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Abstract

This paper investigates conditional choice probability estimation of dynamic struc-
tural discrete and continuous choice models. We extend the concept of finite depen-
dence in a way that accommodates non-stationary, irreducible transition probabilities.
We show that, under this new definition of finite dependence, one-period dependence is
obtainable in any dynamic model. This finite dependence property also provides a con-
venient and computationally cheap representation of the optimality conditions for the
continuous choice variables. We allow for general form of discrete-valued unobserved
heterogeneity in utilities, transition probabilities, and production functions. The unob-
served heterogeneity may be correlated with the observablestate variables. We show
the estimator is root-n–asymptotically normal. We developa new and computationally
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1 Introduction

In this paper, we investigate conditional choice probability (CCP) estimation of dynamic

structural discrete/continuous choice models with unobserved individual heterogeneity. We

show that a modest extension to the definition finite dependence in Hotz and Miller (1993),

Altug and Miller (1998), and Arcidiacono and Miller (2010) accommodates general non-

stationary and irreducible transition probabilities, as well as a general form of correlated

unobserved heterogeneity in the utility functions, production functions, and the transition

probabilities. We propose a generalized method of moments (GMM) estimator for the struc-

tural parameters of the model and derive their asymptotic distributions. We also propose a

simple algorithm to implement the estimator.

Since its introduction by Hotz and Miller (1993), CCP estimation of dynamic structural

models has flourished in empirical labor economics and industrial organization, largely be-

cause of its potentially immense reduction in computational cost compared to the more tra-

ditional backward recursive- and contraction mapping-based full maximum likelihood esti-

mation pioneered by Rust (1987), referred to as the nested fixed point algorithm (NFXP).

The CCP estimator circumvents having to solve the dynamic programming problem for each

trial value of the structural parameters by making use of a one-to-one mapping between the

normalized value functions and the CCPs established in Hotzand Miller (1993). Therefore,

nonparametric estimates of the CCPs can be inverted to obtain estimates of the normalized

value functions, which can then be used in estimating the structural parameters.

Empirical application the early formulation of CCP estimation had important limitations

relative to the NFXP method. The emerging literature has focused on separate, but related

drawbacks. The first is nonparametric estimation of the CCPsresults in less efficient esti-

mates of the structural parameters, as well as, relatively poor finite sample performance. The

second is the difficulty of accounting for unobserved individual heterogeneity, mainly due to

having to estimate the CCPs by nonparametric methods. A limitation of both approaches to

estimation is the difficulty of both the CCP and NFXP estimators is they are largely restricted

to discrete choice, discrete states models.

Aguirregabiria and Mira (2002) proposed a solution to the issue of efficiency and finite

sample performance of the CCP estimator relative to NFXP estimator. They show that, for a
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given value of the preference parameters, the fixed point problem in the value function space

can be transformed into a fixed point problem in the probability space. Aguirregabiria and Mira

(2002) propose swapping the nesting of the NFXP, and show theresulting estimator is

asymptotically equivalent to the NFXP estimator. Furthermore, Aguirregabiria and Mira

(2002) show in simulation studies that their method produceestimates 5 to 15 times faster

than NFXP. The method proposed by Aguirregabiria and Mira (2002) is restricted to discrete

choice models in stationary environments, and is not designed to account for unobserved in-

dividual heterogeneity.

Recent developments in accounting for unobserved heterogeneity in CCP estimators in-

clude Aguirregabiria and Mira (2007), Arcidiacono and Miller (2010). Aguirregabiria and Mira

(2007) allow for permanent unobserved heterogeneity in stationary, dynamic discrete games.

Their method requires multiple inversion of potentially large dimensional matrices. Arcidiacono and Miller

(2010) propose a more general method for incorporating time-specific or time-invariant

unobserved heterogeneity into CCP estimators. Their method modifies the Expectations-

Maximization algorithm proposed in Acidiacono (2002). However, Arcidiacono and Miller’s

method is only applicable to discrete dynamic models.

Altug and Miller (1998) proposed a method for allowing for continuous choices in the

CCP framework. By assuming complete markets, estimates of individual effects and ag-

gregate shocks are obtained, which are then used in the second stage to form (now) ob-

servationally equivalent individuals. These observationally equivalent individuals are used

to compute counterfactual continuous choices. Bajari et al. (2007) modify the methods of

Hotz and Miller (1993) and Hotz et al. (1994), to estimating dynamic games. Their method

of modeling unobserved heterogeneity in continuous choices is inconsistent with the dy-

namic selection.

The finite dependence property; when two different policiesassociated with different ini-

tial choices lead to the same distribution of states after a few periods, is critical for the com-

putational feasibility and finite sample performance of CCPestimators. Finite dependence

combined with the invertibility result of Hotz and Miller (1993) results in significant reduc-

tion in computational cost of estimating dynamic structural models. Essentially, the smaller

the order of dependence, the faster and more precise the estimator, because fewer future

choice probabilities that either have to be estimated or updated, depending of the method of

estimation. The concept of finite dependence was first introduced by Hotz and Miller (1993),
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extended by Altug and Miller (1998), and further by Arcidiacono and Miller (2010). Despite

these generalizations, the concept of finite dependence is largely restricted to discrete choice

models with either stationary transitions or the renewal property.

This paper make three separate, but closely related contributions to the literature on CCP

estimation of dynamic structural models. We extend the concept of finite dependence to al-

low for general non-stationary and irreducible transitionprobabilities. While its definition

is precise and well understood, the strategy to construct finite dependence in dynamic struc-

tural models have been largely ad hoc and imprecise, often relying on assumptions that are

either theoretically unjustified, or significantly restricting the data. Altug and Miller (1998),

Gayle and Miller (2003), and Gayle (2006) rely on complete market and degenerate transi-

tion probability assumptions to form counterfactual strategies that obtain finite dependence.

A key insight of Arcidiacono and Miller (2010) is: “the expected value of future utilities

from optimal decision making can always be expressed as functions of the flow payoffs and

conditional choice probabilities forany sequence of future choices, optimal or not.” This

insight is the basis of our extension of the finite dependenceproperty. We show the expected

value of future utilities from optimal decision making can be expressed asany linear combi-

nationof flow payoffs and conditional CCPs, as long as the weights sum to one. This insight

converts the difficult problem of finding one pair of sequences of choices that obtains finite

dependence to a continuum of finite dependencies from which to choose.

Given we are now able to choose from a continuum of finite dependence representa-

tions, the question becomes whether there is a choice that obtains one-period finite depen-

dence. Indeed, one-period finite dependency is achievable regardless of the form of the

transition probabilities. The resulting form of the conditional value function has the ad-

vantage of being elegant and intuitive, as well as providinga simple method to accommo-

date continuous choices. Our approach to accounting for continuous choices do not rely

on first stage estimation as in Altug and Miller (1998), and Bajari et al. (2007), nor does it

require forward simulation as in Hotz et al. (1994), and Bajari et al. (2007). The proposed

method for estimating discrete/continuous dynamic structural models parallels the method

for estimating discrete/continuous static structural models of Dubin and McFadden (1984),

and Hanemann (1984), operationalized by the inversion result of Hotz and Miller (1993),

Arcidiacono and Miller (2010), and the generalized finite dependence result of this paper.

To avoid stochastic degeneracy, the econometric specification of discrete/continuous struc-
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tural models requires at least as many choice-specific unobserved shocks as there are choices.

The estimator developed in this paper conveniently accommodates these traditional i.i.d.

shocks, as well as, other correlated unobserved heterogeneity. The advantages of the algo-

rithm proposed in this paper are, it does not require specifying initial conditions, it does not

require discrete approximation of the continuous choice variables and the value functions

and, its convergence is well understood.

2 Model

2.1 General framework

The general setup of a dynamic structural discrete/continuous choice model that we consider

is as follows. In each period,t, an individual chooses amongJ discrete, mutually exclusive,

and exhaustive alternatives. Letdt j be one if the discrete actionj ∈ {1, · · · ,J} is taken in

periodt, and zero otherwise, and definedt = (dt1, · · · ,dtJ). Associated with each discrete al-

ternative,j, the individual choosesL j continuous alternatives. Letctl j ∈ ℜ+, l j ∈ 1, · · · ,L j ,

be the continuous actions associated with alternativej, with ctl j > 0 if dt j = 1. Define

ct j = (ct1, · · · ,ctL j ) ∈ ℜL j
+ , andct = (ct1, · · · ,ctJ) ∈ ℜL

+, whereL = ∑J
j=1L j . Also, let( j,ct j)

be the vector of discrete and continuous actions associatedwith alternativej. The current

period payoff associated with action( j,ct j) depends on the observed statext ∈ ℜDx, where

Dx is the dimension ofxt , the unobserved statest ∈ ℜDs, whereDs is the dimension ofst ,

the unidimensional discrete-choice–specific shockε jt ∈ ℜ, and theL j -dimensional vector of

continuous-choice–specific shocksrt j = (rt1, · · · , rtL j)∈ℜL j . Letzt = (xt ,st), et j = (εt j , rt j),

andet = (et1, · · · ,etJ). The probability density function of(zt+1,et+1) given(zt ,et) and ac-

tion ( j,ct j) is taken in periodt is denoted byf jt (zt+1,et+1|zt ,et j ,ct j). The shocks associated

with alternative( j,ct j) in period t, et j , are observed to the individual at the beginning of

periodt. The individual’s conditional direct current period payoff from choosing alternative

( j,ct j) in periodt is denoted byut j(zt ,ct j , rt j)+ εt j .

Defineyt j = (dt j ,ct j). The individual chooses the vectoryt =(yt1, · · · ,ytJ) to sequentially
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maximize the expected discounted sum of payoffs:

E

{

T

∑
t=1

J

∑
j=1

βt−1dt j [ut j(zt ,ct j , rt j)+ εt j ]

}

, (2.1)

whereβ ∈ (0,1) is the discount factor. In each period,t, the expectation is taken over

zt+1, · · · ,zT andet+1, · · · ,eT . The solution to maximizing expression (2.1) is a Markov deci-

sion rule for optimal choice conditional on the time-specific state vectors and i.i.d. shocks.

Let the optimal decision rule at periodt be given by(d0
t j(zt,et),c0

t j(zt ,et)). Let the ex-ante

value function in periodt, Vt(zt, rt), be the discounted sum of expected future payoffs, before

εt is revealed, given the optimal decision rule:

Vt(zt , rt) = E

{

T

∑
τ=t

J

∑
j=1

βτ−td0
τ j(zτ,eτ)[uτ j(zτ,c

0
τ j(zτ,eτ), rτ j)+ ετ j ]

}

.

As is standard in dicrete/continuous models, the additive separability of the utility func-

tion implies the discrete-choice–specific continuous choice is a function of their associated

shocks and not ofεt . Assume thatf jt (zt+1,et+1|zt ,et j ,ct j)= f jt (zt+1|zt ,ct j)gr(rt+1)gε(εt+1),

wheregr is the density function ofrt andgε be the density function ofε. The expected value

function in periodt +1, givenzt , rt j , the discrete choice,j, and corresponding optimal con-

tinuous choice,c0
t j(zt , rt j), is

V̄t+1, j(zt, rt) = β
∫

Vt+1(zt+1, rt+1) f jt (zt+1|zt ,c
0
t j(zt , rt j))gr(rt+1)drt+1dzt+1.

If behavior is governed by a Markov decision rule, thenVt(zt) can be written recursively:

Vt(zt , rt) = E

{

J

∑
j=1

d0
t j(zt ,et)

[

ut j(zt,c
0
t j(zt , rt j), rt j)+ εt j +βV̄t+1, j(zt , rt)

]

}

=
∫ J

∑
j=1

d0
t j(zt,et)

[

ut j(zt ,c
0
t j(zt, rt j), rt j)+ εt j +βV̄t+1, j(zt , rt)

]

gε(εt)dεt,

=
∫ J

∑
j=1

d0
t j(zt,et)

[

vt j(zt,c
0
t j(zt , rt j), rt j)+ εt j

]

gε(εt)dεt
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where

vt j(zt,c
0
t j(zt , rt j), rt j) = ut j(zt ,c

0
t j(zt, rt j), rt j)+V̄t+1, j(zt , rt), (2.2)

the choice-specific conditional value function withoutεt j . The optimal conditional continu-

ous choices, given the discrete alternativej being chosen in periodt, satisfy

∂
∂ctl j

vt j(zt,c
0
t j(zt , rt j), rt j) = 0, (2.3)

for l j = 1, · · · ,L j . Given the optimal conditional continuous choice,c0
t j(zt, rt j), the individ-

ual’s discrete choice of alternativej is optimal if

d0
t j(zt,et) =

{

1 if vt j(zt ,c0
t j(zt , rt j), rt j)+ εt j > vtk(zt ,c0

tk(zt , rtk), rtk)+ εtk ∀k 6= j

0 otherwise
(2.4)

Finally, the optimal unconditional continuous choice,ct j(zt , rt j), is given by

ct j(zt,et j) = d0
t j(zt ,et)c

0
t j(zt, rt j). (2.5)

2.2 Alternative representation

The probability of choosing alternativej at timet, conditional onzt , rt , and the vector of

choice-specific optimal conditional continuous choices,c0
t = (c0

t1, · · · ,c0
tJ) is given by

pt j(zt , rt) = E[d0
t j(zt ,et)|zt, rt] =

∫
d0

t j(zt , rt ,εt)gε(εt)dεt , (2.6)

so that, for all(zt , rt), ∑J
j=1 pt j(zt, rt) = 1, and pt j(zt, rt) > 0 for all j. Let pt(zt, rt) =

(pt1(zt , rt), · · · , ptJ(zt, rt)) be the vector of conditional choice probabilities. Lemma 1 of

Arcidiacono and Miller (2010) show a functionψ : [0,1]J 7→ ℜ exists such that, fork =

1, · · · ,J
ψk(pt(zt , rt))≡Vt(zt, rt)−vtk(zt ,c

0
tk(zt , rtk), rtk). (2.7)

Equation (2.7) is simply equation (3.5) of Arcidiacono and Miller (2010), modified so the

choice probabilities and value functions are also conditional on the i.i.d. shocks associated

with the conditional continuous choices. Our key insight is, given equation (2.7) holds for
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k= 1, · · · ,J, then for anyJ-dimensional vector of real numbersat = (at1, · · · ,atJ) such that

∑J
k=1atk = 1, we have

Vt(zt , rt) =
J

∑
k=1

atk[vtk(zt ,c
0
tk(zt , rtk), rtk)+ψk(pt(zt , rt))]. (2.8)

Let at+1, j = (at+1,1 j , · · · ,at+1,J, j), possibly depending on(zt · · · ,zT) be the weights associ-

ated with the initial discrete choice,j, in periodt. Substituting equation (2.8) into equation

(2.2) gives:

vt j(zt,c
0
t j(zt , rt j), rt j) = ut j(zt ,c

0
t j(zt, rt j), rt j)

+β
J

∑
k=1

∫
[vt+1,k(zt+1,c

0
tk(zt , rtk), rt+1,k)

+ψk(pt+1(zt+1, rt+1))]at+1,k jgr(rt+1)drt+1 f jt (zt+1|zt,c
0
t j(zt , rt j))dzt+1, (2.9)

Equation (2.9) shows the value function conditional on(zt , rt) can be written as the flow

payoff of the choice plusany weighted sum of a function of the one period ahead CCPs

plus the one period ahead conditional value functions, where the weights sum to one. This

modest extension of the results of Arcidiacono and Miller (2010) provides a powerful tool

for obtaining finite dependence in any model which can be formulated as the one developed

in the previous section.

Clarifying example

In order to make clear the alternative representation, we provide a “stripped down” example

of the model formation. In this example we abstract away fromthe conditional continu-

ous choice and consider the case whereJ = 2. We also assume the individual-time–specific

discrete-choice shock,εit j , is distributed i.i.d., type 1 logit. Under these assumptions, the

choice-specific conditional value function in equation (2.2) becomes

vt j(zt) = ut j(zt)+V̄t+1, j(zt), (2.10)

where

V̄t+1, j(zt) = β
∫

ln
2

∑
k=1

evt+1,k(zt+1) f jt (zt+1|zt)dzt+1+βγ, (2.11)
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whereγ is the Euler constant. Equation (2.2) becomes

vt j(zt) = ut j(zt)+β
∫

ln
2

∑
k=1

evt+1,k(zt+1) f jt (zt+1|zt)dzt+1+βγ. (2.12)

Also, the conditional choice probability of alternativej = 1,2 is given by

pt j(zt) =
evt j(zt)

∑2
k=1evtk(zt)

. (2.13)

From equation (2.13), we have the following equality forj = 1,2,

ln
2

∑
k=1

evtk(zt) = vt j(zt)− ln pt j(zt). (2.14)

Notice equation (2.14) is simply equation (2.7) under the assumptions of this example. Also,

note the LHS of equation (2.14) evaluated at periodt +1 is the term inside the integral on

the RHS of equation (2.11). For alternativej = 1,2, let at+1,k j be weights associated with

alternativej in periodt and alternativek in periodt +1, with at+1,1 j +at+1,2 j = 1, j = 1,2.

Then from equation (2.13) we have

ln
2

∑
k=1

evt+1,k(zt+1) =
2

∑
k=1

at+1,k j[vt+1,k(zt+1)− ln pt+1,k(zt+1)]. (2.15)

Substituting equation (2.15) into equation (2.11) obtains

V̄t+1, j(zt) = β
∫ 2

∑
k=1

[vt+1,k(zt+1)− ln pt+1,k(zt+1)]at+1,k j f jt (zt+1|zt)dzt+1

+βγ. (2.16)

Now, substitutingV̄t+1, j from equation (2.16) into equation (2.12), obtains

vt j(zt) = ut j(zt)+β
∫ 2

∑
k=1

[vt+1,k(zt+1)− ln pt+1,k(zt+1)]at+1,k j f jt (zt+1|zt)dzt+1

+βγ. (2.17)
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2.3 Generalized finite dependence

The purpose of this section is to show how the weights,{aτ,k, j ,τ ≥ t +1, k, j = 1, · · · ,J},

may be used to obtain finite dependence. We begin by showing this result holds for the

clarifying example.

Clarifying example contd.

Evaluating equation (2.17) at periodt +1, and substituting into equation (2.10) obtains

vt j(zt) = ut j(zt)+β
∫ 2

∑
k=1

[ut+1,k(zt+1)− ln pt+1,k(zt+1)]at+1,k j f jt (zt+1|zt)dzt+1

+β2
∫

Vt+2(zt+2)

[∫ 2

∑
k=1

at+1,k j fk,t+1(zt+2|zt+1) f jt (zt+1|zt)dzt+1

]

dzt+2

+βγ. (2.18)

Equation (2.18) can be used to write the difference in the choice-specific conditional value

function as follows,

vt2(zt)−vt1(zt) = ut2(zt)−ut1(zt)

+β
∫ 2

∑
k=1

[ut+1,k(zt+1)− ln pt+1,k(zt+1)]

× [at+1,k2 f2t(zt+1|zt)−at+1,k1 f1t(zt+1|zt)]dzt+1

+β2
∫

Vt+2(zt+2)

×
[∫ 2

∑
k=1

fk,t+1(zt+2|zt+1)[at+1,k2 f2t(zt+1|zt)−at+1,k1 f1t(zt+1|zt)]dzt+1

]

dzt+2. (2.19)

Finite dependence is obtained if{at+1,k j, k, j = 1,2} satisfies

∫ 2

∑
k=1

fk,t+1(zt+2|zt+1)[at+1,k2 f2t(zt+1|zt)−at+1,k1 f1t(zt+1|zt)]dzt+1 = 0, (2.20)

2

∑
k=1

at+1,k j = 1, and, (2.21)

at+1,k∗2 f2t(zt+1|zt) 6= at+1,k∗1 f1t(zt+1|zt) for at least onek∗ ∈ {1,2}. (2.22)
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The following presents an example of how to find{at+1,k j,k, j = 1,2} that satisfies equations

(2.20)-(2.22). First, for anyc∈ ℜ, settingat+1,11 = c, substituting this and equation (2.21)

into equation (2.20), and solving forat+1,12 gives

at+1,12 =
f2,t+1(zt+2|zt+1) f2t(zt+1|zt)+c f1,t+1(zt+2|zt+1) f1t(zt+1|zt)+ (c−1) f2,t+1(zt+2|zt+1) f1t(zt+1|zt)

f2t(zt+1|zt)[ f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)]

at+1,22 = 1− f2,t+1(zt+2|zt+1) f2t(zt+1|zt)+c f1,t+1(zt+2|zt+1) f1t(zt+1|zt)+ (c−1) f2,t+1(zt+2|zt+1) f1t(zt+1|zt)

f2t(zt+1|zt)[ f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)]
.

Second, check if equation (2.22) is satisfied. Indeed, equation (2.22) is satisfied so long as

f1t(zt+1|zt) 6= f2t(zt+1|zt).

Interestingly, for the weights calculated in the previous paragraph,

vt2(zt)−vt1(zt) = ut2(zt)−ut1(zt)

+β
∫ (

[ut+1,1(zt+1)− ln pt+1,1(zt+1)]
f2,t+1(zt+2|zt+1)

f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)

+ [ut+1,2(zt+1)− ln pt+1,2(zt+1)]
f1,t+1(zt+2|zt+1)

f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)

)

× [ f2t(zt+1|zt)− f1t(zt+1|zt)]dzt+1. (2.23)

Note that equation (2.23) holds for anyzt+2, so for any density function,h(zt+2), defined on

the support ofzt+2,

vt2(zt)−vt1(zt) = ut2(zt)−ut1(zt)

+β
∫ ∫ (

[ut+1,1(zt+1)− ln pt+1,1(zt+1)]
f2,t+1(zt+2|zt+1)

f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)

+ [ut+1,2(zt+1)− ln pt+1,2(zt+1)]
f1,t+1(zt+2|zt+1)

f1,t+1(zt+2|zt+1)+ f2,t+1(zt+2|zt+1)

)

h(zt+2)dzt+2

× [ f2t(zt+1|zt)− f1t(zt+1|zt)]dzt+1. (2.24)

Also, notice that, for at least in this example, while the weights depend on the choice ofc,

the difference in the conditional value functions does not.It is an open question whether this

invariance holds for the general case, which we now present.
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Define f jt (zt+1|zt) =
∫

f jt (zt+1|zt, rt j)gr(rt j)drt j . For any initial choice( j,ct j), for peri-

odsτ = {t +1, · · · , t +ρ}, and any corresponding sequenceaτ = {aτk j,k, j = 1, · · · ,J} with

∑J
k=1aτk j = 1, define

κτ j(zτ+1, |zt, rt j)=

{

f jt (zt+1|zt, rt j) for τ = t∫
∑J

k=1aτ+1,k j fkτ(zτ+1|zτ)κτ−1, j(zτ|zt, rt j)dzτ for τ = t +1, · · · , t+ρ
.

(2.25)

Because∑J
k=1aτk j = 1,

∫
κτ j(zτ+1, |zt)dzτ+1 = 1. This restriction does not requirea j ≥ 0.

By forward substitution, equations (2.9) and (2.25) obtain

vt j(zt ,c
0
t j(zt, rt j), rt j) = ut j(zt,c

0
t j(zt , rt j), rt j)

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫
βτ−t [uτk(zτ,c

0
τk(zτ, rτk), rτk)+ψk[pτ(zτ, rτ)]]aτk jgr(rτ)κτ−1, j(zτ|zt , rt j)drτdzτ

+βt+ρ+1
∫

Vt+ρ+1(zt+ρ+1, rt+ρ+1)gr(rt+ρ+1)κt+ρ+1, j(zt+ρ+1|zt , rt j)drt+ρ+1dzt+ρ+1.

(2.26)

Equation (2.26) shows the alternative-specific conditional value functions can be repre-

sented as depending on theρ future sequence of (possibly non-optimal) choice probabilities

pt+1 = (pt+1(zt+1, rt+1), · · · , pt+ρ(zt+ρ, rt+ρ)), theρ+1 optimal alternative-specific contin-

uous choicesc0
t = (c0

t (zt , rt), · · · ,c0
t+ρ(zt+ρ, rt+ρ)), and thet + ρ+ 1 continuation value so

that

vt j(zt,c
0
t j(zt, rt j), rt j) = vt j(zt ,c0

t ,pt+1, rt j). (2.27)

In what follows, we suppress this dependence on(c0
t ,pt+1) and reintroduce them when clar-

ity is required. Using equation (2.26), we can therefore express the difference in the condi-
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tional value functions associated with two alternative initial choices,j and j ′ as

vt j(zt , rt j)−vt j ′(zt , rt j ′) = ut j(zt, rt j)−ut j ′(zt , rt j ′)

+
t+ρ

∑
τ=t+1

J

∑
k=1

∫
βτ−t[uτk(zτ, rτk)+ψk[pτ(zτ, rτ)]]gr(rτ)drτ

× [aτk jκτ−1, j(zτ|zt, rt j)−aτk j′κτ−1, j ′(zτ|zt, rt j ′)]dzτ

+βt+ρ+1
∫

Vt+ρ+1(zt+ρ+1, rt+ρ+1)gr(rt+ρ+1)drt+ρ+1

× [κt+ρ, j(zt+ρ+1|zt , rt j)−κt+ρ, j ′(zt+ρ+1|zt, rt j ′)]dzt+ρ+1. (2.28)

Therefore, we say a pair of initial choices,( j,ct j) and( j ′,ct j ′) exhibitgeneralizedρ-period

dependenceif corresponding sequences(at+1, j , · · · ,at+ρ, j), and(at+1, j ′, · · · ,at+ρ, j ′) exist

such that

κt+ρ, j(zt+ρ+1|zt, rt j) = κt+ρ, j ′(zt+ρ+1|zt, rt j ′),

almost everywhere, and for at least onek∗ ∈ {1, · · · ,J} andτ ∈ {t +1, · · · , t +ρ},

aτk∗ jκτ−1, j(zτ|zt, rt j) 6= aτk∗ j ′κτ−1, j ′(zτ|zt , rt j ′).

We now show that this generalization of the finite dependenceproperty can be used to

obtain one-period dependence for any model that satisfies the setup given in the previous

section. For initial choice( j,ct j),

κt+1, j(zt+2|zt) =

∫ J

∑
k=1

at+1,k j fkt+1(zt+2|zt+1) f jt (zt+1|zt , rt j)dzt+1,

so for any pair of initial choices,( j,ct j) and( j ′,ct j ′),

κt+1, j(zt+2|zt, rt j)−κt+1, j ′(zt+2|zt , rt j ′)

=
∫ J

∑
k=1

[at+1,k j fkt+1(zt+2|zt+1) f jt (zt+1|zt , rt j)−at+1,k j′ fkt+1(zt+2|zt+1) f j ′t(zt+1|zt , rt j ′)]dzt+1

=
∫ J

∑
k=1

fkt+1(zt+2|zt+1)[at+1,k j f jt (zt+1|zt , rt j)−at+1,k j′ f j ′t(zt+1|zt, rt j ′)]dzt+1. (2.29)

13



Then a sufficient condition for one-period dependence is{(at+1,k j,at+1,k j′, k = 1, · · · ,J}
satisfies

∫ J

∑
k=1

fkt+1(zt+2|zt+1)[at+1,k j f jt (zt+1|zt, rt j)−at+1,k j′ f j ′t(zt+1|zt, rt j ′)]dzt+1 = 0, j,k= 1,2,

J

∑
k=1

at+1,k j = 1, j = 1· · · ,J, and,

at+1,k∗ j f jt (zt+1|zt) 6= at+1,k∗ j ′ f j ′t(zt+1|zt) for at least onek∗ ∈ {1, · · · ,J}.

Given the volume of alternative choices of weights that obtains one-period finite dependence,

we proceed by assumingρ = 1, so

vt j(zt , rt j)−vt j ′(zt , rt j ′) = ut j(zt , rt j)−ut j ′(zt , rt j ′)

+β
∫ (∫ J

∑
k=1

[ut+1,k(zt+1, rt+1,k)+ψk[pt+1(zt+1, rt+1)]]gr(rt+1)drt+1

)

× [at+1k j ft j(zt+1|zt , rt j)−at+1k j′ ft j ′(zt+1|zt, rt j ′)]dzt+1. (2.30)

2.4 Optimal continuous choice

The alternative representation of the difference in conditional value functions provide a sim-

ple and convenient representation of the condition for optimal conditional continuous choice,

c0
t j(zt , rt j) given alternativej is chosen. The key is to note∂vt j ′(zt ,c0

t j ′(zt, rt j ′), rt j ′)/∂ctl j = 0

14



for j ′ 6= j andl j = 1, · · · ,L j . This equality, and equation (2.30) implyc0
t j(zt, rt j) solves

0=
∂

∂ctl j

ut j(zt ,c
0
t j(zt , rt j), rt j)

+β
∫ (∫ J

∑
k=1

∂
∂ctl j

[ut+1,k(zt+1,c
0
t+1,k(zt+1, rt+1,k), rt+1,k)+ψk[pt+1(zt+1, rt+1)]]gr(rt+1)drt+1

)

× [at+1k j ft j(zt+1|zt , rt j)−at+1k j′ ftl (zt+1|zt, rt j ′)]dzt+1

+β
∫ (∫ J

∑
k=1

[ut+1,k(zt+1,c
0
t+1,k(zt+1, rt+1,k), rt+1,k)+ψk[pt+1(zt+1, rt+1)]]gr(rt+1)drt+1

)

× ∂
∂ctl j

[at+1k j ft j(zt+1|zt , rt j)−at+1k j′ ftl(zt+1|zt , rt j ′)]dzt+1 (2.31)

The key to this solution is to noteat+1k j′ will typically be a function ofc0
t j ′.

Clarifying example contd.

To continue the clarifying example, suppose a unidimensional continuous choice is associ-

ated with alternative 2, and period specific utilities are not functions of lagged continuous

choice. Then equation (2.24) implies the optimality condition for c0
t2(zt, rt2) is

0=
∂

∂ct2
ut2(zt,c

0
t2(zt, rt2), rt2)

+β
∫ ∫

[ut+1,2(zt+1, rt+1,2)− ln pt+1,2(zt+1, rt+1)]

×
(∫

f1,t+1(zt+2|zt+1, rt+1,1)

f1,t+1(zt+2|zt+1, rt+1,1)+ f2,t+1(zt+2|zt+1, rt+1,2)
h(zt+2)dzt+2

)

gr(rt+1)drt+1

× ∂
∂ct2

ft2(zt+1|zt, rt j)dzt+1. (2.32)

2.5 Correlated unobserved heterogeneity

Recall thatzt = (xt ,st), wherext is a vector of observable state variables andst is a vector of

unobserved state variables. Letwt by a subset ofxt , and assume that forj = 1, · · · ,J

f jt (zt+1|zt,c
0
t j(zt , rt j) = f jt (xt+1|xt ,st ,c

0
t j(zt , rt j))π(st+1|st ,wt).
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Assume thatst is discretely distributed withQ support points,st ∈ {s1, · · · ,sQ}. Define

πq′q(wt) be the probability of being in stateq in periodt andq′ in periodt+1, conditional on

wt . Defineπq′|q(wt) to be the probability of being in stateq′ given being is stateq in period

t andwt . Then equation (2.30) becomes

vt j(xt ,sq, rt j)−vt j ′(xt ,sq, rt j ′) = ut j(xt ,sq, rt j)−ut j ′(xt ,sq, rt j ′)

+β
Q

∑
q′=1

∫ (∫ J

∑
k=1

[ut+1,k(xt+1,sq′, rt+1,k)+ψk[pt+1(xt+1,sq′, rt+1)]]gr(rt+1)drt+1

)

× [at+1k j ft j(xt+1|xt ,sq, rt j)−at+1k j′ ft j ′(xt+1|xt ,sq, rt j ′)]dzt+1πq′|q(wt). (2.33)

Then the probability of choosing alternativej at time t, conditional onxt , sq, rt , and the

vector of choice-specific optimal conditional continuous choices,c0
t = (c0

t1, · · · ,c0
tJ) is given

by

p0
t j(xt ,sq, rt) = E[d0

t j(zt ,et)|xt,sq, rt ] =
∫

d0
t j(zt, rt ,εt)gε(εt)dεt . (2.34)

The probability of choosing alternativej at timet, conditional onsq andxt is

p0
t j(xt ,sq) =

∫
p0

t j(xt ,sq, rt)gr(rt)drt . (2.35)

The probability of choosing alternativej at timet, conditional onxt is

p0
t j(xt) =

Q

∑
q=1

p0
t j(xt ,sq)πq(wt), (2.36)

whereπq(wt) =∑Q
q′=1 πq′q(wt), the (marginal) probability of being in stateq in periodt given

wt . Finally, define

p0
tt+1, jk(xt+1,xt ,sq′,sq) = p0

t+1, j(xt+1,sq′)p
0
t,k(xt ,sq), (2.37)

and

p0
tt+1, jk(xt+1,xt) =

Q

∑
q′=1

Q

∑
q=1

p0
t+1, j(xt+1,sq′)p

0
t,k(xt ,sq)πq′q(wt). (2.38)
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3 Identification

In this section, we discuss sufficient conditions for identification the parameters of the model.

Define Π(wt) = {(sq,πq′q(wt)), q′,q = 1, · · · ,Q}. Identification is semiparametric in the

sense that we impose parametric restrictions onut j , gε, gr , and f jt (xt+1|xt ,st, rt j), but we

only impose exclusion restrictions onΠ(wt).

For each individual unit, the random variables(dt ,ct ,xt), t = 1, · · · ,T are observable.

Hence in the population, the joint distributionF(dt ,ct ,xt) is observed. Fort = 1, · · · ,T,

j = 1, · · · ,J,k 6= j, defineut jk(zt ,ct , rt) = ut j(zt,ct j , rt j)−utk(zt,ctk, rtk), andvt jk(zt,ct , rt) =

vt j(zt ,ct j , rt j)−vtk(zt,ctk, rtk). In what follows, we will use the shorthand notationsut jk and

vt jk for ut jk(zt ,ct , rt) andvt jk(zt ,ct , rt). Let xt ∈ Xt ⊆ ℜDxt , whereDxt is the dimension ofxt .

DefineX = ∏T
t=1 Xt .

Assumption 3.1.For t = 1, · · · ,T, j = 1, · · · ,J,k 6= j,

1. β ∈ [0,1) is known.

2. Rank E[x′txt ] = Dxt , Rank E[w′
twt ] = Dwt , and the conditional density function of xt given

wt , fxt |wt
> 0.

3. ε j andεk are independent with known common density function, gε, which is twice con-

tinuously differentiable and log-concave with supportℜ.

4. gr(rt) = gr(rt ;θ2), is continuous and known up toθ2.

5. ft j(xt+1|xt ,st,ct j) = ft j(xt+1|xt ,st,ct j ;θ3) is known up toθ3 and is twice continuously

differentiable in ctl j , l j = 1, · · · ,L j .

6. ut j(zt ,ct j , rt j) = ut j(zt ,ct j , rt j ;θ1) is known up toθ1 ∈ ℜDθ1 , increasing and strictly con-

cave in ctl j , with limctl j→0ut j(zt ,ct j , rt j ;θ1) =−∞, l j = 1, · · · ,L j .

7. Letθ = (θ1,θ2,θ3). For any wt ∈ Xt , and for some j∗ ∈ {1, · · · ,J}, there is a non-empty

set of xt for which (i) for anyθ, either vt j∗k(xt ,ct j , rt j ;θ,sq′)> vt j∗k(xt ,ct j , rt j ;θ,sq), sq′ > sq,

or vt j∗k(xt ,ct j , rt j ;θ,sq′) < vt j∗k(xt ,ct j , rt j ;θ,sq), sq′ > sq, and (ii) for θ̃ 6= θ, and any pair

(s̃q,sq), (x̃, x̄) exists in this set for which vt j∗k(x̃t ,ct j , rt j ; θ̃, s̃q) < vt j∗k(xt ,ct j , rt j ;θ,sq), and

vt j∗k(x̄t ,ct j , rt j ; θ̃, s̃q)> vt j∗k(xt ,ct j , rt j ;θ,sq).

DefineP(x;θ,Π) = (pt, j(xt ;θ,Π), t = 1, · · · ,T, j = 1, · · · ,J). Let (θ0,Π0) be the true pa-

rameter vector, that is, the probabilities generated from the model at(θ0,Π0) coincides with

the true probabilities:P(x;θ0,Π0) = P0(x)
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Theorem 3.2. Suppose assumption 3.1 holds. Then(θ0,Π0) is identified in the sense that

any(θ̃,Π̃) satisfyingP(x; θ̃,Π̃) = P0(x) implies(θ̃,Π̃) = (θ0,Π0).

The proof of theorem 3.2 is found in Gayle (2013).

4 Estimator

In this section, we propose a GMM estimator for the parameters of the model,θ and Π.

We choose to propose a GMM estimator instead of the ML estimator for two reasons. First,

definition of the GMM estimator does not require specifying the distribution of measurement

errors. Second, the GMM estimator is implementable withoutthe need to specify the initial

conditions for the process ofst . We begin by imposing a restrictions onw.

Assumption 4.1.The random vector w is discrete valued with R distinct values.

We impose assumption 4.1 for two reasons. First this structure of the distribution of

types affords relatively simple implementation in estimation. Second, this assumption re-

ducesΠ to belong in a parametric class, which implies standard parametric asymptotics

can be implemented to derive the asymptotic distribution, which in tern leads to the stan-

dard asymptotic covariance matrix estimator. Under assumption 4.1, Π(wt) consists of

Q((Q− 1)R+ 1) parameters to be estimated. Supposen observations of the random vec-

tor {yit = (dit ,cit ,xit ), t = 1, · · · ,T} are independently drawn fromF(dt ,ct ,xt). Let yi =

(y′i3, · · · ,y′iT )′, p0
i = (p0

i3, · · · , p0
iT )

′, andc0
i = (c0

i3, · · · ,c0
iT )

′. For eachi, and fort = 3, · · · ,T,

define the residuals

ρ1it j (yi ;θ,Π) = dit j − p0
t j(xit ;θ,Π), j = 2, · · · ,J,

ρ2it j (yi ;θ,Π) = cit j −c0
t j(xit ;θ,Π), j = 1, · · · ,J,

ρ3t jk(yi ;θ,Π) = dit j dit+1,k− p0
tt+1, jk(xit ;θ,Π), j = 1, · · · ,J−1,k= j +1, · · · ,J.
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Define

ρ1it (yi ;θ,Π) = (ρ1it j (yi ;θ,Π), j = 2, · · · ,J),
ρ2it (yi ;θ,Π) = (ρ2it j (yi ;θ,Π), j = 1, · · · ,J), and

ρ3it (yi ;θ,Π) = (ρ3t jk(yi ;θ,Π), j = 1, · · · ,J−1,k= j +1· · · ,J).

Define theL+(J+2)(J−1)/2-dimensional residual vectorρit (yi;θ,Π) = (ρ1it ,ρ2it , ρ3it )
′.

LetXit be a(L+(J+2)(J−1)/2)×NX
t matrix of instruments, and define theNX

t -dimensional

vector.

mit (θ,Π) = X′
it ρit (yi ;θ,Π). (4.1)

Define theNX-dimensional vectormi(θ,Π) = (mi2(θ,Π)′, · · · ,miT−1(θ,Π)′)′, whereNX =

∑T−1
t=2 NX

t , and theNX-dimensional vector of momentsm(θ,Π) = E[mi(θ,Π)]. Let Ω be a

NX ×NX-dimensional symmetric, positive definite weighting matrix. Then from the results

of section 3,θ0 minimizes

S(θ,Π) = m(θ,Π)′Ωm(θ,Π). (4.2)

To implement the estimator, we assume the number of types,Q, is known to the investi-

gator. Let

m̂(θ,Π) =
1
n

n

∑
i=1

mi(θ,Π). (4.3)

Then the GMM estimator for(θ,Π0), (θ̂,Π̂) minimizes

Ŝ(θ,Π) = m̂(θ,Π)′Ω̂m̂(θ,Π), (4.4)

whereΩ̂ is a consistent estimator forΩ.
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5 Computing The Estimator

In this section, we present a method for computing the estimator proposed in the previous

section. We describe the algorithm starting with theo+1 iteration withλ[o] :=(π[o],c0,[o],p0,[o],s[o],θ[o])
in hand.

Define

Ld
i,tt+1(dit+1,dit |xit+1,xit ,sq′,sq;λ[o]) =

J

∏
j=1

J

∏
k=1

p0
i,tt+1, jk(xit+1,xit ,sq′,sq;λ[o])dit j dit+1,k. (5.1)

Then, by Bayes’ rule

Ls
i,tt+1(sq′,sq|dit+1,dit ,xit+1,xit ;λ[o])

=
Ld

i,tt+1(dit+1,dit |xit+1,xit ,sq′,sq;λ[o])π[o]
t (sq′,sq|wit )

∑Q
q′=1 ∑Q

q=1Ld
i,tt+1(dit+1,dit |xit+1,xit ,sq′,sq;λ[o])π[o]

t (sq′,sq|wit )
. (5.2)

The conditional type probabilities are therefore updated as follows.

π[o+1]
t (sq′,sq|w) =

∑n
i=1Ls

i,tt+1(sq′,sq|dit+1,dit ,xit+1,xit ;λ[o])Iit (w)

∑n
i=1 Iit (w)

, (5.3)

whereIit (w) is equal to one ifwit = w, and zero otherwise.

The alternative-specific continuous choice variables are updated by iterating (overo′)

c0,[o′+1]
it j (xit , r it j ;π[o+1],c0,[o],p0,[o],s[o],θ[o]) = c0,[o′]

it j (xit , r it j ;π[o+1],c0,[o],p0,[o],s[o],θ[o])

−
[

∂2

∂c2
it j

vit j (xit ,c
[o′]
it j (xit , r it j ;π[o+1],c0,[o],p0,[o],s[o],θ[o])

]−1

×
[

∂
∂cit j

vit j (xit ,c
[o′]
it j (xit , r it j ;π[o+1],c0,[o],p0,[o],s[o],θ[o])

]

, (5.4)

until convergence, where the procedure is initialized byc0,[o]
it . Denote the fixed point by

c0,[o+1]
it .
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The conditional choice probabilities can be updated as follows:

p[o+1]
it j (xit ;θ[o]) = Ψ j(vit j (xit ;π[o+1],c0,[o+1],p0,[o],s[o],θ[o])). (5.5)

Finally,(s,θ) is updated as follows

(s[o+1],θ[o+1]) = (s[o],θ[o])

−
[(

∂
∂θ

m(π[o+1],c0,[o+1],p0,[o+1],s[o],θ[o]))
)′

Ω̂
(

∂
∂θ

m(π[o+1],c0,[o+1],p0,[o+1],s[o],θ[o])
)]−1

×
(

∂
∂θ

m(π[o+1],c0,[o+1],p0,[o+1],s[o],θ[o])
)′

Ω̂ m(π[o+1],c0,[o+1],p0,[o+1],s[o],θ[o]). (5.6)

The full algorithm is as follows.

Main Algorithm.

1– Initializeθ[0] ∈ Θ, p0,[0] ∈ [0,1][n(T−1)(J−1)], andc0,[0] ∈ ℜn(T−1)L.

2– Foro≥ 1

2.1– Updateπ[o](q′,q|w) using (5.1 - 5.3)

2.2– Updatec0,[o] using (5.4)

2.3– Updatep0,[o] using equation (5.5)

2.4– Update(s[o],θ[o]) using equation (5.6)

Until convergence in(s,θ).

Notice that steps 2.1-2.3 of the main algorithm is simply evaluating the objective function

at the new trial values ofθ, while step 2.4 is a Gauss-Newton step. Hence, the main algorithm

converges, and the convergence rate is at most quadratic.

6 Asymptotic properties and consistent covariance estima-

tion

This section provides additional sufficient conditions forconsistency and
√

n-asymptotic

normality of the estimator,̂θ, of θ0 ∈ Θ.
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Assumption 6.1.As sample of n independent realizations is drawn from F(d,c,x). For each

i = 1, · · · ,n, (dit ,cit ,xit , t = 1, · · · ,T) is observed.

Assumption 6.2. Ω̂ is symmetric and positive definite with‖Ω̂−Ω‖= op(1).

Theorem 6.3.Suppose (i) Assumption 3.1 holds, (ii) Assumption 4.1 hold,and (iii) Assump-

tions 6.1, and 6.2 hold. Then̂θ p−→ θ0, and

√
n(θ̂−θ0)

p−→ N(0,V),

where V= (M′ΩM)−1(M′ΩΣΩM)(M′ΩM)−1, M = ∂m(θ0)/∂θ, andΣ = E[mi(θ0)mi(θ0)
′].

The proof of Theorem 6.3 is standard and can be found in Newey and McFadden (1994).

To estimateV, let M̂ = ∂m(θ̂)/∂θ, Σ̂ = ∑n
i=1mi(θ̂)mi(θ̂)′/n, and define

V̂ = (M̂′Ω̂M̂)−1(M̂′Ω̂Σ̂Ω̂M̂)(M̂′Ω̂M̂)−1.

Theorem 6.4.Suppose the conditions of Theorem 6.3 hold. Then‖V̂ −V‖= op(1).

Again, the proof of Theorem 6.4 is standard, and can also be found in Newey and McFadden

(1994).
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