1: The UAV platforms used for our experiments:
Two AscTec Neos with payload of 2 kg and one AscTec
Hummingbird (middle) with payload of 200 g.

Figure 2: Two UAV agents collaboratively building a map using
CCM-SLAM. Map points and trajectories for agent 1 and 2 are
colored in black and green, respectively. Constraints across dif-
ferent trajectories in areas visited by both agents are indicated
in red.

SLAM has become very popular. These properties render cameras particularly interesting onboard resource
constraint platforms, such as small Unmanned Aerial Vehicles (UAVs) as the ones depicted in Figure 1, es-
pecially since early works in monocular SLAM (Eade and Drummond, 2006), (Davison et al., 2007) showed
it is possible to perform SLAM with a single camera. With the state-of-the-art in SLAM having reached
a certain maturity and robustness for single-robot scenarios (Engel et al., 2014), (Mur-Artal et al., 2015),
multi-robot systems started to attract growing interest in robotics research. Involving multiple robots in a
task promises to boost the efficiency of a mission (e.g. by dividing up a mapping task amongst the agents),
increase the robustness of the system by sharing information, as well as enable robots to perform tasks not
possible for a single robot, e.g. lifting heavy loads. Therefore, multi-agent systems promise great impact in
a large variety of robotic applications, such as inspection of large industrial facilities and search-and-rescue
scenarios.

While the biggest body of the literature focuses on SLAM with a single UAV, some works investigate either
how information captured by multiple robotic agents can be merged to construct a single, global map, or the
self-localization of agents in relation to each other on the go. However, both challenges simultaneously, i.e.
collaborative localization and mapping from multiple robots, is only addressed by very few systems. It is only
with such a collaborative SLAM functionality that we can use the full spectrum of possibilities in a multi-
robot system, allowing sharing and re-use of information across the agents. This ability is key to collaborative
robotic missions: all robots can be localized in a common map, which is constantly updated during the mission
with the latest sensor measurements, to synchronize their activities and prevent collisions. Meanwhile,
dealing with time delays, ensuring network connectivity and enabling transparent information access among
all agents and the ground station pose great challenges in ensuring the consistency of collaborative SLAM.

In this spirit, here we propose Centralized Collaborative Monocular SLAM (CCM-SLAM), a centralized
collaborative SLAM system designed for multiple small UAVs or other robots, each equipped with a single
camera and a small computer (CPU) onboard. These communicate with a ground station with potentially
much more computational capabilities, as a result, any tasks that are computationally too expensive for
the resource-limited agents (i.e. small UAVs here) are outsourced to the server, while ensuring that all
tasks critical to the autonomy of each agent are still run onboard (e.g. visual odometry). Figure 2 shows a
snapshot from a mission with two UAV agents participating in this framework. The information exchange
between the agents and the server enables sharing of all information amongst all agents; for example, if
Agent A visits a region that has already been visited Agent B, B’s experiences are retrieved from the server
and incorporated in A’s onboard pose estimation process.



The main contributions of the proposed CCM-SLAM framework lie with combining the following key char-
acteristics in one collaborative SLAM system:

• Efficient system architecture: the participating agents always preserve their autonomy running all
navigation-critical tasks onboard, while all computationally expensive tasks on data management is
pushed to the server.

• Robustness: a communication strategy is outlined, enabling CCM-SLAM to cope with limited band-
width, network delays and message loss, most commonly occurring in a real setup.

• Information sharing: experiences collected by a single agent can be shared with any other, if they
visit the same area.

• Scalability: efficient map management on the server detects and removes data with high redundancy
without compromising the robustness of the estimation.

• Applicability: real-world flights are demonstrated and analysed with CCM-SLAM running onboard
three UAVs with heterogeneous computational resources onboard and in a large-scale search-and-
rescue environment.

With most existing literature demonstrating functionality on pre-recorded datasets simulating the agents
using one PC and employing one-way communication (e.g. from the agents to the server), their practicality
remains obscure, while the extent of collaboration that they allow within the team is restricted by design.
Instead, CCM-SLAM addresses these by employing two-way transparent communication (i.e. informing
the agents of others’ experiences), and a thorough analysis on real, live experiments reveals the framework’s
strengths, weaknesses and practicality. This work builds on the centralized architecture proposed in Schmuck
and Chli (2017), where a powerful proof of concept was presented, albeit demonstrated on pre-recorded
datasets, avoiding to deal with issues arising during live estimation from communication over a wireless
network. CCM-SLAM addresses these issues with an efficient and robust communication strategy that
accounts for bandwidth constraints, demonstrated on real experiments, while it extends the server’s map
management capabilities to detect and remove redundancy without compromising robustness, boosting the
scalability of this framework to more data from longer missions, larger scenes or more agents. In fact,
CCM-SLAM is shown to run live with three UAVs flying simultaneously, while handling network problems,
such as delays and message loss. To the best of our knowledge, this is the first time a collaborative SLAM
system enabling communication both from the agents to the server and vice-versa is demonstrated during a
real-world flight running onboard three UAVs.

2 Related Work

Following the emergence of real-time monocular SLAM techniques (Davison et al., 2007), (Klein and Mur-
ray, 2007), it was not long before first works started employing them onboard computationally constraint
platforms such as UAVs (sfly, 2009). Strasdat et al. (2012) conducted an investigation of filter- and keyframe-
based SLAM and concluded that the latter is overall more promising for robust and practically applicable
SLAM systems. The field has been experiencing great progress since then in the robustness of the estima-
tion processes and the size of the maps that can be managed (Engel et al., 2014), (Mur-Artal et al., 2015),
resulting to some degree of maturity in single-robot SLAM paving the way to multi-robot directions. While
ORB-SLAM (Mur-Artal et al., 2015) is a feature-based (or indirect) approach extracting salient regions in
each camera frame, LSD-SLAM is a direct method, operating directly on image intensities. The recent
work of Engel et al. (2017) shows remarkable performance with such a direct approach. However, operating
directly on the image intensities complicates re-using existing map data when returning to a previously
visited location, since the 3D map points cannot directly be matched to image points using a descriptor
as in feature-based methods. Furthermore, a collaborative system using a direct method would require ex-
changing images between participants, therefore significantly increasing the network traffic compared to a
feature-based approach where the exchanged image data can be reduced to the 2D feature keypoints ex-
tracted from the image. Therefore, indirect methods are currently more suited for multi-agent systems that
target extensive exchange and re-use of data.



2.1 Multi-Robot Localization

Several works in the literature tackle the localization problem in a multi-robot scenario, with the aim to
estimate the relative position between the robots, or the position of the robots in a map known in advance.
The work in Martinelli et al. (2005) estimates the relative robot configuration based on mutual observations
using an Extended Kalman Filter (EKF). Achtelik et al. (2011) take this idea a step further, showing a system
where a flexible stereo rig is formed by two UAVs with monocular cameras and Inertial Measurement Unit
(IMU). This system is then used to estimate the relative pose of the UAVs on a simple experimental setup.
Piasco et al. (2016) adopt this approach and build a distributed stereo-vision system with multiple UAVs for
collaborative localization, using an EKF scheme. The work of Luft et al. (2016) also employs an EKF to track
correlations between robots in a decentralized multi-robot system. Oleynikova et al. (2015) present a visual-
inertial system for a UAV and a ground-based robot that localize against the same map. The recent work
of Leonardos and Daniilidis (2017) shows a theoretical approach for EKF-based decentralized multi-robot
state estimation, which is tested in simulation and achieves less conservative estimates than using covariance
intersection. While improving the localization estimates by using information from multiple robots, these
collaborative localization systems do not fuse or share maps between the robots, and without the ability to
build a common map, collaborative missions are very restricted.

2.2 Multi-Robot Mapping

In collaborative mapping the robotic agents participating in the mission contribute to one global map in
order to jointly create a reconstruction of the environment. In Vidal-Calleja et al. (2011), the authors present
such a collaborative mapping system for ground-based robots and UAVs. Each robot uses an EKF-scheme
to build a local sub-map of its environment. The sub-maps are linked based on GPS measurements, co-
observations or robot rendezvous. Other works, such as Google’s “Project Tango” (Google Inc., 2014) and
the work of Guo et al. (2016), do not directly target robotic application scenarios, but collect data with
multiple hand-held platforms such as tablets or mobile phones to build a common map with the input from
these devices. The recent work of Loianno et al. (2016) demonstrates a system that combines both UAVs
and mobile phones. Using multiple UAVs with off-the-shelf smartphones as computation units, they present
a system for map building in a cooperative manner and trajectory planning. Once collaborative SLAM
established a collective estimate of the environment and the relative localization of the agents, systems such
as Loianno et al. (2016) and other approaches such as Chung and Slotine (2009), Kushleyev et al. (2013)
can be employed on top of it to guide the trajectories of the agents, even avoiding hazardous areas of the
environment as demonstrated in Schwager et al. (2017).
Collaborative mapping offers the possibility to boost the efficiency of 3D reconstruction of structures and
environments since information from multiple robots is merged into one global map. However, the map is
usually not shared amongst the agents, and the position of the team members remains unknown to the agents,
prohibiting collaboration amongst the agents going beyond pure scene reconstruction. Forster et al. (2013)
show a collaborative SLAM system for UAVs building on top of a Structure From Motion pipeline. Onboard
each agent runs a keyframe-based visual odometry system, sharing its keyframes with a central server.
The server searches for correspondences between maps to merge them and performs global optimization on
the maps. While this was probably the first collaborative SLAM system to address a multi-UAV setup, no
information is sent back to the agents. As a result, the agents cannot profit from the collaborative estimation
process and optimized map and receive information from other agents, e.g. when exploring an area already
explored by another agent in the past. Generally, “collaborative SLAM” is used in a rather loose sense in
literature. Since the map on the server is not used for pose tracking on the agent at any later stage, systems
such as Forster et al. (2013) target basically collaborative mapping, not collaborative SLAM.

2.3 Multi-Robot Centralized SLAM

The work in Zou and Tan (2013) presents CoSLAM, a collaborative monocular SLAM system with a focus
on handling dynamic environments. Their approach takes image streams from multiple monocular cameras



as input and groups cameras with scene overlap using a place recognition module. Since a keyframe is
captured by all cameras at the same time, CoSLAM requires the cameras to be synchronized, restricting
the autonomy of the agents. Furthermore, this system runs its calculations on a Graphics Processing Unit
(GPU), and initially requires all cameras to observe the same scene to initialize the collaborative SLAM
estimation. These drawbacks render this system impractical to use on mobile robots.
Probably the most important work in the literature, Riazuelo et al. (2014), the authors present C2TAM
for two RGB-D cameras. C2TAM runs PTAM (Klein and Murray, 2007) on the RGB-D image feeds
for SLAM estimation, where only the position tracking is executed on the agent. Each agent creates
keyframes and sends them to the server, that executes all mapping tasks. For further tracking steps, the
server then sends the complete map back to each agent. Therefore, C2TAM can be used with very limited
computational resources. However the agent cannot operate autonomously without relying on the server,
and the underlying assumption of being able to repeatedly send whole maps to the agent is doomed to
become problematic in larger areas. Furthermore, PTAM was a seminal work in keyframe-based SLAM,
though current state-of-the-art SLAM outperforms it (Mur-Artal et al., 2015), achieving more robust and
precise estimates in larger areas. As a result, experiments with C2TAM could only be run in a small office
environment, leaving open questions on the practicality and consistency of the whole system.
Morrison et al. (2016) designed MOARSLAM, a collaborative SLAM system with the target of enabling
multi-device mapping with hand-held devices. Each agent in this system runs ”full” SLAM onboard (i.e.
visual odometry, place recognition and global map optimization). The server acts as a central device for
storing and sharing the agents’ maps. The architecture of this system falls short of exploiting the full
capacity and advantages that a collaborative system offers since the expensive optimization algorithms are
still run on the agent’s side. The server detects correspondences between maps but does not run a global
optimization.
The system by Deutsch et al. (2016) presents a server back-end for collaborative SLAM that is able to
combine different SLAM systems in a collaborative framework. To use this server module, the combined
SLAM systems need to provide it with a pose graph including keyframe and an image linked to it, and
absolute scale, thus excluding, amongst other systems, all pure monocular SLAM systems such as Davison
et al. (2007), Klein and Murray (2007), Mur-Artal et al. (2015). The server back-end merges and optimizes
the maps received by the agents if possible, yet each agent is only informed about updates in its local pose
graph and does not receive information about the sub-maps of other agents on the server. Furthermore,
here as in Morrison et al. (2016), a full SLAM system runs on each agent.
The recent work in Karrer et al. (2018) presents and extension of Schmuck and Chli (2017) to a visual-inertial
sensor setup, which provides metric scale and gravity alignment for the SLAM estimate, and promises higher
accuracy and robustness compared to monocular approaches due to the complementary nature of the sensors.

So far most collaborative SLAM experiments were performed using pre-recorded datasets. Forster
et al. (2013) deployed their system on two UAVs flying in a small indoor environment, but as discussed in
Section 2.2, no communication from the server to the agent takes place in this system. The multi-robot
planner in Loianno et al. (2016) was as well demonstrated during real flight of three small aircraft.
However, the system works in a sequential manner: When receiving information from the server to calculate
trajectories, the UAV agents hover on the spot. Afterward, when trajectory calculation is finished for all
agents, the UAVs start to move simultaneously. While this system is able to plan collision-free trajectories or
multiple UAVs and collaboratively build a sparse map of the environment, no collaborative pose estimation
takes place in this system. Furthermore, if no overlap in the field of view of the UAVs can be detected in
the beginning to establish relative poses, the initial poses of the UAVs need to be known to the server.

2.4 Decentralized Architectures

A centralized architecture of a group of agents sharing information through a server is usually employed
in the literature when it comes to systems applied practically in Robotics. However, some works tackle
collaborative SLAM in a decentralized manner, where all agents exchange information directly amongst
each other and perform all information fusion onboard, without having a central instance that coordinates
the system. Cunningham et al. (2013) propose such a fully distributed SLAM system and evaluate it in



simulation. Each robotic agent performs full SLAM locally. The generated local map is summarized by
marginalization and shared with the other agents. With this shared information, the agents can augment
their local map with neighborhood information. Webster et al. (2013) introduced a decentralized algorithm
in faulty environments using an information filter. Taking up the decentralized approach using a laser-
inertial sensor suite, Dong et al. (2015) presented a decentralized approach for collaborative mapping using
UAVs. Combining distributed architectures and object-based SLAM, the work in Choudhary et al. (2017)
shows a decentralized SLAM system where co-localization of the participating robots is based on commonly
observed pre-trained objects. The recent work in Cieslewski and Scaramuzza (2017) describes an efficient
approach for decentralized place recognition, evaluated with real data, but in simulation. Furthermore,
recent articles address the topic of decentralized collaborative SLAM, focusing on different parts of the
problem, such as map overlap identification (Egodagamage and Tuceryan, 2017), efficient distributed loop
closure (Giamou et al., 2018) and data exchange (Cieslewski et al., 2018), robustness (Zhang et al., 2018)
or the architecture of the complete system (Chen et al., 2017). While all these works shine light onto
different aspects of decentralized SLAM, only pre-recorded datasets are used for the experimental evaluation.

Distributed systems can be used in a wide range of applications and scale better to large numbers
of agents (swarms), since not all data has to pass through a central point. Compared to centralized
architectures, it becomes much more difficult to assure data consistency and avoid double-counting of
information in a distributed system. Furthermore, decentralized systems fall short of the advantage to
transfer computationally expensive algorithms that are not necessarily constraint to real-time operation
to the server’s side, such as map optimization (aka bundle adjustment) and place recognition. In a
centralized system, the robotic agents can benefit from this feature enabling them to only dedicate their
potentially limited resources to performing the most critical tasks, such as real-time visual odometry.
Furthermore, when the robots operate in a large environment, a centralized system allows the robots to
pass older experiences of the environment to the server, maintaining only a local map with limit size onboard.

The system proposed in this article overcomes the need for the agents to rely on the server as in
Riazuelo et al. (2014), while allowing the agents to act autonomously without running a full SLAM system
on every robot as in Morrison et al. (2016) and Deutsch et al. (2016). As opposed to Mohanarajah et al.
(2015), Forster et al. (2013) and Deutsch et al. (2016), where the agent is either not informed about the
global map on the server or only receives updates if the relevant part of the optimized map already exists
on the agent, we consistently share data amongst the agents and augment the agents’ local map with
information from other agents. Unlike Riazuelo et al. (2014) and Deutsch et al. (2016), we use the same
features throughout the whole system and do not need to extract features twice on the agent and the server.
While different aspects of collaborative SLAM, such as robustness or scalability, are also investigated by
other works in the literature, we combine all these aspects in one collaborative SLAM system and provide an
in-depth analysis of their performance. This framework is no tied to UAVs, but uses them as a particularly
hard case for collaborative SLAM as they have low onboard computational power and can move very fast,
making it challenging for SLAM and potentially also for communication due to a higher probability of
message loss. It does not assume a perfect wireless connection and shows an efficient communication design
for collaborative SLAM dealing with network delays and connection loss, and a map management strategy
that identifies and removes redundant parts of the map, thus ensuring applicability and scalability of the
proposed system.

3 CCM-SLAM: System Overview

The architecture the CCM-SLAM framework, depicted in Figure 3, aims at efficiently off-loading compu-
tational intensive, but not real-time constraint parts of the system to a centralized ground station (the
“server”), while keeping all modules necessary for basic autonomy on each agent. For this purpose, each
agent runs real-time VO onboard to estimate its pose and a 3D map of its environment. Since the com-
putational resources onboard the agent are assumed to be more limited than on the server, the local map
maintained by this onboard VO is limited to the N closest keyframes in the vicinity of the agents. Instead,



Data Structures

Server Map StackAgent 1

KFs / MPs

Frame

Agent Handler 1

Intra-Map

Place Rec.

Server

Mapping

Inter-Map Place Rec.

Map

Matching
Map

Fusion

Initiate
Optimization

Pose Graph

Optimization
Global

BA

KFs / MPs

KFs / MPs

Optimize

map(s)

KFs / MPs
Agent

Handler n

Map 

Management

Server

New KFs

Initiate

Initiate

New KFs

KFs / MPs

.

.

. .
.
.Agent n

KFs / MPs

Frame

KFs / MPs

Figure 3: Overview of the CCM-SLAM system architecture. The robotic agent (e.g. a UAV) runs real-time visual odometry

(VO) maintaining a local map of limited size N , and a communication module to exchange data (keyframes (KF) and map

points (MP) and a reference KF KFref , representing its current position) with the server. The server is a ground station
that executes non time-critical and computationally expensive processes: map management, place recognition, map fusion, and
global bundle adjustment (BA). If all agents are recognized to have visited the same place(s), the server map stack contains
the single, global map incorporating all agents’ experiences.

the agent can use the server to offload information, which acts for the agents as a book-keeper that stores
and maintains all experiences from all agents in the server map stack. When revisiting an already mapped
location, the server provides the agents with these past experiences to augment their local maps. The choice
of N depends primarily on the computational capacity of the agent since as shown in 5.4, a larger local map
increases the timings of the onboard modules.
Furthermore, the server runs place recognition, global optimization (bundle adjustment) and redundancy de-
tection to remove very similar or duplicate information arising from multiple visits at the same place by one
or more agents. All maps use a local odometry frame, while information between the maps is exchanged in
relative coordinates from one local odometry frame to the other, therefore the system never makes use of a
fixed global reference frame. It should be noted that CCM-SLAM does not assume any prior information
or configuration regarding the initial locations of the agents. All agents operate independently from each
other until the place recognition module detects overlap between two maps and therefore allows to relate the
measurements involved.
The bidirectional communication between the server and the agents is established via a wireless network. The
communication protocol is able to handle disturbances of the network such as delays and message loss. Both
the server and the agents run a communication module that establishes the exchange of map information and
monitors potential errors in this information exchange. In this centralized architecture, all communication
across the agents goes via the server. In case of a complete loss of connection to the server, an agent cannot
receive information about existing map information from the server, yet still runs VO with a limited map
window onboard. Therefore, its autonomy is preserved at any time during its mission, independently of the
connection to the server.

4 System Modules

The functionalities of the individual CCM-SLAM modules shown in Figure 3 are described in the following.

4.1 KeyFrame-based Visual Odometry

Incoming camera frames from the agent’s camera sensor are processed by a keyframe-based visual odometry
(VO). VO estimates the frame-to-frame motion of the camera by tracking scene landmarks inside the agent’s



local map. These scene landmarks are stored as 3D map point (MPs) in the local map. The VO does not
forward all incoming frames to the local map, but only a subset of the most representative frames, the
keyframes (KFs). KFs and MPs in the local map are connected by edges as described in Section 4.2, forming
a graph-based map. Within VO, tracking and mapping run in parallel in separate threads. The tracking
thread estimates the frame-to-frame movement of the camera and decides whether a frame is transformed
into a KF. The mapping thread processes any new KFs by establishing connections to other KFs in the
local map and triangulating additional MPs using connected KFs. Each KF is assigned a globally unique ID
(consisting of an ascending number and the ID of the agent that created it), to make each KF identifiable
globally.
Conceptually, every VO system can be used as front-end for processing incoming frames on the agent as long
as it is keyframe-based, according to Schmuck and Chli (2017). The VO of CCM-SLAM is implemented using
the VO front-end of ORB-SLAM (Mur-Artal et al., 2015), since this is one of the best performing monocular
SLAM systems currently available. Building on top of this VO system, both the local map structure and the
communication module are integrated into this VO system. This allows CCM-SLAM to limit the local map
to a fixed number of N KFs, ensuring real-time behavior onboard the computationally constraint agents.

4.2 Local Map

The local map L is a SLAM graph connecting consecutive KFs to their MPs as experienced by this agent.
This map is essentially a representation of the agent’s immediate vicinity. In addition, L contains covisibility
information between the KFs in L, forming a covisibility graph. Two KFs are connected by an undirected
covisibility edge if many MPs are observed by both KFs (here, we set the threshold to 15 MPs). The weight
w of an edge connecting KFa and KFb is determined by the number of shared observations of these KFs.
Furthermore, for pose graph optimization, a pose graph is deduced from L on demand.
Trimming the local map implements the limitation of L to N KFs. We define the reference KF that was
last created by the VO as KFref , representing the current location of the agent. If the number of KFs in L

exceeds N , trimming keeps KFref and the N − 1 KFs most recently added to L, while removing older KFs.
Before a KF is removed from the local map, the trimming algorithm verifies whether the server confirmed
that this KF was received. This might not be the case due to communication interruptions. To prevent
data loss, the local map can keep a buffer of up to B more KFs (here we set B = N), that is emptied as
soon as an acknowledgment for the KFs in this buffer is received from the server. If this buffer is also filled
up, so that there are in total N + B KFs stored on the agent, the map trimming algorithm enforces this
upper bound by removing data. Any KFs present in L that have been originally created by other agents are
prioritized for removal, since information between agents is exchanged only via the server, consequently these
KFs are guarantied to be present in the server map stack. This might result to removal of KFs with a strong
covisibility connection to KFref and thus lead to a slightly less informative map of the environment, however
this is less critical than the alternative of permanent information loss. If all of these KFs get removed and
the number of KFs in the agent’s buffer still exceeds B, trimming then prioritizes the removal of the oldest
KFs from the buffer, even if these have not been acknowledged as received by the server.
The choice of N is primarily dependent on the computational power available on the agent, since as shown
in Section 5.4 the timings of tracking, mapping and communication increase with higher N . This allows
to adjust the system to the computational power available on the robotic platform used as agent. Besides
having more information about the current environment onboard the agent, the advantage of a higher N is
that L can hold more data, therefore in cases of communication interruptions, it later reaches the maximum
map size and needs to erase data. Consequently, the system gets more robust and the risk of data loss drops
with increasing N .

4.3 Server Map Stack

The server map stack contains all server maps currently associated to agent handlers. The server maps have
the same graph structure as the local maps on the agents, yet without any restriction on the number of KFs
in the map and as a result contain all past experiences of the respective agent. The information contained in



the server map stack as a whole corresponds to all information that was ever acquired by all agents during
one mission. When initializing the system, one server map is created for each agent in the system, managed
by its corresponding Handler. When two server maps are merged during the mission, both maps are removed
from the Map Stack and replaced by one single new server map containing the information from both maps.
This new map gets associated to all agent handlers that participated in the map fusion.

4.4 Agent Handler

The agent handler manages the corresponding agent’s information arriving to the server. For each agent,
one agent handler is instantiated, that initializes a communication module to communicate with that agent,
initializes a new server map for this agent in the server map stack and creates a map manager and intra-map
place recognition module for this server map. Each of these modules runs on a separate thread in parallel.
Furthermore, it provides an interface to modify the dependencies of the modules of one agent, since when two
server maps are merged, for all modules of all agents involved in the fusion the associated server maps need
to be replaced by the new (merged) one. Additionally, each agent handler Hi, associated to Agent Ai, holds

a Sim(3)-transformation Li S
Mj

i = {Li R
Mj

i , Li t
Mj

i , Li s
Mj

i } that transforms data from the associated agent’s
local map Li into the associated server map Mj from the server map stack on the server’s side. Initially, the

coordinate systems of the two maps on the agent’s and the server’s side coincide: rotation Li R
Mj

i = I3×3,

translation Li t
Mj

i = 03×1, scale
Li s

Mj

i = 1. Following a fusion of Mj with Mk from the server map stack
into a new server map Mm, the relative transformation and scale between Li and the server map associated
to Agent Ai needs to be updated to Li SMm

i as described in Section 4.8.

4.5 Communication Modules

The communication modules on the agent’s and the server’s sides establish the communication link between
them. The ROS communication infrastructure (Quigley et al., 2009) is used for message passing over a
wireless network. This framework does not guarantee real-time message passing, however this is not a
requirement for the functionality of CCM-SLAM, since neither the server nor the agent expect information
from the other side at a fixed rate. On the agent’s side, the communication module keeps track of all
changes in the map, i.e. any added and changed KFs and MPs, and converts this information into a message
that is sent to the server. Since the map keeps changing constantly, the message publishing rate is limited
to a maximum value. Every new message contains any changes since the last message. Furthermore, the
maximum size of the message is also limited, to prevent packing of too large portions of the map into one
message in cases when the connection to the server gets interrupted for several seconds. To prevent race
conditions, the local map is not accessible for VO during message packing, therefore a big message size
could block tracking for long periods of time. Instead, the information that needs to be sent to the server in
such cases is split into several messages. In this implementation, the average time that L is blocked for VO
is kept insignificant (about 0.4 ms). Furthermore, with every message, the agent informs the server about
KFref from the local map that is closest to its current position.

For the communication module on the server’s side, every message that the server sends to an agent
contains the k KFs with the strongest covisibility edges to KFref and their observed MPs, to augment the
local map with this data. This information is considered to be most valuable to support pose estimation
onboard the agent, since VO uses the covisible neighbors of KFref to calculate the pose of an incoming
camera frame. These k closest KFs are chosen based on their covisibility weight regardless of which
agent they originated from. On the reception of KFs and MPs at the server’s side, the communication
module on the server transforms this incoming data from the coordinate frame of the agent’s local map

Li to the coordinate frame of the associated server map Mj using the Sim(3)-transformation Li S
Mj

i

stored by the agent handler, and vice versa outgoing messages. On the server’s side, the message
publishing is also limited to a maximum rate to limit the network bandwidth requirements and the com-
putational effort of the agent required for processing received information. By adjusting the rate and the
parameter k, the communication traffic can be adapted to the maximum bandwidth available in the network.



Loop Closure

Input buffer: KFs arriving
during optimization

(a) Relative coordinates.

Pose graph

(b) Correct alignment after op-
timization.

Global reference frame

Loop Closure

(c) Absolute coordinates. (d) Incorrect alignment after
optimization.

Figure 4: Sending coordinates relative to a previous KF (a,b) vs. sending absolute coordinates (c,d). KFs arriving during
optimization (blue) will be aligned incorrectly after optimization if using absolute coordinates.

Any exchanges of KFs and MP position information between the server and the agents uses a rela-
tive coordinate scheme instead of absolute coordinates, illustrated in Figure 4. Exchanging absolute poses
can lead to problems in case of scale drift on the agent or loop closure on the server: the KFs arriving
during an optimization step will inevitably not be aligned with the resulting optimized map. During Global
BA, the server map is locked, and incoming KFs are queued in an input buffer. After closing the loop,
both ends of the loop are aligned, causing significant pose changes for parts of the map, as illustrated in
Figure 4d. Since data in the input buffer is not corrected by the optimization step, the absolute coordinates
of this data do not align with the optimized map anymore. Transforming incoming data with the calculated
transformation from loop closure does not solve the problem, because this transformation is only applied
locally to align the ends of the loop, and subsequently Global BA applies a different pose change to every KF
in order to minimize the global error. Using relative coordinates however avoids this problem, as illustrated
in Figure 4b: calculating the pose of newly arriving data using the pose of a KF already existing in the
map implicitly propagates the optimization results to the new data. Therefore, each KFi that is sent to the
server encodes two relative poses: one pose ppred relative to its predecessor KFi−1, and a second pose ppar
relative to the KFpar that has the strongest covisibility connection1 to KFi. KFpar is named the parent of
KFi in the covisibility graph. Usually, ppred is used to register KFi in the server map, while ppar is only used
if KFi−1 is not available in the server map. This allows CCM-SLAM to compensate to some extent for the
loss of data – it does not necessarily need KFi−1 to register KFi in the server map, so KFi can be processed
even if the message containing KFi−1 gets lost. For the transfer of data from the server to the agents, the
server encodes all KF poses and MP positions relative to KFref . When the agents’ communication modules
receive KFs and MPs that are already known and registered in the local map, the KFs and the MPs are
updated according to the message since these are already connected in the local map. If the incoming KFs
and MPs are not present in the local map, these connections are established. KFs and MPs sent from the
agents to the server enter the server map accordingly. Any communication between the agents to the
server can be distinguished as two types of messages: “new data” or “updates”. For new data, i.e. newly
created KFs and MPs, an agent sends the whole data structure including 2D feature keypoints extracted
from the image, their feature descriptors, and the associated 3D MPs (for KFs) or connected KFs (for
MPs). For MPs, this results in a message of around 200 Bytes, including the IDs of the associated KFs and
a 36-Byte feature descriptor representing the image keypoint of this MP. For each new KF, the message has
to encode all 20-Byte 2D image keypoints and their associated 36-Byte feature descriptors, which results in
a message of around 55 kB together with other information contained in the message (computed assuming
that the maximum of 1000 features in this KF). However, the 2D keypoints and their descriptors for each
KF are computed only once and do not change, therefore we send this information only once to avoid
unnecessary network traffic. Hence, for all following changes, we only need to send the update message to
the server, containing the new poses of the KFs (and the new positions of each MP). These messages only
have a size of 148 Bytes for KFs and 52 Bytes for MPs. For message passing from the agent to the server,
we employ an optimistic approach: if a message is sent to the server, we assume that it arrives successfully
unless evidence is given that this is not the case. The KF in a message sent to the server are always sorted
beginning with the smallest ID, and also processed by the server in this order. In any message sent to the

1Highest edge weight in the covisibility graph described as in 4.2



agent, the server includes information on which KFs it has already processed. Therefore, when the agent
receives information that KFi was processed, without any acknowledgment that KFi−1 was received, it
becomes evident that this data got lost. In this case, all data for KFi−1, including 2D image keypoints and
descriptors, is sent again to the server. The same approach applies for the MPs. This distinction between
“new data” and “updates” is crucial for the ability of CCM-SLAM to run smoothly onboard all robots
using a wireless connection. As an indication, the mean traffic of 0.37 MB/s achieved in Figure 6a soared
to around 10 MB/s before introducing this scheme. Communicating from the server to the agents, we do
not need to verify whether the messages arrive, since the information relative to the current location of the
agent is continuously sent, and therefore re-sending an old message does not make sense since the agent’s
location probably changes in the meantime until the loss of the message is detected.

In case of a loss of connection to the server, the agent will not receive any more data to augment
its local map or acknowledgment that data arrived at the server. Therefore, it will fill the local map up to
the maximum permitted size and then begin erasing data from it to respect the upper limit. Hence, the
system onboard the agent falls back to a VO with a limited local map window in cases of connection loss,
which still provides all necessary information for an agent to move autonomously through the environment.
As shown in Section 5.3, disturbed communication increases the network traffic and could also in the worst
case lead to situations where the local map (on the agent) and the corresponding server map cannot be
connected any more. The system will again fall back to pure VO mode. A delay in the communication
does not increase the network traffic, but it affects the degree of collaboration between the server and the
agents. If we assume a network of delay δ ms, the current location of the agent KFref known to the server
will always be δ ms behind the real location of the agent. The server then packs the KFs in the vicinity of
KFref into a message and sends it to the agent, which again arrives with a delay of δ ms. Therefore, with
increasing delay, the information from the server will be further away from the current agent position when
it arrives and therefore, less useful to the agent.

4.6 Server Mapping

The server mapping module has three main responsibilities. First, it forwards newly arrived KFs to the
KF Database, intra-map place recognition and the map matching module. The second task is to establish
connections between new KFs and MPs and the exiting pose graph of the corresponding server map. The
third task of the server mapping module is redundancy detection for the KFs in the server map (KF

Rejection). When one distinct location is visited multiple times by one or more agents during a mission,
the map contains several KFs from this location. While some of these KFs, such as those from different
viewpoints, add more information the system, some others might encode almost the same information and
therefore it is not necessary to keep all of these similar measurements. Since map size grows quickly even in
medium-sized environments, such as the one shown in Section 5.7, this redundancy detection is important to
keep a manageable map. This enables a collaborative system to work in large-scale environments, because
the size of the map affects the timings of most processes on the server such as place recognition, map queries
or BA. This KF rejection scheme randomly picks a KFi from the server map, iterates through all neighboring
KFj of KFi in the covisibility graph, and, similar to Mur-Artal et al. (2015), checks their observed MPs. If
for a pre-defined threshold θ % of all MPs of KFj are observed by at least 3 other KFs, KFj is considered
redundant and removed from the server map. Since the connections between the KFs in the map might
change during the mission, CCM-SLAM uses this probabilistic scheme instead of sequentially checking only
new KFs for redundancy with other KFs in the map The KF rejection scheme is performed when the system’s
capacity is not fully used by BA, and in return the BA time is reduced and the server map becomes accessible
sooner again. Furthermore, the rest of the server’s modules (mapping, place recognition) benefit from smaller
server maps, therefore this KF rejection procedure is indispensable for large-scale missions with many agents
in large areas.



4.7 Place Recognition and Keyframe Database

The place recognition system detects overlap between locations in the server map stack using a KF database.
An important feature of this place recognition system is that it is able to match measurement from multiple
monocular camera sensors with different camera parameters. This makes CCM-SLAM a versatile system
since it can be used with heterogeneous robotic agents equipped with different cameras.

The KF Database is incrementally built at runtime, using all acquired KFs from all agents. Imple-
menting an inverted file index using DBOW2 (Gálvez-López and Tardos, 2012) it permits for efficient
look-up queries for a new KF with respect to past KFs with the same features. Extracting the agent’s ID
from the unique ID of each KF, the database can be queried for only a subset of KFs belonging to specific
maps.

For every new KF that arrives at the server, two types of place recognition queries are performed
using the KF database: Intra-Map Place Recognition and Map Matching. Intra-map place recognition
detects previously visited locations inside one server map. Detecting such a trajectory overlap allows to add
new constraints to the pose graph, that can be used in the optimization step to improve the overall map
accuracy. A successful query of intra-map place recognition is followed by BA (Section 4.9). Map matching
detects overlap between two server maps, which allows to calculate a Sim(3)-transformation between these
maps and to add constraints between them. If map matching successfully detects overlap between two
maps, this match is forwarded to the map fusion module.

4.8 Map Fusion

The map matching module sends a pair of matching KFs (KFq,KFm) belonging to maps Mq and Mm,
respectively, for map fusion together with a vector of matching MPs from both maps and the Sim(3)-
transformation Mm SMq . Map fusion initializes then a new, third server map Mf to fuse information from
all agents that contributed to Mq and Mm. The coordinate frame of Mf is adopted from Mm, therefore all
KFs (and MPs) in Mm are entered directly into Mf , while data from Mq is transformed to the coordinate
frame of Mf . During the transfer from Mq and Mm to Mf , the associated server map of each KF and MP
is changed to Mf , since all map data holds a pointer to the server map it belongs to. Any matching MP
pairs between Mq and Mm identified during map matching are merged into one MP in Mf , yielding new
constraints between the KFs of Mq and Mm. Global BA is then performed on Mf , and finally, all pointers
to either Mq or Mm are changed to Mf using the interface provided by the agent handlers before eliminating

Mq and Mm completely from the server map stack. Furthermore, the Sim(3)-transformation Li S
Mq

i of all

agent handlers Ai associated to Mq before the map fusion is corrected to Li SMf

i = Li S
Mq

i · (Mm SMq)−1

4.9 Global Bundle Adjustment

Whenever place recognition successfully detects a match between two server maps, global optimization follows
on the new server map. Global optimization is also triggered when a loop is detected within a particular
server map. Global Bundle Adjustment (BA) optimizes that respective server map by minimizing the re-
projection error for all KFs and MPs, in order to improve its accuracy of the graph and reduce scale drift.
Since CCM-SLAM is designed to allow the agents operate in large environments, this 7 Degrees-of-Freedom
(DoF) optimization of the pose graph is only performed on the server, because as shown in Section 5.6, an
optimization step takes several seconds for large maps. Since other modules cannot access the map during
an optimization step, the communication module stores any incoming data in buffers and processes them
when the optimization is finished. For our implementation we use the Levenberg-Marquardt algorithm of
g2o (Kümmerle et al., 2011) for global BA. Before starting global BA, pose-graph optimization is performed
on the map using a subgraph of the covisibility graph incorporating only the strong edges (edge weight
w ≥ 100) termed essential graph (Mur-Artal et al., 2015), since this significantly improves the timings and
accuracy of the optimization as shown in Mur-Artal et al. (2015)



5 Experimental Results

5.1 Setup

Table 1: Hardware setup for the evaluation of CCM-SLAM

Platform Type Characteristics Sensor

Server ThinkPad T460s 2.60 Ghz × 4, 20 GB RAM —

Agent 1 AscTec Neo UAV
Intel NUC 5i7RYH

3.1 GHz × 4, 8 GB RAM
Realsense R200 RGB-D camera

(only the RGB image is used here)

Agent 2 AscTec Neo UAV
Intel NUC 5i7RYH

3.1 GHz × 4, 8 GB RAM
Bluefox grayscale camera
(2.8 mm focal length)

Agent 3
(datasets)

Intel NUC 7i7BNH 3.5 GHz × 4, 32 GB RAM —

Agent 3
(flight)

AscTec
Hummingbird UAV

AscTec Atomboard V3
(1.91 Ghz × 4, 4 GB RAM)

Bluefox grayscale camera
(2.4 mm focal length)

Router TL-WR802N USB Router

For all experiments presented in this section, the infrastructure listed in Table 1 was used. For the real-
world flight with 3 UAVs, the third agent used for the evaluation on datasets is replaced by a smaller UAV
with less computational capabilities to demonstrate the adaptability of CCM-SLAM to different platforms.
Namely, we use the AscTec Hummingbird listed in Table 1. For the analysis of CCM-SLAM, we use both
pre-recorded dataset of the same area run on each agent simultaneously as well as demonstrate the whole
framework in real experiments where monocular data captured simultaneously from all UAVs is processed
online. For the analysis on pre-recorded dataset, the three agents and the server are connected via a wireless
network, so that real communication between the server and the agents takes place. Then the recorded
datasets described in Section 5.2 are processed onboard the UAVs. Using the same input data renders
evaluations across different runs more comparable, with this setup being nearly equivalent to a real-world
flight. Furthermore, this setup allows us to influence the quality of the network connection, and the datasets
used provide ground truth for our evaluation. To evaluate the behavior of the communication in case of a
disturbed connection, the network is artificially disturbed with the setup described in Section 5.3. Finally,
in Section 5.8 and Section 5.9, we show two real-world experiments to prove the ability of CCM-SLAM to
work in a real-world scenarios.

5.2 Datasets

For the evaluation of CCM-SLAM we use the publicly available EuRoC dataset (Burri et al., 2016) and our
own Irchel dataset, with their most important characteristics briefly summarized in Table 2. Both datasets
provide accurate ground-truth position data from a Leica Total Station. The EuRoC dataset contains
video sequences captured using an AscTec FireFly UAV with a forward looking camera flying through an
industrial environment repeatedly. The sequences are each processed on a separate agent simultaneously,
while communicating with the server online.

Table 2: Datasets used for the evaluation of CCM-SLAM.

Dataset Path Time Camera view Environment

MH01 (Machine Hall 01) 80 m 3 min Front Industrial, indoor

MH02 (Machine Hall 02) 70 m 2:30 min Front Industrial, indoor

MH03 (Machine Hall 03) 130 m 2:10 min Front Industrial, indoor

Irchel-1 140 m 2 min Downward Garden, outdoor

Irchel-2 130 m 2 min Downward Garden, outdoor

Irchel-3 160 m 2 min Downward Garden, outdoor



(a) Top view from
Google Earth of the
test area.

(b) View from UAV with scene
landmarks for tracking superim-
posed.

(c) Network setup to evaluate network connection disturbances,
introducing delays and message losses via the communication

controller. The data rates shown are for a perfect, undisturbed
connection.

Figure 5: Experimental environment from the Irchel dataset (a,b) and setup to evaluate the robustness of the communication
module (c). The Irchel dataset contains several sequences captured during flights of an AscTec Neo UAV with a downward
looking camera over an outdoor garden area.

Our Irchel dataset was used for the evaluation in Schmuck and Chli (2017) and contains several sequences
captured during flights of an AscTec Neo UAV with a downward looking camera over an outdoor garden
area illustrated in Figure 5. Here, we use the sequences from this dataset listed in Table 2 to reproduce
three agents in simultaneous flights over the same area.

5.3 Bandwidth Requirements

As explained in Section 4, CCM-SLAM is able to deal with network problems commonly occurring in real
situations, such as delays and message loss, arising due to the large distance between the agents and the
server or due to too many agents in the network, for example. To evaluate this behavior, we use the setup
presented in Figure 5c to model disturbances in the communication. We place an additional module, called
the communication controller, in the interface between the agents and the server, which are connected via a
wireless connection. All messages pass through this communication controller, which disturbs communication
by dropping incoming messages with a probability Ploss, and forwards them to the recipient with a probability
1−Ploss. Furthermore, it holds back the message for a specified delay, before it forwards the message. With
this setup, we can model network connections of bad quality and assess the influence of this network effects
on the system. For these experiments, the agents and the server publish messages at a maximum rate of
2 Hz, and the number of KFs the server sends to the agent is limited to k = 5 for every message. Since
messages sent from the server to the agents are usually larger, as shown in Figure 6, the server publishes at
a lower rate than the agents.

Figure 6a shows the average network traffic from an agent to the server for each agent in a one-, two-
and three-agent setup. With a perfect network connection (i.e no delay, no message loss), the average
network traffic is around 0.4 MB/s. As shown in Figure 6a, network delays of up to 0.5 s do not change
this value. This is expected (as explained in Section 4) since small delays do not lead to a need of
sending more messages. A disturbed communication with a probability of message loss Ploss = 0.2 and
Ploss = 0.5 indeed increases the network traffic since data needs to be sent repeatedly when it gets lost. The
experiments show that Ploss = 0.2 can be handled well by the system, since the network traffic increases
only slightly, and even if a message gets lost, the recipient usually quickly receives the lost information
again. Yet a message loss with Ploss = 0.5 is critical for the system. In addition to the double network
traffic in this situation, with small local maps, this high probability of message loss can lead to situations
where an agent reaches the limit of its permitted local map size and has to erase information before it
can be received by the server, resulting to permanent loss of this information. Figure 6a also shows that
the number of agents does not significantly influence the traffic from each single agent to the server,
since the network traffic caused by a single agent is almost equal with one, two and three participating
agents, therefore meaning that the network traffic induced by sending data from the agents to the server
scales linearly with the number of participating agents. This comes from the fact that the local map



delay = 0s
Ploss = 0.0

delay = 0.5s
Ploss = 0

delay = 0s
Ploss = 0.2

delay = 0s
Ploss = 0.5

0

0.2

0.4

0.6

0.8

1

0.37 0.37

0.54

0.74

0.37 0.37

0.62

0.75

0.37 0.37

0.59

0.74

T
ra
ffi
c
p
er

a
g
en
t
[M

B
/
s] 1 Agent 2 Agents 3 Agents

(a) Network traffic from each single agent to the server

delay = 0s
Ploss = 0.0

delay = 0.5s
Ploss = 0

delay = 0s
Ploss = 0.2

delay = 0s
Ploss = 0.5

0

0.2

0.4

0.6

0.8

1

0.73 0.75 0.75

0.82

0.62 0.63
0.6

0.64

0.52 0.52

0.59
0.62

T
ra
ffi
c
p
er

a
g
en
t
[M

B
/
s] 1 Agent 2 Agents 3 Agents

(b) Network traffic from server to the each agent

Figure 6: The effect of the connection disturbance to the network traffic from each agent to the server and vice versa for a
setup with 1, 2 and 3 participating agents. All values are averaged over 5 runs for each experiment using the EuRoC dataset.

size is kept constant in the number of included KFs, regardless of whether one or more agent contributed KFs.

The impact of the network disturbance to the traffic from the server to each agent is illustrated in
Figure 6b. As expected, since the server always sends the closest2 k KFs to the last known position of
the agent, this traffic stays almost constant, independently of connection quality. The slight decrease of
the network traffic with the number of agents arises from the fact that in a multi-agent scenario, more
loops in the server maps can be closed, resulting in more periods where the server maps are locked and no
information is transmitted to the agents because Global BA is performing map optimization.

0 0.5 1.0 2.0 5.0

0

0.5

1

0.37 0.37 0.36 0.36
0.32

0.73 0.75
0.72 0.73 0.74

Delay [s]

T
ra
ffi
c
p
er

a
g
en
t
[M

B
/
s] Agent to Server Server to Agent

0

0.1

0.2

0.3

R
M
S
E

[m
]

Trajectory Error [m]

Figure 7: The influence of network delays enforced by the
communication controller on the network traffic per agent and
the trajectory error of the server map, using MH01.

Figure 7 illustrates the influence of network delays on
the system, using the MH01 sequence. Since Figure 6a
showed that there is no significant impact caused by
the number of agents, this experiment is executed in
a single-agent setup. While delays have no significant
influence on the network traffic, the trajectory error of
the server map grows with larger delays. As explained
in Section 4.5, larger delays result in a larger difference
between the actual position of the agent and the posi-
tion of the agent as it is known to the server. Therefore,
the server sends map data close to a past location to
the agent, that gets less useful for the agent the larger
the delay is.

These experiments attest to the resilience of the pro-
posed system to realistic disturbances in the communi-
cation between the server and the participating agents.

The number of agents that can be used without compromising the collaboration through the CCM-SLAM
framework depends mainly on the bandwidth of the network connection and the computation power available
on the server. However, as aforementioned, even when the number of agents is so large that it completely
overloads the network traffic, the agents are still ensured to run VO onboard undisturbed, by design.

2Closest in the covisibility graph described as in 4.2, i.e. the KFs that share most features with a specific KF



200

250

263.9 264.6 261.9

1 2 3
0

10

20

30 26.9 26.1 26.1

0.38 0.36 0.34

#Agents

t
[m

s]

Tracking [ms] Mapping [ms] Comm. [ms]

(a) Timings of the agent’s side modules with a growing num-
ber of agents in the system, measured on Agent 1. All values
are averaged over 5 runs using the EuRoC dataset.

20 40 60 80 100
0

0.5

1

1.5

Local Map Size N (KFs)

R
M
S
E

[m
]

RMSE [m], EuRoC

RMSE [m], Irchel

(b) The Root Mean Squared Error (RMSE) of the trajectory
of one agent with varying local map size. Values are averaged
over 3 runs using MH01 and Irchel-1.

Figure 8: Timings of the different agent side modules (a) and influence of the local map size N on the accuracy of CCM-SLAM
(b).

5.4 Real-Time Behavior & Local Map Size

Table 3 shows the timings for VO tracking, VO mapping and communication on the agent’s side for different
sizes N of the local map, using one agent. The time for tracking is the time to process one frame, while
mapping and communication times sum up the time used for one iteration of the module. Mapping is
executed once for every KF, while the communication module runs at tracking frequency (i.e. at 20 Hz,
matching the camera’s frame rate). The time for mapping increases with local map size since the map that
needs to be maintained grows. Tracking and communication times also increase slightly, because firstly,
obtaining data from the map needs more time with larger maps, and secondly, with increased mapping time
tracking needs to wait longer to obtain map access.

Table 3: Timings in ms (mean ± standard deviation) for all modules running onboard one agent, while varying the local map

size N in KFs. All values are averaged over 3 runs for each experiment using MH01 and Irchel-1. The last column reports the
values when running CCM-SLAM’s VO front-end with unbounded map size.

Module CCM-SLAM VO only

µ± σ [ms]

N = 10 N = 20 N = 50 N = 100 N = ∞

Irchel-1

Tracking 23.3 ± 5.4 26.6 ± 6.7 27.9 ± 7.2 28.2 ± 7.6 31.9 ± 7.4

Mapping 82.1 ± 16.7 187.2 ± 62.9 208.0 ± 85.2 232.0 ± 105.0 235.2 ± 102.7

Comm. 0.26 ± 1.7 0.34 ± 1.5 0.38 ± 1.6 0.49 ± 1.7 –

MH01

Tracking 22.9 ± 4.4 25.2 ± 5.2 26.9 ± 5.9 9.8 ± 7.4 34.9 ± 11.1

Mapping 87.7 ± 19.9 206.9 ± 47.4 273.9 ± 95.2 330.2 ± 186.8 401.2 ± 346.2

Comm. 0.29 ± 1.8 0.37 ± 1.4 0.38 ± 1.7 0.5 ± 1.9 –

Figure 8a illustrates how the timings of the agent’s modules change with a growing number of agents, for a
local map size of N = 50 KFs. The timings stay in the same range and do not exhibit any strong effects with
increasing number of agents, confirming good scalability of this framework. While the timings for tracking
and mapping depend on the underlying VO system, the communication time is low enough to allow for
real-time tracking with the current implementation.

Figure 8b shows the influence of the size of the local map on the trajectory position error. With a smaller local
map, the VO is missing information that would be needed for the VO system to improve the pose estimate
of the agent. With growing map size, more information is available and the robustness to network problems



grows, and therefore the error decreases. Since for N = 50 KFs most information about the immediate
vicinity of the current location of the agent is included the local map, the transition to N = 100 KFs only
has a slight effect.

5.5 Parameter Configuration

As shown in the previous sections, the timings of the processes running onboard an agent and the network
traffic can be controlled by altering the parameters k (number of KFs sent from server to agent to augment
local map) and N (size of the local map). Figure 9 illustrates the influence of these parameters on timings,
network traffic and trajectory error. The parameters chosen for subsequent experiments are marked by an
“×”.

Figures 9a and b show the influence of the parameter setup on the timings of themapping and communication
module on the agent, per run of the module. Mapping time increases with higher N , since the mapping
module has to manage a larger local map. k, however, does not have a significant influence on mapping
time. Timings for the communication module show the opposite effect: the influence of N is small – a larger
local map means querying the local map and sending more data to the server, yet these operations are not
time-consuming. The influence of k, however, is much stronger. With more KFs arriving from the server,
it is more likely that received KFs and MPs are not already included in the local map. Then new KFs and
MPs need to be constructed, which is more time-consuming than other communication operations. The
communication time reaches its peak for a small N and high k. A parameter setup like this is not reasonable
for practical applications since for k = N every message from the server already contains the maximum
number of KFs permitted in the local map, possibly replacing the whole local map at once.
The network traffic, shown in Figure 9c, increases with higher k, as more data gets sent to the agent.
Figure 9d shows the trajectory error in the server map. For smaller local maps, increasing k significantly
improves the accuracy of the server map, since the data from the server support the agent’s pose estimation
to reduce error and drift. For higher N , the local map encodes more information about the immediate
vicinity of the agent, therefore the influence of k is smaller.
Following this analysis, for all subsequent experiments, N = 50 KFs and k = 5 KFs are used. These are
chosen to suit the limited bandwidth of the wireless router used and provide a good trade-off between the
timings of each agent’s onboard modules and the accuracy of the trajectory estimate.

5.6 Keyframe Rejection

Aiming to study the effect of KF rejection explained in Section 4.6 on the server maps maintained by CCM-
SLAM, Table 4 shows the effect of the KF rejection on the server map size and the resulting time for BA,
where the effect of the reduced map size is visible most prominently since its complexity is cubic in the
number of KFs included in the optimization. To evaluate this, two agents are started at the same time and

20 40 60 80 100
0

5

10

15

20

N

k

180

200

220

240

260

280

300

[ms]

(a) Mapping time

20 40 60 80 100
0

5

10

15

20

N

0.4

0.6

0.8

1

1.2

1.4

[ms]

(b) Communication time

20 40 60 80 100
0

5

10

15

20

N

0.5

1

1.5

2

2.5

[MB/s]

(c) Average network traffic

20 40 60 80 100
0

5

10

15

20

N

0.1

0.15

0.2

[m]

(d) Server Map RMSE

Figure 9: The influence of the local map N (KFs), and KFs send from the server to an agent k on the VO mapping
time in (a), the communication between the agent and the server in (b), the average network traffic in (c) and the
RMSE in the server map in (d)



any map fusion is halted until 80s after start, using different culling thresholds θ. This threshold θ means
that a KFk is considered redundant and removed from the server map if θ % of all MPs of KFk are observed
by at least 3 other KFs. The reduced number of KFs directly translates into a faster BA. For this map size
and a threshold of θ = 98 %, the savings achieved by KF rejection already outweigh the additional time
spend for redundancy detection.

θ BA [s] KFs Rej. KFs Time for Rej. [s]

100% 19.8 446 0 [0%] 0
98% 16.2 396 58 [11.2%] 2.4
96% 9.0 356 95 [20.2%] 1.8

Table 4: The effect of KF rejection in a server map, depend-
ing on the strictness of parameter θ (at θ = 100% no KF

rejection takes place). All values are averaged over 5 runs
for each experiment, using 2 UAVs on the EuRoC dataset.

θ KFs Rej. KFs Rej. Rate RMSE [m]

100% 388 0 0% 0.057
98% 358 59 14% 0.061
96% 310 91 23% 0.486

Table 5: The effect of KF rejection on the RMSE of the server

map using two UAVs on the EuRoC dataset. All values are
averaged over 5 runs for each experiment.

However, removing information from the system can also affect the resulting accuracy of the map estimate,
as shown in Table 5. Furthermore, a high KF rejection rate can reduce the number of successful place
recognition queries that can be detected. Evidently, KF redundancy detection is an important feature to
keep the map manageable, especially when revisiting areas. Yet the KF rejection should not be too restrictive
since too much information is removed from the system. For the rest of the experiments, a threshold of θ = 98
% is used.

As shown in Table 4, Global BA takes several seconds for a map of around 400 KFs. Since the timing of
Global BA grows cubic in the number of KFs, for a server with the computational power of a standard
notebook, such as the Thinkpad T460s used in the experiments presented in this article, handling up to
around 1000 KFs can be reasonable, which translates into three to four agents flying over a medium-sized
area, such as the ones in the datasets used.

5.7 Collaborative SLAM

After analyzing the communication and scalability of CCM-SLAM, the accuracy of the estimates are com-
pared to ground-truth position data from a Leica Total Station on both datasets. Figure 10 shows the
resulting map (KFs & covisibility graph) for two agents on the Irchel dataset. We display those covisibility
edges with weight w ≥ 50, i.e. edges between two KFs that both observe at least 50 identical MPs. This
illustrates that CCM-SLAM does not only align two maps from two agents, but connects the information
collected by the two agents throughout the mission. This is key to collaboration, since the data associations
across KFs of different agents allow an agent to include and connect information from other agents in its own
covisibility graph, and also allow BA to use these additional links between the KFs to produce a collaborative
map estimate that is better than when using the maps from the single agents individually. Figure 11 shows
the map resulting from a three-agent scenario with 738 KFs in total, using the three EuRoC sequences.

Table 6 shows a comparison of the accuracy of estimations against the position ground truth from a Leica
Total Station on the Irchel and EuRoC datasets. The trajectory RMSE for each agent is reported in a
single-agent scenario, followed by the error of the collaborative map estimate from the multi-agent scenario.
The results show that in absolute values, the collaborative estimates exhibit comparable trajectory error.
However, in the multi-agent scenario, the scene and the trajectories estimated are overall much larger.
Therefore, Table 6 additionally reports the trajectory error relative to the length of the trajectory, revealing
the accuracy improvements resulting from robotic collaboration. These results show that compared to single-
agent SLAM, with collaborative SLAM using CCM-SLAM the scene is mapped and the individual agents are
localized with at least similar or even better accuracy, but faster, since the estimation effort can be shared
amongst multiple agents. Furthermore, Table 6 shows a comparison of the collaborative estimate of CCM-
SLAM to open-source VINS-mono (Qin et al., 2018), which provides a multi-session functionality allowing
to estimate joint trajectories by running datasets sequentially. While the purely monocular CCM-SLAM
exhibits comparable performance to the monocular-inertial VINS on the EuRoC sequences (MH1,MH2 and



(a) The final, common server map constructed by two UAVs, 311 KFs. (b) Close-up from a loop closure area.

Figure 10: The final, common server map created by tow UAVs agents on the Irchel dataset. The KFs and MPs of the agents
are colored in black and blue, respectively. KFs with more than 50 covisible MPs (w ≥ 50) are connected with an edge. Edges
between KFs from the same agent are colored gray, while edges between KFs from different agents are colored red.

Table 6: Comparison of the trajectory error for single-agent and collaborative SLAM. The last column shows the results of
VINS-mono (Qin et al., 2018), which allows estimating joint trajectories using its multi-session functionality and sequentially
running the datasets. Results are averaged over 5 runs. The collaborative RMSE is calculated by comparing the entire joint
trajectory over all agents to ground truth.

Dataset
Single Agent RMSE [m] CCM-SLAM VINS-mono

Agent 1 Agent 2 Agent 3 Col. RMSE [m] Col. RMSE [m]

Irchel (1,2,3) 0.21 (0.15%) 0.22 (0.17%) 0.21 (0.13%) 0.21 (0.06%) 0.36 (0.11%)

EuRoC (MH1,MH2,MH3) 0.061 (0.076%) 0.081 (0.116%) 0.048 (0.04%) 0.077 (0.03%) 0.074 (0.03%)

MH3), CCM-SLAM outperforms VINS on the Irchel dataset. Despite that VINS-mono incorporates inertial
information additionally to the monocular cues, in our experience, its performance fluctuates a lot across
runs. The results shown in Table 6 are leveraged over five runs. As visible in Figure 10, the trajectories in the
Irchel sequences are mostly at different altitude levels, while the three EuRoc trajectories in Figure 11b are
more interleaved. Judging from our experiments, CCM-SLAM estimates more accurately the altitude offset
between these trajectories than VINS-mono, resulting in a more precise collaborative estimate on the Irchel
dataset, while this effect does not occur with the nested EuRoC trajectories. Finally, we evaluated the online
pose estimation of VO to examine the effect of shared data on the tracking of the agent, with the results
shown in Table 7. We run CCM-SLAM with two agents using for the agent the datasets indicated in Table 7,
without sharing data amongst the participant (‘Individual Agents’) and with data exchange (‘Collaborative
Agents’). For each incoming frame, we store the pose estimate calculated by tracking, i.e. without any global
optimization. At the end of the experiment, we globally align all poses to ground truth, and calculate the
error to estimate the accuracy of VO, and add up the errors for Agent 1 and Agent 2 to obtain an accuracy
measure incorporating all participants. The results reported in Table 7 show that through collaboration, the
participating agents can improve the accuracy of their onboard VO estimates during the mission.

Table 7: Comparison of tracking accuracy with and without collaboration amongst agents. The cumulative tracking RMSE
adds up from the tracking RMSE of both agents and is calculated using the online pose estimates for each frame after it was
processed by tracking. All values are averaged over 3 runs for each experiment.

Dataset Cumulative Tracking RMSE [m]

Agent 1 Agent 2 Individual Agents Collaborative Agents

MH01 MH02 0.296 0.265

MH02 MH03 0.327 0.272

5.8 Real-world Flight with Three UAVs

In order to attest for to the practicality of CCM-SLAM in a real-world scenario, simultaneous flights are
performed with three UAVs running CCM-SLAM during flight, with the results illustrated in Figure 12. For



(a) View from one agent, with the VO scene land-
marks for tracking superimposed.

(b) 3D view of the final joint KF trajectories in the server map

(c) Local map from Agent 1, with newly received KFs from the
server to augment the local map colored in red.

Figure 11: The server map (joint KF trajectories and MPs) created by three UAV agents on EuRoC sequences, colored in
black, blue and green to distinguish the three agents. The illustration shows only strong covisibility edges of weight w ≥ 100.

this experiment, the agent side’s modules were run onboard the agents during simultaneous flight, continuously
communicating with the ground station using a wireless connection. The experiment took place in an
urban environment of approximately 30m× 7m, shown in Figure 12a. In addition to Figure 12, the video3

accompanying this article shows the experiment described in this section.
Initially, one server map is initialized for each agent. Then overlap between the server maps of Agent 2
and 3 is detected, resulting in a new server map incorporating the experiences of both agents, shown in
Figure 12b. Subsequently, when overlap is detected with the server map of Agent 1, all server maps are
merged to one final server map containing the KFs and MPs of all agents, shown in Figure 12c directly after
the fusion. From then on, all UAVs are localized in the same map, continuing their onboard estimations
and collaboration, as shown in Figure 12d at the end of the experiment. In addition to the two map fusion
steps, intra-map place recognition was able to detect two loops during this experiment.

3https://tinyurl.com/y8rdugwy



(a) Scene view. (b) Server map (trajectories and MPs) of Agent 2 and 3 after map fusion.

(c) Server map with the trajectories and MPs from of Agent 1, 2 and 3 directly after map fusion. All three agents are localized
in one server map.

(d) Final Server map with the trajectories and MPs from Agent 1, 2 and 3, at the end of the experiment. All agents contributed
with their newly created KFs to this single server map. Constraints between trajectories and UAV bodies are left our for
clarity.

Figure 12: Real-world experiment with three UAV agents simultaneously flying, running CCM-SLAM onboard during flight.
Different colors encode data (trajectories and MPs) contributed from different agent. Red lines indicate constraints between
different trajectories from map fusion and loop closure.

5.9 Collaborative SLAM in a Search-and-Rescue Scenario

After confirming the practicality of CCM-SLAM in a real-world experiment (Section 5.8), in this section
we aim to test its applicability to larger scenes by deploying two UAVs running CCM-SLAM in a search-
and-rescue scenario. We use the training village for rescue operations depicted in Figure 13a, where we use
an area spanning approximately 200m× 100m for our experiment, containing several collapsed building and
other disaster scenarios. For this experiment, Agent 1 covers the left side of this area, while Agent 2 explores
the right side. Again, both agents start individually exploring their environment. When overlap between the
Server maps from both agents is detected, these maps are merged into one single Server map where both
agents contribute to, exploring the area from then on as a team. This eventually results in the trajectories
and the collaborative map shown in Figure 13c. Figure 13b shows a view from Agent 2 on the scene.



(a) 3D scene view of the search-and-rescue training village
used for this experiment.

(b) View from Agent 2 on the scene.

(c) Topdown view of the final Server map collaboratively built by Agent 1 and 2, with trajectories, overlayed with the view
of the area from Google Maps. The purple inlet enlarges the collaborative point cloud at the location of the derailed train,
with the correctly aligned 3D points from Agent 1 and 2 in this area, indicating a good quality of the collaborative estimates.

Figure 13: Application of CCM-SLAM in a search-and-rescue scenario, attesting to its applicability in real-world large-scale
environments. Agent 1 (black) explores the left side of the area, while Agent 2 (green MPs, trajectory in red) covers the right
side of the village, with overlap between the two trajectories along the main street in the middle and at the structures at the
bottom of the area.

Since accurate ground truth is not available in this environment, we cannot assess the error of the estimation
quantitatively. However, examining the aligned CCM-SLAM-map with the corresponding view from Google
Maps, e.g. the area of the derailed train (enlarged in the purple inlet in Figure 13c), reveals that the CCM-
SLAM map points of both agents align well, indicating a good quality of the collaborative estimates.
Besides attesting to the applicability of CCM-SLAM in one of the target application scenarios, this ex-
periment also shows that CCM-SLAM is able to handle an area of this size (1336 KFs, 46413 MPs) and
with a standard Wi-Fi router (TP-LINK Archer C7 used here), collaborative SLAM can still run reliably
ensuring real-time operation onboard each agent. For much larger scenarios, it would probably be necessary
to improve the network infrastructure to cover the area with a more powerful router, as well as with and a
more powerful Server that is able to process larger amounts of data during the mission in order to ensure
that the agents have access to the collaborative estimates at runtime.



6 Conclusion

In this article, we present CCM-SLAM, a novel and powerful framework for collaborative SLAM for a
centralized server and multiple agents, such as small UAVs or other robots, each equipped with a monocular
camera and a small processing unit. The robotic agents start off the mission in a configuration previously
unknown to each other and to the server, while running real-time visual odometry onboard to preserve
their autonomy throughout the mission. The potentially more powerful central server collects the estimates
computed onboard all agents acting as a book-keeper of everyone’s experiences, while executing more time-
consuming, but non time-critical tasks, such as searching for loop closures and overlap across agents’ maps,
and performing redundancy detection and global optimization when necessary. The server informs the
agents of any updates of their onboard local map (e.g. following global optimization) and provides each
agent with additional information (i.e. poses and landmarks) in its current operational vicinity if available,
for example, collected by the same agent in the past or other agents. While existing works most often permit
communication from the agents to the server only, this two-way communication in CCM-SLAM is key in
enabling better and more consistent onboard estimates. Successfully addressing the challenge of robust
handling of common communication disturbances, CCM-SLAM goes the step further to truly exploit the
presence of multiple agents within the area of interest during the mission.

A thorough experimental analysis on benchmarking and new datasets reveals CCM-SLAM’s powerful ability
in dealing with common network problems, such as delays and message loss and its adaptability to the
computational resources onboard each agent and the available bandwidth of the communication network. A
comparison of CCM-SLAM’s estimates confirms that collaboration amongst participating agents improves
the accuracy of the final global trajectory estimates as well as the online pose estimates onboard the agents
during runtime. Moreover, the scalability of this framework in the number of agents is studied, confirming
that the agent’s real-time capabilities are not compromised with more agents. As expected, every new agent
adds more burden to the network traffic, therefore, bandwidth is the only limiting factor for scalability on top
of the server’s computational capabilities. Making use of the insights of this analysis in a setup with three
UAVs of heterogeneous onboard computational resources, we demonstrate the power of CCM-SLAM in real
experiments, with all UAVs flying over the same area, while exchanging information via a standard laptop
acting as the server. It is only with such a robust and efficient framework that collaborative localization and
mapping can be performed, which is the first step for further collaborative tasks for the robotic team.

Future directions will focus on studying the value of each bit of information to be shared amongst the
robotic team to provide insights towards more agile manipulation of information and good trade-offs between
efficiency and accuracy in the estimates of the collaborative system.

Acknowledgments

This research was supported by the Swiss National Science Foundation (SNSF, Agreement no.
PP00P2157585) and NCCR Robotics. The authors want to thank Armasuisse for providing access to the
search-and-rescue training village for our experiments.

References

Achtelik, M. W., Weiss, S., Chli, M., Dellaert, F., and Siegwart, R. (2011). Collaborative stereo. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Burri, M., Nikolic, J., Gohl, P., Schneider, T., Rehder, J., Omari, S., Achtelik, M. W., and Siegwart, R.
(2016). The EuRoC micro aerial vehicle datasets. International Journal of Robotics Research (IJRR),
35(10):1157–1163.

Chen, X., Lu, H., Xiao, J., and Zhang, H. (2017). Distributed monocular multi-robot slam. In Proceedings



of IEEE International Conference on CYBER Technology in Automation, control, and intelligent systems
(IEEE-CYBER).

Choudhary, S., Carlone, L., Nieto, C., Rogers, J., Christensen, H. I., and Dellaert, F. (2017). Distributed
mapping with privacy and communication constraints: Lightweight algorithms and object-based models.
International Journal of Robotics Research (IJRR), 36(12):1286–1311.

Chung, S.-J. and Slotine, J.-J. E. (2009). Cooperative robot control and concurrent synchronization of
Lagrangian systems. IEEE Transactions on Robotics (T-RO), 25(3):686–700.

Cieslewski, T., Choudhary, S., and Scaramuzza, D. (2018). Data-efficient decentralized visual slam. Proceed-
ings of the IEEE International Conference on Robotics and Automation (ICRA).

Cieslewski, T. and Scaramuzza, D. (2017). Efficient decentralized visual place recognition using a distributed
inverted index. IEEE Robotics and Automation Letters (RA-L), 2(2):640–647.

Cunningham, A., Indelman, V., and Dellaert, F. (2013). DDF-SAM 2.0: Consistent distributed smoothing
and mapping. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). MonoSLAM: Real-time single camera
SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 29(6):1052–1067.

Deutsch, I., Liu, M., and Siegwart, R. (2016). A Framework for Multi-Robot Pose Graph SLAM. In IEEE
International Conference on Real-time Computing and Robotics (RCAR).

Dong, J., Nelson, E., Indelman, V., Michael, N., and Dellaert, F. (2015). Distributed real-time cooperative
localization and mapping using an uncertainty-aware expectation maximization approach. In Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pages 5807–5814. IEEE.

Eade, E. and Drummond, T. (2006). Scalable monocular SLAM. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), volume 1, pages 469–476. IEEE.

Egodagamage, R. and Tuceryan, M. (2017). Distributed Monocular SLAM for Indoor Map Building. Journal
of Sensors, 2017.

Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse odometry. IEEE Transactions on Pattern
Analysis and Machine Intelligence (T-PAMI).

Engel, J., Schöps, T., and Cremers, D. (2014). LSD-SLAM: Large-Scale Direct Monocular SLAM. In
Proceedings of the European Conference on Computer Vision (ECCV).

Forster, C., Lynen, S., Kneip, L., and Scaramuzza, D. (2013). Collaborative monocular SLAM with multiple
micro aerial vehicles. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS).

Gálvez-López, D. and Tardos, J. D. (2012). Bags of binary words for fast place recognition in image sequences.
IEEE Transactions on Robotics (T-RO), 28(5):1188–1197.

Giamou, M., Khosoussi, K., and How, J. P. (2018). Talk resource-efficiently to me: Optimal communication
planning for distributed slam front-ends. Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA).

Google Inc. (2014). Project Tango. url http://www.google.com/atap/projecttango.

Guo, C. X., Sartipi, K., DuToit, R. C., Georgiou, G., Li, R., OLeary, J., Nerurkar, E. D., Hesch, J. A., and
Roumeliotis, S. I. (2016). Large-scale cooperative 3D visual-inertial mapping in a Manhattan world. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

Karrer, M., Schmuck, P., and Chli, M. (2018). CVI-SLAM - Collaborative Visual-Inertial SLAM. IEEE
Robotics and Automation Letters (RA-L), 3(4):2762–2769.

Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In Proceedings
of the International Symposium on Mixed and Augmented Reality (ISMAR), pages 225–234. IEEE.

Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework
for graph optimization. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA).



Kushleyev, A., Mellinger, D., Powers, C., and Kumar, V. (2013). Towards a swarm of agile micro quadrotors.
Autonomous Robots, 35(4):287–300.

Leonardos, S. and Daniilidis, K. (2017). A game-theoretic approach to robust fusion and kalman filtering
under unknown correlations. In American Control Conference (ACC), 2017, pages 2568–2573. IEEE.

Loianno, G., Mulgaonkar, Y., Brunner, C., Ahuja, D., Ramanandan, A., Chari, M., Diaz, S., and Kumar,
V. (2016). A swarm of flying smartphones. In Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems (IROS), pages 1681–1688. IEEE.

Luft, L., Schubert, T., Roumeliotis, S. I., and Burgard, W. (2016). Recursive Decentralized Collaborative
Localization for Sparsely Communicating Robots. In Proceedings of Robotics: Science and Systems (RSS).

Martinelli, A., Pont, F., and Siegwart, R. (2005). Multi-robot localization using relative observations. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).

Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., and Waibel, M. (2015). Cloud-based collaborative
3D mapping in real-time with low-cost robots. IEEE Transactions on Automation Science and Engineering,
12(2):423–431.

Morrison, J. G., Gálvez-López, D., and Sibley, G. (2016). MOARSLAM: Multiple Operator Augmented
RSLAM. In Distributed Autonomous Robotic Systems, volume 112, pages 119–132.

Mur-Artal, R., Montiel, J., and Tardós, J. D. (2015). ORB-SLAM: a versatile and accurate monocular
SLAM system. IEEE Transactions on Robotics (T-RO), 31(5):1147–1163.

Oleynikova, H., Burri, M., Lynen, S., and Siegwart, R. (2015). Real-time visual-inertial localization for
aerial and ground robots. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems
(IROS), pages 3079–3085. IEEE.

Piasco, N., Marzat, J., and Sanfourche, M. (2016). Collaborative localization and formation flying using
distributed stereo-vision. In IEEE International Conference on Robotics and Automation (ICRA).

Qin, T., Li, P., and Shen, S. (2018). VINS-mono: A robust and versatile monocular visual-inertial state
estimator. IEEE Transactions on Robotics (T-RO), 34(4):1004–1020.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS:
an open-source Robot Operating System. In ICRA workshop on open source software.

Riazuelo, L., Civera, J., and Montiel, J. (2014). C2TAM: A cloud framework for cooperative tracking and
mapping. Robotics and Autonomous Systems (RAS), 62(4):401–413.

Schmuck, P. and Chli, M. (2017). Multi-UAV Collaborative Monocular SLAM. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Schwager, M., Dames, P., Rus, D., and Kumar, V. (2017). A multi-robot control policy for information
gathering in the presence of unknown hazards. In Robotics Research, pages 455–472. Springer.

sfly (2009). Swarm of micro flying robots (sFly). http://www.sfly.org.

Strasdat, H., Montiel, J. M., and Davison, A. J. (2012). Visual SLAM: why filter? Image and Vision
Computing, 30(2):65–77.

Vidal-Calleja, T. A., Berger, C., Solà, J., and Lacroix, S. (2011). Large scale multiple robot visual mapping
with heterogeneous landmarks in semi-structured terrain. Robotics and Autonomous Systems (RAS),
59(9):654–674.

Webster, S. E., Walls, J. M., Whitcomb, L. L., and Eustice, R. M. (2013). Decentralized extended information
filter for single-beacon cooperative acoustic navigation: Theory and experiments. IEEE Transactions on
Robotics (T-RO), 29(4):957–974.

Zhang, H., Chen, X., Lu, H., and Xiao, J. (2018). Distributed and collaborative monocular simultaneous
localization and mapping for multi-robot systems in large-scale environments. International Journal of
Advanced Robotic Systems, 15(3):1729881418780178.

Zou, D. and Tan, P. (2013). CoSLAM: Collaborative visual SLAM in dynamic environments. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 35(2):354–366.


