
CCN-KRS: A Key Resolution Service for CCN

Priya Mahadevan1 Ersin Uzun1 Spencer Sevilla2 J. J. Garcia-Luna-Aceves1,2

1Palo Alto Research Center, Palo Alto, CA 94304
2Computer Engineering Department, University of California, Santa Cruz, CA 95064

{priya.mahadevan, ersin.uzun}@parc.com, {spencer, jj}@soe.ucsc.edu

ABSTRACT

A key feature of the Content Centric Networking (CCN) ar-
chitecture is the requirement for each piece of content to
be individually signed by its publisher. Thus, CCN should,
in principle, be immune to distributing fake content. How-
ever, in practice, the network cannot easily detect and drop
fake content as the trust context (i.e., the public keys that
need to be trusted for verifying the content signature) is an
application-dependent concept. CCN provides mechanisms
for consumers to request a piece of content restricted by its
signer’s public key or the cryptographic digest of the content
object to avoid receiving fake content. However, it does not
provide any mechanisms to learn this critical information
prior to requesting the content.

In this paper, we introduce a scalable Key Resolution Ser-
vice (KRS) that can securely store and serve security in-
formation (e.g., public key certificates of publishers) for a
namespace in CCN. We implement KRS as a service for
CCN in ndnSIM, a ns-3 module, and discuss and evaluate
such a distributed service. We demonstrate the feasibility
and scalability of our design via simulations driven by real-
traffic traces.

Categories and Subject Descriptors

C.2.0 [General]: Security and protection;
C.2.1 [Network Architecture and Design]: Network com-
munications;
C.2.6 [Network Protocols]: Protocol architecture

General Terms

Security, Design, Performance

Keywords

Information-centric networking; security

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICN’14, September 24–26, 2014, Paris, France.

Copyright 2014 ACM 978-1-4503-3206-4/14/09 ...$15.00.

http://dx.doi.org/10.1145/2660129.2660154 .

1. INTRODUCTION AND MOTIVATION
The way in which users and applications use the Inter-

net has changed dramatically since its early days. The shift
from a few thousand people using it to access shared com-
puting resources to billions of people world-wide running a
wide range of applications has exposed several limitations
of the current Internet design. A number of recent research
efforts are focused on designing Information-Centric Net-
working (ICN) architectures [1] that emphasize efficient and
scalable content distribution via named information (or con-
tent). Content Centric Networking (CCN) [2], is one of the
ICN architectures that has been widely experimented with
in the networking community.

One of the main tenets of CCN is to name content, instead
of communication end-points. Users interested in a piece of
content ask for it directly by name by sending an Interest
packet. An Interest packet is forwarded by CCN nodes in
the network towards a content source, until it reaches a node
that can respond with a matching piece of content (called
a Content Object) whose name matches the name stated
in the Interest packet. The Content Object is sent back to
the requesting user, and can optionally be cached by relay
nodes between the node responding to the Interest packet
and the consumer that requested it. Hence, a CCN router
can respond to an Interest packet it receives with a matching
cached Content Object. CCN requires every Content Object
to be cryptographically signed by its publisher. Thus, glob-
ally addressable and routable content can be authenticated
by anyone requesting the content. CCN entities that request
content are called consumers and they always verify content
signatures in order to assert:

• Integrity – A valid signature (computed over a content
hash) guarantees that the signed content is intact.

• Origin Authentication – Anyone can verify whether
content originates with its claimed publisher, because
a signature is bound to the public key of the signer.

• Correctness – A consumer can determine whether de-
livered content corresponds to what was requested be-
cause a signature binds the content name to its pay-
load.

A consumer, having its own trust context and policy, can
easily differentiate a genuine piece of content from a fake one
(i.e, content signed by unauthorized/untrusted keys) after
verifying its signature (and potentially a chain of certificates
to reach to a trust anchor). However, it is a challenge for an
intermediary node in the network to differentiate a genuine
piece of content from a fake one since applications (and the
namespaces they operate on) are not likely to adhere to a

97

uniform trust model. It is practically infeasible for a CCN
router to maintain an up-to-date global knowledge of such
mappings considering that applications themselves are con-
stantly evolving and new applications are being developed
everyday. In other words, CCN needs to operate efficiently
even in the presence of fake content in router caches.

CCN provides two mechanisms to mitigate the above prob-
lem and enforce a consumer’s trust preferences at the net-
work layer. While requesting named content through Inter-
est packets, consumers can optionally include which key is
acceptable as the signer for the requested content or spec-
ify the cryptographic digest of the content [details in Sec-
tion 2]. The immediate requirement for consumers to use
these mechanisms is that they must either (1) have the pub-
lisher’s public key before issuing an Interest for any Con-
tent Object from that publisher, or (2) know the digest of
the Content Object before issuing an Interest for it. How-
ever, CCN does not provide any solution to this proverbial
“chicken-and-egg” problem.

In this paper, we propose a Key Resolution Service (KRS)
for CCN. KRS is a service that maps a CCN content name,
such as “/parc/papers/krs.pdf”, to a set of corresponding se-
curity information, such as the public key certificate of the
authorized publisher for the namespace and/or the crypto-
graphic digest of the Content Object. By querying KRS
before issuing an Interest for a piece of content, consumers
can acquire the necessary security context required to acti-
vate the trust enforcement mechanisms at the network layer.
In other words, KRS allows consumers in CCN to learn and
specify the public key of a publisher or the content digest
they would trust in an Interest. As long as the routers in
the network enforce such restrictions, this technique effec-
tively guarantees delivery of trustworthy content regardless
of the number of fake Content Objects carrying the same
name that might be cached anywhere in the network.

Given that secure acquisition of keys prior to requesting
content is required for CCN to be robust against content-
poising attacks [3, 4], our KRS design (in combination with
the proposal by Ghali [4] requiring either the publisher pub-
lic key digest (PPKD) or the content-digest field be in-
cluded in every Interest) constitutes the first practical so-
lution to mitigate denial of service attacks via content poi-
soning/spoofing in CCN.

The rest of the paper is organized as follows: Section 2
gives an overview of the CCN architecture. Section 3 out-
lines the set of requirements that KRS must meet. Section 4
provides an overview of the KRS architecture and opera-
tion. Section 5 describes our implementation and evaluation
methodology. Section 6 presents KRS performance results
for several different scenarios. Section 7 concludes the paper.

2. CCN OVERVIEW
All communication in CCN is via two distinct types of

packets: Interests and Content Objects (CO). Both of these
packets carry a hierarchically structured name that uniquely
identifies a piece of content. A consumer interested in a piece
of content requests it by sending an Interest packet that car-
ries the name of the desired piece of content. CCN routers
use the name in the Interest to forward it towards likely
sources of data by performing a longest prefix match on the
name in their forwarding table. A CO whose name exactly
matches that in the Interest is sent back to the request-
ing consumer. Only Interests are routed in CCN. COs take

the reverse of the path taken by the corresponding Interest
packet. Any intermediate router can choose to cache any
CO that it receives. If a router receives an Interest packet
for a CO that it already has in its cache, it can respond with
the matching cached CO. Since CCN consumers can receive
content from any node, including from caches of intermedi-
ate nodes, it is imperative that they verify the authenticity
of the CO they receive.

To verify the authenticity of a CO, a CO contains the
following fields, in addition to the name of the content and
the data:

• PublisherPublicKeyDigest (PPKD): The digest of the
public key required to verify the signature. It is typi-
cally a SHA-256 digest.

• KeyLocator: The public key or certificate required to
verify the signature.

• Content-digest: The cryptographic digest of the CO.

• Signature: A public-key signature generated by the
publisher covering the entire content.

An Interest packet in CCN can also include a PPKD, thus
allowing consumers to explicitly specify the publisher’s pub-
lic key digest. If this entry is present in an Interest, a match-
ing CO must have the same digest in its PPKD field and a
valid signature. CCN Interests can also include content-

digest to request a unique CO. To make sure that a con-
sumer only receives content that it would trust (i.e., pre-
vent denial of service attacks by content/cache poisoning),
it should issue all its Interests with at least one of the PPKD
or content-digest restriction set. However, as long as a
consumer device/application doesn’t come preloaded with
that information, it needs a mechanism to be able fetch this
security context before sending an Interest for any content.

To solve the above need, we envision a global CCN Key
Resolution Service (KRS) that allows consumers to resolve
content names to publisher public key and/or the content
digest. KRS is loosely analogous to DNS – just as the DNS
today allows clients to resolve hostnames to IP addresses,
KRS allows consumers to resolve content names to relevant
security information.

3. KRS REQUIREMENTS
We envision KRS as a distributed key-value store service,

where the key is the content name (or name prefix) and the
value is the KRS record that contains the necessary security
information required to verify content authenticity. We first
describe the requirements that such a global service must
satisfy:

Security: KRS itself must be secure. Only valid content
publishers must be able to add, delete and modify entries.
Consumers and publishers also need to securely obtain root
public keys for KRS. When a consumer queries the KRS
and receives a response back, the consumer must be able to
independently verify the received KRS record.

Scalability: Studies [5, 6] estimated the number of unique
webpages to be of the order of 1012 in 2011. This number is
expected to grow significantly over the next few years. Since
we envision KRS to be globally deployed and widely used,
it should be able to support and resolve up to 1014 content
names.

98

Response Time: KRS must exhibit similar performance
as DNS and the response time of KRS to consumer requests
should be similar to the response time of DNS.

Flexibility: KRS should be able to resolve a content name
to one of: (i) content hash (ii) publisher public key certifi-
cate or (iii) public key certificate chain. It must be flexi-
ble enough to include any other information that might be
deemed necessary in the future.

Seamless Application Support: KRS must operate trans-
parently in a manner similar to DNS today. Rather than re-
quiring CCN applications to programmatically interact with
and manage KRS individually, applications should ideally
integrate with consumer devices at the system level, similar
to how DNS operates in the Internet today.

Discovery: KRS must be discoverable by client devices,
just as local DNS servers are discoverable by devices today.
For example, when a device joins a WiFi network at a coffee
shop, the device has no a priori information regarding the
network topology, but must still be able to discover the name
of a nearby KRS server.

4. KRS DESIGN OVERVIEW
We designed KRS as a global service that runs over CCN

to address the requirements described in Section 3. All com-
munication among KRS servers is via CCN Interests and
COs. Consumers send requests specifying the name of the
content they would like to resolve in the form of an Interest
to KRS, and the service returns the KRS record containing
the security information for that content name in the form
of a CO.

Our KRS design is influenced by that of DNS, given the
similarities in requirements between KRS and DNS. We split
KRS into two interacting components: local KRS servers
that receive requests from CCN consumers, and authorita-
tive KRS servers that store and manage KRS records. We
illustrate the operation of KRS in Figure 1.

Figure 1: Client Querying KRS

As stated previously, CCN names are hierarchical. We
exploit this hierarchy in content names to assign a KRS
zone to manage a name prefix. A KRS zone, comprised of
one or more authoritative servers, is responsible for storing
all KRS records associated with that name prefix.

KRS organizes zones into a hierarchy similar to DNS. We
achieve scalability by distributing the storage and manage-
ment of all associated KRS records to individual KRS zones.
An authoritative server in a KRS zone may recruit addi-
tional servers at any time to handle the storage and serving
of KRS records for the name prefix that it is managing; it
can also add a new zone to handle a new subprefix of the
content name prefix that it is managing.

Local KRS servers are responsible for receiving and for-
warding requests from CCN consumers to the appropriate
KRS zone authoritative server. To this end, the main data
structure at any KRS server is the “next-hop” table that
stores the name and the public key of the KRS service that
either stores the KRS record for that content name or knows
the name of the next-hop service to whom the KRS request
can be forwarded.

Local KRS servers might be discovered by clients either
via a secure automatic configuration service (i.e., a CCN
equivalent of DHCP with server authentication) or via a pre-
dictable (or predetermined) name prefix for the local KRS
service such as “/krs.” For the latter, CCN nodes in a given
network would need to have appropriate entries to forward
the Interests to the closest local KRS server.

For example, a client wishing to obtain the security in-
formation for the content name /parc/papers/krs.pdf can
create a CCN Interest and ask for the KRS record for that
name using its local KRS service’s prefix (/krs in this case),
resulting in the name /krs/q=/parc/papers/krs.pdf in the
Interest.1

On receiving this Interest, the local KRS server performs
a look-up in its next-hop table to determine the name of
the KRS zone service that can handle the KRS query. In
the absence of an entry corresponding to the zone service
name, the local KRS server queries the root KRS service to
obtain the globally routable name of the responsible KRS
zone service (e.g., /parc-krs). The local KRS server uses
this globally routable prefix to forward the query over to
the service responsible for that KRS zone. Upon receipt of
this Interest, the authoritative KRS zone service extracts the
content name for which the KRS record has been requested
and compares it against the records it stores to retrieve ei-
ther (1) the final response to the query in the form of a KRS
record, (2) the next zone service that the query should be
forwarded to, or (3) the message that no such record exists.

In the case of (1) or (3) above, the authoritative server
responds to the received Interest by encapsulating the ap-
propriate KRS record as a CCN CO with the same name as
in the received Interest. To handle case (2), the KRS server
performs a lookup in its next-hop table and creates a query,
in the form of an Interest for that KRS zone, which should
know more about the namespace that is being queried. This
process repeats until either case (1) or case (3) above is per-
formed by an authoritative service. Although we described
the process as interactive, we emphasize that all steps in
the process can be completed with previous responses to
the same query cached either at CCN nodes as COs at the
network layer or cached KRS records for popular or recent
queries in KRS servers at the application layer.

Once the local KRS server receives a CO encapsulating
the requested KRS record, it first decapsulates the record
and re-encapsulates it in a new CO that would satisfy the
Interest received from the consumer.

Figure 2 depicts the various fields in a KRS record. The
name in the KRS record is the name (or name prefix) that is
being resolved, and the payload is the security information
associated with that name (i.e., a content-hash or public
key). Further, each KRS record is individually secured with

1Most recent CCNx specification (CCNx 1.0) allows Inter-
ests to have a payload. In future implementations, the query
part of the name can be carried as payload for shorter names
and better overall PIT usage efficiency.

99

a cryptographic signature and carries a public key certificate
or certificate chain for the signing key. A consumer receiv-
ing a KRS record would only trust it if the signature on the
record is valid and the certificate chain for the signing key
anchors at a trusted entity (e.g., a global certificate author-
ity). As stated previously, each KRS record is transmitted
as a CCN CO, which includes a signature that can be used
to authenticate the KRS service itself and a PPKD field
that can be used to limit acceptable responses to an Interest
carrying a KRS query to trusted KRS service instances only.

Figure 2: KRS Record

Having provided an overview of the KRS architecture, we
next address how we meet each of the requirements listed in
Section 3.

4.1 Improving Scalability
Scalability in KRS is attained through the use of a longest-

prefix-matching (LPM) algorithm used for lookups in the
next-hop table and for retrieving the stored KRS record it-
self. Using LPM to look up entries in the next-hop table
significantly cuts down on KRS recursive referrals, thereby
improving KRS response time. LPM also enables the use
of “default” records, thereby significantly reducing the bur-
den on KRS to store records for every single content item
published.

As an example, a publisher may have one public-private
key pair which it uses to sign all content published with the
prefix /parc/papers. Thus, rather than storing the same
key as a separate KRS record for each piece of published
content under the prefix /parc/papers, KRS simply stores
the key once in the authoritative zone /parc, with the nota-
tion “*” that this record is the final response for any name
including the prefix /parc/papers. LPM is enabled through
the simple designation of a “*” record for a prefix, which in-
dicates that there are no further KRS records below that
prefix.

4.2 Improving KRS Performance with Caching
KRS records can be cached in two separate ways: nodes in

the underlying CCN network may cache the COs (that en-
capsulate a KRS record) and return them for subsequently
expressed Interests, and KRS servers may also themselves
cache and return KRS records. To highlight the distinction
between these two forms of caching, consider an example
where a local KRS server receives a request to resolve the
content name “/parc/csl/papers/krs.pdf”. In the process
of recursively resolving this request, the local KRS server
may receive and cache the KRS record for the name pre-
fix “/parc/csl/papers”. Subsequently, the local KRS server

receives a request to resolve “/parc/csl/papers/paper2.pdf”.
Though these two requests share the prefix“/parc/csl/papers”,
CCN caching cannot provide any benefits, since CCN caches
use exact matching on names to return a matching CO and
the last component of the two prefixes are dissimilar2. In-
stead, KRS servers perform LPM on the requested content
name “/parc/csl/papers/paper2.pdf” and respond with the
cached KRS record for “/parc/csl/papers”, thereby improv-
ing performance significantly.

4.3 KRS Forwarding Policies
So far, we have described a recursive forwarding policy

employed by authoritative KRS servers, whereby they di-
rectly query the next-hop service in charge of the subprefix.
An alternative to the recursive technique is the iterative for-
warding technique. Here, the server simply responds to the
Interest with a CO that contains the globally routable name
and the public key of the next-hop service able to process
the KRS request. When the requesting server receives this
CO, it constructs a new KRS query for the newly learnt
KRS service name. The requesting server can also option-
ally cache this globally routable name and the public key of
this KRS service in its next-hop table.

Figure 3: Top-Down Forwarding

Figure 4: Bottom-Up Forwarding

In DNS, local resolvers come pre-loaded with the addresses
of root and top level domain (TLD) servers. This technique
bootstraps the resolution process and ensures that a resolver
always has an address to send its first query to, even if it
has no immediate forwarding information for the query. We
refer to this model, illustrated in Figure 3, as top-down for-
warding. We use an analogous technique in KRS to boot-
strap the next-hop table entries at KRS servers. KRS may
also employ bottom-up forwarding, wherein all local resolvers
have a prefix name, and therefore a place in the prefix hi-
erarchy. When a local resolver receives a query for which it

2Unlike previous CCN protocol specifications, the current
specification CCNx 1.0 requires CCN caches to perform ex-
act matching on names.

100

has no immediate forwarding information, instead of directly
querying the root of the prefix tree, it sends the query to its
parent, as illustrated in Figure 4. We examined the trade-
offs between top-down and bottom-up forwarding in [7]. For
example, bottom-up forwarding serves to keep local requests
more local, yet can potentially result in more referrals, since
it introduces more intermediate zones along the path. How-
ever, well-designed caching policies help to ameliorate these
referrals while simultaneously reducing load on higher-level
authoritative servers.

4.4 Bootstrapping and KRS Maintanence
In the previous section, we described how queries are for-

warded through the KRS and answered by the authoritative
zone. However, before a query is answered, the KRS must
be populated with records, and these records must be kept
up-to-date. Among the multiple ways of achieving this, we
advocate a federated approach similar to the one deployed
in DNS today to handle globally routable namespaces and
corresponding key registrations. Like in DNS, this registra-
tion information can be maintained by the registries, which
contract with registrars to provide registration services to
the publishers. A publisher can select a designated regis-
trar for the namespace it chooses to own. Unlike DNS, we
expect most registrars in KRS to also act as certification
authorities that can issue public key certificates to publish-
ers for top level namespaces they own. As in DNS, only
the designated registrar may modify or delete information
about a KRS record for a namespace and we also envision
a global entity, similar to ICANN, that will coordinate the
namespace allocations and manage the KRS root servers.

One difference between today’s DNS and KRS will be the
number of top level zones in the root. We expect this num-
ber to be significantly larger for KRS and the contractual
arrangements for zone file access may not scale. However, it
is expected that DNS will experience the same problem in
the near future as the number of global top-level domains
increase. The ICANN Zone File Access Advisory Group has
published a concept paper [8] with four new access models
to alleviate this problem, all of which are equally applicable
to the KRS system proposed here. We omit a discussion
about these models due to space restrictions in this paper
but refer interested readers to [8] for more details.

Similar to DNSSEC [9], each KRS record itself is cryp-
tographically signed for security purposes. However, unlike
DNSSEC, KRS records are signed by the publishers that
owns the namespace to authenticate the KRS record at the
consumer application. Additionally, KRS queries are always
answered in the form of CCN COs, and independent from
any KRS record they may be carrying, COs are signed by
the KRS server that generated it and these signatures are
used for authentication at the KRS protocol level.

5. KRS IMPLEMENTATION AND EVALU-

ATION METHODOLOGY
We implemented KRS as an application level service run-

ning over ndnSIM [10], which is a ns-3 [11] module. We used
simulations and trace-based analysis to evaluate the perfor-
mance of KRS under a varying range of system parameters.

We first provide an overview of our evaluation methodol-
ogy. In our ns-3 simulations, we input a realistic Internet
topology as the underlying CCN topology with KRS run-

ning as an overlay application on this topology. We chose
nodes in this topology to represent both local KRS servers
and authoritative servers in KRS each zone. As part of the
initialization process, KRS records are distributed across re-
spective zones and handled by the designated authoritative
server. These records are drawn from representative traffic
traces. Client requests that need to be resolved are pro-
cessed by local KRS servers and matching KRS records are
fetched as discussed in Section 4.

At each local KRS server, we quantified the overhead as
measured by the number of KRS messages that are required
to fetch the matching KRS record. Each referral to the next
zone results in two KRS messages – an Interest message
and the returning record CO. We also measure the system
latency at the local KRS servers as the time required for the
local KRS server to obtain the record after it receives the
resolution query.

For all the above evaluations, we experimented with a
range of KRS specific parameters such as the forwarding
scheme used and cache size. All reported KRS latency val-
ues represent network latency; we do not include the time
required to perform the optional record authenticity verifi-
cation operation at each KRS server. By default, we used
recursive top-down forwarding in all our experiments, except
when comparing the benefits of recursive versus iterative for-
warding.

Similar to any global distributed system, KRS perfor-
mance results are dependent on the system and network en-
vironment parameters, as well as the workload used to drive
the performance evaluation. In the rest of this section, we
describe our workload as well as results from our parame-
ter sensitivity analysis that we used in our KRS simulation
experiments.

5.1 Representative Workload
As CCN is an emerging network architecture, there are

no representative traffic traces currently available. We chose
the well-accepted technique of translating HTTP GET re-
quests to CCN Interests [12], and thus ensured that the
heirarchy in HTTP URLs directly mapped to the hierar-
chy in CCN names. Our workload serves two purposes: (i)
it determines the records stored in KRS and the KRS zone
hierarchy and (ii) it represents the set of content names that
clients request to be resolved.

We used the IRC trace3 [13] consisting of roughly five
hundred thousand individual HTTP GETs.We removed re-
quests to CDNs and shared hosting services as these URL
structures did not translate well to CCN name hierarchies
and our resulting trace consisted of approximately 350,000
HTTP GETs. We translated each HTTP GET to a corre-
sponding CCN name by reversing the order of the hostname
and replacing each “.” with a “/”. Thus, the HTTP object
“mail.google.com/bob” corresponded to the CCN CO name
“/com/google/mail/bob”. We aggregated prefixes that span
multiple ccTLDs as they all refer to the same CO. Thus,
“/au/com/google”,“/uk/co/google”, and“/com/google”were
aggregated to “/com/google”.

We plot the distribution of client requests in our traces
in Figure 5 and confirm that the requests follow the Zipf
distribution, with alpha = 0.9258. This result is important

3collected at FIX-West over two days of 2009 at Ames Re-
search Center in Mountain View, California

101

since it implies that a majority of the queries to KRS are
for resolving the same content name.

Next, we examined the number of components in each
name that needed to be resolved. We plot the distribution
of the number of components in each name (black solid line)
in Figure 6, with a mean of 7.36 and a standard deviation
of 1.68. Since the distribution in Figure 6 is collected over
the set of all names, it is implicitly weighted by the popu-
larity of the requested COs. We filtered multiple resolution
requests for the same CO to show the distribution of unique
prefixes in Figure 6 (red solid line), with a mean of 7.48 and
a standard deviation of 1.64. This distribution influences
the depth of the KRS tree (zone) hierarchy and the number
of referrals that need to be performed, thereby impacting
KRS performance.

Figure 5: Popularity of COs

Figure 6: PDF of Name-Components in a Resolution

Request

5.1.1 Domain-based Filtering

In our trace set, we observed 29932 unique second-level
domains (e.g. “google”, “yahoo”, etc); Figure 7 illustrates
the popularity distribution of these domains, with the Y-axis
counting all requests for the domain. This distribution is
also Zipf, with alpha = 0.8640 implying that a small number
of domains are responsible for a significant portion of the
total number of requests. Scalability considerations in the
topology we used for running our simulations required us to
narrow the request set to include a much reduced number of

second-level domains, but at the same time we ensured that
the filtered set is still representative of the original requests.
We reduced our request set down to the 5 most popular
second-level domains (“google”, “yahoo”, “msn”, “friendster”,
and “cnn”), which resulted in a total of 113,531 requests
expressed for 34,834 different COs. This set of domains also
provided a diverse spread that captured many different Web
use-cases such as search, homepage, social, and news.

To show that this filtered set is still representative of
the observed workload, we calculated the probability den-
sity function for both the weighted and unweighted name-
components in our filtered set. We depict these by the black
and red dashed lines respectively in Figure 6. These dashed
lines roughly follow the distribution for the entire request
set, with one primary difference: the “bump” at 11 compo-
nents. This bump is explained by the prefix-set distribution
of CNN, which employs a much deeper naming tree, both
for its articles and the individual HTTP elements referenced
within an article. Thus, as input for our KRS experiments,
we used a final set of 113,531 requests for 34,834 unique
COs.

5.2 Zone Distribution and Colocation
The distribution of zones in KRS is critical to its per-

formance, since it determines the number of authoritative
servers that will be needed to power KRS resolution. Note
that the distribution of prefixes does not necessarily reflect
the distribution of zones. For example, a query-set consist-
ing of the single prefix
“/parc/csl/papers/krs.pdf” would still require 4 KRS zones:
the root zone, “parc”, “csl”, and “papers”.

Figure 7: Popularity Of Second-Level Domains

From our filtered request set, we removed all leaf nodes
and duplicates to create a set of 38,244 unique KRS zones.
As before, we analyzed the number of components for each
zone name in our set; we plot the cumulative density func-
tion (CDF) for all zones as well as for each second-level
domain in Figure 8. While the CDF for Google, MSN, and
Yahoo all roughly followed that of the mean CDF for all
zones, the CDFs for both Friendster and CNN exhibited
different behavior. CNN’s CDF was essentially two com-
ponents higher than the average, but this was consistent
with the aforementioned behavior observed in Figures 6.
For Friendster, the increase from 5 to 7 is explained by the
Friendster name-prefix format, which followed the pattern
“/com/friendster/blogs/{username}/{contentname}”.

102

Figure 8: CDF of Name-Components In A Zone

We present the CDF since it illustrates the percent of
zones containing up to a certain number of components.
This parameter is important because though our filtered re-
quest set requires 38,244 different zones, it is unlikely that
each zone will be hosted on a separate server. Rather, we
expect that a single server may be responsible for a large
number of zones, either through the use of default entries
or simply by hosting multiple zone-files; we call this process
zone colocation. While zone colocation for a domain is the
responsibility of the organization owning the domain, it is
still an important parameter to consider as it directly im-
pacts the number of referrals that need to be performed as
well as the response time to get back a KRS record.

To explore zone colocation, we started by defining a global
zone colocation number Z which represents a “cap” on how
long a zone’s prefix may be. For example, when Z = 3, the
zones “/parc”, “/parc/papers”, and “/parc/csl” may each be
located on separate servers, but the zone “/parc/csl/lab3”
may not have its own server: rather, it must be colocated
with“/parc/csl”. To analyze the system effects of varying Z,
we calculated the number of referrals for our request set for
different values of Z. For this calculation, we assumed that
every zone that may have its own server, does have its own
server. We explicitly assumed no caching. Thus, if a request
has n components, it will result in exactly n referrals, unless
n > Z, in which case the Zth referral definitively answers
the query.

Figure 9 illustrates how we anticipate the mean number
of referrals to vary with Z. At low values (e.g. Z = 2),
the mean number of referrals is close to Z, since almost all
requests have > Z components. However, as Z increases, we
observed a mean referral count of 7.11 at Z = 8 and 7.66 at
Z = 12. This result highlights the fact that so few requests
have a component-length of > 7 that even if colocation is
not used, it will not significantly degrade KRS performance.
Thus, we conclude that only Z values lower than 7 are useful
for improving system performance via limiting referrals.

Building on this result and from Figure 8, we chose Z

values for each domain based on the distribution of names.
Thus, we chose a value of Z = 5 for Google, MSN, and
Yahoo, and Z = 6 for Friendster and CNN. This roughly
corresponded to a value of 0.3 in the CDF for each domain,
and reduced our set of 38,244 unique zones down to a man-
ageable 713. Thus, in our simulation topology we have 713

Figure 9: Expected Mean Number of Referrals With

Colocation

KRS authoritative servers, with each server handling one
zone.

5.3 Underlying CCN Topology
To pick the underlying CCN topology for our KRS per-

formance evaluation, we chose a modified version of Rock-
etfuel’s “Verio US” topology [14] consisting of 921 nodes in
one connected component. We classified 462 leaf nodes as
“client” nodes that connected to 269 “gateway” nodes; the
remaining 190 nodes were classified as “backbones”. Each
node employed a LRU cache eviction policy; we varied the
cache size and report the results in Section 5.4. KRS servers
run as a service over the nodes in this topology. To ensure
that we are observing the performance of the underlying
CCN topology itself, we disabled all KRS record caching,
and employed a recursive forwarding scheme at every KRS
server. For the sake of evaluating only KRS performance,
we disregarded the presence of individual clients in our eval-
uation, and configured local KRS servers to directly request
the prefixes from the workload described above.

We assumed that authoritative KRS servers are located at
the edge of the network, either at client or gateway nodes.
We distributed the 713 authoritative KRS servers across
the combined total of 731 client and gateway nodes and
assigned similar prefixes (e.g. /com/friendster/blogs and
/com/frienster/www) to nodes that were close to each other
in the topology.

5.4 CCN Caching
Our goal in this experiment was to determine the cache

size to be set in CCN. We started by choosing one node
in the above topology to represent a local KRS server that
requested every Interest in the aforementioned request-set,
with the time between requests randomly generated accord-
ing to an exponential distribution with µ = 1.0 request/sec.
We repeated our experiments for various cache sizes (i.e.
the number of elements cached), including cache size 0. We
measured both the average KRS messages passed and aver-
age latency per request and plot them in Figure 10. With
no caching, we observed an average number of 7.66 KRS
messages passed (3.83 referrals) per request; this number
correlated well with the expected results shown in Figure 9,
given the degree of colocation. The mean latency of 1.02
seconds per request was roughly similar to values observed
by collecting DNS traffic [15]. We note that a direct com-

103

Figure 10: Average KRS messages per request vs

CCN cache size

parison between KRS and DNS is not valid because: (1) our
values are collected without caching, (2) KRS zone tree be-
ing much deeper than that of DNS, results in a much higher
number of mean KRS referrals, and (3) the underlying net-
work architecture is completely different. As expected, with
caching enabled, we observed an immediate, sharp drop-off,
both in latency and average number of KRS messages per
request. In accordance with observations about the popu-
larity distributions of COs and their effects on caching [16,
17, 18], we achieved a majority of these benefits even at low
cache sizes. Thus, we set CCN cache size to be 100 in the
rest of our KRS simulation experiments.

Figure 11: Latency And Number of Local KRS

Servers

5.5 Local KRS Servers
Next, we evaluated whether the number of local KRS

servers issuing KRS requests impacted the average number
of KRS messages and latency per request. We repeated the
same experiment as above while varying the number of local

KRS servers. To account for different topological locations,
we ensured that local KRS servers were deployed only at
client nodes. Whenever a local KRS server issued a request,
it simply chose the first unrequested prefix from the request
set. Since our evaluation topology consisted of one indi-
vidual ISP in the United States, we did not consider client
locality, as several studies [19, 20, 21, 22] have shown that
client locality is only significant at a coarse-grained level, or
where cultural/linguistic boundaries were crossed.

We observed that the average number of KRS messages
per request remained unaffected by the number of local KRS
servers making requests; this result was expected, since we
explicitly disabled all KRS caching. However, we also ob-
served a decrease in mean latency as we increased the num-
ber of local KRS servers; this decrease is illustrated for dif-
ferent CCN cache sizes in Figure 11. Notably, for all cache
sizes the mean latency did not continue to decrease when
we increased the number of local KRS servers beyond 4.
We attribute this decrease in latency to two factors: better
link-utilization and shorter average distance. However, these
benefits are primarily attained with even a small number of
local KRS servers, and this explains the lack of change in
latency beyond 5 local KRS servers. Thus, for the purpose
of our evaluation, we concluded that 4 or 5 is an acceptable
value for setting the minimum number of local KRS servers.

6. KRS PERFORMANCE RESULTS
In the previous section, we described our workload and

the impact of different system and configuration parameters
as well as network characteristics on KRS performance. In
this section we evaluated KRS itself, using the configura-
tion parameters chosen in the previous section; we studied
KRS behavior under varying KRS-specific parameters such
as KRS cache size and forwarding scheme (iterative versus
recursive) used.

6.1 KRS Recursion and Caching
Caching and forwarding are fundamentally intertwined

and directly impact each other: if caching is disabled, then
both the recursive and iterative forwarding schemes result
in the same number of referrals and KRS messages. As
cache size increases, the forwarding scheme used has grow-
ing importance, since it determines which intermediate KRS
servers receive and cache entries. To evaluate the impact
of these parameters, we enabled KRS caching and exam-
ined how KRS cache size impacted average number of KRS
messages per request. As discussed previously, we set CCN
cache size to 100 elements, and the number of local KRS
servers to five (5).

We define a“recursion number”R, where zones with prefix-
length> R resolve prefixes recursively, and zones with prefix-
length ≤ R do so iteratively. We designed this model by
observing policies enacted by real-world DNS servers today,
where authoritative servers higher in the hierarchy (e.g. root
and TLD servers) generally disable recursive resolution [15]
to address concerns about performance and security. In all
our previous experiments, KRS used recursive forwarding,
thus R = 0 for those experiments.

In Figure 12, we plot the average number of KRS messages
per request as a function of varying KRS cache size (number
of elements cached) for different values of R. We note that
the size of the KRS cache does not have a very strong effect
on average messages per request.

104

Figure 12: KRS Caching For Varying Values of R

The above result can be explained by considering the re-
sults observed in Figure 10, and recalling that this experi-
ment was run with a CCN node cache size of 100. As seen
from our request workload, KRS requests follow a Zipf dis-
tribution implying that a majority of KRS requests are sat-
isfied from CCN’s cache. Increasing KRS cache sizes thus
does not have any further impact on reducing KRS mes-
sages. Furthermore, when R = 0, every server is responding
recursively. Thus no querying server may learn the name of
the second-hop KRS authoritative server and its public key
to be cached for future use.

The true strength of longest prefix matching for looking
up entries in the next-hop table is not realized and thus
there is no reduction in the number of referrals. Effectively,
the KRS cache is used only for exact-matching, and the
observed performance as we increase the KRS cache size
roughly mimics that of increasing the CCN cache size.

We note that increasing the value of R significantly re-
duces the average number of KRS messages per request as
soon as KRS caching is enabled. The benefits are signifi-
cant for a KRS cache size of 50. However, increasing KRS
cache size further does not reduce the average KRS mes-
sages much more – the average KRS messages line flattens
out with further increase in KRS cache size.

With KRS caching enabled, the true strength of longest-
prefix-matching is realized and used to reduce intermediate
referrals, as described in Section 4.

For example, when R = 1, the root server “/” responds it-
eratively, so local KRS servers may learn the name and the
key of the authoritative server handling “/com.”They cache
this entry in their next-hop table. Thus, even for a small
KRS cache size, we quickly see the majority of gained perfor-
mance benefits, since increasing the KRS cache size further
does not reduce any more intermediate referrals. Likewise
for both R = 2 and R = 3: small cache sizes are sufficient
to store the set of next-hop server names and their keys,
and this caching is responsible for the majority of the per-
formance benefits observed.

6.2 KRS Storage
In this subsection, we discuss the storage requirements for

KRS records.

We expect a KRS record to be about 6 KB on average. As
described in Section 4, a KRS record consists of the content
name, the public key or content hash, the signature, and a
certificate or a certificate chain. While CCN names can be
arbitrarily long and can have an arbitrary number of com-
ponents, for efficiency purposes, we expect content names
to not exceed 1 KB [2]. Even for a strong 4096-bit signing
key, the associated certificate size is about 1.5 KB. Thus, we
expect an average KRS record to be approximately 6 KB.

For successful KRS resolution, authoritative zones must
store the set of KRS entries for which they are responsible.
From the colocation methodology described in Section 5, we
ran tests on a set consisting of 34,834 unique KRS records.
Assuming each record is on average 6 KB in size, storing
34,834 records require approximately 209 MB across the en-
tire system. Since this system contains only the five most
popular domains, and given that our evaluation shows that
these domains do accurately reflect the hierarchy and distri-
bution of name-prefixes, we expect that storing all the KRS
records for an organizational domain would require approx-
imately 40 MB on average.

From our experiments in Section 6.1, it is notable that
we achieved a majority of KRS performance benefits from
caches as small as 50. Even assuming that caches must be
two orders of magnitude larger (5000 elements) in order to
see these same benefits in a larger topology, storage require-
ments for caching KRS records at intermediate KRS servers
is not a concern.

6.3 Creating, Updating, and Deleting Entries
KRS must also support creating, updating, and deleting

records. However, evaluating the performance of such op-
erations is challenging, for several reasons. Today’s content
delivery protocols and systems largely perform these opera-
tions off-line, and as a result it is challenging to find collected
data-sets from which we can construct a realistic workload
for evaluation, as we did in Section 5.1. We expect the set
of create/update/delete entries to not be a significant per-
formance overhead. This expectation comes from the obser-
vation that offline configuration (i.e. manually configuring
a DNS or HTTP server) are acceptable only because such
operations happen much more infrequently than content is
read.

Additionally, KRS’s longest prefix matching look-up al-
gorithm for retrieving KRS records provides significant ben-
efits. Through the use of default entries, KRS provides a
powerful mechanism to mitigate the number of create, up-
date, and delete operations. By simply storing the key used
to sign every CO under a particular name prefix, no further
KRS operations are needed, regardless of how frequently a
publisher changes the COs below this prefix.

7. CONCLUSION
We proposed a Key Resolution Service (KRS) for CCN.

KRS provides a system for the registration, storage and dis-
tribution of security information associated with namespaces
in CCN. By taking advantage of the hierarchical naming
scheme in CCN, KRS can securely and unambiguously map
namespaces in CCN to public keys that are authorized to
publish in those namespaces. Additionally, KRS supports
a secure mapping between a content name and the crypto-
graphic digest of the Content Object carrying that name.

105

By analyzing a set of collected real HTTP traces, we es-
timated the workload for a KRS system and designed real-
istic experiments to evaluate the scalability of our system
under various conditions. Our experiments show that the
proposed KRS design is scalable to a global deployment and
that small cache sizes at different layers (i.e., at KRS and
the CCN layer) significantly benefit KRS performance.

To the best of our knowledge, KRS is the first practical
proposal that can fully eliminate the threat of content poi-
soning attacks in CCN (and its sibling architecture NDN) by
enabling consumers to acquire the necessary security infor-
mation to unambiguously request and receive trustworthy
content —regardless of the existence of untrustworthy con-
tent in router caches that might share the same name.

8. ACKNOWLEDGMENTS
This research was supported in part by the NSF Future

Internet Architecture (FIA) Program Award G015.3707.

9. REFERENCES

[1] Bengt Ahlgren, Christian Dannewitz, Claudio
Imbrenda, Dirk Kutscher, and Börje Ohlman. A
Survey of Information-Centric Networking. IEEE
Commun. Mag., 50(7):26–36, 2012.

[2] PARC. Content centric networking project (ccn).
http://www.ccnx.org.

[3] Paolo Gasti, Gene Tsudik, Ersin Uzun, and Lixia
Zhang. Dos and ddos in named data networking. In
Computer Communications and Networks (ICCCN),
2013 22nd International Conference on, pages 1–7.
IEEE, 2013.

[4] Cesar Ghali, Gene Tsudik, and Ersin Uzun. Elements
of trust in named-data networking. CoRR,
abs/1402.3332, 2014.

[5] Diego Perino and Matteo Varvello. A reality check for
content centric networking. In Proc. ACM SIGCOMM
Workshop ICN, 2011.

[6] We Knew The Web Was Big... http://googleblog.
blogspot.com/2008/07/we-knew-web-was-big.html.

[7] Spencer Sevilla, Priya Mahadevan, and
JJ Garcia-Luna-Aceves. FERN: A unifying framework
for name resolution across heterogeneous
architectures. Proc. IFIP NETWORKING, 2013.

[8] ICANN Zone File Access Advisory Group. gtld zone
file access in the presence of large numbers of tlds.
http://www.icann.org/en/topics/new-gtlds/

zfa-concept-paper-18feb10-en.pdf, 2010.

[9] S. Weiler and D. Blacka. RFC 6840: Clarifications and
Implementation Notes for DNS Security (DNSSEC).
IETF Standard, 2013.

[10] Alexander Afanasyev, Ilya Moiseenko, and Lixia
Zhang. ndnSIM: NDN simulator for NS-3. Technical
Report NDN-0005, NDN, October 2012.

[11] ns-3 network simulator. http://www.nsnam.org/.

[12] Won So, Ashok Narayanan, and David Oran. Named
data networking on a router: fast and dos-resistant
forwarding with hash tables. In Proceedings of the
ninth ACM/IEEE symposium on Architectures for
networking and communications systems, pages
215–226. IEEE Press, 2013.

[13] IRCache traces. ftp://ircache.net.

[14] Neil Spring, Ratul Mahajan, and David Wetherall.
Measuring isp topologies with rocketfuel. ACM
SIGCOMM Computer Communication Review,
32(4):133–145, 2002.

[15] J. Jung, E. Sit, H Balakrishnan, and R Morris. DNS
Performance and the Effectiveness of Caching.
Networking, IEEE/ACM Transactions on,
10(5):589–603, 2002.

[16] Seyed Kaveh Fayazbakhsh, Yin Lin, Amin
Tootoonchian, Ali Ghodsi, Teemu Koponen, Bruce M
Maggs, K C Ng, Vyas Sekar, and Scott Shenker. Less
Pain, Most of the Gain: Incrementally Deployable
ICN. In Proceedings of SIGCOMM 2013, page 1.
ACM, 2013.

[17] L Breslau, P. Cao, L Fan, G Phillips, and S. Shenker.
Web caching and Zipf-like distributions: Evidence and
implications. 1:126–134, 1999.

[18] Mark E Crovella and Azer Bestavros. Self-similarity in
World Wide Web traffic: evidence and possible causes.
Networking, IEEE/ACM Transactions on,
5(6):835–846, 1997.

[19] T Chung, J Han, H Lee, and J Kangasharju. Spatial
and temporal locality of content in BitTorrent: A
measurement study. Proc. IFIP NETWORKING,
2013.

[20] John S Otto, Mario A Sánchez, David R Choffnes,
Fabián E Bustamante, and Georgos Siganos. On blind
mice and the elephant: understanding the network
impact of a large distributed system. In ACM
SIGCOMM Computer Communication Review,
volume 41, pages 110–121. ACM, 2011.

[21] Michal Kryczka, Ruben Cuevas, Carmen Guerrero,
and Arturo Azcorra. Unrevealing the structure of live
bittorrent swarms: methodology and analysis. In
Peer-to-Peer Computing (P2P), 2011 IEEE
International Conference on, pages 230–239. IEEE,
2011.

[22] Ruben Cuevas Rumin, Nikolaos Laoutaris, Xiaoyuan
Yang, Georgos Siganos, and Pablo Rodriguez. Deep
diving into bittorrent locality. In INFOCOM, 2011
Proceedings IEEE, pages 963–971. IEEE, 2011.

106

