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Abstract

Full-image dependencies provide useful contextual in-

formation to benefit visual understanding problems. In this

work, we propose a Criss-Cross Network (CCNet) for ob-

taining such contextual information in a more effective and

efficient way. Concretely, for each pixel, a novel criss-cross

attention module in CCNet harvests the contextual infor-

mation of all the pixels on its criss-cross path. By taking a

further recurrent operation, each pixel can finally capture

the full-image dependencies from all pixels. Overall, CC-

Net is with the following merits: 1) GPU memory friendly.

Compared with the non-local block, the proposed recurrent

criss-cross attention module requires 11× less GPU mem-

ory usage. 2) High computational efficiency. The recurrent

criss-cross attention significantly reduces FLOPs by about

85% of the non-local block in computing full-image depen-

dencies. 3) The state-of-the-art performance. We conduct

extensive experiments on popular semantic segmentation

benchmarks including Cityscapes, ADE20K, and instance

segmentation benchmark COCO. In particular, our CCNet

achieves the mIoU score of 81.4 and 45.22 on Cityscapes

test set and ADE20K validation set, respectively, which

are the new state-of-the-art results. The source code is

available at https://github.com/speedinghzl/

CCNet.

1. Introduction

Semantic segmentation, which is a fundamental problem

in the computer vision community, aims at assigning se-

mantic class labels to each pixel in the given image. It has

been extensively and actively studied in many recent works

and is also critical for various challenging and meaningful

applications such as autonomous driving [14], augmented

reality [1], and image editing [13]. Specifically, current

state-of-the-art semantic segmentation approaches based on
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Figure 1. Diagrams of two attention-based context aggregation

methods. (a) For each position (e.g. blue), the Non-local module

[31] generates a dense attention map which has H × W weights

(in green). (b) For each position (e.g. blue), the criss-cross at-

tention module generates a sparse attention map which only has

H +W − 1 weights. After the recurrent operation, each position

(e.g. red) in the final output feature maps can collect information

from all pixels. For clear display, residual connections are ignored.

the fully convolutional network (FCN) [26] have made re-

markable progress. However, due to the fixed geomet-

ric structures, they are inherently limited to local receptive

fields and short-range contextual information. These limita-

tions impose a great adverse effect on FCN-based methods

due to insufficient contextual information.

To make up for the above deficiency of FCN, some works

have been proposed to introduce useful contextual infor-

mation to benefit the semantic segmentation task. Specif-

ically, Chen et al. [5] proposed atrous spatial pyramid pool-
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ing module with multi-scale dilation convolutions for con-

textual information aggregation. Zhao et al. [41] further

introduced PSPNet with pyramid pooling module to cap-

ture contextual information. However, the dilated convo-

lution based methods [6, 5, 12] collect information from

a few surrounding pixels and can not generate dense con-

textual information actually. Meanwhile, the pooling based

methods [41, 39] aggregate contextual information in a non-

adaptive manner and the homogeneous contextual informa-

tion is adopted by all image pixels, which does not satisfy

the requirement that different pixels need different contex-

tual dependencies.

To generate dense and pixel-wise contextual informa-

tion, PSANet [42] learns to aggregate contextual infor-

mation for each position via a predicted attention map.

Non-local Networks [31] utilizes a self-attention mecha-

nism [9, 29], which enables a single feature from any po-

sition to perceive features of all the other positions, thus

harvesting full-image contextual information, see Fig. 1 (a).

However, these attention-based methods need to generate

huge attention maps to measure the relationships for each

pixel-pair, whose complexity in time and space are both

O((H×W )×(H×W )), where H ×W donates the spatial

dimension of input feature maps. Since the input feature

maps are always with high resolution in semantic segmen-

tation task, self-attention based methods have high compu-

tation complexity and occupy a huge number of GPU mem-

ory. Thus, is there an alternative solution to achieve such a

target in a more efficient way?

To address the above mentioned problem, our motiva-

tion is to consecutive sparse attention to replace the single

layer dense attention in the non-local networks. Without

loss of generality, we use two consecutive criss-cross at-

tention modules, in which each one only has sparse connec-

tions (H+W−1) for each position in the feature maps. The

criss-cross attention module aggregates contextual informa-

tion in horizontal and vertical directions. By serially stack-

ing two criss-cross attention modules, it can collect contex-

tual information from all pixels. The above decomposition

strategy greatly reduces the complexity in time and space

fromO((H×W )×(H×W )) toO((H×W )×(H+W −1)).

We compare the differences between the non-local mod-

ule [31] and our criss-cross attention module in Fig. 1.

Concretely, both non-local module and criss-cross attention

module feed the input feature maps with spatial size H×W
to generate attention maps (upper branch) and adapted fea-

ture maps (lower branch), respectively. Then, the weighted

sum is adopted to collecting contextual information. Dif-

ferent from the dense connections adopted by the non-local

module, each position (e.g., blue color) in the feature maps

is sparsely connected with other ones which are in the same

row and the same column in our criss-cross attention mod-

ule, leading to the predicted attention map only has H+W−1

weights rather than H×W in non-local module. To achieve

the target of capturing the full-image dependencies, we then

innovatively and simply take a recurrent operation for the

criss-cross attention module. In particular, the local features

are firstly passed through one criss-cross attention mod-

ule to collect the contextual information in horizontal and

vertical directions. Then, by feeding the produced feature

maps from the first criss-cross attention module to the other

one, the additional contextual information obtained from

the criss-cross path is finally enable the full-image depen-

dencies to be captured by each pixel. As demonstrated in

Fig. 1 (b), each position (e.g. red color) in the second fea-

ture maps finally collects information from all others to aug-

ment the pixel-wise representations. We share parameters

of the recurrent criss-cross module to reduce extra parame-

ters. Our criss-cross attention module can be easily plugged

into any fully convolutional neural network, named CCNet,

for leaning to segment in an end-to-end manner.

We have carried out extensive experiments on multiple

large-scale datasets. Our proposed CCNet achieves top per-

formance on two most competitive semantic segmentation

datasets, i.e., Cityscapes [10] and ADE20K [44]. In ad-

dition, the proposed criss-cross attention even improves the

state-of-the-art instance segmentation method, i.e., Mask R-

CNN with ResNet-101 [17]. These results well demonstrate

that our criss-cross attention module is generally beneficial

to the dense prediction tasks. In summary, our main contri-

butions are two-fold:

• We propose a novel criss-cross attention module in this

work, which can be leveraged to capture contextual in-

formation from full-image dependencies in a more ef-

ficient and effective way.

• We propose CCNet by taking advantages of recurrent

criss-cross attention module, achieving leading perfor-

mance on segmentation-based benchmarks, including

Cityscapes, ADE20K and COCO.

2. Related work

Semantic segmentation The last years have seen a renewal

of interest on semantic segmentation. FCN [26] is the first

approach to adopt fully convolutional network for semantic

segmentation. Later, FCN-based methods have made great

progress in image semantic segmentation. Chen et al. [4]

and Yu et al. [37] removed the last two downsample layers

to obtain dense prediction and utilized dilated convolutions

to enlarge the receptive field. Unet [28], Deeplabv3+ [8],

MSCI [21], SPGNet [2], RefineNet [22] and DFN [36]

adopted encoder-decoder structures that fuse the informa-

tion in low-level and high-level layers to predict segmenta-

tion mask. SAC [40] and Deformable Convolutional Net-

works [11] improved the standard convolutional operator
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Figure 2. Overview of the proposed CCNet for semantic segmentation.

to handle the deformation and various scale of objects.

CRF-RNN [37] and DPN [25] used Graph model, i.e. CRF,

MRF, for semantic segmentation. AAF [19] used adversar-

ial learning to capture and match the semantic relations be-

tween neighboring pixels in the label space. BiSeNet [35]

was designed for real-time semantic segmentation.

Contextual information aggregation In addition, some

works aggregate the contextual information to augment the

feature representation. Deeplabv2 [5] proposed ASPP mod-

ule to use different dilation convolutions to capture con-

textual information. DenseASPP [34] brought dense con-

nections into ASPP to generate features with various scale.

DPC [3] utilized architecture search techniques to build

multi-scale architectures for semantic segmentation. PSP-

Net [41] utilized pyramid pooling to aggregate contextual

information. GCN [27] utilized global convolutional mod-

ule utilized global pooling to harvest context information

for global representations. Recently, Zhao et al. [42] pro-

posed the point-wise spatial attention network which uses

predicted attention map to guide contextual information col-

lection. Liu et al. [24] utilized RNNs to capture long-range

dependencies. Conditional random field (CRF) [4, 43],

Markov random field (MRF) [25] are also utilized to cap-

ture long-range dependencies for semantic segmentation.

Attention model Attention model is widely used for var-

ious tasks. Squeeze-and-Excitation Networks [18] en-

hanced the representational power of the network by mod-

eling channel-wise relationships in an attention mechanism.

Chen et al. [7] made use of several attention masks to

fuse feature maps or predictions from different branches.

Vaswani et al. [29] applied a self-attention model on ma-

chine translation. Wang et al. [31] proposed the non-local

module to generate the huge attention map by calculating

the correlation matrix between each spatial point in the fea-

ture maps, then the attention guided dense contextual infor-

mation aggregation. OCNet [38] and DANet [15] utilized

Non-local module [31] to harvest the contextual informa-

tion. PSA [42] learned an attention map to aggregate con-

textual information for each individual point adaptively and

specifically.

CCNet vs. Non-Local vs. GCN Here, we specifically dis-

cusses the differences among GCN [27], Non-local Net-

work [31] and CCNet. In term of contextual information

aggregation, only the center point can perceive the contex-

tual information from all pixels in GCN [27]. In contrast,

Non-local Network [31] and CCNet guarantee that a pixel

at any position perceives contextual information from all

pixels. Although, GCN [27] alternatively decomposes the

square-shape convolutional operation to horizontal and ver-

tical linear convolutional operations which is related to CC-

Net, CCNet takes criss-cross way to harvest contextual in-

formation which is more effective than horizontal-vertical

separate way. Moreover, CCNet is proposed to mimic Non-

local Network [31] for obtaining dense contextual informa-

tion through a more effective and efficient recurrent criss-

cross attention module, in which dissimilar features get low

attention weights and features with high attention weights

are similar ones.

3. Approach

In this section, we give the details of the proposed Criss-

Cross Network (CCNet) for semantic segmentation. We

first present a general framework of our CCNet. Then, the

criss-cross attention module which captures contextual in-

formation in horizontal and vertical directions will be intro-

duced. Finally, to capture the dense and global contextual

information, we propose to adopt a recurrent operation for

the criss-cross attention module.

3.1. Network Architecture

The network architecture is given in Fig. 2. An input

image is passed through a deep convolutional neural net-

work (DCNN), which is designed in a fully convolutional

fashion [5], to produce feature maps X with the spatial size

of H ×W . In order to retain more details and efficiently

produce dense feature maps, we remove the last two down-

sampling operations and employ dilation convolutions in
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Figure 3. The details of criss-cross attention module.

the subsequent convolutional layers, leading to enlarge the

width/height of the output feature maps X to 1/8 of the in-

put image.

Given the X, we first apply a convolutional layer to ob-

tain the feature maps H of dimension reduction, then, the

feature maps H are fed into the criss-cross attention mod-

ule to generate new feature maps H′ which aggregate con-

textual information together for each pixel in its criss-cross

path. The feature maps H′ only aggregate the contextual

information in horizontal and vertical directions which are

not powerful enough for semantic segmentation. To obtain

richer and denser context information, we feed the feature

maps H′ into the criss-cross attention module again and

output feature maps H′′. Thus, each position in feature

maps H′′ actually gathers the information from all pixels.

Two criss-cross attention modules before and after share the

same parameters to avoid adding too many extra parame-

ters. We name this recurrent structure as recurrent criss-

cross attention (RCCA) module.

Then, we concatenate the dense contextual feature H′′

with the local representation feature X. It is followed by

one or several convolutional layers with batch normaliza-

tion and activation for feature fusion. Finally, the fused fea-

tures are fed into the segmentation layer to predict the final

segmentation result.

3.2. CrissCross Attention

To model full-image dependencies over local feature rep-

resentations using lightweight computation and memory,

we introduce a criss-cross attention module. The criss-

cross attention module collects contextual information in

horizontal and vertical directions to enhance pixel-wise rep-

resentative capability. As shown in Fig. 3, given a lo-

cal feature maps H ∈ R
C×W×H , the module firstly ap-

plies two convolutional layers with 1 × 1 filters on H to

generate two feature maps Q and K, respectively, where

{Q,K} ∈ R
C′×W×H . C ′ is the number of channel, which

is less than C for dimension reduction.

After obtaining feature maps Q and K, we further gen-

(𝜽𝒙,𝜽𝒚)
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Loop 1 Loop 2

Figure 4. An example of information propagation when the loop

number is 2.

erate attention maps A ∈ R
(H+W−1)×W×H via Affinity

operation. At each position u in the spatial dimension of

feature maps Q, we can obtain a vector Qu ∈ R
C′

. Mean-

while, we can also obtain the set Ωu ∈ R
(H+W−1)×C′

by

extracting feature vectors from K which are in the same row

or column with position u. Ωi,u ∈ R
C′

is the ith element

of Ωu. The Affinity operation is then defined as follows:

di,u = QuΩi,u
⊺ (1)

where di,u ∈ D is the degree of correlation between feature

Qu and Ωi,u, i = [1, ..., |Ωu|], D ∈ R
(H+W−1)×W×H .

Then, we apply a softmax layer on D over the channel di-

mension to calculate the attention map A.

Another convolutional layer with 1 × 1 filters is ap-

plied on H to generate V ∈ R
C×W×H for feature adap-

tion. At each position u in the spatial dimension of fea-

ture maps V, we can obtain a vector Vu ∈ R
C and a set

Φu ∈ R
(H+W−1)×C . The set Φu is a collection of fea-

ture vectors in V which are in the same row or column with

position u. The contextual information is collected by the

Aggregation operation:

H′
u
=

∑

i∈|Φu|

Ai,uΦi,u +Hu (2)

where H′
u

is a feature vector in output feature maps H′ ∈
R

C×W×H at position u. Ai,u is a scalar value at channel i

and position u in A. The contextual information is added to

local feature H to enhance the local features and augment

the pixel-wise representation. Therefore, it has a wide con-

textual view and selectively aggregates contexts according

to the spatial attention map. These feature representations

achieve mutual gains and are more robust for semantic seg-

mentation.

3.3. Recurrent CrissCross Attention (RCCA)

Despite a criss-cross attention can capture contextual in-

formation in horizontal and vertical directions, the connec-

tions between one pixel and its around ones that are not in
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the criss-cross path are still absent. To tackle this problem,

we innovatively and simply introduce a RCCA operation

based on the criss-cross attention. The RCCA module can

be unrolled into R loops. In the first loop, the criss-cross

attention takes the feature maps H extracted from a CNN

model as the input and output the feature maps H′, where

H and H′ are with the same shape. In the second loop, the

criss-cross attention takes the feature maps H′ as the input

and output the feature maps H′′. As shown in Fig. 2, the

RCCA module is equipped with two loops (R=2) which is

able to harvest full-image contextual information from all

pixels to generate new feature maps with dense and rich

contextual information.

We denote A and A′ as the attention maps in loop 1

and loop 2, respectively. Since we are interested only in

contextual information spreads in spatial dimension rather

than in channel dimension, the convolutional layer with 1×
1 filters can be view as the identical connection. In addition,

the mapping function from position x′, y′ to weight Ai,x,y

is defined as Ai,x,y = f(A, x, y, x′, y′). For any position

u at the feature maps H′′ and any position θ at the feature

maps H, there is actually a connection in the case of R = 2.

For the case that u and θ are in the same row or column:

H′′
u
← [f(A, u, θ) + 1] · f(A′, u, θ) ·Hθ (3)

where ← donates the add-to operation. For the other case

that u and θ are not in the same row and column, Fig. 4

shows the propagation path of context information in spatial

dimension:

H′′
u
← [f(A, ux, θy, θx, θy) · f(A

′, ux, uy, ux, θy)+

f(A, θx, uy, θx, θy) · f(A
′, ux, uy, θx, uy)] ·Hθ (4)

In general, our RCCA module makes up for the defi-

ciency of criss-cross attention that cannot obtain the dense

contextual information from all pixels. Compared with

criss-cross attention, the RCCA module (R = 2) does not

bring extra parameters and can achieve better performance

with the cost of a minor computation increment.

4. Experiments

To evaluate the effectiveness of the CCNet, we carry out

comprehensive experiments on the Cityscapes dataset [10],

the ADE20K dataset [44], and the COCO dataset [23]. Ex-

perimental results demonstrate that CCNet achieves state-

of-the-art performance on Cityscapes and ADE20K. Mean-

while, CCNet can bring constant performance gain on

COCO for instance segmentation. In the following sub-

sections, we first introduce the datasets and implementa-

tion details, then we perform a series of ablation experi-

ments on Cityscapes dataset. Finally, we report our results

on ADE20K and COCO dataset.

4.1. Datasets and Evaluation Metrics

We adopt Mean IoU (mIOU, mean of class-wise inter-

section over union) for Cityscapes and ADE20K and the

standard COCO metrics Average Precision (AP) for COCO.

• Cityscapes is tasked for urban segmentation, Only the

5,000 finely annotated images are used in our experi-

ments and are divided into 2,975/500/1,525 images for

training, validation, and testing.

• ADE20K is a recent scene parsing benchmark contain-

ing dense labels of 150 stuff/object categories. The

dataset includes 20K/2K/3K images for training, vali-

dation and test.

• COCO is a very challenging dataset for instance seg-

mentation that contains 115K images over 80 cate-

gories for training, 5K images for validation and 20k

images for testing.

4.2. Implementation Details

Network Structure For semantic segmentation, we choose

the ImageNet pre-trained ResNet-101 [17] as our backbone

and remove the last two down-sampling operations and em-

ploy dilated convolutions in the subsequent convolutional

layers following the previous work [4], resulting in the out-

put stride as 8. For instance segmentation, we choose Mask-

RCNN [16] as our baseline.

Training settings SGD with mini-batch is used for train-

ing. For semantic segmentation, the initial learning rate

is 1e-2 for Cityscapes and ADE20K. Following the prior

works [5, 39], we employ a poly learning rate policy where

the initial learning rate is multiplied by 1− ( iter
max iter

)power

with power = 0.9. We use the momentum of 0.9 and a

weight decay of 0.0001. For Cityscapes, the training im-

ages are augmented by randomly scaling (from 0.75 to 2.0),

then randomly cropping out the high-resolution patches

(769 × 769) from the resulting images. Since the images

from ADE20K are with various sizes, we adopt an augmen-

tation strategy of resizing the short side of input image to

the length randomly chosen from the set {300, 375, 450,

525, 600}. For instance segmentation, we take the same

training settings as that of Mask-RCNN [16].

4.3. Experiments on Cityscapes

4.3.1 Comparisons with state-of-the-arts

Results of other state-of-the-art semantic segmentation so-

lutions on Cityscapes validation set are summarized in

Tab. 1. We provide these results for reference and em-

phasize that these results should not be simply compared

with our method, since these methods are trained on dif-

ferent (even larger) training sets or different basic net-

work. Among these approaches, Deeplabv3 [6] and CCNet
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Table 1. Comparison with state-of-the-arts on Cityscapes (val).

Method Backbone multi-scale mIOU(%)

DeepLabv3 [6] ResNet-101 Yes 79.3

DeepLabv3+ [8] Xception-65 No 79.1

DPC [3] † Xception-71 No 80.8

CCNet ResNet-101 No 80.2

CCNet ResNet-101 Yes 81.3

† use extra COCO dataset for training.

Table 2. Comparison with state-of-the-arts on Cityscapes (test).

Method Backbone mIOU(%)

DeepLab-v2 [5] ResNet-101 70.4

RefineNet [22] ‡ ResNet-101 73.6

SAC [40] ‡ ResNet-101 78.1

GCN [27] ‡ ResNet-101 76.9

DUC [30] ‡ ResNet-101 77.6

ResNet-38 [32] WiderResnet-38 78.4

PSPNet [41] ResNet-101 78.4

BiSeNet [35] ‡ ResNet-101 78.9

AAF [19] ResNet-101 79.1

PSANet [42] ‡ ResNet-101 80.1

DFN [36] ‡ ResNet-101 79.3

DenseASPP [34] ‡ DenseNet-161 80.6

CCNet ‡ ResNet-101 81.4

‡ train with both the train-fine and val-fine datasets.

adopt the same backbone and multi-scale testing strategy.

Deeplabv3+ [8] and DPC [3] both use a more stronger back-

bone (i.e., Xception-65 & 71 vs. ResNet-101). In addition,

DPC [3] makes use of additional dataset, i.e., COCO, for

pre-training beyond the training set of Cityscapes. The re-

sults show that the proposed CCNet with multi-scale testing

still outperforms all these strong baselines.

Additionally, we also train the best learned CCNet with

ResNet-101 as the backbone using both training and valida-

tion sets and make the evaluation on the test set by submit-

ting our test results to the official evaluation server. Most

of methods [5, 22, 40, 27, 30, 41, 35, 19, 42, 36] adopt

the same backbone as ours and the others [32, 34] uti-

lize stronger backbones. From Tab. 2, it can be observed

that our CCNet substantially outperforms all the previous

state-of-the-arts. Among the approaches, PSANet [42] is

most related to our method which generates sub attention

map for each pixel. One of the differences is that the sub

attention map has 2 × H × W weights in PSANet and

H + W − 1 weights in CCNet. Even with lower compu-

tation cost and memory usage, Our method still achieves

better performance.

Table 3. Performance on Cityscapes (val) for different number of

loop in RCCA. FLOPs and Memory increment are estimated for

an input of 1× 3× 769× 769.

Loops GFLOPs(N) Memory(MN) mIOU(%)

baseline 0 0 75.1

R=1 8.3 53 78.0

R=2 16.5 127 79.8

R=3 24.7 208 80.2

4.3.2 Ablation studies

To verify the rationality of the CCNet, we conduct exten-

sive ablation experiments on the validation set of Cityscapes

with different settings for CCNet.

The effect of the RCCA module Tab. 3 shows the perfor-

mance on Cityscapes validation set by adopting different

number of loop in RCCA. All experiments are conducted

using ResNet-101 as the backbone. Beside, the input size

of one image is 769×769, resulting in the size of input fea-

ture maps H of RCCA is 97 × 97. Our baseline network

is the ResNet-based FCN with dilated convolutional mod-

ule incorporated at stage 4 and 5, i.e., dilations are set to 2

and 4 for these two stages respectively. The increment of

FLOPs and Memory usage are estimated when R = 1, 2, 3,

respectively.

We observe that adding a criss-cross attention into the

baseline, donated as R = 1, improves the performance

by 2.9% compared with the baseline, which can effectively

demonstrate the significance of criss-cross attention. Fur-

thermore, increasing loops from 1 to 2 can improve the per-

formance by 1.8%, demonstrating the effectiveness of dense

contextual information. Finally, increasing loops from 2 to

3 slightly improves the performance by 0.4%. Meanwhile,

with the increasing of loops, the usage of FLOPs and GPU

memory will still be increased. These results prove that the

proposed criss-cross attention can significantly improve the

performance by capturing contextual information in hor-

izontal and vertical direction. In addition, the proposed

criss-cross attention is effective in capturing the dense and

global contextual information, which can finally benefit the

performance of semantic segmentation. To balance the per-

formance and resource usage, we choose R = 2 as default

settings in all the following experiments.

To further validate the effectiveness of the criss-cross

module, We provide the qualitative comparisons in Fig. 5.

We leverage the white circles to indicate those challenging

regions that are easily to be misclassified. It can be seen

that these challenging regions are progressively corrected

with the increasing of loops, which can well prove the ef-

fectiveness of dense contextual information aggregation for

semantic segmentation.
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Figure 5. Visualization results of RCCA with different loops on Cityscapes validation set.

Table 4. Comparison of context aggregation approaches on

Cityscapes (val).

Method mIOU(%)

ResNet101-Baseline 75.1

ResNet101+GCN 78.1

ResNet101+PSP 78.5

ResNet101+ASPP 78.9

ResNet101+NL 79.1

ResNet101+RCCA(R=2) 79.8

ResNet50-Baseline 73.3

ResNet50+GCN 76.2

ResNet50+PSP 76.4

ResNet50+ASPP 77.1

ResNet50+NL 77.3

ResNet50+HV 77.3

ResNet50+HV&VH 77.8

ResNet50+RCCA(R=2) 78.5

Comparison of context aggregation approaches We com-

pare the performance of several different context aggre-

gation approaches on the Cityscapes validation set with

ResNet-50 and ResNet-101 as backbones.

Specifically, the baselines of context aggregation mainly

include: 1) Peng et al. [27] utilized global convolution net-

work for contextual information aggregation, donated as

“+GCN”. 2) Zhao et al. [41] proposed Pyramid pooling

which is the simple and effective way to capture global con-

textual information, donated as “+PP”; 3) Chen et al. [6]

used different dilation convolutions to harvest pixel-wise

contextual information at the different range, donated as

“+ASPP”; 4) Wang et al. [31] introduced non-local network

for context aggregation, donated as “+NL”.

In Tab. 4, both “+NL” and “+RCCA” achieve better per-

formance compared with other the context aggregation ap-

proaches, which demonstrates the importance of capturing

full-image contextual information. More interestingly, our

method achieves better performance than “+NL”. This rea-

son may be attributed to the sequentially recurrent opera-

tion of criss-cross attention. Concretely, “+NL” generates

an attention map directly from the feature which has limit

receptive field and short-range dependencies. In contrast,

our “+RCCA” takes two steps to form dense contextual in-

formation, leading to that the latter step can learn a better

attention map benefiting from the feature maps produced

by the first step in which some long-range dependencies has

already been embedded.

To prove the effectiveness of attention with criss-cross

shape, we compare criss-cross shape with other shapes in

Tab. 4. “+HV” means stacking horizontal attention and ver-

tical attention. “+HV&VH” means summing up features

of two parallel branches: “HV” and “VH”. These results

prove that criss-cross attention can achieve better perfor-

mance than other shapes.

We further explore the amount of computation and mem-

ory footprint of RCCA. As shown in Tab. 5, compared with

“+NL” method, the proposed “+RCCA” requires 11× less

GPU memory usage and significantly reduce FLOPs by

about 85% of non-local block in computing full-image de-

pendencies, which shows that the CCNet is an efficient way

to capture full-image contextual information in the least

amount of computation and memory footprint.

Visualization of Attention Map To get a deeper under-

standing of our RCCA, we visualize the learned attention

masks as shown in Fig. 6. For each input image, we select

one point (cross in green color) and show its corresponding

attention maps when R = 1 and R = 2 in columns 2 and 3,

respectively. It can be observed that only contextual infor-

mation from the criss-cross path of the target point is cap-

ture when R = 1. By adopting one more criss-cross mod-

ules, i.e., R = 2, RCCA can finally aggregate denser and
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Figure 6. Visualization of attention module on Cityscapes valida-

tion set. The left column is the input images, the 2 and 3 columns

are pixel-wise attention maps when R = 1 and R = 2 in RCCA.

Table 5. Comparison of Non-local module and RCCA. FLOPs and

Memory increment are estimated for an input of 1×3×769×769.

Method GFLOPs(N) Memory(MN) mIOU(%)

baseline 0 0 73.3

+NL 108 1411 77.3

+RCCA(R=2) 16.5 127 78.5

richer contextual information compared with that of R = 1.

Besides, we observe that the attention module could capture

semantic similarity and full-image dependencies.

4.4. Experiments on ADE20K

In this subsection, we conduct experiments on the

AED20K dataset, which is a very challenging scene parsing

dataset. As shown in Tab. 6, CCNet achieves the state-of-

the-art performance of 45.22%, outperforms the previous

state-of-the-art methods by more than 0.6%. Among the

approaches, most of methods [40, 41, 42, 20, 33, 39] adopt

the ResNet-101 as backbone and RefineNet [22] adopts a

more powerful network, i.e., ResNet-152, as the backbone.

EncNet [39] achieves previous best performance among the

methods and utilizes global pooling with image-level super-

vision to collect image-level context information. In con-

trast, our CCNet adopts an alternative way to integrate con-

textual information by capture full-image dependencies and

achieve better performance.

4.5. Experiments on COCO

To further demonstrate the generality of CCNet, we con-

duct the instance segmentation task on COCO [23] using

the competitive Mask R-CNN model [16] as the baseline.

Following [31], we modify the Mask R-CNN backbone by

adding the RCCA module right before the last convolutional

residual block of res4. We evaluate a standard baseline of

ResNet-50/101. All models are fine-tuned from ImageNet

pre-training. We use the official implementation1 with end-

to-end joint training whose performance is almost the same

as the baseline reported in [31]. We report the results in

1https://github.com/facebookresearch/

maskrcnn-benchmark

Table 6. Comparison with state-of-the-arts on ADE20K (val).

Method Backbone mIOU(%)

RefineNet [22] ResNet-152 40.70

SAC [40] ResNet-101 44.30

PSPNet [41] ResNet-101 43.29

PSANet [42] ResNet-101 43.77

DSSPN [20] ResNet-101 43.68

UperNet [33] ResNet-101 42.66

EncNet [39] ResNet-101 44.65

CCNet ResNet-101 45.22

Table 7. Comparisons on COCO (val).

Method APbox APmask

R50

baseline 38.2 34.8

+NL 39.0 35.5

+RCCA 39.3 36.1

R101

baseline 40.1 36.2

+NL 40.8 37.1

+RCCA 41.0 37.3

terms of box AP and mask AP in Tab. 7 on COCO. The re-

sults demonstrate that our method substantially outperforms

the baseline in all metrics. Meanwhile, the network with

“+RCCA” also achieve the better performance than the net-

work with one non-local block “+NL”.

5. Conclusion and future work

In this paper, we have presented a Criss-Cross Net-

work (CCNet) for deep learning based dense prediction

tasks, which adaptively captures contextual information on

the criss-cross path. To obtain dense contextual informa-

tion, we introduce RCCA which aggregates contextual in-

formation from all pixels. The experiments demonstrate

that RCCA captures full-image contextual information in

less computation cost and less memory cost. Our CCNet

achieves outstanding performance consistently on two se-

mantic segmentation datasets, i.e. Cityscapes, ADE20K and

instance segmentation dataset, i.e. COCO.
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