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Abstract

This paper investigates conditional choice probabilityneation of dynamic struc-
tural discrete and continuous choice models. We extend dheept of finite depen-
dence in a way that accommodates non-stationary, irrelgutitnsition probabilities.
We show that, under this new definition of finite dependenne;meriod dependence is
obtainable in any dynamic model. This finite dependenceaitglso provides a con-
venient and computationally cheap representation of thienapty conditions for the
continuous choice variables. We allow for general form stdkte-valued unobserved
heterogeneity in utilities, transition probabilities,damroduction functions. The unob-
served heterogeneity may be correlated with the obsensthte variables. We show
the estimator is root-n—asymptotically normal. We develaew and computationally
cheap algorithm to compute the estimator.
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1 Introduction

In this paper, we investigate conditional choice probgbi{CCP) estimation of dynamic
structural discrete/continuous choice models with unokeskindividual heterogeneity. We
show that a modest extension to the definition finite deperelanHotz and Miller|(1993),
Altug and Miller (1998), and Arcidiacono and Miller (2010¢¥@mmodates general non-
stationary and irreducible transition probabilities, asllvas a general form of correlated
unobserved heterogeneity in the utility functions, prddurcfunctions, and the transition
probabilities. We propose a generalized method of mom@&i\|) estimator for the struc-
tural parameters of the model and derive their asymptositidutions. We also propose a
simple algorithm to implement the estimator.

Since its introduction by Hotz and Miller (1993), CCP estiioa of dynamic structural
models has flourished in empirical labor economics and imidli®rganization, largely be-
cause of its potentially immense reduction in computationat compared to the more tra-
ditional backward recursive- and contraction mappingeddsll maximum likelihood esti-
mation pioneered by Rust (1987), referred to as the nested pwint algorithm (NFXP).
The CCP estimator circumvents having to solve the dynanaigramming problem for each
trial value of the structural parameters by making use ofe&torone mapping between the
normalized value functions and the CCPs established in &ludzaMiller (1993). Therefore,
nonparametric estimates of the CCPs can be inverted torobséimates of the normalized
value functions, which can then be used in estimating theestral parameters.

Empirical application the early formulation of CCP estimnathad important limitations
relative to the NFXP method. The emerging literature hasiged on separate, but related
drawbacks. The first is nonparametric estimation of the C@€Bslts in less efficient esti-
mates of the structural parameters, as well as, relativady finite sample performance. The
second is the difficulty of accounting for unobserved indinal heterogeneity, mainly due to
having to estimate the CCPs by nonparametric methods. Adiion of both approaches to
estimation is the difficulty of both the CCP and NFXP estimsite they are largely restricted
to discrete choice, discrete states models.

Aguirregabiria and Mira (2002) proposed a solution to tiseiesof efficiency and finite
sample performance of the CCP estimator relative to NFXifhasbr. They show that, for a



given value of the preference parameters, the fixed poifti@noin the value function space
can be transformed into a fixed point problem in the probgtspace. Aguirregabiria and Mira
(2002) propose swapping the nesting of the NFXP, and showebelting estimator is
asymptotically equivalent to the NFXP estimator. Furthemen Aguirregabiria and Mira
(2002) show in simulation studies that their method prodestemates 5 to 15 times faster
than NFXP. The method proposed by Aguirregabiria andMi@®#2 is restricted to discrete
choice models in stationary environments, and is not desi¢m account for unobserved in-
dividual heterogeneity.

Recent developments in accounting for unobserved heteeityan CCP estimators in-
clude Aguirregabiria and Mira (2007), Arcidiacono and Mil(2010). Aguirregabiria and Mira
(2007) allow for permanent unobserved heterogeneity trostary, dynamic discrete games.
Their method requires multiple inversion of potentiallsg@ dimensional matrices. Arcidiacono and Millel
(2010) propose a more general method for incorporating-spezific or time-invariant
unobserved heterogeneity into CCP estimators. Their ndethadifies the Expectations-
Maximization algorithm proposed in Acidiacono (2002). Hamer, Arcidiacono and Miller's
method is only applicable to discrete dynamic models.

Altug and Miller (1998) proposed a method for allowing fomti@auous choices in the
CCP framework. By assuming complete markets, estimatesdifidual effects and ag-
gregate shocks are obtained, which are then used in the destage to form (now) ob-
servationally equivalent individuals. These observatilynequivalent individuals are used
to compute counterfactual continuous choices. Bajari.@807) modify the methods of
Hotz and Miller (1993) and Hotz et al. (1994), to estimatirygamic games. Their method
of modeling unobserved heterogeneity in continuous clsoisenconsistent with the dy-
namic selection.

The finite dependence property; when two different polieesociated with different ini-
tial choices lead to the same distribution of states aftemaderiods, is critical for the com-
putational feasibility and finite sample performance of G&mators. Finite dependence
combined with the invertibility result of Hotz and Miller 993) results in significant reduc-
tion in computational cost of estimating dynamic structunadels. Essentially, the smaller
the order of dependence, the faster and more precise tmeadstj because fewer future
choice probabilities that either have to be estimated oatgulj depending of the method of
estimation. The concept of finite dependence was first intred by Hotz and Miller (1993),
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extended by Altug and Miller (1998), and furtherlby Arcidiao and Miller (2010). Despite
these generalizations, the concept of finite dependenaegisly restricted to discrete choice
models with either stationary transitions or the renewapprty.

This paper make three separate, but closely related catitnits to the literature on CCP
estimation of dynamic structural models. We extend the epnof finite dependence to al-
low for general non-stationary and irreducible transitgobabilities. While its definition
is precise and well understood, the strategy to construte fiependence in dynamic struc-
tural models have been largely ad hoc and imprecise, oftgimgeon assumptions that are
either theoretically unjustified, or significantly restig the data. Altug and Miller (1998),
Gayle and Miller(2003), and Gayle (2006) rely on completekaband degenerate transi-
tion probability assumptions to form counterfactual €gas that obtain finite dependence.
A key insight of Arcidiacono and Miller (2010) is: “the expded value of future utilities
from optimal decision making can always be expressed agitunrscof the flow payoffs and
conditional choice probabilities fany sequence of future choices, optimal or not.” This
insight is the basis of our extension of the finite depend@noperty. We show the expected
value of future utilities from optimal decision making caméxpressed amy linear combi-
nationof flow payoffs and conditional CCPs, as long as the weightstuone. This insight
converts the difficult problem of finding one pair of sequencechoices that obtains finite
dependence to a continuum of finite dependencies from whichdose.

Given we are now able to choose from a continuum of finite ddpece representa-
tions, the question becomes whether there is a choice thaihstone-period finite depen-
dence. Indeed, one-period finite dependency is achievablrdless of the form of the
transition probabilities. The resulting form of the comalial value function has the ad-
vantage of being elegant and intuitive, as well as providirggmple method to accommo-
date continuous choices. Our approach to accounting fatimeayus choices do not rely
on first stage estimation aslin Altug and Miller (1998), andaBaet al. (2007), nor does it
require forward simulation as in Hotz et al. (1994), and Bagaal. (2007). The proposed
method for estimating discrete/continuous dynamic stmattmodels parallels the method
for estimating discrete/continuous static structural eteaf Dubin and McFadden (1984),
and Hanemann (1984), operationalized by the inversiontresidotz and Miller (1993),
Arcidiacono and Miller|(2010), and the generalized finitpeledence result of this paper.

To avoid stochastic degeneracy, the econometric speaiioatt discrete/continuous struc-
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tural models requires at least as many choice-specific @mebd shocks as there are choices.
The estimator developed in this paper conveniently accodates these traditional i.i.d.
shocks, as well as, other correlated unobserved heteribgehbe advantages of the algo-
rithm proposed in this paper are, it does not require spiagfyitial conditions, it does not
require discrete approximation of the continuous choiagatses and the value functions
and, its convergence is well understood.

2 Model

2.1 General framework

The general setup of a dynamic structural discrete/coatisghoice model that we consider
is as follows. In each periodl, an individual chooses amordgliscrete, mutually exclusive,
and exhaustive alternatives. Le{ be one if the discrete actiope {1,---,J} is taken in
periodt, and zero otherwise, and defide= (d1, - - - , ). Associated with each discrete al-
ternative,j, the individual choosek; continuous alternatives. Lef, € U, 1j €1, -- L,

be the continuous actions associated with alternatjveith c;; > 0 if dj = 1. Define
Ctj = (1, ,Cty) € Di", andc; = (1, ,6) € 0%, whereL = zleLj. Also, let(j,cj)

be the vector of discrete and continuous actions assoacmtadalternativej. The current
period payoff associated with actid, c;j) depends on the observed state OPx, where
Dy is the dimension ok;, the unobserved state € 0Ps, whereDs is the dimension of;,
the unidimensional discrete-choice-specific shgck [, and thel j-dimensional vector of
continuous-choice—specific shoaks= (r¢1, - - ,ru_j) cOb. Letz = (%, %), &j = (&;j.rtj),
ande = (a1, --,&y). The probability density function afz1,e+1) given(z,&) and ac-
tion (j, ;) is taken in period is denoted byfj: (z+1,&+1|z,&j,c;j). The shocks associated
with alternative(j,c;j) in periodt, &;j, are observed to the individual at the beginning of
periodt. The individual’'s conditional direct current period palyisbm choosing alternative
(j,cj) in periodt is denoted byxj(z, Ctj, tj) + &;j-

Definey;j = (dj, ;). The individual chooses the vectgr= (yi1,-- - ,yt3) to sequentially



maximize the expected discounted sum of payoffs:

T 3
E{t;j;ﬁt1dtj[utj(Zt,Ctj,ftj)+€tj]}, (2.1)

where € (0,1) is the discount factor. In each period,the expectation is taken over
Z.1,---,2r ande.1,---,er. The solution to maximizing expressidn (2.1) is a Markovidec
sion rule for optimal choice conditional on the time-spec#fiate vectors and i.i.d. shocks.
Let the optimal decision rule at peridcbe given by(df (z,&),c)(z,&)). Let the ex-ante
value function in period, \;(z, 1), be the discounted sum of expected future payoffs, before
& is revealed, given the optimal decision rule:

V(Zt rt {Z z BT td'[] Z'[7 uTj(ZT7C9j(ZT7e[>7rTj)+£Tj]}-

As is standard in dicrete/continuous models, the additegagability of the utility func-
tion implies the discrete-choice—specific continuous ohas a function of their associated

shocks and not a. Assume thafji (z+1,&11/z, &), Ctj) = fjt(z+1]z, )9 (Nt+1) e (Et+1),
whereg; is the density function of; andge be the density function af. The expected value
function in period + 1, givenz, ryj, the discrete choicg, and corresponding optimal con-
tinuous choiceg?: (z, 1)), is

Vit j(z, 1) = B/Vt+1(2t+1,rt+1)fjt(2t+1|2t,0toj(2t,ftj))gr(rt+1)drt+1d2t+1-

If behavior is governed by a Markov decision rule, thgfr;) can be written recursively:

J
Vi(z, 1) {Z (@) [w(2, S (2, 1t)), 1ej) + & + BVh+,j (2, rt)}}

/,
/2

J
S d(@ @) [Wj(z, (1)), ) + & + BVerj (1) o),

J
Z (2,@) [Wej (2, O (1)) ) + €| Qe (&) ey



where
Vij (2, 60 (22, 14) 1) = Ukj (2§ (1), 1) + Vi (1), (2.2)

the choice-specific conditional value function witheyt The optimal conditional continu-
ous choices, given the discrete alternaiivaeing chosen in period satisfy

4 0
ﬁvt](zbctj(zhrt]))rt]):CL (23)
forlj =1,---,Lj. Given the optimal conditional continuous ChOiC%,(Zt,rtj), the individ-

ual’s discrete choice of alternatiyas optimal if

0 . 1 if th(Zt,Ctoj(Zt,rtj>,rtj>+8tj >Vtk(Z[,CtOk(Zt,rtk),rtk>+8tk VK# J
oj(z,&)= .
0 otherwise
(2.4)
Finally, the optimal unconditional continuous choicg(z,rj), is given by
Gtj(,&)) = dJ(z,@)c) (2, 11)). (2.5)

2.2 Alternative representation

The probability of choosing alternativieat timet, conditional onz, r, and the vector of
choice-specific optimal conditional continuous choiagsr (c7, - ,c) is given by

Pz ) = [} (2@ 2] = [ (2o, e0)gs () e, (2.6)

so that, for all(z,rt), zle ptj(z,re) = 1, andpj(z,re) > 0 for all j. Let p(z,rt) =
(pta(z,re), -, pa(z,rt)) be the vector of conditional choice probabilities. Lemmafl o
Arcidiacono and Miller ((2010) show a functiap : [0,1]7 — O exists such that, fok =
1,--.,d

W(pr(z. 1)) = V(1) — ik(Z, Ck(Z, T Tk - (2.7)

Equation [(2.I7) is simply equation (3.5) lof Arcidiacono andiéd (2010), modified so the
choice probabilities and value functions are also cond#i@n the i.i.d. shocks associated
with the conditional continuous choices. Our key insighisen equation(2]17) holds for
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k=1,---,J, then for anyJ-dimensional vector of real numbesis= (&1, --,ay) such that
Si_i&k =1, we have

J
Ve(z,r) = S awMk(Z, C(2s i) k) + Wk(Pr (2, 1)) (2.8)

K=1
Letac 1) = (&+11j, - ,&+13,j), possibly depending ofx - - - ,zr) be the weights associ-
ated with the initial discrete choicg, in periodt. Substituting equation_(2.8) into equation

(2.2) gives:
vij (2, €0 (2 1), 1) = W (2,66 (2 1) 1)
J
B Y [ Mrnnas, Gl )
=]
+ (P (Zr, )|k () drga fi (zalz, & (1)) d 24, (2.9)

Equation [(2.B) shows the value function conditional (@ar;) can be written as the flow
payoff of the choice plusny weighted sum of a function of the one period ahead CCPs
plus the one period ahead conditional value functions, a/ttee weights sum to one. This
modest extension of the results| of Arcidiacono and Millé¥1(@) provides a powerful tool
for obtaining finite dependence in any model which can be tdated as the one developed
in the previous section.

Clarifying example

In order to make clear the alternative representation, weige a “stripped down” example
of the model formation. In this example we abstract away ftbe conditional continu-
ous choice and consider the case whkte2. We also assume the individual-time—specific
discrete-choice shocki;j, is distributed i.i.d., type 1 logit. Under these assummiche
choice-specific conditional value function in equatiorZjbecomes

Vij(z) = W (z) +Ver1,j(2), (2.10)

where

2
Vi+1,j(z) =B / In'y etk i (z1|2)dz 1 + By, (2.11)
k=1



wherey is the Euler constant. Equatidn (2.2) becomes

2
vij(2) = j(z) + B/ln S etk i (7,4]2)dz 41+ By, (2.12)
k=1

Also, the conditional choice probability of alternatiye- 1,2 is given by

ej(z)

pj(z) = T2 o) (2.13)

From equation(2.13), we have the following equality fot 1,2,

2
In'y 4@ = vj(z) —Inpj(2). (2.14)
=)

Notice equation(2.14) is simply equatidn (2.7) under treuagptions of this example. Also,
note the LHS of equation (2.114) evaluated at petiadl is the term inside the integral on
the RHS of equatiori (2.11). For alternatiye- 1,2, leta; 1; be weights associated with
alternativej in periodt and alternative in periodt 4 1, withag 1 1j +a+12j =1, = 1,2.
Then from equatiori (2.13) we have

2 2
In'y etk = 5 g kv k(@en) — N Pak(@e)]. (2.15)
k=1 k=1

Substituting equation (2.15) into equatién (2.11) obtains

_ 2
Vir1j(z) = B/ > Mi1k(Z+1) = In P k(zn)]ac i fit (242]2)dz 41
=1

+ By (2.16)

Now, substitutingZH? j from equation[(2.16) into equation (2]12), obtains

2
Wj(z) = Wj(z)+ B/ > Merk(zi1) — Inpac(zin)|ac ki fit (z41/2)dz 42
=

+ By. (2.17)



2.3 Generalized finite dependence

The purpose of this section is to show how the weighés, ; ,T1>t+1, k j=1,---,J},
may be used to obtain finite dependence. We begin by showiagdhbult holds for the
clarifying example.

Clarifying example contd.
Evaluating equatiod (2.17) at peritd- 1, and substituting into equatidn (2110) obtains

Wj(z) = wj(z +B/ Z Ut 1k(Z1) —INperak(zea)]ac ok fit(z2+1/2)dz 41

+[32/Vt+2(2t+2) [/ Z At 4+1kj fk7t+1(2t+2‘2t+1) fjt(2t+1|2t)dzt+l dz,»
k=1
+ By. (2.18)

Equation [(2.1B) can be used to write the difference in thecehspecific conditional value
function as follows,

Vi2(z) —w1(z) = U2(z) — W (z)
2

+B [ 3 ia@e) - Inpai(ze)]
=1

X (a1 ke fot(z41)2) — @1k fue (z41]%)|dz 11
+[32/\/t+2(zt+2)

2
X [/Z fkir1(zrelz) (@ iz (z11]z) — a1k fie(z2412)]dz 11| dz 2. (2.19)
=

Finite dependence is obtained{d 1 kj, K, j = 1,2} satisfies

2
/ > ftra(zrelz) @ e fa(z41]2) — agja fu(z412)]dz41 =0, (2.20)
K=1
2
> a1k =1 and (2.21)
K=1
ay1k2fa(z11z) # a1k fie(z41]z) for atleast onk™ € {1,2}. (2.22)
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The following presents an example of how to fifal 1 xj, K, j = 1,2} that satisfies equations

(2.20)-[2.2R). First, for ang € O, settinga;1.11 = ¢, substituting this and equation(2121)
into equation((2.20), and solving fey. 1 1> gives

fot41(z42|241) f (z241|2) + CTrt1(Z12]Z11) Tt (Z241]2) + (€ — 1) for1(Z42|Z11) Tt (Z41]2)

Ari12= f(Zr2]2) Freot (ZoolZirt) + foeot(ZoolZeot)]

 forna(@rolzasn) fa(z4102) + Chira(@i2lz+1) fu(z41]z2) + (€= 1) forva(zr2]z4a) Fie (2412)

=1
Ar122 o (z41]2) [frir1(Z12]z241) + f2111(Z12]241)]

Second, check if equatioh (Z2]22) is satisfied. Indeed, emué.22) is satisfied so long as
fi(z+1|z) # fa(z11]2).

Interestingly, for the weights calculated in the previoasggraph,

Vi2(z) —w1(z) = Wo(z) — Wa(z)
f2111(z42|z+1)
+ / —In ’
g <[ut+1’1(zt+l> P12(2+1) fri+1(Z42|24+1) + f2t41(Z42]Z41)
fLir1(Z+2|Z+1) )
frir1(zy2lze) + farra(z2lz)
x [fa(z41|2) — fu(z2+1]z)]dz11. (2.23)

+ [U+1,2(Z4+1) = INPri1.2(Z41)]

Note that equation (2.23) holds for any 2, so for any density functiorh(z_ »), defined on
the support o . »,

Vio(z) —w1(z) = U2(z) — Wa(z)

f2t+1(Z+2|Z+1)
_ |n )
" B// (MHJ(ZHD Pt (24) frira(zeelz) + forra(zy2lzia)

f1i+1(z42|z4+1) )
7 h(z2)dz
f1i11(z+20Z41) + forr1(z42/241) (z4+2)dz+42

x [fa(z41]2) — fit(z41]2)]dZ 1. (2.24)

+ [Ur12(Z41) —INpry12(z41)]

Also, notice that, for at least in this example, while the gtw$ depend on the choice af
the difference in the conditional value functions does ftas an open question whether this
invariance holds for the general case, which we now present.

11



Define fjt(z+1|z) = [ fit(z+1|z,rtj)or (rtj)dr:j. For any initial choice j, ), for peri-
odst = {t+1,--- ,t+p}, and any corresponding sequemge= {aw;,k,j =1,---,J} with
Si_qakj = 1, define

fit (z1|z, 1) fort=t

fZﬂ:laT—kl,kjfkT(Zr+1|ZT)KT—1,j(ZT|Zt,rtj>dZI fort=t+1,---,t+p .
(2.25)

Becauseyy_; awj = 1, [Krj(z+1,|2)dz1 = 1. This restriction does not requieg > 0.
By forward substitution, equations (2.9) ahd (2.25) obtain

Krj(Zr+1, %, 1) :{

Vtj (2, €0 (2, 1), ) = U (2 € (2 1) )
t+p J

+ Z Z/BTt[Urk(ZnC?k(ZT,rrk),rrk>'Hl»'k[pr(znrT)”arkjgr(rT)KT—Lj(ZT|Zt,rtj>derZt
=t+1k=1

—|—l3t+p+1/\/t+p+1(2t+p+1,ft+p+1)gr(ft+p+1)Kt+p+1,j(Zt+p+1\2t,rtj)drt+p+1d2t+p+1~
(2.26)

Equation [[2.26) shows the alternative-specific conditiordue functions can be repre-
sented as depending on théuture sequence of (possibly non-optimal) choice proliadsl
Per1 = (Pt+1(Z+1,Mt+1), - 5 P+p(Z+p, Nt+p)), thep+ 1 optimal alternative-specific contin-
uous choices? = ((z, 1), -, ¢, o(Z+p,Tt1p)), and thet + p+ 1 continuation value so
that

W (2, G (2 e), 1) = W (2, O P11 (2.27)

In what follows, we suppress this dependencéddnp; , ;) and reintroduce them when clar-
ity is required. Using equatiof (2.26), we can thereforerespthe difference in the condi-
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tional value functions associated with two alternativéiahichoices,j andj’ as

Wj(ze, 1)) — W (z, Tejr) = Wz, 1) — e (2, )
t+p J
+ Y Z/BTt[UTk(Zr,er)+wk[pr(zr,rr)]]gr(rr)drr

el e

X [BrkjKe-1,j(Zt] 2, 1)) — BukjKe-1,j/(Z|Z, 1ejr)]dz
+Bt+p+1/\/t+p+1(zt+p+l,rt+p+1)gr(rt+p+1)drt+p+1

X [Kttp,j(Z+p+1|2,Ttj) = Kivp,jr (Zrp+1|Z, Ftjr)]dZ4p1a. (2.28)

Therefore, we say a pair of initial choiceg, ¢;j) and(j’, ¢ ) exhibitgeneralizedp-period
dependenceif corresponding sequencés; 1 j,---,ap,j), and (a1 j, - ,8p,j7) €Xist
such that

Kitp,j(Z+p+1lZ,Ttj) = Kigp, j (Zp+1|2, Tejr)s

almost everywhere, and for at least ddie= {1,---,J} andt e {t+1,--- .t +p},

aTk*iKT—17i(ZT|Zt7rtj> # ark*j’KT—l,j’(ZT|Zt, rtj’)-

We now show that this generalization of the finite dependgmoperty can be used to
obtain one-period dependence for any model that satisfeesdtup given in the previous
section. For initial choicéj, ¢ ),

J
Kty1,j(z42/2) = / > a1 (z2lzia) fit (z4alz, 1) dza,
=1
so for any pair of initial choices,j,c;j) and(j’, ¢j),

Kit1,j(Z+2|%,rtj) — Kt+17j/(2t+2|2ta rtj’)

J
2/ > Bk fara(zr2lz) fie (21l 1) — kg ezl ) fje(zalz, rey)Jdz 2
=1

J
:/ > fara(Zr2lzen) @1k (zalz, 1) — aceaky e (z+alz, r)]dz (2.29)
=1
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Then a sufficient condition for one-period dependencé(&,1kj,a+1kj, K=1,---,J}
satisfies

J
/Z fera(Z+2lz1) [@erakg Fit(Z4]20 1) — @craky fie(z4alz,ng)ldz4 =0, j k=12,
k=1

J
Zat+l,kj:17 J:17J7 and

K=1

a1k fit (2+1]z2) # @k fje(z+1]z) for atleast on&™ € {1,---,J}.

Given the volume of alternative choices of weights that imistane-period finite dependence,
we proceed by assumim= 1, so

V(2 Tej) — e (2 ) = U (2, 1) — W (2 1)
J

+B/ (/Z[Ut+l,k(zt+17rt+1,k)+lle[pt—i—l(Zt—i—l,rt+1)]]gr(rt+1)drt+l>
K=1

X a1k frj(zralz, rej) — aqaky fejr(Zralz, rej)]dz4 g (2.30)

2.4 Optimal continuous choice

The alternative representation of the difference in caooétl value functions provide a sim-
ple and convenient representation of the condition fomoakiconditional continuous choice,
qoj (z,rtj) given alternativeg is chosen. The key is to nowtj/(zt,ctoj,(zt,rtj,), ryjr)/0cy; =0
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for j’ # jandl; =1,---,L;. This equality, and equatioh (2]30) impi&(zt,rt,-) solves
0
0= don — (2, ¢ (2 1)), )

+ B/ (/ aq (U4 1(Zr 1, O g g (Z4 M) T ) + Wi P (Ze1, rt+1)]]9r(ft+1)dft+1>
1

X a1k frj(z 1]z, 1) — @y fu (z241]z, 1) ]dz
J

- B/ (/ Y [V k(21 @y (1 P s ) T k) + WP a(Zeen, rt+1)]]gr<rt+l)drt+l>
=1

0
X ﬁ[awlkj ftj(z11lze, 1)) — @caky fu (z+1lz, rejr)]dz 1 (2.31)
j

The key to this solution is to notg_ 1 will typically be a function ofq(’j,.

Clarifying example contd.

To continue the clarifying example, suppose a unidimeraioantinuous choice is associ-
ated with alternative 2, and period specific utilities aré fooctions of lagged continuous
choice. Then equatiofi (2.24) implies the optimality coiedifor c%(z,:2) is

0
0= — 0% (2, Te2), T
I Ut2(Z, Cio (2, 1t2),1t2)
+B//[Ut+1,2(zt+17rt+l72> —Inpty12(Z11,rt41)]

( friva(zi2lza, rernn)
friva(ze2lzrn, rernn) + forea(ze2lzn, rga2

) h(2t+2)dzt+2) Or (rt1)dresa

X Eft2(2t+l|zt Ttj)dZ 1. (2.32)

2.5 Correlated unobserved heterogeneity

Recall thatz = (%,s ), wherex; is a vector of observable state variables ard a vector of
unobserved state variables. letby a subset ok, and assume that fgr=1,--- ,J

fit (1|2 & (2 1e)) = it (%l S O (1)) TSt 2] St W)
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Assume thaty is discretely distributed witlQ support pointss € {s1,---,sg}. Define
Tlyq(W) be the probability of being in statgin periodt andq’ in periodt + 1, conditional on
W DefineTrq/|q(vvt) to be the probability of being in statg given being is statg in period
t andw;. Then equatior(2.30) becomes

W (X, Sq, tj) — Ve jr (%, Sgo Ttjr) = Utj (%, Sqs M) — Wejr (% Sg» Tt j7)

Q J

+B Z /</Z[ut+1,k<xt+l7sq/,rt+1,k)+qu[p[+1(Xt+1,Sq/,rt+1)]]gr(rt+l)drt+l>
qd=1 k=1

* (@t Ty (2% S, Ttj) — Bk frr (X X, Sg, Ty )| A2 42T g (W) (2.33)

Then the probability of choosing alternatiyeat timet, conditional onx, sy, rt, and the
vector of choice-specific optimal conditional continuobisicescf = (c%, ---,c) is given

by
pe (%, S, 1t) = E[d0 (2, @)%, g 1] :/dtoj (7,1t &) Qe (Er) et (2.34)

The probability of choosing alternatijeat timet, conditional onsy andx; is
PO 00.50) = | PR (.S g (roe 2:35)
The probability of choosing alternatiyjeat timet, conditional ornx; is

Q
P00 = S P (% Sg)Tg(W), (2.36)

d=1

whererg (W) = Z$:1 Tyq(W), the (marginal) probability of being in staggn periodt given
w;. Finally, define

PR+ 1, jk (X4 1. X6, Sy Sg) = P14+, Sy ) POk ), (2.37)

and

o)
o)

P 1 (%1, X) = PPr 1 (%41, Sor) Prk (X So) Tl (Wh). (2.38)
gd=10=1
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3 ldentification

In this section, we discuss sufficient conditions for idigcdtion the parameters of the model.
Define M(w) = {(Sg Tyq(W)), d,a=1,---,Q}. Identification is semiparametric in the
sense that we impose parametric restrictionsigngde, gr, and fjt (X11|%, s, rtj), but we
only impose exclusion restrictions &h(w).

For each individual unit, the random variablegk,c;,x), t =1,---, T are observable.
Hence in the population, the joint distributiéf(d;,c;,%) is observed. Fot=1,--- T,
j=1,---,3,k# j, defineujk(z, c, ) = Wj(z,Cj,rtj) — Uk(Z, Cik, k), andvjk(z, G, 1) =
W (%, Ctj, Itj) — Vik(%, Gk, k). In what follows, we will use the shorthand notatiapg and
Vjk for upjk(z, ¢, re) andveji(z, G, re). Letx € X C [0Dx | whereDy, is the dimension o%;.
DefineX = {_; X

Assumption 3.1.Fort=1,--- T, j=1,---,J kK# |,

1. €[0,1) is known.

2. Rank Bxx] = Dy, Rank Bwiwt| = Dy, and the conditional density function qfgiven
W, fyjw > 0.

3. gj andg are independent with known common density functignwich is twice con-
tinuously differentiable and log-concave with support

4. g (rt) = or(rt; 02), is continuous and known up 6.

5. fij(x4+1/%,5,Cj) = ftj(%+1/%, S, Cj;03) is known up toB3 and is twice continuously
differentiable ing,,l; = 1,---,L;j.

6. Wj(%,Cj,rtj) = Utj(z,Gj,rj;01) is known up td; € OPey increasing and strictly con-
cave in @) WithIimqu%omj(zt,ctj,rtj;ﬂl) =—0oo,lj=1,--- L.

7. Let® = (01,02,03). For any w € X;, and for some*je€ {1,---,J}, there is a non-empty
set of x for which (i) for any8, either vj-k(x, Ctj,rtj; 8,Sy) > tj« (%, Ctj, 1tj:6,5), Sy > Sa»
or Vejsk(X,Ctj, 1tj36,8y) < Wjk(%,Ctj,rtj;0,%), Sy > Sy, and (ii) for 0 =# 0, and any pair
(%,5), (%,X) exists in this set for whichMk(%, ¢, rtj; 8, %) < Vejk(%, G}, Ttj; 8, 5), and
vtj*k(z,ctj,rtj;é,%) > Wik (%, Gtj, Mtj: 8, 5g)-

DefineP(x;0,M) = (p,j(%;6,M),t=1,--- T, j=1,---,J). Let (6g,Mp) be the true pa-
rameter vector, that is, the probabilities generated fioemtodel at6o, o) coincides with

the true probabilitiesP(x; 8g, Mg) = PY(x)
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Theorem 3.2. Suppose assumption B.1 holds. THég MNp) is identified in the sense that
any (8, 1) satisfyingP(x; 6, 1) = P%(x) implies(8,1) = (8o, Mo).

The proof of theorern 312 is foundlin Gayle (2013).

4 Estimator

In this section, we propose a GMM estimator for the pararsetéithe model 9 andrl.
We choose to propose a GMM estimator instead of the ML estinfat two reasons. First,
definition of the GMM estimator does not require specifying distribution of measurement
errors. Second, the GMM estimator is implementable withloetheed to specify the initial
conditions for the process gf. We begin by imposing a restrictions an

Assumption 4.1. The random vector w is discrete valued with R distinct values

We impose assumptidn 4.1 for two reasons. First this streabfithe distribution of
types affords relatively simple implementation in estiimat Second, this assumption re-
ducesIl1 to belong in a parametric class, which implies standardrpatac asymptotics
can be implemented to derive the asymptotic distributionictvin tern leads to the stan-
dard asymptotic covariance matrix estimator. Under assompL1, M(w) consists of
Q((Q—1)R+ 1) parameters to be estimated. SupposEbservations of the random vec-
tor {yi = (dit,Ci,Xt),t =1,---, T} are independently drawn frofa(d;,c,%). Lety =
iz ¥ir)s PO = (p%, -+, p% ), andc? = (c%,---,c% ). Foreach, and fort =3,---,T,
define the residuals

paitj (¥i: 0,M) = ditj — pi (%3 0,1),j =2, ,J,
p2itj (¥i;0,M) = cirj — ¢ (%¢;0,M), j = 1,--+,J,
Patjk(¥i; 0, M) = Citj O 1k — P g j %, 11), =1, =L k=j+1,-,J.
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Define

Pt (Yi;6,1) = (p1itj (i;0,M), j =
P2it (Yi;8,1) = (p2itj (¥i;0,M), j =
Pzit (¥i;6,M) = (pajk(vi;8,M), j =

2, ,J),
1,---,J3), and
1,---,J—1k=j+1---,J).

Define thel + (J+2)(J — 1) /2-dimensional residual vectp (yi; 0,M) = (pait, P2it, P3it) -
LetX; be a(L+ (J+2)(J—1)/2) x N¥ matrix of instruments, and define tN&-dimensional
vector.

Mt (6,1) = Xt pit (i; 6, M). (4.1)

Define theN*-dimensional vectomy(8,M) = (mi2(8,M)/,--- ,m_1(6,M)")’, whereN* =
51 N, and theN*-dimensional vector of moments(8,M) = E[m(6,M)]. LetQ be a
N* x NX-dimensional symmetric, positive definite weighting mathen from the results
of sectiorf B9 minimizes

S(8,1) = m(8,M)'Qm(8, ). (4.2)

To implement the estimator, we assume the number of types,known to the investi-
gator. Let

(e, = %_im(e,m. (4.3)

A

Then the GMM estimator fof®, Mo), (8, 1) minimizes
S(6,M) = m(8,M)'Qriv8, M), (4.4)

whereQ is a consistent estimator fer.
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5 Computing The Estimator

In this section, we present a method for computing the estinpmoposed in the previous
section. We describe the algorithm starting withdkel iteration withh[© := (11, %[0 p0.[0] gol glol)
in hand.
Define
J J

Lﬂtt+1(dit+1,dit|Xit+1,Xit,Sq/,Sq;)\[o]) =T1T11 P tt+1, jk (Xit+1, Xit » Sy » Sop Ao)dideesk - (5.1)
J=1k=1

Then, by Bayes’ rule

LPte-+ 1 (Syr» Sol Gt -1, G, Xit -1, Xit Al
Lﬂtt+1(dit+l7 it [Xit +1, Xt Sy S Al )T[t[O] (Sq’, Sq|Wit)

= ) (5.2)
Z$:1 ZqQ:]_ Lﬂtt+1(dit+l7 dit |Xit+l7 Xit » Sy » Sgp» A[O])TI{O} (Sq/7 Sq‘Wit)
The conditional type probabilities are therefore updatetblows.
T[t[0+1}<sq’ solw) — Sy Litir (S Sl i1, G, Xie -1, % A1) i (w) (5.3)

St lic(w) ’
wherel;; (w) is equal to one ifviy = w, and zero otherwise.

The alternative-specific continuous choice variables poated by iterating (over)

1™ (e iy O+, P, 010, 50, 010) — 1, iy O, 019, p01) 5, 619

0,0
Cit

-1
02
L@de HmMmﬁ””cqp[}Mﬂ%]

it j
0
|ia V|tJ<XIt7 I[tj}(X“?r'tJ’T[[OJrl] c” 0ol P H [0]76[0})}7 (54)
I
until convergence, where the procedure is initializedcﬁiﬂ?}. Denote the fixed point by
0,[o+1]
Clt .
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The conditional choice probabilities can be updated asvid|

pic, Y (x; 81%0) = W (v (x; TEO+Y, cPlo+ 1], pool ol gloly). (5.5)

Finally,(s,8) is updated as follows

(g1 glory = (gl gl

!/
K 0 m(riorl Plory polo+1 ol gf }») ( m(rfo+l, Qo+l 0o+l go e[o}>)}

-1

00
/
( m(rio+l Plo+l polo+1 o 6[0})) & mrierl Pl polory ol gloly (5.6

The full algorithm is as follows.

Main Algorithm
1- Initialize 8% € @, p°9 € [0, 1)NT-DU-1] andc?0 ¢ On(T-1L,
2—Foro>1

2.1- Updatet® (¢, q|w) using [5.1 {5.8)

2.2— Update® using [5.4)

2.3— Updatep®[@ using equatior{5]5)

2.4— Updatésl?, 0l°) using equatior(516)
Until convergence ins, 9).

Notice that steps 2.1-2.3 of the main algorithm is simplyleating the objective function
at the new trial values &, while step 2.4 is a Gauss-Newton step. Hence, the mainitidgor
converges, and the convergence rate is at most quadratic.

6 Asymptotic properties and consistent covariance estima-
tion

This section provides additional sufficient conditions émnsistency and/n-asymptotic
normality of the estimato#, of Bp € O.
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Assumption 6.1. As sample of n independent realizations is drawn frq, E, x). For each
i=1,---,n,(di,Ct, %, t =1,---,T) is observed.

Assumption 6.2. Q is symmetric and positive definite wit® — Q|| = 0p(1).

Theorem 6.3. Suppose (i) Assumptién B.1 holds, (ii) Assumgtioh 4.1 laold (i) Assump-
tions[6.1, and 612 hold. Theh—" 8y, and

Vn(8—860) - N(0,V),
where V= (M'QM)~1(M'QZQM)(M’'QM)~1, M = 0m(8) /06, andZ = E[my(89)mi(8o)’].

The proof of Theorem 613 is standard and can be found in NewewicFadden (1994).
To estimate/, letM = am(8) /98, 5 = zi“:lm(é)m(é)’/n, and define

V = (M'QM)"L(M'QEOM)(M'QM) L.
Theorem 6.4. Suppose the conditions of Theoreni 6.3 hold. Théer V|| = op(1).

Again, the proof of Theorem 6.4 is standard, and can alsol&ff;n Newey and McFadden
(1994).
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