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Abstract 

In this paper, a conscious neighborhood-based crow search algorithm (CCSA) is proposed for 

solving global optimization and engineering design problems. It is a successful improvement 

to tackle the imbalance search strategy and premature convergence problems of the crow search 

algorithm. CCSA introduces three new search strategies called neighborhood-based local 

search (NLS), non-neighborhood based global search (NGS) and wandering around based 

search (WAS) in order to improve the movement of crows in different search spaces. Moreover, 

a neighborhood concept is defined to select the movement strategy between NLS and NGS 

consciously, which enhances the balance between local and global search. The proposed CCSA 

is evaluated on several benchmark functions and four applied problems of engineering design. 

In all experiments, CCSA is compared by other state-of-the-art swarm intelligence algorithms: 

BA, CLPSO, GWO, EEGWO, WOA, KH, ABC, GABC, and Best-so-far ABC. The 

experimental and statistical results show that CCSA is very competitive especially for large-

scale optimization problems, and it is significantly superior to the compared algorithms. 

Furthermore, the proposed algorithm also finds the best optimal solution for the applied 

problems of engineering design.  

Keywords: Optimization, Bio-inspired metaheuristic algorithm, Swarm intelligence 
algorithms, Crow search algorithm, Conscious neighborhood-based crow search algorithm. 

1. Introduction 
 

Global numerical optimization problems have challenges such as being complex 

nonlinear, multi-modality, hybrid, composite, and large-scale. Solving these problems by 

exhaustive search algorithms increases the computational and time complexities [1]. To 

overcome these complexities, metaheuristic algorithms present a local and randomization 

exploration framework to extract near-optimal solutions with cognitive computational 

complexity [2, 3]. They start their exploration process with the minimum knowledge of the 
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problem and through trial and error, using two local and global search strategies. Accessing 

new areas of the search space, the global search strategy results in diversity among solutions, 

while the local search strategy concentrates the exploration around the near-optimal solution 

[4].  

Problems can be solved either in a continuous or discrete space, therefore, metaheuristic 

algorithms are also classified into two categories continuous and binary (discrete). The ant 

colony algorithm (ACO) [5] was proposed for solving the discrete problems. It is inspired by 

the extraordinary ability of the ants in finding the shortest path to the food source. Consistently, 

different methods are used to adopt a continuous metaheuristic algorithm to work in a binary 

search space [6]. It is worth mentioning here that both continuous and binary metaheuristic 

algorithms strive to create a proper balance between local and global search, which have a 

direct impact on the efficiency and convergence behavior.  

 Mother Nature, because of its longtime presence as the most significant problem solver, 

has the potential to inspire us to strike a balance between these two search strategies [7]. 

Accordingly, bio-inspired metaheuristic algorithms are inspired by nature. Their robustness 

and powerful adaptation has made them suitable for a wide range of complex problems [8]. 

One of the exciting sub-branches of this category is swarm intelligence (SI) algorithms, which 

are inspired by the optimization behavior in the life of insects, aquatic animals, terrestrial 

animals, and birds. Based on their behaviors, there have been proposed many successful 

algorithms such as particle swarm optimization (PSO) [9], the artificial bee colony (ABC) 

algorithm [10], whale optimization algorithm (WOA) [11], krill herd (KH) [2] and spider 

monkey optimization (SMO) algorithm [12].  

Such the population-based algorithms have good exploration and sharing information 

between their swarms which usually increases their robustness. This ability or robustness 

makes them quite powerful to solve a wide range of application such as mechanical engineering 

design, pattern recognition, and signal processing. However, some of these algorithms such as 

PSO and ABC suffer from weak robustness and imbalance between local and global search 

strategies for complicated problems. Therefore, they have been improved to introducing better 

algorithms like comprehensive learning particle swarm optimization (CLPSO) [13] and gbest-

guided ABC (GABC) [14]. Meanwhile, the slower convergence speed of some metaheuristic 

can be an important limitation for applying them when time is critical. Thus, algorithms such 

as NSABC [15] and qABC [16] have been introduced to increase the convergence speed.  

Crow search algorithm (CSA) [17] is another successful SI algorithm, which was recently 

proposed, and it is based on the social behavior of the crows. The evaluation results of CSA 
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show that it can solve the continuous optimization problems, especially in science and 

engineering. However, it selects the movement strategy by a random comparison, which 

decreases the balance between local and global search and it converges to non-optimal 

solutions. Moreover, the results indicate that its robustness is weak to deal with a wide range 

of problem and this algorithm cannot escape from exit local optima especially in high 

dimensional problems.  

To overcome these shortcomings, in this paper, an improvement of CSA named conscious 

neighborhood-based crow search algorithm (CCSA) is proposed. CCSA improves the 

movement of crows by introducing three new search strategies: Neighborhood-based Local 

Search (NLS), Non-Neighborhood based Global Search (NGS) and Wandering Around based 

Search (WAS). NLS improves the local search, and NGS increases the domain of global search, 

causing the CCSA to be less influenced by the asymmetrical search space of the various 

problems. WAS is inspired by another social behavior of crows in nature named wandering 

around. It provides another movement opportunity for those crows located in the flat zone or 

local optima which could not update their positions. 

Moreover, in CCSA, a new neighborhood concept is defined to perceive the search space 

and select the movement strategies consciously. After determining the neighborhood of a crow 

by this definition, if the quality of neighbor crows is better than non-neighbor crows, then the 

crow selects NLS strategy. Otherwise, it moves towards the best crow out of its neighborhood 

using NGS strategy. 

The efficiency of the proposed CCSA is experimentally evaluated and compared with 

other state-of-the-art swarm intelligence algorithms, which are named compared algorithms 

from now on. The compared algorithms consist of crow search algorithm (CSA) [17], bat 

algorithm (BA) [18,19], comprehensive learning particle swarm optimization (CLPSO) [13], 

gray wolf optimization (GWO) [20], exploration-enhanced GWO (EEGWO) [21], whale 

optimization algorithm (WOA) [11], krill herd (KH) [2], artificial bee colony (ABC) [22], 

gbest-guided ABC (GABC) [14] and Best-so-far ABC [23].  

This evaluation is conducted by various experiments on benchmark function CEC 2017 

[24] with different dimensions of 30, 50 and 100. The experimental results show that the 

proposed CCSA performs better than the compared algorithms on unimodal, simple multi-

modal, hybrid and composition functions, especially with dimensions over 50 and 100. 

Moreover, another experiment set on benchmark functions CEC 2010 [25] with dimension 

1000 proves the efficiency of the proposed CCSA for the large-scale global optimization 

problems. In addition, CCSA is statistically evaluated by tests of Mean Absolute Error (MAE) 



and Friedman test revealed, and results showed that CCSA is superior to the compared 

algorithms. Finally, the applicability of the proposed algorithm for solving real application 

problems is also tested by four different engineering design problems. The results of this 

experiment set show that CCSA outperforms the compared algorithms for solving these 

engineering problems.  
 

2. Related work 

Bio-inspired metaheuristic algorithm is a new research paradigm that is powerful and 

efficiently used in solving modern nonlinear numerical global optimization problems [26]. As 

shown in Fig.1, bio-inspired metaheuristic algorithms can be classified into evolutionary 

metaheuristic and swarm intelligence (SI) algorithms. 

Evolutionary metaheuristic algorithms are a sub-branch of evolutionary computation that 

have been formed based on Darwin’s theory of biological evolution and mostly mimic 

evolutionary concepts in nature. Evolutionary metaheuristic algorithms use two main operators 

cross-over and mutation [7,27,28]. The cross-over is to combine the solutions during the 

optimization process and is the essential mechanism to exploit the search space. While the 

mutation operators are to change some of the solution, which emphasizes the exploration. There 

have been proposed some well-known evolutionary-based algorithms such as genetic algorithm 

(GA) [29], genetic programming (GP) [30], evolution strategy (ES) [31] and differential 

evolution (DE) [32]. Among them, the DE algorithm is an accurate, reasonably fast and robust 

optimizer for solving a wide range of optimization problems. However, DE cannot guarantee 

to find the global optimum, especially for complex problems. Therefore, there is still much 

attention to improve this algorithm; recently IDEI [28], DECMSA [33], NDE [34], QUATRE-

EAR [35] and PaDE [36] were proposed. 

The SI algorithms are created based on simple behavioral models of animals and 

organisms with each other and their surroundings. They can map complex optimization 

problems into simple behavioral models to find optimal solutions [37]. In these algorithms, 

each organism is a search agent, which explores the search space using the local and global 

search strategy defined in their algorithms. Although SI algorithms such as PSO [9], ABC [22] 

and WOA [11] have attracted the attention of many researchers for solving optimization 

problems, they may have weaknesses such as local optima trapping, premature convergence 

and the imbalance search strategy [14, 15, 17]. Therefore, there have been proposed many 

improvements to tackle their weaknesses. 

One of the significant challenges which affect the efficiency of metaheuristic algorithm is 

the ability to strike a balance between local and global search [37,38]. This balance enhances 
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the algorithm to cross the local optima and reach the promising areas of the search space. To 

overcome this challenge, numerous studies have been conducted on various species of 

organisms regarding their optimization behavior in the nature for survival, leading to the 

creation of a new SI algorithm. As shown in Fig.1, SI algorithms can be categorized into four 

categories: insects, terrestrial animals, aquatic animals, and birds. In the following, some well-

known SI algorithms of these categories are reviewed. 

 

 

 

Fig. 1 Classification of bio-inspired metaheuristic algorithms 
  

2.1. Swarm intelligence algorithms based on insects behaviors 

Although insects have elementary behaviors and mental structures, self-organization, and 

cooperation they are regarded as the essential characteristic of their behavior in nature. They 

can perform several complex tasks in the best way by modeling these simple behaviors of 
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insects and solve the complex problems. Karaboga et al. [22] proposed the artificial bee colony 

(ABC) algorithm consist of three groups of bees: onlooker, employed and scout, and three 

different search strategies: local, global, and random. Although its evaluation results show that 

ABC is good at global search, its local search is weak, and it suffers from the imbalance 

between local and global search strategies. Tsai et al. [39] made the first improvement to 

increase the exploitation capability of the ABC by introducing interactive artificial bee colony 

(IABC) algorithm. It improves the ABC by utilizing the Newtonian law related to the 

gravitational force between masses and enhances the relationship of the employed and the 

onlooker bees. In order to enhance the balance between local and global search in the ABC 

algorithm, an extended version of this algorithm was proposed named gbest-guided ABC 

(GABC) [14]. In GABC, the global best (gbest) solution has also been added to the onlooker 

and employed bees phase to improve local search in this algorithm. 

Accordingly, to improve the efficiency of the onlooker bees and to enhance local and 

global search, Best-so-far ABC algorithm [23] was proposed. In this algorithm, the information 

obtained from all employed bees is used by onlooker bees to decide about a candidate food 

source and choose the best-so-far position. Although the Best-so-far ABC algorithm improves 

the search strategy of the ABC algorithm, its evaluation results show that it still inherently 

suffers from a lack of balance between local and global search. Karaboga et al. [16] introduced 

qABC algorithm for enhancing the performance of the ABC algorithm in term of local search 

ability. They introduce a new control parameter named neighborhood radius by which onlooker 

bees choose the best food source in the neighborhood of the selected food source.  Although 

their evaluation results show that the better local search ability in qABC algorithm, it suffers 

from the premature convergence problem. Thus, iqABC [40] was recently proposed by 

introducing different search schemas by which the qualities of the final solutions and 

convergence speeds are enhanced.  

GOA algorithm was proposed [41] by simulating repulsion and attraction forces between 

the grasshoppers. Grasshoppers explore the search space using repulsion forces, whereas 

attraction forces encourage them to exploit the promising regions. GOA is equipped with a 

coefficient that adaptively decreases the comfort zone of the grasshoppers in order to strike a 

balance between local and global search. In 2015, Mirjalili introduced the Ant Lion Optimizer 

(ALO) [42] algorithm that mimics the hunting behavior of antlions using five main steps: the 

random walk of ants, building traps, entrapment of ants in traps, catching preys, and re-building 

traps. Its experimental results indicated that ALO benefits from high exploitation and 

convergence rate. 



Dragonfly algorithm (DA) [43] is inspired by the static and dynamic swarming behaviors 

of dragonflies to explore and exploit the search space. It is equipped with five parameters to 

control cohesion, alignment, separation, attraction, and distraction of dragonflies in the swarm. 

Accordingly, the author used suitable operators and proposed binary and multi-objective 

versions as well. The results showed that all of the versions have high exploration and 

convergence because of using the static and dynamic swarming behavior of dragonflies 

respectively. MFO [44] was mainly inspired by the navigation method of moths in nature called 

transverse orientation. Moths fly in a straight line for long distances by this mechanism, 

although they are trapped in a winding path around artificial lights. In fact, this spiral 

convergence was the main inspiration of the MFO. It updates positions and obtains neighboring 

solutions around the flames to increase the local search ability. Furthermore, each moth 

assigned a flame to increases global search ability and decreases the probability of local optima. 

 

2.2. Swarm intelligence algorithm based on terrestrial animal behavior 

The second category of swarm intelligence algorithms mimics terrestrial animal behaviors 

such as searching for prey, information sharing, herd leadership, encircling and attacking prey. 

A well-known instance of this category is the gray wolf optimization algorithm (GWO) [20] 

inspired by the hunting mechanism and the leadership hierarchy of gray wolves. The evaluation 

results GWO show that although its local search is efficient, its global search is weak. To 

enhance the performance of GWO, Long et al. [21] proposed exploration-enhanced GWO 

(EEGWO) algorithm. It creates a proper balance between local and global search by improving 

the movement strategy. Also, the evaluation results of EEGWO show more efficiency in high-

dimensional problems compared with GWO algorithm. 

Lions are another species of these animals whose philosophy of group living and pride 

behavior in the herd has formed the main idea for introducing the lion pride optimizer (LPO) 

algorithm [45]. The efficiency of LPO is mostly from herd update strategy and competition 

among lions. The spotted hyena optimizer (SHO) [46] algorithm is proposed based on the 

spotted hyena behaviors. SHO uses two phases: searching for prey and attacking prey for 

exploration and extraction by which it creates a proper balance between local and global search. 

Squirrel search algorithm (SSA) [47] is designed for unconstrained optimization problems 

by imitating of the dynamic foraging behavior of southern flying squirrels and their efficient 

way of locomotion known as gliding. Although its results showed that SSA finds the global 

optimum solutions in the low dimension optimization problems with good convergence, it 

losses the effectiveness in the large scale optimization problems. 

 



2.3. Swarm intelligence algorithm based on aquatic animal behaviors 

Behaviors such as movement, prey encircling and mating in aquatic animals play an 

important role in modeling and creating algorithms of this category. Some well-known 

algorithms of this category are salp swarm algorithm (SSA) [48], dolphin echolocation (DE) 

[49], krill herd (KH) [2] and whale optimization algorithm (WOA) [11]. 

WOA models the social behavior of humpback whales by three phases: encircling prey, 

bubble-net attacking method and search for prey. Its experimental evaluations show that WOA 

suffers from an imbalance between global and local search and premature convergence. 

Because of these weaknesses, WOA is trapped by the local optima. Meanwhile, WOA adapted 

for solving discrete problems such as feature selection from medical data [50]. Opposition-

based learning WOA was proposed [51] to increase the performance of WOA by considering 

the ‘opposite’ position of whales for position updating. Moreover, the position of whales has 

been updated by levy flight and random flights [52, 53] as well by which the exploitation and 

convergence speed of WOA can be increased. 

KH simulates the food searching behavior of krill through the three phases of foraging 

motion, motion induced by other krill individuals, and random physical diffusion. The local 

and global search strategies are implemented in two phases of motion induced by other krill 

individuals and foraging motion. By doing this, the KH algorithm can improve the balance 

between local and global search.  

SailFish Optimizer (SFO) [54] is inspired by the group hunting behavior of sailfish. It 

simulates the search for prey, attack-alternation strategy, and hunting and catching prey of the 

hunting behavior of sailfishes. This algorithm uses two kinds of populations: sailfish population 

for exploitation around the best so far and sardine’s population for exploration which results in 

low local optima stagnation. It has a proper exploration by saving a promising area in each 

iteration. 
 

2.4. Swarm intelligence algorithm based on bird behaviors 

The main idea behind this category is the survival behaviors of birds, such as nesting, 

mating habits, protection against predators, feeding and interaction with others. Particle swarm 

optimization (PSO) [9] is a famous instance of this category which is inspired by the social 

behavior of flocks, shoals of fish and swarms of insects searching for food. The main active 

elements in particles movements are the current position of the particle, the best personal 

position, the best group history, and velocity. Although PSO algorithm is efficient in solving 

unimodal problems, it is trapped in local optima when solving complex multimodal problems. 



This is because having poor exploration and imbalance between local and global search. In 

order to exit from the local optima, Liang et al. proposed the comprehensive learning particle 

swarm optimization (CLPSO) [13] in which each particle effects from other particles in 

different dimensions. CAPSO was introduced [55] to enhance the convergence speed and 

global optimality of PSO. There is still much attention to improve PSO, then recently PSOTD 

[56], OSC-PSO [57] and CLPSO-LOT [58] were proposed.  

Bat algorithm (BA) [18,19] is a combination of the PSO algorithm without the best 

personal histories along with a local search based on loudness and pulse rate. BA uses 

echolocation behavior to detect their prey, avoid hitting obstacles and find their nest. These 

approaches strengthen the local search ability by choosing a new solution based on the best 

available solutions. To overcome the premature convergence and improve the performance of 

BA on complex continuous optimization problems, an improved BA (HBA) was proposed by 

Liu et al. [59]. They developed HBA with three modifications, to improve the performance of 

BA on complex continuous optimization problems as follows: modification of the initial 

population to enhancing the diversity of the initial bat population in the search space; 

modification of location updating to improve the local search capability; and hybridization with 

extremal optimization for increasing the local search capability and the strengthen ability to 

tradeoff between local and global abilities. HBA shows the worse performance on some high-

dimensional functions with the computation time. 

Cuckoo search (CS) [60,61] algorithm is inspired by the life and egg-laying of cuckoo 

species. Bird swarm algorithm (BSA) [62] is inspired by foraging behavior, vigilance behavior 

and flight behavior of birds. Crow search algorithm (CSA) [17] is a population-based bio-

inspired algorithm inspired by the social behavior of crows. In the next section, CSA is 

explained in detail. 

3. Crow search algorithm 
 

The social behaviors of crows are the main idea of the development of the crow search 

algorithm (CSA). Crows are smart birds that can hide their excess foods in hiding places and 

retrieve them when the foods are needed. In CSA, each crow seeks to steal the food resources 

of other crows, and they predict the behavior of the pilferer crow using their own experience 

of having been a thief. The awareness of the crow being followed by another crow plays a key 

role in search strategy selection. Consequently, there is considered an awareness probability 

(AP) value for each crow, which is compared with a random number r. As the pseudo-code of 

CSA shown in Fig. 2, then, based on the result of this comparison, two states may happen for 

the pilferer. In the first state rj ≥𝐴𝑃𝑗(𝑡), which means the awareness probability of crow j (APj) 



in iteration t is less than this random number. In such a case, according to Eq. (1), �⃗⃗� 𝑗(𝑡) as the 

hiding place of crow j is stolen by crow i, where 𝑥 𝑖(𝑡)  is the position of the pilferer 

crow,  𝑟𝑖 𝑎𝑛𝑑 𝑟𝑗 are the random number with uniform distribution in the interval of [0, 1]. In 

addition,  𝑓𝑙𝑖(𝑡) is the crow’s flight length in the iteration t for creating a suitable balance 

between local and global search. The low value of fl encourages local search around 𝑥 𝑖(𝑡), 

while the high value of this parameter reduces the focus on local search, as the result of which 

the range of the global search is increased. 

 

In the second state rj < 𝐴𝑃𝑗(𝑡), which means crow j is aware of being followed by the crow 

i. In this state, according to Eq. (2), the crow i is moved to a new random position in the search 

space.  

 

Like PSO, CSA explores the search space using a population of N crows (particles) which 

increase the probability of finding a near optimal solution. Although PSO uses the personal and 

global best solutions to increases the probability of convergence and finding a better solution 

[13,44], CSA selects randomly another crow (it may be itself) and moves towards its best 

position. This strategy increases the probability of escaping from the local optima and the 

diversity of generated solutions. Meanwhile, in CSA contrary to PSO only two main parameters 

flight length (fl) and awareness probability (AP) must be adjusted and tuned. 

The evaluation results of CSA show that its efficiency is not suitable for solving multi-

modal, hybrid, composition and large-scale problems. In fact, it suffers from lacking a proper 

balance between local and global search and having premature convergence, especially in 

large-scale problems. Mostly, this is because it selects search strategy unconsciously by 

comparing AP value with a random number. In addition, the parameter fl is manually set for 

all iterations by a constant value, which affects determining the flight length and striking a 

balance. Section 4 describes how the proposed CCSA tackles these weaknesses. 

 

 

 

 

 

 

 

(1) 𝑥 𝑖(𝑡 + 1) =  𝑥 𝑖(𝑡) + 𝑟𝑖 × 𝑓𝑙𝑖(𝑡) × (�⃗⃗� 𝑗(𝑡) − 𝑥 𝑖(𝑡)) 

(2) 𝑥 𝑖(𝑡 + 1) = a random position of search space 



Algorithm 1 Crow search algorithm   

 Input: Population size N and the number of iteration MaxIt. 
 Output:  Optimal hiding place of crow m, best fitness value fbest. 

1: procedure CSA 
2: Randomly initialize the position of a flock of N crows in the search space. 
3: Evaluate the position of the crows.  
4: Initialize the memory of each crow. 
5:   While  t  <  MaxIt 
6:        For each search crow do 
7:               Randomly choose one of the crows to follow. 
8:               Define an awareness probability. 
9:               If  𝑟𝑗 ≥ 𝐴𝑃𝑗(𝑡) 

10:                          𝑥 𝑖(𝑡 + 1) =  𝑥 𝑖(𝑡) + 𝑟𝑖 × 𝑓𝑙𝑖(𝑡) × (�⃗⃗� 𝑗(𝑡) − 𝑥 𝑖(𝑡)). 
11:                Else 
12:                       𝑥 𝑖(𝑡 + 1) = a random position of search space. 
13:                end if 
14:            end for 
15:         Check the feasibility of new positions. 
16:         Evaluate the fitness value of new positions. 
17:         Update the memory of crows. 
18:   end while 
19: Return fitness value and the position of the best crow. 
20: end procedure 

  
Fig. 2 Pseudo code of CSA [17] 

 

4. Conscious neighborhood-based crow search algorithm (CCSA) 
 

The flowchart of the proposed CCSA is shown in Fig. 3. In this flowchart, initially, a finite 

set of C = {c1, c2, … , cN} consisting of N crows are distributed by uniform random distribution 

in D-dimensional problem space. Each crow ci in the current iteration t is considered by a 4-

tupleci(t) = < x⃗ i(𝑡), fi(𝑡), m⃗⃗⃗ i(𝑡), fbesti(𝑡). In this 4-tuple, the vector x⃗ i(t) = [xi1, xi2 , … , xiD] 
and fi(𝑡) are the position and the fitness value of crow ci in the iteration t respectively. Then, 

fbesti(t) is the best fitness value of crow ci till the iteration t and the vector �⃗⃗� 𝑖 (𝑡) =[𝑚𝑖1, 𝑚𝑖2 , … ,𝑚𝑖𝐷]  represents the position where the crow ci has obtained the fbesti. In 

addition, by inspiring the intelligent behavior of crows and based on Definition 1, a hiding 

place mi is considered by a 2-tuple (m⃗⃗⃗ i, fbesti) for crow ci. 

Definition 1 (hiding place of crow): Consider mi= (m⃗⃗⃗ i, fbesti) is the hiding place of crow ci. 

Then, in the first iteration, m⃗⃗⃗ i ← x⃗ i(t = 1) and for the other iterations, m⃗⃗⃗ i ← x⃗ i (𝑠) such that  F(x⃗ i(s)) = min{F(x⃗ i(𝑘)), k = 2,… , t} where F (x⃗ i(𝑘)) is the fitness function to evaluate the 

position of crow ci in iteration k. 

In CCSA we introduce three new strategies called Neighborhood-based Local Search 

(NLS), Non-Neighborhood based Global Search (NGS) and Wandering Around based Search 

(WAS) in order to enhance the efficiency of movement of crows in different problems space. 

Moreover, it uses a new conscious neighborhood concept defined by Definition 2 to select the 



movement strategy between NLS or NGS consciously, and improve the balance between local 

and global search. For doing this, as shown in Fig. 3, first, CCSA generates neighborhood of 

crow ci by Definition 2. Then, instead of CSA, CCSA selects either NLS or NGS consciously 

by comparing the fitness value of its neighbors with non-neighbors. 
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Fig. 3 Flowchart of the proposed CCSA 

 

Definition 2 (conscious neighborhood): Given C is a set of N crows distributed in the problem 

space and crow ci ∈ C. Then, a conscious neighborhood of crow ci or N (ci) is a subset Y of cj 

that d(x⃗ i,m⃗⃗⃗ j) × wij < μ for j=1,.., N and j≠i and accordingly, subset C-Y is non-neighborhood 

of ci. In this definition, d(x⃗ i,m⃗⃗⃗ j) is the Euclidean distance between position crow ci and hiding 

place of crow cj. Besides, wij and μ are computed by Eqs. 3 and 4 where fi and fbestj are the 

fitness of position crow ci and m⃗⃗⃗ j respectively. 

  

(3) 
 
 

wij = ε + ( fi − fbestj )∑ (fi − fbestk)Nk=1  

 
(4) μ = 1𝑁 ∑(d(x⃗ i, m⃗⃗⃗ j)𝑁

𝑗=1 × wij) 



  

The conscious neighborhood concept is illustrated by Fig. 4 where Fig. 4(a) shows it in 

2D graphical representation and Fig. 4(b) demonstrates this concept computed by Eqs. 3 and 4 

in a real problem.   

 

 

 

 

 

 

 

 

(a) 2D graphical representation (b) Real graphical representation 

Fig. 4 Graphical representation of the neighborhood concept 

 
 

4.1. Neighborhood-based local search (NLS) strategy 

After generating the neighborhood of crow ci, it should be exploited if the quality of the 

neighborhood is good. Thus, the NLS strategy is to improve the exploitation based on the 

conscious neighborhood as follows. A crow among the neighbor of crow ci is randomly selected 

named clocal, and the best crow among non-neighbor with the lowest fitness is selected named 

cglobal. Given, fbestlocal and fbestglobal are the best fitness of selected crows clocal and cglobal 

respectively, if fbestlocal < fbestglobal, then ci will approach to the hiding place of clocal and the 

new position x⃗ i(𝑡 + 1) of ci is obtained by Eq.5. In fact, the neighbors can be considered as 

candidate solutions and be exploited. 

 

 

Where fli(t) is the flight length of the crow ci in the current iteration t which is a decreased 

linearly variable, 𝑟𝑖 is a random number with uniform distribution in an interval [0, 1], and m⃗⃗⃗ local(𝑡) is the hiding place of clocal in the current iteration. Fig. 5 illustrates the graphical 

representation of the NLS strategy, and the pseudo-code of the NLS is shown in Fig. 6. Both 

NLS and NGS uses a function named CC (x⃗ i (t+1)) to check the newly obtained position of 

(5)  x⃗ i(𝑡 + 1) =   x⃗ i(𝑡) + 𝑟𝑖 × 𝑓𝑙𝑖(𝑡)  × (m⃗⃗⃗ local(𝑡) − x⃗ i(𝑡)) 

Search Space 

Non-neighbor Crow i 

 

Neighbor Crow i 

 

Crow i  

Crow i 



crow i and correct it if necessary. If the newly position value is out of the problem space, then 

it resets the exceeded dimensions randomly within the problem space.  

 

 

 

 

 

 

 

 

Fig. 5 Graphical representation of NLS strategy 
 
 
 

Algorithm 2: Neighborhood-based local search (NLS) 

 Input: x⃗ i (position of crow ci) and x⃗ local (position of crow clocal). 

 Output: the new position of crow ci.  

1: Procedure NLS 

2:        𝑥 𝑖(𝑡 + 1) =   𝑥 𝑖(𝑡) + 𝑟𝑖 × 𝑓𝑙𝑖(𝑡) × (�⃗⃗� 𝑙𝑜𝑐𝑎𝑙(𝑡) − 𝑥 𝑖(𝑡)).  
3:            CC (x⃗ i (t+1)).  

4:       Return the new position of crow ci.  

5: end procedure 

 
Fig. 6 Pseudo-code of NLS strategy 

 
 

4.2. Non-neighborhood based global search (NGS) strategy 

CCSA uses NGS to improve the exploration and robustness based on the conscious 

neighborhood as follows. When the fitness value of fbestlocal is greater than and equal with 

fbestglobal. Then, crow ci extends its range of exploration into its non-neighborhood towards the 

cglobal by selecting k dimensions randomly and changing their values using Eq. (6). 

 

Where,   xij(𝑡 + 1) and x𝑖𝑗(t) are the values of dimension j of the new and current position 

of crow ci respectively. Meanwhile,  𝑟𝑖 is a random number with a uniform distribution between 

(6)   xij(𝑡 + 1) = ri × 𝑓𝑙𝑖(𝑡)  × (m𝑔𝑙𝑜𝑏𝑎𝑙𝑗(𝑡) − x𝑖𝑗(t)) 

x⃗ i(𝑡) 

m⃗⃗⃗ local 

m⃗⃗⃗ i  

x⃗ i(𝑡) + 𝑟𝑖 × 𝑓𝑙𝑖(𝑡) × ( m⃗⃗⃗ local(𝑡) − x⃗ i(𝑡)) 

x⃗ i(𝑡 + 1) 

Search Space 

 



0 and 1,  m𝑔𝑙𝑜𝑏𝑎𝑙𝑗  is the value of dimension j of hiding place of cglobal. The graphical 

representation and pseudo-code of NGS strategy is shown in Figs. 7 and 8 respectively. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Graphical representation of NGS strategy 
 

 

 

 

 

 

 

 

 

 

 

4.3. Wandering around based search (WAS) strategy 

CCSA introduces WAS based on an intelligent behavior of crows by which they analyze 

their surrounding environment and move to a better position by a number of jumps if their 

position is not good. In fact, the reason for using WAS is to correct the position of those crows 

that could not acquire a better fitness by using NLS or NGS. If the newly fitness of crow i is 

not less than the fitness of its hiding place, first, the position of the crow is set with its hiding 

place position ( 𝑥 𝑖(t) ←  �⃗⃗� 𝑖). Then, crow i explore the search space by doing a random number 

of jumps (NJ) such that in each jump, k dimensions are randomly selected and their values are 

changed using Eq. (7).  

Algorithm 3: Non-neighborhood based global search (NGS) 

 Input: x⃗ i (position crow ci) and x⃗ global (position of crow cglobal).  

 Output: the new position of crow ci. 
1: Procedure NGS 
2: Selecting k dimensions of x⃗ i(𝑡) randomly. 
3:        For j = 1: k   
4:                      xij(𝑡 + 1) = ri × 𝑓𝑙𝑖(𝑡) × (m𝑔𝑙𝑜𝑏𝑎𝑙𝑗(𝑡) − x𝑖𝑗(t)).  
5:         end for 

6:        CC (x⃗ i (t+1)).  

7:        Return the new position of crow ci.  
8: end procedure 

   
Fig. 8 Pseudo code of NGS strategy 

 

 ri × 𝑓𝑙𝑖(𝑡)  × (m𝑔𝑙𝑜𝑏𝑎𝑙𝑗(𝑡) − x𝑖𝑗(t)) 

x⃗ globalj 

x⃗ i(𝑡) 
x⃗ i(𝑡 + 1) 

Search Space 

 



 

 

Where,   xij(𝑡 + 1) is the value of dimension j in the new position of crow i,  m𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) 

is the value of dimension j of the best hiding place in the total population and 𝑥𝑟𝑗(𝑡) is the 

dimension j of a random crow. The graphical representation and pseudo-code of the WAS 

strategy are shown in Figs. 9 and 10 respectively.  

 

 

 

 

 

 

 

 

 

Fig. 9 Graphical representation of WAS strategy using four jumps 
 

 

Algorithm 4: Wandering around based search (WAS) 

 Input: x⃗ i (position crow ci), 𝑥 𝑟  (random position crow cr, r ≠ 𝑖 ) and x⃗ 𝑔𝑏𝑒𝑠𝑡 (position 

of the best global crow).  
 Output:  the new position of crow ci.  
1: Procedure WAS 
2:     𝑥 𝑖(t) =  �⃗⃗� 𝑖 .   
3:     NJ = number of jumps. 
4:          For f = 1:NJ 
5:              Selecting k dimensions of x⃗ i(𝑡) randomly. 
6:              For j= 1:k  
7:                xij(𝑡 + 1) =  m𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) + 𝑟𝑖  × 𝑓𝑙𝑖(𝑡)  × (𝑥𝑟𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

8:         end for 
9:         CC (x⃗ i (t+1)). 
10:     end for 
11:     Return the new position of crow ci.  
12: end procedure 

 
 

Fig. 10 Pseudo code of WAS strategy 

The pseudo-code of CCSA is shown in Fig. 11 and its parameters description are presented 

in Table 1.   

 

Algorithm 5: Conscious neighborhood-based crow search algorithm  (CCSA)  

 Input: N (population size), D (dimension of search space) and MaxIt (the number of iteration).  
 Output:  coptimal (optimal solution) with position xoptimal={x1, x2, x3, …, xD}.  
 Begin 

(7) xij(𝑡 + 1) =  m𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) + 𝑟𝑖  × 𝑓𝑙𝑖(𝑡)  × (𝑥𝑟𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 

x⃗ i(𝑡) 

𝑥𝑟𝑗(𝑡) 

m⃗⃗⃗ i  

x⃗ gbestj 

NJ=1 

 
NJ=2 

 

NJ=3 

 

NJ=4 

 

x⃗ i(𝑡 + 1) 
m𝑔𝑏𝑒𝑠𝑡𝑗(𝑡) + 𝑟𝑖  × 𝑓𝑙𝑖(𝑡)  × (𝑥𝑟𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) 



1: Randomly distributing N crows in the search space.  
2: Set the hiding place of each crow.  
3: For  t =2:MaxIt  
4:        For i = 1:N  
5:              Evaluating the fitness f (𝑥 𝑖(𝑡)) and updating the global best crow position.  
6:              Updating the hiding place of crow of ci based on Definition 1.  
7:              Generating the neighborhood N (ci) for crow ci based on Definition 2. 
8:              Selecting a random neighbor (clocal) and the best non-neighbor (cglobal) of ci.   
9:              If    fbestlocal  <  fbestglobal 
10:                     x⃗ 𝑖(t + 1) = NLS (x⃗ 𝑖(t), x⃗ 𝑙𝑜𝑐𝑎𝑙(𝑡)).  
11:             else 

12:                     x⃗ 𝑖(t + 1) = NGS (x⃗ 𝑖(t), x⃗ 𝑔𝑙𝑜𝑏𝑎𝑙(𝑡)).  

13:              end if 
14:             If fbesti (t) < fi(t+1)  
15:                   x⃗ r =  Randomly generated crow cr, r ≠ i.  
16:                   x⃗ 𝑖(t + 1) = WAS (𝑥 𝑖(𝑡), 𝑥 𝑟(𝑡), x⃗ 𝑔𝑏𝑒𝑠𝑡(𝑡)).  

17:              end if 
18:         end for 
19: end for 
20: Return coptimal  
21: end procedure 

   
Fig. 11 The pseudo code of CCSA 

 

 

 

4.4. Computational complexity analysis 

As Fig. 11 shown CCSA algorithm consists of two main phases: initialization (lines 1-2) 

and movement (lines 3-19). The computational complexity of the initialization phase for 

distributing N crows in the search space with D dimensions is O(ND). Meanwhile, in the 

movement phase, the computational complexity of generating the neighborhood of each crow 

(line 7), using either NLS or NGS (lines 9-13) and then WAS (lines 14-17) is O(ND+D+D).  

Thus, the computational complexity of the movement phase for N crows for all iterations (T) 

is O(TN(ND+D+D)) which results the overall computational complexity of CCSA is equal to 

O(TN2D). Although there are two similar initialization and movement phases in the CSA 

algorithm, the computational complexity of the CSA algorithm is O(TND). This is because, as 

Table 1 Nomenclature used in CCSA  

Description Parameters 
 

  Population size.  N 
  Crow ci.   ci  
  Current and maximum number of iterations. t and MaxIt 
  Current position of crow ci and its hiding place position.  x⃗ i(t) and m⃗⃗⃗ i(t)  
  Fitness value of current and hiding place positions of crow ci.   fi (t) and fbesti 
  A random crow position.  𝑥 𝑟(𝑡) 
  The position of the best global crow in all population.  x⃗ 𝑔𝑏𝑒𝑠𝑡(𝑡) 

  Flight length of crow ci in iteration t.   fli(t) 
  Random number with uniform distribution in the interval of [0, 1]. ri 
  The number of jumps. NJ 
  The neighborhood of crow ci. N(ci)  



Fig. 2 shown, the computational burden of its initialization (lines 2-4) and movement (line 5-

18) phases is O(ND) and O(TND) respectively. In the next section, experimental results verify 

the benefits of the additional cost caused by the introduced conscious neighborhood. 

 

5. Experimental evaluation and results  

Since no metaheuristic algorithm can solve all optimization problems, in this section, the 

numerical efficiency of the proposed CCSA was experimentally evaluated by several 

experiments. First, CCSA was evaluated for solving global optimization problems by 

benchmark functions CEC 2017 [24] with different dimensions of 30, 50 and 100. Then, the 

efficiency of CCSA was evaluated for solving large-scale global optimization problems by 

benchmark functions CEC 2010 [25] with dimensions 1000. In all experiments, the efficiency 

of CCSA was compared with CSA and some of the state-of-the-art swarm intelligence 

algorithms: BA [18], CLPSO [13], GWO [20], EEGWO [21], WOA [11], KH [2], ABC[22], 

GABC [14] and Best-so-far ABC [23], which were named compared algorithms. Finally, 

CCSA and these algorithms were statistically compared by Mean Absolute Error (MAE) and 

Friedman tests. 

 

5.1. Benchmark functions  

 To evaluate the numerical efficiency of CCSA, the benchmark functions CEC 2017 was 

used.  CEC 2017 consists of four groups of different functions: unimodal, simple multi-modal, 

hybrid and composition. This diversity of functions is suitable to compare the proposed CCSA 

with the compared algorithms in terms of its ability to escape from local optima, convergence 

behavior, local search, and global search. 

In this benchmark, the first group consists of three unimodal functions F1-F3, which have 

only a global optimization, and they are a unimodal, non-separable, symmetric, and smooth but 

narrow ridge. Thus, they are suitable for evaluating the ability of algorithms in terms of local 

search and convergence speed. In the second group, there are seven multi-modal functions F4-

F10, which have a large number of local optima. These functions have the required 

characteristics to test the global search capabilities of the proposed CCSA. The third and fourth 

groups consist of ten hybrid functions F11-F20, and ten composition functions F21-F30 

respectively. Due to possessing the characteristic of maintaining the continuity around the local 

and global optima, their functions can evaluate the proposed algorithm in terms of the balance 

between local and global search and premature convergence. 



Many efficient metaheuristic algorithms often lose their efficiency when applied to large-

scale problems. They suffer from the “curse of dimensionality”, by which their performance 

decreases dramatically as the dimensionality of the search space increases. Therefore, the 

proposed algorithm was also evaluated for solving the large-scale global optimization problems 

conducted by benchmark functions CEC 2010 [25] with dimensions 1000. This benchmark 

consists of twenty benchmark functions with different properties: unimodal, multi-modal, 

shifted, separable, fully nonseparable and scalability in the different range space. 

 

5.2. Experimental setup 

The MATLAB 2014b programming language was used to implement CCSA and the 

compared algorithms. To make sure that the comparison is fair, all these algorithms were run 

under the same conditions on the pc with Intel Core i7, 3.4 GHz CPU and 8 GB memory in 

windows 7. 

The efficiency of CCSA was evaluated for solving different problems unimodal, simple 

multi-modal, hybrid and composition of the benchmark functions CEC 2017. The values of the 

common parameters such as population size (N) and the maximum number of iterations 

(MaxIt) were set to 200 and1500 respectively. Due to the random nature of the metaheuristic 

algorithms, the algorithms in all experiments of the efficiency evaluation and statistical tests 

were run 30 times for each function in different dimension 30, 50 and 100. The efficiency was 

computed by average (Avg), standard deviation (SD) and minimum (Min) of the best obtained 

optimal solution until the last iteration in each run. In the proposed CCSA, a few parameters 

must be adjusted. The flight length fl is linearly decreased from 2 to 0.9, ε is set by 0.02 and 

based on the results of our experiments the number of jumps (NJ) can be randomly set between 

1 and 50. 

 The required parameters of the compared algorithms were set as same as their original 

algorithms as follows. In ABC, the limit control parameter was set to 100. Since this value can 

change depending on the dimension of search space, thus it was set to N×D for Best-so-far 

ABC and GABC. In CLPSO, the cognitive (c1) and social components (c2) were set to 1.49445, 

and the inertia weight was considered between 0.2 and 0.9. In BA, Pulse rate (r) and Loudness 

(A) were set to 0.5. Moreover, the minimum and maximum frequency were set to 0 and 2 

respectively. In KH algorithm, the maximum diffusion speed, velocity of foraging and 

maximum induced speed were set to 0.005, 0.02 and 0.01 respectively. Consistently, the inertia 

weights of the motion and foraging motion were linearly decreased from 0.9 to 0.1 and Ct was 

set to 0.5 by which the krill individuals can search the problem space carefully. In the 



exploration and exploitation phases of WOA, control parameter 𝑎  was linearly decreased from 

2 to 0 over iterations and shape of the logarithmic spiral b was set to 1. In EEGWO, the constant 

coefficient values b1 and b2 were set to 0.1 and 0.9 respectively. Also, non-linear modulation 

index μ and an initial and a final were set to 1.5, 2 and 0 respectively. In CSA, as the original 

work, AP= 0.1 and fl=2.   

5.3. Numerical efficiency evaluation 

 In this section, through various experiments conducted by different functions of the 

benchmark CEC 2017, the efficiency of CCSA was evaluated. Its results were compared with 

the compared algorithms concerning local and global search ability and escape from local 

optima. The experimental results are shown in Tables 2-5 in which the bold values show the 

winning algorithms or the best solutions. Moreover, at the end of each table, the comparison 

of the results by the numbers of win (W), tie (T) and loss (L) of each algorithm is shown. 

 

5.3.1. Evaluation of local searchability  

Due to the properties of functions F1-F3, they can evaluate the local search ability of CCSA and 

other compared algorithms. The results of local search evaluation for different dimensions 30, 

50 and 100 are shown in Table 2. The experimental results show CCSA is superior to the 

compared algorithms on functions F1 and F2 with dimensions 30 and 50 and on all functions 

with dimension 100. 

 

5.3.2. Evaluation of global searchability  

The functions F4-F10 as simple multi-modal functions in CEC 2017 benchmark have a 

global optimization and several local optima. In addition, the number of local optima is 

exponentially increased by increasing the dimensions. Then, these functions are a good 

criterion for evaluating global search ability of optimization algorithms. The efficiency of the 

proposed algorithm for these functions was evaluated in three separate experiments for 

different dimensions 30, 50 and 100. The experimental results of proposed CCSA and other 

compared algorithms are shown in Table 3. The results show that CCSA is superior to the 

compared algorithms on all functions F4-F10 for all three different dimensions 30, 50 and 100. 

In addition, the efficiency of CCSA and compared algorithms for hybrid functions F11-F20 

were evaluated and compared by the different dimensions. The results of these experiments are 

shown in Table 4. In dimension 30, CCSA had a better efficiency for nine of ten hybrid 



functions, and it is more efficient than the compared algorithms for dimensions 50 and 100 on 

all functions. 

 

 

 

 

5.3.3. Ability evaluation to escape from local minima   

The ability of an optimization algorithm to exit from the local minima depends 

significantly on balance between local and global search. Then, the power of CCSA for 

balancing between local and global search was evaluated by composite benchmark functions. 

Table 5 shows the experimental results of this evaluation compared to other algorithms. As the 

results show, in the most functions for different dimensions, the ability of CCSA to escape 

from local minima is better than the compared algorithms. 

Table 2 Comparison of optimization results obtained from the unimodal benchmark functions   

Best-so- 
far ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA Index D F 

6.766E+03 1.464E+03 4.348E+02 1.716E+09 2.480E+06 5.726E+10 8.871E+08 6.169E+05 1.717E+10 2.542E+03 2.515E+03 Avg 
 

30 

 
 
 

F1 

1.370E+03 1.094E+03 2.853E+02 9.407E+09 1.451E+06 3.622E+09 8.705E+08 1.513E+05 6.206E+09 1.874E+03 1.957E+03 SD 
3.568E+03 1.177E+02 1.815E+02 7.541E+03 4.824E+05 4.982E+10 4.421E+07 4.434E+05 5.995E+09 2.666E+02 1.018E+02 Min 
9.087E+06 2.757E+04 2.398E+04 2.406E+06 5.272E+07 1.101E+11 3.627E+09 7.296E+07 5.583E+10 3.554E+05 1.222E+03 Avg  

50 
 

2.35E+06 2.918E+04 1.679E+04 2.558E+06 2.874E+07 4.755E+09 2.726E+09 1.238E+07 1.105E+10 1.192E+05 1.028E+03 SD 
5.070E+06 1.418E+03 1.654E+03 8.774E+04 9.504E+06 1.011E+11 1.745E+08 4.816E+07 2.481E+10 1.995E+05 2.148E+02 Min 
1.676E+09 3.095E+05 4.520E+05 1.096E+10 1.753E+09 2.671E+11 2.481E+10 3.937E+09 1.811E+11 3.477E+08 7.003E+03 Avg  

100 
 

3.011E+08 2.460E+05 4.450E+05 3.601E+09 4.974E+08 6.997E+09 7.258E+09 4.341E+08 3.245E+10 7.768E+07 2.481E+03 SD 

1.016E+09 2.541E+04 4.895E+04 4.183E+09 8.725E+08 2.449E+11 1.413E+10 2.842E+09 9.765E+10 1.980E+08 3.235E+03 Min 

7.869E+15 1.125E+12 2.079E+11 1.272E+41 1.696E+24 1.018E+48 3.506E+27 1.337E+21 4.878E+45 3.571E+13 2.042E+02 Avg 
 

30 

 
 
 

F2 

1.520E+16 5.214E+12 3.826E+11 3.984E+41 5.332E+24 2.601E+48 1.203E+28 3.373E+21 1.618E+46 8.456E+13 1.294E+01 SD 
4.829E+12 6.510E+06 2.651E+07 2.627E+21 6.743E+17 8.862E+42 1.054E+15 1.0478E+18 4.139E+36 5.852E+10 2.000E+02 Min 
8.621E+39 1.867E+28 2.936E+28 1.259E+78 1.367E+64 1.214E+82 4.390E+50 4.282E+48 2.463E+82 5.076E+31 4.134E+02 Avg  

50 
 

3.340E+40 5.679E+28 7.792E+28 6.319E+78 6.210E+64 4.546E+82 2.292E+51 7.856E+48 1.340E+83 2.190E+32 1.759E+02 SD 
5.257E+33 6.517E+17 1.059E+24 6.889E+54 1.866E+46 4.882E+71 4.928E+38 5.953E+45 2.151E+68 1.909E+23 2.990E+02 Min 
5.756E+113 4.725E+93 1.575E+93 1.956E+176 2.299E+164 1.391E+176 5.569E+120 4.708E+132 5.545E+177 2.322E+101 7.921E+19 Avg  

100 
 

1.755E+114 2.558E+94 8.126E+93 INF INF 6.343E+164 1.586E+121 1.276E+133 INF 8.315E+101 2.690E+20 SD 
1.798E+106 1.901E+63 3.198E+71 1.000E+152 2.603E+131 INF 2.351E+99 1.124E+123 1.414E+156 1.319E+86 3.406E+09 Min 
1.297E+05 1.192E+05 1.098E+05 4.477E+04 1.455E+05 8.798E+04 2.504E+04 7.230E+04 1.352E+05 4.749E+02 1.969E+03 Avg 

 
30 

 
 
 

F3 

1.429E+04 1.803E+04 1.549E+04 1.912E+04 6.015E+04 3.742E+03 7.862E+03 1.055E+04 8.637E+04 1.141E+02 7.909E+02 SD 
8.080E+04 6.766E+04 8.322E+04 2.205E+04 2.831E+04 7.771E+04 5.637E+03 5.300E+04 3.346E+04 3.297E+02 5.635E+02 Min 
2.542E+05 2.465E+05 2.171E+05 1.190E+05 8.681E+04 3.659E+05 6.951E+04 1.991E+05 3.674E+05 1.235E+04 2.461E+04 Avg  

50 
 

3.065E+04 2.226E+04 2.053E+04 1.906E+04 4.003E+04 2.986E+05 1.521E+04 2.634E+04 3.094E+05 3.247E+03 5.441E+03 SD 
1.776E+05 1.976E+05 1.791E+05 8.715E+04 4.522E+04 1.802E+05 4.263E+04 1.471E+05 6.106E+04 7.296E+03 1.113E+04 Min 
6.463E+05 6.239E+05 5.696E+05 3.742E+05 7.593E+05 3.881E+05 2.163E+05 5.638E+05 7.612E+05 1.303E+05 1.264E+05 Avg  

100 
 

4.354E+04 3.561E+04 3.621E+04 4.147E+04 2.013E+05 4.770E+04 2.713E+04 5.417E+04 4.109E+05 1.280E+04 1.865E+04 SD 
5.671E+05 5.323E+05 4.933E+05 3.147E+05 3.081E+05 3.271E+05 1.749E+05 4.470E+05 1.815E+05 1.034E+05 9.528E+04 Min 

0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 1|0|2 2|0|1 30        
W|T|L 

Ranking 

0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 1|0|2 2|0|1 50        
W|T|L 

0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 0|0|3 3|0|0 100      
W|T|L 



 

 

 

 

 

 

 

 

 

Table 3 Comparison of optimization results obtained from the simple multi-modal benchmark functions   
Best-so- 
far ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA Index D F 

4.703E+02 4.490E+02 4.310E+02 5.046E+02 5.446E+02 1.725E+04 5.360E+02 5.294E+02 3.441E+03 5.023E+02 4.152E+02 Avg  
30 

 
 

F4 

1.583E+01 2.377E+01 2.310E+01 1.534E+01 3.373E+01 2.190E+03 2.866E+01 1.578E+01 1.480E+03 3.100E+01 2.122E+01 SD 
4.274E+02 4.080E+02 4.033E+02 4.748E+02 4.957E+02 1.366E+04 4.802E+02 4.628E+02 1.282E+03 4.172E+02 4.000E+02 Min 
5.923E+02 4.735E+02 4.816E+02 5.811E+02 7.480E+02 3.717E+04 7.985E+02 7.530E+02 1.260E+04 6.302E+02 4.302E+02 Avg  

50 
 

2.099E+01 2.545E+01 2.283E+01 4.505E+0 6.975E+01 3.292E+03 1.424E+02 2.470E+01 3.802E+03 4.836E+01 1.593E+01 SD 
5.622E+02 4.369E+02 4.344E+02 4.919E+02 6.307E+02 2.928E+04 5.946E+02 7.041E+02 4.964E+03 5.000E+02 4.012E+02 Min 
1.276E+03 7.482E+02 8.103E+02 2.425E+03 1.589E+03 1.076E+05 2.487E+03 2.050E+03 4.777E+04 1.198E+03 5.906E+02    Avg  

100 
 

9.792E+01 2.955E+01 5.067E+01 6.720E+02 2.223E+02 7.951E+03 5.815E+02 1.100E+02 1.316E+04 1.212E+02 1.842E+01 SD 
1.033E+03 6.953E+02 7.172E+02 1.557E+03 1.221E+03 8.855E+04 1.636E+03 1.810E+03 2.095E+04 1.012E+03 5.513E+02 Min 
5.890E+02 5.572E+02 5.848E+02 6.440E+02 7.783E+02 9.595E+02 5.869E+02 5.958E+02 7.267E+02 6.159E+02 5.311E+02 Avg  

30 
 
 

F5 

1.098E+01 7.316E+00 1.020E+01 7.491E+01 6.196E+01 2.085E+01 3.560E+01 7.863E+00 3.623E+01 2.400E+01 7.247E+00 SD 
5.594E+02 5.433E+02 5.625E+02 5.995E+02 6.540E+02 9.084E+02 5.484E+02 5.766E+02 6.343E+02 5.756E+02 5.131E+02 Min 
7.358E+02 6.565E+02 7.137E+02 7.534E+02 9.388E+02 1.230E+03 6.732E+02 7.781E+02 8.730E+02 7.454E+02 5.790E+02 Avg  

50 
 

2.127E+01 1.921E+01 1.751E+01 2.948E+01 6.987E+01 1.887E+01 3.461E+01 1.442E+01 5.720E+01 4.017E+01 1.215E+01 SD 
6.914E+02 6.098E+02 6.693E+02 6.981E+02 8.168E+02 1.177E+03 5.970E+02 7.420E+02 7.776E+02 6.711E+02 5.488E+02 Min 
1.353E+03 1.149E+03 1.288E+03 1.203E+03 1.529E+03 2.161E+03 1.033E+03 1.471E+03 1.412E+03 1.194E+03  7.765E+02   Avg  

100 
 

4.329E+01 4.212E+01 4.116E+01 5.674E+01 1.622E+02 2.386E+01 4.555E+01 3.265E+01 9.671E+01 6.247E+01 2.850E+01 SD 
1.259E+03 1.035E+03 1.211E+03 1.109E+03 1.228E+03 2.095E+03 9.358E+02 1.403E+03 1.248E+03 1.041E+03 7.260E+02 Min 
6.001E+02 6.000E+02 6.000E+02 6.386E+02 6.680E+02 7.013E+02 6.029E+02 6.003E+02 6.581E+02 6.203E+02 6.000E+02 Avg  

30 
 
 

F6 

2.667E-02 1.265E-05 1.271E-04 6.705E+00 1.068E+01 4.267E+00 2.024E+00 4.436E-02 8.323E+00 6.125E+00 3.070E-03 SD 
6.001E+02 6.000E+02 6.000E+02 6.245E+02 6.480E+02 6.898E+02 6.007E+02 6.002E+02 6.428E+02 6.069E+02 6.000E+02 Min 
6.019E+02 6.000E+02 6.001E+02 6.508E+02 6.799E+02 7.123E+02 6.088E+02 6.029E+02 6.617E+02 6.333E+02 6.000E+02 Avg  

50 
 

2.272E-01 3.290E-03 1.853E-02 4.513E+00 1.036E+01 4.097E+00 2.636E+00 2.720E-01 6.233E+00 6.161E+00 3.514E-03 SD 
6.015E+02 6.000E+02 6.001E+02 6.419E+02 6.639E+02 7.026E+02 6.047E+02 6.023E+02 6.475E+02 6.218E+02 6.000E+02 Min 
6.140E+02 6.018E+02 6.028E+02 6.607E+02 6.847E+02 7.167E+02 6.245E+02 6.178E+02 6.658E+02 6.520E+02 6.000E+02 Avg  

100 
 

9.203E-01 8.392E-02 5.942E-01 3.549E+00 8.585E+00 3.143E+00 3.803E+00 9.061E-01 3.272E+00 5.739E+00 2.495E-03 SD 
6.119E+02 6.017E+02 6.016E+02 6.557E+02 6.727E+02 7.085E+02 6.166E+02 6.157E+02 6.594E+02 6.427E+02 6.000E+02 Min 
8.104E+02 7.826E+02 8.068E+02 8.273E+02 1.215E+03 1.454E+03 8.222E+02 8.421E+02 1.286E+03 8.241E+02 7.629E+02 Avg  

30 
 
 
 

F7 

 
 
 

8.208E+00 7.264E+00 8.711E+00 2.636E+01 9.981E+01 3.998E+01 2.433E+01 7.982E+00 1.099E+02 2.991E+01 5.783E+00 SD 
7.920E+02 7.612E+02 7.892E+02 7.813E+02 1.020E+03 1.348E+03 7.808E+02 8.259E+02 1.047E+03 7.785E+02 7.497E+02 Min 
9.909E+02 9.036E+02 9.411E+02 1.065E+03 1.687E+03 2.077E+03 9.829E+02 1.052E+03 1.882E+03 1.003E+03 8.322E+02 Avg  

50 
 

1.881E+01 1.491E+01 1.662E+01 4.735E+01 1.377E+02 4.253E+01 3.842E+01 1.582E+01 1.768E+02 5.068E+01 1.051E+01 SD 
9.537E+02 8.717E+02 8.893E+02 9.950E+02 1.329E+03 1.952E+03 8.946E+02 1.016E+03 1.554E+03 9.047E+02 8.083E+02 Min 
1.882E+03 1.428E+03 1.530E+03 2.137E+03 3.264E+03 4.047E+03 1.670E+03 1.859E+03 3.868E+03 1.772E+03 1.031E+03 Avg  

100 
 

4.423E+01 2.697E+01 4.910E+01 1.010E+02 1.524E+02 5.176E+01 7.105E+01 2.621E+01 2.682E+02 1.614E+02 3.652E+01 SD 
1.795E+03 1.379E+03 1.419E+03 1.978E+03 2.932E+03 3.915E+03 1.558E+03 1.815E+03 3.264E+03 1.501E+03 9.656E+02 Min 

8.980E+02 8.643E+02 8.946E+02 9.045E+02 9.959E+02 1.167E+03 8.729E+02 9.000E+02 9.700E+02 8.936E+02 8.363E+02 Avg  
      30 

 
 

F8 

 

1.267E+01 7.597E+00 1.072E+01 1.993E+01 5.054E+01 1.786E+01 2.034E+01 7.935E+00 2.896E+01 1.607E+01 7.906E+00 SD 
8.604E+02 8.440E+02 8.652E+02 8.627E+02 8.938E+02 1.118E+03 8.424E+02 8.842E+02 8.985E+02 8.597E+02 8.159E+02 Min 
1.044E+03 9.648E+02 1.023E+03 1.069E+03 1.219E+03 1.558E+03 9.806E+02 1.081E+03 1.183E+03 1.048E+03 8.818E+02 Avg  

50 
 

1.548E+01 1.382E+01 1.474E+01 2.846E+01 7.732E+01 2.810E+01 2.521E+01 1.908E+01 5.770E+01 3.502E+01 1.017E+01 SD 
1.015E+03 9.320E+02 9.948E+02 1.001E+03 1.072E+03 1.482E+03 9.228E+02 1.030E+03 1.084E+03 9.602E+02 8.607E+02 Min 
1.670E+03 1.461E+03 1.603E+03 1.589E+03 1.928E+03 2.648E+03 1.337E+03 1.764E+03 1.862E+03 1.534E+03 1.077E+03 Avg  

100 
 

3.156E+01 3.737E+01 6.448E+01 7.974E+01 1.062E+02 2.965E+01 1.135E+02 2.741E+01 8.071E+01 8.577E+01 2.390E+01 SD 
1.612E+03 1.381E+03 1.494E+03 1.425E+03 1.751E+03 2.585E+03 1.218E+03 1.689E+03 1.695E+03 1.333E+03 1.037E+03 Min 
2.871E+03 1.092E+03 2.112E+03 3.156E+03 7.802E+03 1.340E+04 1.231E+03 1.452E+03 5.608E+03 1.331E+03 9.001E+02 Avg  

30 
 
 

F9 

 

4.348E+02 8.268E+01 4.657E+02 4.542E+02 2.727E+03 9.302E+02 2.459E+02 1.401E+02 1.401E+03 2.736E+02 1.758E-01 SD 
2.117E+03 9.626E+02 1.398E+03 2.269E+03 3.580E+03 1.109E+04 9.419E+02 1.163E+03 3.371E+03 9.842E+02 9.000E+02 Min 
9.792E+03 3.268E+03 1.061E+04 1.004E+04 2.304E+04 4.300E+04 4.089E+03 8.227E+03 1.361E+04 3.829E+03 9.011E+02 Avg  

50 
 

1.431E+03 5.518E+02 1.823E+03 1.827E+03 6.037E+03 3.291E+03 2.519E+03 9.653E+02 2.099E+03 9.026E+02 8.190E-01 SD 
7.116E+03 2.197E+03 6.838E+03 6.747E+03 1.432E+04 3.431E+04 1.714E+03 5.771E+03 9.923E+03 2.175E+03 9.000E+02 Min 
4.871E+04 3.282E+04 5.491E+04 2.730E+04 4.749E+04 8.798E+04 2.129E+04 5.077E+04 2.583E+04 1.755E+04 9.312E+02 Avg  

100 
 

4.384E+03 3.093E+03 3.593E+03 7.015E+03 1.464E+04 3.037E+03 9.530E+03 4.223E+03 2.970E+03 3.452E+03 2.229E+01 SD 
3.845E+04 2.384E+04 4.732E+04 2.061E+04 2.796E+04 8.052E+04 9.667E+03 4.057E+04 1.895E+04 1.091E+04 9.051E+02 Min 
3.551E+03 3.221E+03 3.507E+03 5.230E+03 5.957E+03 9.297E+03 3.852E+03  5.001E+03 5.598E+03 4.481E+03 2.294E+03 Avg  

30 
 
 

F10 

 

1.965E+02 2.125E+02 2.257E+02 1.066E+03 9.592E+02 3.4215E+02 5.301E+02 2.194E+02 6.223E+02 7.359E+02 2.633E+02 SD 
3.145E+03 2.692E+03 2.893E+03 3.149E+03 4.111E+03 8.424E+03 2.849E+03 4.496E+03 4.575E+03 2.749E+03 1.740E+03 Min 
6.410E+03 5.692E+03 5.936E+03 7.840E+03 1.015E+04 1.607E+04 7.183E+03  9.071E+03 8.828E+03 6.972E+03 3.744E+03 Avg  

50 
 

3.611E+02 4.212E+02 3.295E+02 9.335E+02 1.378E+03 3.757E+02 2.048E+03 3.480E+02 1.043E+03 7.636E+02 3.516E+02 SD 
5.554E+03 4.635E+03 5.201E+03 5.974E+03 7.176E+03 1.505E+04 4.977E+03 8.249E+03 6.158E+03 4.924E+03 2.768E+03 Min 
1.654E+04 1.491E+04 1.443E+04 1.762E+04 2.248E+04 3.332E+04 1.426E+04  2.247E+04 1.708E+04 1.514E+04 9.416E+03 Avg  

100 
 

4.362E+02 6.757E+02 7.242E+02 3.398E+03 2.671E+03 6.755E+02 8.378E+02 6.286E+02 1.491E+03 1.256E+03 6.284E+02 SD 
1.573E+04 1.354E+04 1.252E+04 1.420E+04 1.808E+04 3.165E+04 1.296E+04 1.997E+04 1.456E+04 1.207E+04 7.613E+03 Min 

0|0|7 0|1|6 0|1|6 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 6|1|0 30    W|T|L Ranking 
0|0|7 0|1|6 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 6|1|0 50    W|T|L 
0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 0|0|7 7|0|0 100  W|T|L 



 

Table 4 Comparison of optimization results obtained from the hybrid benchmark functions 
Best-so- 
far-ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA Index D F 

1.990E+03 1.504E+03 1.746E+03 1.619E+03 1.494E+03 9.920E+03 1.330E+03 1.333E+03 4.814E+03 1.247E+03 1.114E+03 Avg 
 

30 

 
 

F11 

5.763E+02 2.761E+02 3.108E+02 2.1399E+02 1.312E+02 1.903E+03 1.047E+02 2.736E+01 1.987E+03 4.828E+01 1.114E+01 SD 
1.294E+03 1.181E+03 1.224E+03 1.3159E+03 1.285E+03 5.168E+03 1.236E+03 1.286E+03 2.122E+03 1.166E+03 1.104E+03 Min 
9.057E+03 3.647E+03 4.821E+03 6.483E+03 1.699E+03 2.479E+04 2.393E+03 2.555E+03 2.215E+04 1.452E+03 1.173E+03 Avg  

50 
 

2.624E+03 1.527E+03 1.880E+03 2.0689E+03 1.421E+02 1.455E+03 9.024E+02 3.042E+02 1.317E+04 7.515E+01 2.114E+01 SD 
3.421E+03 1.804E+03 1.928E+03 3.360E+03 1.452E+03 2.153E+04 1.481E+03 1.918E+03 3.162E+03 1.298E+03 1.135E+03 Min 
9.386E+04 7.319E+04 8.343E+04 1.023E+05 2.962E+04 4.984E+05 3.304E+04 9.913E+04 2.778E+05 8.264E+03 1.769E+03 Avg  

100 
 

1.682E+04 1.387E+04 1.507E+04 2.268E+04 1.073E+04 4.313E+05 1.069E+04 1.035E+04 1.968E+05 1.288E+03 2.398E+02 SD 
5.859E+04 4.913E+04 5.922E+04 5.463E+04 1.674E+04 1.854E+05 1.392E+04 7.926E+04 3.640E+04 5.830E+03 1.370E+03 Min 
2.229E+06 5.080E+05 9.470E+05 4.272E+08 3.285E+07 1.508E+10 2.516E+07 4.730E+06 9.949E+08 1.599E+06 2.694E+04 Avg 

 
30 

 
 

F12 

6.904E+05 2.734E+05 4.014E+05 2.294E+09 2.454E+07 2.915E+09 2.458E+07 1.687E+06 7.941E+08 1.262E+06 1.383E+04 SD 
9.835E+05 9.275E+04 2.354E+05 1.164E+06 2.544E+06 7.550E+09 2.278E+06 2.185E+06 6.339E+07 9.190E+04 7.888E+03 Min 
4.548E+07 6.259E+06 6.983E+06 2.718E+09 2.376E+08 8.270E+10 2.331E+08 1.435E+08 1.671E+10 2.848E+07 2.069E+05 Avg  

50 
 

9.336E+06 2.316E+06 2.738E+06 1.476E+10 1.137E+08 8.814E+09 1.979E+08 1.995E+07 6.712E+09 1.582E+07 1.151E+05 SD 
2.456E+07 2.479E+06 2.183E+06 7.393E+06 3.681E+07 6.442E+10 2.073E+07 1.117E+08 4.744E+09 3.526E+06 6.780E+04 Min 
1.562E+09 7.517E+07 8.027E+07 8.432E+08 1.312E+09 2.007E+11 3.552E+09 2.417E+09 9.719E+10 6.766E+08 9.028E+05 Avg  

100 
 

2.612E+08 2.600E+07 2.637E+07 4.520E+08 4.395E+08 1.218E+10 1.892E+09 3.063E+08 1.793E+10 2.510E+08 3.350E+05 SD 
1.043E+09 3.048E+07 4.238E+07 2.983E+08 5.125E+08 1.635E+11 5.329E+08 1.785E+09 5.691E+10 1.892E+08 3.733E+05 Min 
4.008E+05 3.066E+04 3.650E+04 2.706E+08 1.485E+05 1.358E+10 4.674E+06 2.135E+05 1.113E+07 2.340E+04 2.981E+03 Avg 

 
30 

 
 

F13 

1.698E+05 2.141E+04 1.693E+04 1.482E+09 1.051E+05 4.735E+09 2.113E+07 1.222E+05 4.570E+07 8.110E+03 1.781E+03 SD 
1.180E+05 4.022E+03 1.307E+04 1.139E+04 2.772E+04 3.820E+09 2.316E+04 7.228E+04 8.884E+03 1.047E+04 1.331E+03 Min 
8.418E+06 2.468E+04 9.900E+04 1.836E+09 3.328E+05 4.768E+10 7.131E+07 8.468E+06 3.430E+09 5.134E+04 2.955E+03 Avg  

50 
 

3.330E+06 1.517E+04 6.601E+04 1.006E+10 2.744E+05 9.488E+09 9.487E+07 3.510E+06 2.774E+09 2.945E+04 1.766E+03 SD 
3.261E+06 7.108E+03 1.231E+04 1.733E+04 7.820E+04 2.640E+10 8.000E+04 2.446E+06 1.763E+05 1.794E+04 1.375E+03 Min 
7.591E+07 7.767E+04 1.849E+05 3.230E+05 1.260E+06 4.921E+10 3.678E+08 2.752E+07 1.398E+10 4.205E+04 4.334E+03 Avg  

100 
 

2.150E+07 8.670E+04 1.250E+05 2.668E+05 1.011E+06 2.957E+09 4.572E+08 5.942E+06 5.938E+09 1.361E+04 2.500E+03 SD 
3.430E+07 8.143E+03 5.286E+04 6.782E+04 3.575E+05 4.186E+10 8.952E+05 1.713E+07 2.697E+09 1.866E+04 1.551E+03 Min 
2.396E+05 7.30E+04 1.409E+05 3.154E+05 8.756E+05 7.639E+06 1.162E+05 3.474E+04 5.579E+05 1.581E+03 1.473E+03 Avg 

 
30  

 
 

F14 

 

1.343E+05 5.427E+04 7.485E+04 2.585E+05 1.119E+06 4.582E+06 1.665E+05 1.893E+04 9.061E+05 6.163E+01 9.612E+01 SD 
4.939E+04 7.845E+03 3.254E+04 4.814E+03 5.098E+04 2.011E+06 4.683E+03 7.023E+03 4.418E+03 1.500E+03 1.415E+03 Min 
1.767E+06 6.426E+05 1.307E+06 3.413E+06 8.733E+05 1.523E+08 5.086E+05 9.222E+05 7.051E+06 8.667E+03 4.830E+03 Avg  

50 
 

8.467E+05 3.519E+05 6.204E+05 9.103E+06 5.695E+05 6.449E+07 7.507E+05 3.676E+05 7.269E+06 7.2672E+03 4.793E+03 SD 
6.119E+05 1.177E+05 3.931E+05 3.732E+05 1.479E+05 3.961E+07 3.019E+04 3.973E+05 9.246E+04 1.958E+03 1.622E+03 Min 
2.249E+07 9.08E+06 1.276E+07 6.817E+06 4.512E+06 1.581E+08 3.565E+06 1.801E+07 2.731E+07 2.693E+05 1.269E+05 Avg  

100 
 

6.379E+06 2.825E+06 4.182E+06 1.730E+06 2.015E+06 4.045E+07 2.635E+06 5.073E+06 2.092E+07 1.198E+05 6.377E+04 SD 
9.153E+06 3.263E+06 5.884E+06 3.473E+06 1.863E+06 7.909E+07 5.288E+05 9.314E+06 4.944E+06 1.041E+05 2.795E+04 Min 
9.534E+04 1.413E+04 9.555E+03 1.900E+04 6.966E+04 5.348E+08 1.900E+05 6.459E+03 6.927E+05 4.520E+03 1.572E+03 Avg 

 
30 

 
 

F15 

 

5.172E+04 1.019E+04 4.917E+03 8.677E+03 4.899E+04 1.909E+08 5.575E+05 2.303E+03 2.386E+06 1.511E+03 9.389E+01 SD 
1.839E+04 2.486E+03 1.953E+03 7.302E+03 1.544E+04 7.384E+07 7.366E+03 2.496E+03 9.045E+03 2.326E+03 1.510E+03 Min 
1.701E+06 1.829E+04 2.765E+04 3.915E+08 8.793E+04 8.693E+09 3.890E+06 4.526E+05 2.954E+07 1.230E+04 3.537E+03 Avg  

50 
 

8.603E+05 1.367E+04 7.156E+03 2.144E+09 5.358E+04 2.288E+09 6.158E+06 2.595E+05 1.353E+08 5.402E+03 1.778E+03 SD 
4.261E+05 2.208E+03 2.028E+04 7.720E+03 3.430E+04 3.848E+09 2.057E+04 5.978E+04 8.125E+03 4.126E+03 1.572E+03 Min 
2.792E+07 6.664E+04 1.703E+05 2.795E+04 1.119E+05 2.576E+10 7.859E+07 6.705E+06 3.821E+09 3.470E+04 2.420E+03 Avg  

100 
 

1.100E+07 9.058E+04 1.327E+05 5.531E+03 6.282E+04 3.272E+09 1.029E+08 2.525E+06 2.694E+09 1.264E+04 9.240E+02 SD 
1.276E+07 7.463E+03 1.466E+04 1.920E+04 6.096E+04 1.937E+10 4.607E+04 1.661E+06 1.366E+08 1.913E+04 1.631E+03 Min 
2.235E+03 2.078E+03 2.211E+03 3.188E+03 3.505E+03 6.912E+03 2.352E+03 2.252E+03 3.689E+03 2.380E+03 1.922E+03 Avg 

 
30 

 
 

F16 

 

1.254E+02 1.576E+02 1.331E+02 8.783E+02 4.066E+02 8.225E+02 2.398E+02 9.787E+01 5.459E+02 2.316E+02 1.171E+02 SD 
1.990E+03 1.780E+03 1.850E+03 2.408E+03 2.770E+03 5.319E+03 1.932E+03 2.003E+03 2.898E+03 1.939E+03 1.638E+03 Min 
3.022E+03 2.859E+03 2.854E+03 3.753E+03 4.811E+03 1.080E+04 2.833E+03 3.191E+03 4.796E+03 3.065E+03 2.377E+03 Avg  

50 
 

1.955E+02 2.135E+02 2.201E+02 1.595E+03 8.071E+02 1.052E+03 3.579E+02 1.696E+02 5.697E+02 3.759E+02 1.623E+02 SD 
2.398E+03 2.242E+03 2.362E+03 2.745E+03 3.358E+03 8.766E+03 2.192E+03 2.823E+03 3.899E+03 2.431E+03 2.032E+03 Min 
6.272E+03 5.626E+03 5.352E+03 7.042E+03 1.087E+04 2.532E+04 5.550E+03 8.111E+03 1.045E+04 6.221E+03 4.055E+03 Avg  

100 
 

2.498E+02 2.659E+02 3.164E+02 8.702E+02 1.941E+03 1.858E+03 9.919E+02 4.087E+02 1.184E+03 7.013E+02 3.253E+02 SD 
5.672E+03 5.087E+03 4.781E+03 5.035E+03 8.341E+03 2.227E+04 3.734E+03 7.267E+03 8.734E+03 4.521E+03 3.300E+03 Min 
1.905E+03 1.824E+03 1.892E+03 2.221E+03 2.506E+03 4.895E+03 1.936E+03 1.831E+03 2.889E+03 1.956E+03 1.743E+03 Avg 

 
30 

 
 

F17 

 

6.026E+01 5.534E+01 7.049E+01 1.949E+02 2.351E+02 1.021E+03 1.512E+02 3.028E+01 4.419E+02 1.053E+02 2.981E+01 SD 
1.801E+03 1.756E+03 1.792E+03 1.896E+03 1.946E+03 3.554E+03 1.767E+03 1.773E+03 2.032E+03 1.782E+03 1.714E+03 Min 
2.793E+03 2.686E+03 2.731E+03 3.431E+03 3.910E+03 1.203E+04 2.696E+03 2.857E+03 4.669E+03 2.952E+03 2.186E+03 Avg  

50 
 

1.302E+02 1.472E+02 1.377E+02 3.148E+02 3.257E+02 3.233E+03 3.139E+02 1.319E+02 7.663E+02 2.264E+02 8.392E+01 SD 
2.517E+03 2.340E+03 2.462E+03 2.686E+03 3.352E+03 6.754E+03 2.212E+03 2.497E+03 3.671E+03 2.493E+03 2.045E+03 Min 
6.126E+03 4.889E+03 4.898E+03 2.147E+04 7.562E+03 1.098E+07 4.385E+03 6.783E+03 5.527E+04 5.116E+03 3.359E+03 Avg  

100 
 

3.426E+02 3.112E+02 3.116E+02 8.492E+04 9.255E+02 5.047E+06 4.341E+02 3.911E+02 4.997E+04 4.409E+02 2.454E+02 SD 
5.384E+03 3.953E+03 4.213E+03 4.805E+03 6.176E+03 1.861E+06 3.137E+03 5.705E+03 1.144E+04 4.274E+03 2.777E+03 Min 
3.890E+05 1.821E+05 3.388E+05 5.259E+05 2.201E+06 1.178E+08 5.327E+05 2.558E+05 3.754E+06 1.738E+04 1.217E+04 Avg 

 
30 

 
 

F18 

 

1.300E+05 8.682E+04 1.317E+05 8.758E+05 2.341E+06 6.033E+07 3.574E+05 1.121E+05 5.014E+06 9.833E+03 5.831E+03 SD 
1.366E+05 7.404E+04 9.718E+04 8.565E+04 1.374E+05 3.815E+07 7.997E+04 9.957E+04 8.665E+04 2.217E+03 3.558E+03 Min 
3.438E+06 1.115E+06 2.135E+06 4.624E+06 6.962E+06 2.175E+08 1.935E+06 4.033E+06 3.687E+07 1.028E+05 4.197E+04 Avg  

50 
 

1.346E+06 5.291E+05 9.077E+05 3.369E+06 6.496E+06 7.982E+07 1.304E+06 1.916E+06 3.812E+07 4.066E+04 1.525E+04 SD 
9.779E+05 2.909E+05 5.251E+05 1.278E+06 1.956E+06 6.998E+07 1.955E+05 6.679E+05 1.722E+05 4.014E+04 1.494E+04 Min 
1.858E+07 6.416E+06 1.075E+07 4.116E+06 4.305E+06 2.884E+08 3.954E+06 1.891E+07 2.972E+07 3.830E+05 1.573E+05 Avg  

100 
 

4.145E+06 2.495E+06 2.746E+06 1.682E+06 1.996E+06 1.047E+08 1.886E+06 5.602E+06 2.509E+07 1.895E+05 4.327E+04 SD 
1.162E+07 2.172E+06 2.846E+06 1.900E+06 1.514E+06 1.141E+08 1.010E+06 8.117E+06 3.348E+06 1.891E+05 9.160E+04 Min 
5.779E+04 1.602E+04 1.780E+04 3.328E+05 2.100E+06 9.891E+08 2.421E+05 4.388E+03 1.401E+06 7.177E+03 2.002E+03 Avg 

 
30  

 
F19 

 
 

2.729E+04 1.314E+04 1.039E+04 3.565E+05 1.835E+06 4.047E+08 3.013E+05 1.608E+03 2.335E+06 6.929E+03 1.858E+02 SD 
2.480E+04 2.511E+03 2.838E+03 2.227E+04 2.199E+04 4.775E+08 7.217E+03 2.224E+03 2.329E+04 2.054E+03 1.908E+03 Min 
1.649E+05 2.334E+04 4.848E+04 4.519E+05 3.268E+06 5.102E+09 2.300E+06 6.440E+04 1.340E+07 7.467E+04 2.332E+03 Avg  

50 
 

6.756E+04 1.422E+04 1.533E+04 3.709E+05 2.690E+06 1.344E+09 5.777E+06 3.220E+04 1.901E+07 8.324E+04 9.228E+02 SD 
6.816E+04 2.742E+03 1.960E+04 4.519E+04 2.170E+05 1.727E+09 1.203E+05 2.432E+04 7.185E+04 1.687E+04 1.923E+03 Min 
3.377E+07 7.553E+04 3.664E+05 1.527E+09 2.580E+07 2.575E+10 5.703E+07 9.111E+06 3.480E+09 1.023E+06 3.205E+03 Avg  

100 
 

1.292E+07 9.861E+04 1.956E+05 5.810E+09 1.128E+07 2.943E+09 5.439E+07 3.167E+06 2.173E+09 9.691E+05 1.562E+03 SD 
1.280E+07 1.615E+04 8.428E+04 2.801E+05 6.023E+05 1.814E+10 3.113E+06 3.225E+06 1.938E+08 1.158E+05 1.968E+03 Min 
2.222E+03 2.197E+03 2.247E+03 2.537E+03 2.660E+03 3.247E+03 2.328E+03 2.206E+03 2.904E+03 2.329E+03 2.046E+03 Avg 

 
30 

 
 

F20 

7.172E+01 7.295E+01 8.792E+01 1.700E+02 1.976E+02 1.626E+02 1.499E+02 6.202E+01 2.154E+02 8.615E+01 5.215E+01 SD 
2.092E+03 2.077E+03 2.11E+03 2.267E+03 2.339E+03 2.771E+03 2.116E+03 2.070E+03 2.494E+03 2.258E+03 2.004E+03 Min 
2.873E+03 2.788E+03 2.943E+03 3.314E+03 3.639E+03 4.539E+03 2.858E+03 2.801E+03 3.666E+03 2.802E+03 2.328E+03 Avg  

50 
 

1.412E+02 1.380E+02 1.217E+02 3.226E+02 4.725E+02 1.704E+02 3.015E+02 1.412E+02 3.761E+02 2.167E+02 1.144E+02 SD 
2.476E+03 2.524E+03 2.569E+03 2.636E+03 2.783E+03 4.050E+03 2.299E+03 2.559E+03 2.975E+03 2.328E+03 2.112E+03 Min 
5.307E+03 5.081E+03 5.239E+03 5.307E+03 6.208E+03 8.324E+03 4.514E+03 5.339E+03 6.307E+03 4.666E+03 3.662E+03 Avg  

100 
 

2.761E+02 2.965E+02 2.251E+02 6.505E+02 5.920E+02 3.930E+02 7.693E+02 2.467E+02 3.953E+02 4.340E+02 2.481E+02 SD 
4.509E+03 4.407E+03 4.719E+03 3.852E+03 4.746E+03 7.173E+03 3.164E+03 4.931E+03 5.590E+03 3.888E+03 3.108E+03 Min 

0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 9|0|1 30     W|T|L 

Ranking 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0 50     W|T|L 
0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0 100   W|T|L 



Table 5 Comparison of optimization results obtained from the composition benchmark functions   
Best-so- 
far ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA Index D F 

2.343E+03 2.311E+03 2.304E+03 2.427E+03 2.556E+03 2.800E+03 2.376E+03 2.379E+03 2.520E+03 2.398E+03 2.313E+03 Avg  
30 

 
 

F21 

6.819E+01 6.167E+01 7.602E+01 7.347E+01 4.199E+01 2.993E+01 4.077E+01 3.930E+01 4.481E+01 2.161E+01 5.103E+01 SD 
2.229E+03 2.225E+03 2.224E+03 2.372E+03 2.490E+03 2.727E+03 2.332E+03 2.267E+03 2.440E+03 2.350E+03 2.200E+03 Min 
2.556E+03 2.477E+03 2.529E+03 2.557E+03 2.889E+03 3.302E+03 2.469E+03 2.585E+03 2.776E+03 2.514E+03 2.383E+03 Avg  

50 
 

1.826E+01 2.262E+01 2.034E+01 3.325E+01 9.921E+01 6.687E+01 2.597E+01 1.695E+01 9.493E+01 4.267E+01 1.411E+01 SD 
2.518E+03 2.382E+03 2.479E+03 2.484E+03 2.670E+03 3.170E+03 2.409E+03 2.538E+03 2.594E+03 2.445E+03 2.351E+03 Min 
3.204E+03 2.998E+03 3.129E+03 3.727E+03 3.923E+03 5.230E+03 2.842E+03 3.323E+03 3.988E+03 3.120E+03 2.585E+03 Avg  

100 
 

4.509E+01 3.878E+01 4.526E+01 4.624E+02 1.905E+02 1.477E+02 6.117E+01 2.469E+01 2.355E+02 9.639E+01 3.624E+01 SD 
3.073E+03 2.912E+03 3.017E+03 3.282E+03 3.565E+03 4.806E+03 2.745E+03 3.283E+03 3.510E+03 2.863E+03 2.511E+03 Min 
2.336E+03 2.306E+03 2.318E+03 2.708E+03 6.355E+03 9.784E+03 4.418E+03 2.526E+03 6.383E+03 2.301E+03 2.300E+03 Avg  

30 
 
 

F22 

7.312E+00 4.109E+00 3.564E+00 1.570E+03 2.323E+03 5.427E+02 1.456E+03 8.174E+01 1.185E+03 1.256E+00 3.794E+00 SD 
2.326E+03 2.301E+03 2.311E+03 2.300E+03 2.315E+03 8.381E+03 2.312E+03 2.419E+03 3.443E+03 2.300E+03 2.280E+03 Min 
7.466E+03 6.133E+03 6.447E+03 9.809E+03 1.160E+04 1.814E+04 8.885E+03 1.018E+04 1.041E+04 3.346E+03 2.971E+03 Avg  

50 
 

1.946E+03 2.333E+03 2.415E+03 6.751E+02 1.185E+03 4.406E+02 2.179E+03 2.032E+03 1.155E+03 2.686E+03 1.369E+03 SD 
2.534E+03 2.337E+03 2.341E+03 8.646E+03 9.473E+03 1.703E+04 6.391E+03 4.358E+03 8.564E+03 2.306E+03 2.300E+03 Min 
1.899E+04 1.728E+04 1.766E+04 2.080E+04 2.482E+04 3.584E+04 1.748E+04 2.534E+04 2.042E+04 1.796E+04 1.062E+04 Avg  

100 
 

5.099E+02 7.412E+02 4.786E+02 2.504E+03 2.296E+03 4.936E+02 1.233E+03 5.042E+02 1.991E+03 5.383E+03 3.403E+03 SD 
1.797E+04 1.591E+04 1.667E+04 1.693E+04 2.079E+04 3.455E+04 1.539E+04 2.420E+04 1.622E+04 2.437E+03 2.301E+03 Min 
2.721E+03 2.707E+03 2.715E+03 3.015E+03 3.037E+03 3.733E+03 2.738E+03 2.757E+03 3.326E+03 2.841E+03 2.674E+03 Avg  

30 
 
 

F23 

1.837E+01 1.186E+01 2.103E+01 2.696E+02 9.167E+01 1.617E+02 5.199E+01 1.296E+01 1.317E+02 4.955E+01 5.200E+01 SD 
2.701E+03 2.687E+03 2.692E+03 2.817E+03 2.876E+03 3.445E+03 2.685E+03 2.709E+03 3.068E+03 2.753E+03 2.401E+03 Min 
2.974E+03 2.924E+03 2.956E+03 3.633E+03 3.588E+03 4.915E+03 2.901E+03 3.062E+03 3.991E+03 3.206E+03 2.804E+03 Avg  

50 
 

6.395E+01 1.480E+01 6.455E+01 5.127E+02 1.552E+02 2.435E+02 2.915E+01 1.826E+01 2.269E+02 8.588E+01 7.758E+01 SD 
2.799E+03 2.882E+03 2.788E+03 3.237E+03 3.257E+03 4.428E+03 2.845E+03 3.031E+03 3.501E+03 3.065E+03 2.401E+03 Min 
3.374E+03 3.216E+03 3.287E+03 5.437E+03 4.789E+03 7.716E+03 3.391E+03 3.738E+03 5.499E+03 4.383E+03 2.973E+03 Avg  

100 
 

3.160E+01 2.415E+01 4.052E+01 1.026E+03 2.209E+02 4.449E+02 5.721E+01 3.380E+01 3.102E+02 3.367E+02 2.702E+01 SD 
3.289E+03 3.156E+03 3.179E+03 4.561E+03 4.224E+03 6.702E+03 3.258E+03 3.664E+03 4.915E+03 3.877E+03 2.915E+03 Min 
2.796E+03 2.826E+03 2.706E+03 3.253E+03 3.181E+03 4.044E+03 2.890E+03 2.955E+03 3.471E+03 2.951E+03 2.870E+03 Avg  

30 
 
 

F24 

 

1.695E+02 1.581E+02 1.538E+02 2.999E+02 8.929E+01 1.964E+02 3.818E+01 4.635E+01 1.575E+02 3.895E+01 1.531E+01 SD 
2.617E+03 2.612E+03 2.614E+03 3.016E+03 3.003E+03 3.668E+03 2.853E+03 2.756E+03 3.175E+03 2.869E+03 2.845E+03 Min 
3.312E+03 3.301E+03 3.412E+03 3.888E+03 3.668E+03 5.381E+03 3.094E+03 3.320E+03 4.191E+03 3.290E+03 3.026E+03 Avg  

50 
 

3.922E+01 4.551E+01 5.711E+01 4.175E+02 1.357E+02 2.830E+02 1.056E+02 2.383E+01 2.186E+02 9.406E+01 3.208E+01 SD 
3.183E+03 3.200E+03 3.290E+03 3.508E+03 3.382E+03 4.716E+03 3.002E+03 3.261E+03 3.746E+03 3.141E+03 2.958E+03 Min 
4.107E+03 3.892E+03 4.003E+03 7.006E+03 5.977E+03 1.279E+04 3.928E+03 4.400E+03 8.789E+03 5.394E+03 3.560E+03 Avg  

100 
 

2.741E+01 3.335E+01 5.358E+01 1.976E+03 4.496E+02 9.982E+02 1.364E+02 3.347E+01 7.068E+02 3.254E+02 3.312E+01 SD 
4.027E+03 3.816E+03 3.826E+03 5.544E+03 5.186E+03 1.045E+04 3.731E+03 4.342E+03 7.445E+03 4.634E+03 3.464E+03 Min 
2.891E+03 2.886E+03 2.886E+03 2.919E+03 2.945E+03 5.538E+03 2.944E+03 2.907E+03 3.453E+03 2.914E+03 2.884E+03 Avg  

30 
 
 

F25 

 

1.210E+00 1.261E+00 1.200E+00 1.547E+01 3.010E+01 3.097E+02 1.990E+01 4.289E+00 2.288E+02 2.093E+01 6.165E-01 SD 
2.889E+03 2.884E+03 2.884E+03 2.889E+03 2.899E+03 4.991E+03 2.89E+03 2.898E+03 3.064E+03 2.884E+03 2.883E+03 Min 
3.096E+03 3.023E+03 3.055E+03 3.104E+03 3.190E+03 1.520E+04 3.299E+03 3.248E+03 7.997E+03 3.114E+03 2.980E+03 Avg  

50 
 

1.532E+01 1.676E+01 1.919E+01 2.110E+01 4.272E+01 1.114E+03 1.167E+02 1.753E+01 1.378E+03 2.792E+01 2.093E+01 SD 
3.058E+03 2.991E+03 2.995E+03 3.044E+03 3.132E+03 1.196E+04 3.159E+03 3.206E+03 4.385E+03 3.041E+03 2.959E+03 Min 
4.230E+03 3.448E+03 3.539E+03 4.038E+03 4.084E+03 2.870E+04 4.959E+03 4.875E+03 1.832E+04 3.860E+03 3.186E+03 Avg  

100 
 

8.839E+01 2.957E+01 4.108E+01 1.613E+02 1.189E+02 1.667E+03 3.690E+02 1.012E+02 2.780E+03 1.045E+02 4.509E+01 SD 
4.088E+03 3.393E+03 3.472E+03 3.733E+03 3.888E+03 2.299E+04 4.372E+03 4.661E+03 1.174E+04 3.642E+03 3.079E+03 Min 
3.389E+03 3.015E+03 2.898E+03 5.923E+03 7.349E+03 1.169E+04 4.445E+03 4.326E+03 7.961E+03 3.190E+03 2.869E+03 Avg  

30 
 
 

F26 

 

2.433E+02 2.849E+02 3.723E+01 1.108E+03 1.330E+03 4.630E+02 2.886E+02 3.941E+02 8.326E+02 9.577E+02 1.942E+02 SD 
2.996E+03 2.841E+03 2.840E+03 2.800E+03 3.481E+03 1.043E+04 3.963E+03 3.550E+03 6.255E+03 2.800E+03 2.800E+03 Min 
5.074E+03 4.358E+03 3.896E+03 9.828E+03 1.273E+04 1.784E+04 5.727E+03 6.880E+03 1.376E+04 4.144E+03 3.231E+03 Avg  

50 
 

9.164E+02 8.445E+02 9.960E+02 1.662E+03 1.316E+03 4.991E+02 3.966E+02 1.778E+02 1.013E+03 2.197E+03 6.747E+02 SD 
3.979E+03 3.443E+03 3.040E+03 4.078E+03 9.864E+03 1.667E+04 4.928E+03 6.521E+03 1.128E+04 2.921E+03 2.900E+03 Min 
1.478E+04 1.215E+04 1.254E+04 2.715E+04 3.224E+04 5.648E+04 1.247E+04 1.676E+04 4.476E+04 2.032E+04 8.424E+03 Avg  

100 
 

3.612E+02 1.253E+03 2.905E+03 5.715E+03 4.359E+03 1.939E+03 9.677E+02 3.457E+02 6.951E+03 6.305E+03 3.758E+02 SD 
1.401E+04 5.818E+03 4.908E+03 2.036E+04 2.238E+04 5.120E+04 1.085E+04 1.608E+04 3.609E+04 6.524E+03 7.676E+03 Min 
3.213E+03 3.207E+03 3.212E+03 3.456E+03 3.366E+03 4.905E+03 3.229E+03 3.233E+03 3.200E+03 3.360E+03 3.199E+03 Avg  

30 
 
 

F27 

 

4.228E+00 3.707E+00 4.458E+00 2.132E+02 8.122E+01 4.323E+02 1.194E+01 4.773E+00 8.012E-05 5.440E+01 6.103E+00 SD 
3.206E+03 3.199E+03 3.201E+03 3.326E+03 3.228E+03 4.040E+03 3.210E+03 3.222E+03 3.200E+03 3.258E+03 3.185E+03 Min 
3.396E+03 3.327E+03 3.375E+03 4.880E+03 4.364E+03 8.082E+03 3.466E+03 3.643E+03 3.200E+03 4.132E+03 3.254E+03 Avg  

50 
 

3.081E+01 1.904E+01 2.678E+01 9.250E+02 3.935E+02 4.811E+02 6.295E+01 3.950E+01 8.660E-05 3.163E+02 2.293E+01 SD 
3.327E+03 3.283E+03 3.317E+03 3.943E+03 3.621E+03 6.862E+03 3.366E+03 3.547E+03 3.200E+03 3.715E+03 3.212E+03 Min 
3.550E+03 3.482E+03 3.529E+03 8.055E+03 4.937E+03 1.520E+04 3.819E+03 4.379E+03 3.200E+03 4.885E+03 3.354E+03 Avg  

100 
 

2.115E+01 2.202E+01 3.258E+01 2.809E+03 6.336E+02 1.250E+03 1.003E+02 9.789E+01 7.336E-05 3.540E+02 1.721E+01 SD 
3.494E+03 3.434E+03 3.460E+03 5.069E+03 4.142E+03 1.252E+04 3.607E+03 4.126E+03 3.200E+03 4.242E+03 3.315E+03 Min 
3.277E+03 3.212E+03 3.216E+03 3.253E+03 3.309E+03 7.492E+03 3.340E+03 3.317E+03 3.307E+03 3.233E+03 3.133E+03 Avg  

30 
 

 
F28 

 

1.307E+01 5.546E+00 6.175E+00 2.542E+01 3.867E+01 4.713E+02 6.090E+01 7.890E+00 9.119E-05 2.273E+01 4.681E+01 SD 
3.241E+03 3.205E+03 3.203E+03 3.199E+03 3.231E+03 6.537E+03 3.221E+03 3.300E+03 3.300E+03 3.202E+03 3.100E+03 Min 
3.501E+03 3.293E+03 3.336E+03 3.509E+03 3.570E+03 1.354E+04 3.741E+03 4.080E+03 3.300E+03 3.413E+03 3.259E+03 Avg  

50 
 

6.798E+01 1.379E+01 1.716E+01 6.137E+02 9.093E+01 7.835E+02 2.119E+02 1.113E+02 6.639E-05 4.972E+01 3.632E-02 SD 
3.409E+03 3.269E+03 3.299E+03 3.335E+03 3.429E+03 1.164E+04 3.452E+03 3.867E+03 3.300E+03 3.293E+03 3.259E+03 Min 
8.729E+03 3.580E+03 3.750E+03 6.059E+03 4.516E+03 3.608E+04 6.264E+03 9.445E+03 3.300E+03 4.079E+03 3.355E+03 Avg  

100 
 

1.329E+03 2.403E+01 7.367E+01 6.979E+02 2.318E+02 1.144E+03 8.476E+02 4.483E+02 5.419E-05 1.520E+02 1.368E+01 SD 
5.892E+03 3.523E+03 3.634E+03 4.724E+03 4.089E+03 3.362E+04 5.098E+03 8.453E+03 3.300E+03 3.888E+03 3.328E+03 Min 
3.574E+03 3.438E+03 3.529E+03 4.227E+03 4.789E+03 8.893E+03 3.593E+03 3.571E+03 5.433E+03 3.855E+03 3.318E+03 Avg  

30 
 
 

F29 

 

5.669E+01 5.260E+01 5.690E+01 2.440E+02 3.299E+02 1.634E+03 9.701E+01 5.949E+01 5.608E+02 1.723E+02 3.954E+01 SD 
3.468E+03 3.334E+03 3.398E+03 3.745E+03 4.131E+03 6.989E+03 3.437E+03 3.417E+03 4.604E+03 3.632E+03 3.243E+03 Min 
3.991E+03 3.721E+03 4.040E+03 5.576E+03 7.318E+03 8.244E+04 4.186E+03 4.390E+03 1.145E+04 5.025E+03 3.364E+03 Avg  

50 
 

1.190E+02 1.279E+02 1.479E+02 5.709E+02 9.797E+02 5.540E+04 2.598E+02 1.641E+02 2.600E+03 4.051E+02 9.855E+01 SD 
3.697E+03 3.472E+03 3.763E+03 4.961E+03 5.596E+03 1.801E+04 3.813E+03 4.021E+03 6.253E+03 4.095E+03 3.218E+03 Min 
8.442E+03 6.535E+03 7.427E+03 1.026E+04 1.431E+04 6.969E+05 7.316E+03 1.054E+04 2.697E+04 9.439E+03 5.285E+03 Avg  

100 
 

4.498E+02 3.193E+02 3.637E+02 1.434E+03 1.789E+03 2.777E+05 4.519E+02 4.319E+02 1.080E+04 6.810E+02 3.146E+02 SD 
7.701E+03 6.039E+03 6.776E+03 8.373E+03 1.102E+04 1.906E+05 6.714E+03 9.461E+03 1.265E+04 8.393E+03 4.590E+03 Min 
5.418E+04 1.228E+04 2.264E+04 1.975E+08 9.906E+06 1.935E+09 3.965E+06 9.198E+04 3.719E+07 1.488E+05 7.931E+03 Avg  

30 
 
 

F30 

1.704E+04 3.961E+03 6.028E+03 5.001E+08 6.675E+06 5.672E+08 2.571E+06 3.625E+04 5.262E+07 1.080E+05 1.313E+03 SD 
2.528E+04 6.546E+03 1.231E+04 3.711E+05 1.464E+06 1.029E+09 3.430E+05 3.205E+04 4.080E+04 2.504E+04 5.985E+03 Min 
2.840E+06 1.012E+06 1.019E+06 7.253E+07 9.342E+07 7.971E+09 8.182E+07 1.847E+07 3.740E+08 3.413E+07 7.621E+05 Avg  

50 
 

6.412E+05 2.019E+05 1.172E+05 2.770E+07 2.752E+07 1.731E+09 2.546E+07 4.622E+06 2.692E+08 9.782E+06 8.736E+04 SD 
1.699E+06 6.900E+05 8.375E+05 2.884E+07 3.183E+07 4.628E+09 3.747E+07 1.102E+07 1.731E+07 1.207E+07 5.922E+05 Min 
8.160E+07 8.764E+04 3.453E+05 1.089E+08 4.485E+08 4.304E+10 3.657E+08 8.306E+07 1.106E+10 6.820E+07 1.197E+04 Avg  

100 
 

2.113E+07 4.842E+04 2.194E+05 6.428E+07 2.620E+08 4.262E+09 2.942E+08 1.516E+07 3.575E+09 4.220E+07 2.287E+03 SD 
4.485E+07 2.208E+04 7.121E+04 2.625E+07 1.697E+08 3.481E+10 1.621E+07 4.492E+07 4.521E+09 1.854E+07 8.657E+03 Min 

0|0|10 1|1|8 0|1|9 0|1|9 0|0|10 0|0|10 0|0|10 0|0|10 1|0|9 0|2|8 9|0|1 30   W|T|L 

Ranking 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 10|0|0 50   W|T|L 
0|0|10 0|0|10 1|0|9 0|0|10 0|0|10 0|0|10 0|0|10 0|0|10 2|0|8 0|0|10 7|0|3 100 W|T|L 



5.4. Convergence analysis 

In this experiment, the convergence behavior of CCSA was compared with other state-of-

the-art swarm intelligence algorithms. Figures 12-15 show the convergence curves for solving 

different categories unimodal, simple multi-modal, hybrid and composition, respectively. In all 

curves, the convergence of CCSA is better than compared algorithms. 

 

 

 

 

Fig. 12 Convergence analysis of unimodal functions with different dimensions 

 



 

Fig. 13 Convergence analysis of simple multi-modal test functions with different dimensions 



 

Fig. 14 Convergence analysis on hybrid test functions with different dimensions 

 



 

Fig. 15 Convergence analysis on composition test functions with different dimensions 

 



5.5. Efficiency evaluation for large-scale global optimization 

Although some bio-inspired optimization algorithms have functional search capabilities 

for solving low-dimensional problems (D <100), their efficiency is decreased when the 

dimension is increased in large-scale global optimization problems. In this experiment set, the 

efficiency of CCSA was compared with the compared algorithms by several experiments on 

benchmark functions CEC 2010 with dimension 1000. This experiment was run 15 times with 

MaxIt = 300 and population size N=30. The experimental results are shown in Table 6, and 

their convergence curves are shown in Fig. 16. The results show that the proposed CCSA is 

more efficient than compared algorithms for solving large-scale problems.  

 

Table 6  Comparison of optimization results obtained from CEC 2010 benchmark functions with D=1000 
Best-so- 
far ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA Index F 

3.078E+11 3.025E+11 3.148E+11 1.771E+11 1.252E+11 1.908E+11 6.510E+10 2.441E+11 2.314E+11 1.134E+11 1.440E+09 Avg 

F1 1.271E+10 1.079E+10 1.844E+10 8.614E+09 6.213E+09 3.285E+09 5.477E+09 2.125E+10 2.145E+10 6.931E+09 2.439E+08 SD 
2.835E+11 2.784E+11 2.800E+11 1.631E+11 1.121E+11 1.827E+11 5.380E+10 2.116E+11 1.953E+11 1.009E+11 1.170E+09 Min 
1.926E+11 1.930E+11 1.951E+11 1.958E+11 1.822E+11 1.966E+11 1.829E+11 1.935E+11 1.910E+11 1.933E+11 1.719E+11 Avg 

F2 4.830E+08 5.435E+08 6.799E+08 9.188E+08 1.147E+09 6.716E+08 6.775E+08 7.048E+08 2.854E+09 8.086E+08 3.972E+08 SD 
1.916E+11 1.921E+11 1.932E+11 1.945E+11 1.803E+11 1.954E+11 1.817E+11 1.921E+11 1.861E+11 1.915E+11 1.715E+11 Min 
1.767E+11 1.784E+11 1.872E+11 1.911E+11 1.273E+11 1.911E+11 1.122E+11 1.754E+11 1.841E+11 1.617E+11 6.603E+10 Avg 

F3 3.930E+09 4.239E+09 6.522E+09 3.889E+09 3.660E+09 3.213E+09 3.093E+09 7.186E+09 2.009E+10 2.803E+09 5.768E+08 SD 
1.697E+11 1.711E+11 1.768E+11 1.808E+11 1.193E+11 1.857E+11 1.067E+11 1.593E+11 1.149E+11 1.577E+11 6.548E+10 Min 
3.053E+11 3.025E+11 3.206E+11 1.782E+11 1.296E+11 1.925E+11 6.160E+10 2.478E+11 2.453E+11 1.165E+11 1.454E+09 Avg 

F4 1.511E+10 1.485E+10 1.887E+10 5.631E+09 6.509E+09 3.357E+09 5.737E+09 1.494E+10 2.012E+10 3.893E+09 1.960E+08 SD 
2.751E+11 2.735E+11 2.853E+11 1.661E+11 1.162E+11 1.835E+11 5.199E+10 2.102E+11 2.029E+11 1.080E+11 1.138E+09 Min 
1.925E+11 1.931E+11 1.947E+11 1.960E+11 1.821E+11 1.968E+11 1.830E+11 1.932E+11 1.897E+11 1.935E+11 4.237E+08 Avg 

5F 7.399E+08 7.446E+08 9.296E+08 6.349E+08 1.528E+09 7.565E+08 4.957E+08 7.306E+08 3.634E+09 5.587E+08 5.066E+07 SD 
1.906E+11 1.917E+11 1.930E+11 1.947E+11 1.798E+11 1.957E+11 1.821E+11 1.914E+11 1.789E+11 1.925E+11 3.389E+08 Min 
1.741E+11 1.772E+11 1.894E+11 1.920E+11 1.237E+11 1.916E+11 1.119E+11 1.775E+11 1.908E+11 1.622E+11 5.052E+08 Avg 

6F 4.682E+09 5.040E+09 3.314E+09 4.469E+09 5.151E+09 2.280E+09 3.365E+09 5.392E+09 6.995E+09 2.245E+09 2.904E+07 SD 
1.609E+11 1.667E+11 1.843E+11 1.853E+11 1.155E+11 1.883E+11 1.056E+11 1.694E+11 1.769E+11 1.584E+11 4.548E+08 Min 
3.140E+11 2.954E+11 3.021E+11 1.754E+11 1.292E+11 1.912E+11 6.222E+10 2.510E+11 2.360E+11 1.124E+11 6.181E+08 Avg 

7F 1.303E+10 1.498E+10 2.426E+10 9.804E+09 5.991E+09 3.153E+09 5.621E+09 1.950E+10 1.568E+10 4.775E+09 6.298E+07 SD 
2.868E+11 2.660E+11 2.402E+11 1.623E+11 1.224E+11 1.833E+11 4.953E+10 2.138E+11 2.093E+11 1.044E+11 4.887E+08 Min 
3.066E+11 3.009E+11 3.198E+11 1.771E+11 1.281E+11 1.920E+11 5.873E+10 2.462E+11 2.407E+11 1.131E+11 5.767E+08 Avg 

8F 1.492E+10 1.792E+10 1.739E+10 8.584E+09 4.703E+09 3.008E+09 5.064E+09 1.662E+10 1.951E+10 7.824E+09 4.465E+07 SD 
2.789E+11 2.592E+11 2.889E+11 1.620E+11 1.197E+11 1.859E+11 5.014E+10 2.218E+11 2.134E+11 1.047E+11 5.167E+08 Min 
3.167E+11 3.006E+11 3.064E+11 1.752E+11 1.279E+11 1.938E+11 6.018E+10 2.432E+11 2.464E+11 1.128E+11 5.912E+08 Avg 

9F 1.164E+10 1.407E+10 1.671E+10 1.023E+10 6.135E+09 1.874E+09 4.090E+09 1.683E+10 2.417E+10 3.877E+09 5.433E+07 SD 
2.930E+11 2.718E+11 2.717E+11 1.536E+11 1.139E+11 1.899E+11 5.392E+10 2.109E+11 2.014E+11 1.072E+11 5.211E+08 Min 
1.926E+11 1.932E+11 1.947E+11 1.956E+11 1.822E+11 1.969E+11 1.827E+11 1.931E+11 1.904E+11 1.934E+11 4.176E+08 Avg 

10F 8.025E+08 6.270E+08 1.210E+09 9.685E+08 7.863E+08 8.726E+08 5.223E+08 7.037E+08 3.117E+09 8.662E+08 4.137E+07 SD 
1.911E+11 1.923E+11 1.927E+11 1.938E+11 1.805E+11 1.950E+11 1.820E+11 1.917E+11 1.854E+11 1.917E+11 3.631E+08 Min 
1.765E+11 1.790E+11 1.873E+11 1.899E+11 1.235E+11 1.931E+11 1.128E+11 1.776E+11 1.908E+11 1.615E+11 2.093E+02 Avg 

11F 5.263E+09 4.663E+09 8.921E+09 4.215E+09 5.967E+09 2.744E+09 3.948E+09 6.467E+09 6.545E+09 3.189E+09 2.876E+00 SD 
1.675E+11 1.658E+11 1.634E+11 1.807E+11 1.158E+11 1.887E+11 1.048E+11 1.649E+11 1.778E+11 1.538E+11 2.049E+02 Min 
3.076E+11 2.994E+11 3.176E+11 1.778E+11 1.294E+11 1.928E+11 6.026E+10 2.454E+11 2.357E+11 1.156E+11 2.104E+02 Avg 

12F 1.253E+10 1.487E+10 1.998E+10 7.112E+09 6.332E+09 3.095E+09 5.639E+09 1.541E+10 2.202E+10 5.406E+09 5.192E+00 SD 
2.857E+11 2.672E+11 2.515E+11 1.643E+11 1.158E+11 1.858E+11 5.135E+10 2.161E+11 2.018E+11 1.061E+11 2.043E+02 Min 
3.112E+11 3.075E+11 3.233E+11 1.775E+11 1.222E+11 1.914E+11 6.187E+10 2.455E+11 2.340E+11 1.146E+11 2.085E+02 Avg 

13F 1.416E+10 1.956E+10 2.156E+10 7.389E+09 6.733E+09 3.382E+09 5.771E+09 1.547E+10 1.285E+10 3.707E+09 5.194E+00 SD 
2.933E+11 2.503E+11 2.822E+11 1.619E+11 1.130E+11 1.859E+11 5.467E+10 2.148E+11 2.135E+11 1.094E+11 2.020E+02 Min 
3.126E+11 3.000E+11 3.244E+11 1.771E+11 1.248E+11 1.922E+11 6.077E+10 2.516E+11 2.389E+11 1.134E+11 2.122E+02 Avg 

14F 1.351E+10 1.178E+10 1.799E+10 6.089E+09 4.432E+09 3.796E+09 5.901E+09 1.150E+10 1.983E+10 5.803E+09 2.958E+00 SD 
2.762E+11 2.821E+11 3.004E+11 1.686E+11 1.176E+11 1.834E+11 4.721E+10 2.315E+11 2.097E+11 1.065E+11 2.080E+02 Min 
1.926E+11 1.931E+11 1.947E+11 1.959E+11 1.815E+11 1.963E+11 1.829E+11 1.935E+11 1.910E+11 1.935E+11 2.202E+02 Avg 

15F 6.476E+08 6.566E+08 1.098E+09 7.583E+08 1.178E+09 1.015E+09 8.862E+08 7.550E+08 3.946E+09 7.479E+08 1.053E+00 SD 
1.918E+11 1.921E+11 1.929E+11 1.943E+11 1.795E+11 1.945E+11 1.811E+11 1.919E+11 1.790E+11 1.924E+11 2.183E+02 Min 
1.744E+11 1.781E+11 1.882E+11 1.911E+11 1.263E+11 1.908E+11 1.115E+11 1.765E+11 1.851E+11 1.627E+11 2.101E+02 Avg 

16F 4.927E+09 4.364E+09 7.595E+09 4.346E+09 5.168E+09 4.894E+09 3.428E+09 5.363E+09 1.715E+10 3.074E+09 3.071E+00 SD 
1.621E+11 1.712E+11 1.760E+11 1.852E+11 1.189E+11 1.775E+11 1.036E+11 1.682E+11 1.380E+11 1.563E+11 2.033E+02 Min 
3.080E+11 3.017E+11 3.199E+11 1.798E+11 1.257E+11 1.930E+11 6.184E+10 2.416E+11 2.363E+11 1.136E+11 2.088E+02 Avg 

F17 1.410E+10 1.048E+10 2.350E+10 7.104E+09 6.958E+09 1.900E+09 5.345E+09 1.441E+10 1.120E+10 3.720E+09 3.649E+00 SD 
2.791E+11 2.861E+11 2.794E+11 1.654E+11 1.140E+11 1.891E+11 5.227E+10 2.189E+11 2.155E+11 1.072E+11 2.007E+02 Min 
3.123E+11 3.050E+11 3.224E+11 1.749E+11 1.256E+11 1.929E+11 6.071E+10 2.509E+11 2.425E+11 1.125E+11 2.100E+02 Avg 

F18 1.729E+10 1.315E+10 1.722E+10 7.353E+09 4.290E+09 2.874E+09 5.333E+09 1.227E+10 1.442E+10 5.672E+09 3.683E+00 SD 
2.807E+11 2.763E+11 2.948E+11 1.623E+11 1.188E+11 1.860E+11 5.008E+10 2.285E+11 2.192E+11 1.042E+11 2.044E+02 Min 
3.114E+11 2.985E+11 3.198E+11 1.808E+11 1.284E+11 1.917E+11 6.182E+10 2.476E+11 2.371E+11 1.128E+11 2.110E+02 Avg 

F19 1.170E+10 1.088E+10 1.310E+10 6.796E+09 7.918E+09 3.265E+09 6.175E+09 1.312E+10 2.390E+10 6.283E+09 4.047E+00 SD 
2.911E+11 2.778E+11 2.910E+11 1.696E+11 1.151E+11 1.839E+11 5.089E+10 2.277E+11 2.050E+11 1.022E+11 2.042E+02 Min 
3.101E+11 2.963E+11 3.107E+11 1.743E+11 1.276E+11 1.935E+11 6.005E+10 2.473E+11 2.316E+11 1.120E+11 2.094E+02 Avg 

F20 1.083E+10 1.470E+10 2.179E+10 8.446E+09 6.609E+09 2.875E+09 6.312E+09 1.989E+10 1.452E+10 4.190E+09 4.656E+00 SD 

2.837E+11 2.607E+11 2.740E+11 1.572E+11 1.130E+11 1.866E+11 5.155E+10 2.036E+11 2.067E+11 1.060E+11 2.003E+02 Min 

0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 0|0|20 20|0|0 W|T|L Ranking 



 

Fig. 16 Convergence analysis on benchmark functions CEC 2010 



5.6. Statistical analysis  

Besides the above experimental evaluation, CCSA was statistically evaluated to prove its 

overall performance. Therefore, in this section, the non-parametric Friedman test and Mean 

Absolute Error (MAE) tests were used by different dimensions 30, 50, 100, and 1000. 

  

5.6.1. Non-parametric Friedman test 

The Friedman statistic test (Ff) is used to detect significant differences between the results 

of two or more algorithms on continuous data. Ff can be used for multiple comparisons among 

several algorithms by computing the ranking of the observed results for each bio-inspired 

metaheuristic algorithm. Such that, in each function, the best results and the second best results 

are considered by rank 1 and 2, and the ranking k is given to the worst results. Ff is computed 

by Eq. (8) [63]. 

 

Ff = 12Nk(k + 1) [∑R𝑗2 − k(k + 1)24j ]  

(8) 

 

Where k is the number of bio-inspired metaheuristic algorithms participated in the test, j 

represents its associated index, N is the number of test cases or runs, and Rj is standing for the 

average rank for each algorithm. In addition, the distribution of p-value is according to a chi-

squared distribution with k-1degrees of freedom. It is common to declare a result as a 

significant one if the p-value is less than 0.05 or 0.01.  

Based on the results of the Friedman statistical test shown in Tables 7 and 8, there exists a 

significant difference between CCSA and the compared algorithms for benchmark functions 

CEC 2017 and CEC 2010. Moreover, Table 9 shows the p-value of some benchmark functions 

in CEC 2017 for different dimensions 30, 50 and 100, and in CEC 2010 for dimension1000. In 

this regard, for a majority of functions in both CEC 2017 and CEC 2010, the p-values are below 

0.05, which verify the efficiency of the proposed CCSA. 

 

 

 

 

 



 

 

 

 

 
 
 
 

Table 7 Overall rank by Friedman test in dimensions D=30, 50 and 100  

15F 14F 13F 12F F11 F10 F9 F8 F7 F6 F5 F4 F3 F2 F1 D Algorithm 

1 1.10 1 1 1 1 1 1 1.03 3 1 1.30 2 1 2.97 30 

CCSA 1.07 1.30 1 1 1 1 1 1 1 1 1 1.1 1.97 1 1 50 
1 1.20 1 1 1 1 1 1 1 1 1 1 1.47 1 1 100 

2.57 1.90 2.80 3.83 2.50 6.33 3.60 5.23 5.43 7 6.63 5.60 1 3.87 3.17 30 

CSA 2.63 1.70 3.37 4.7 2.07 5.33 3.37 5.87 5.33 7.03 6.03 5.73 1.03 3.53 4.067 50 
3.13 1.80 2.47 4.57 2 4.60 2.47 4.37 5.23 7.10 4 4.27 1.53 3.87 4 100 

8 6.70 7.27 9.97 10.07 8.60 9.23 9.2 9.77 9.17 9.07 10 8.40 10.03 9.97 30 

BA 6.53 8.60 9.87 9.97 9.97 8.23 8.73 9.2 9.93 8.97 9.13 10 9.27 10.07 10 50 
10 8.53 10 10 9.90 6.90 4.40 9.13 10.33 8.87 7.97 10 8.53 9.77 10 100 

3.37 4.47 8.03 6.43 4 7.60 4.63 6.43 7.17 5 5.53 7.67 5.33 6.33 7 30 

CLPSO 8.30 5.9 7.87 7.57 4.93 8.63 5.4 7.43 7.17 5 7.57 8.03 6.8 6.87 7.67 50 
7.40 8.40 7.20 8.30 7.87 9.47 8.63 8.13 6.07 5.07 9.03 7.60 7.20 7.03 7.033 100 
7.80 5.17 6.97 7.90 3.73 4.80 3.37 3.43 5.43 6 4.13 7.47 3.13 7.57 8.97 30 

GWO 8.30 3.97 8.27 7.93 4.43 5.33 3.17 2.83 4.83 6 3.03 7.93 3.43 6.17 9 50 
7.60 3.63 8.53 8.20 3.63 3.27 3.47 2.27 4.27 5.93 2.07 8.30 3.13 5.60 9 100 
11 11 11 11 10. 9 11 11 11 10.9 11 10.97 11 6.60 10.9 11 30 

EEGWO 10.97 11 10.97 11 10.67 11 11 11 10.9 11 11 11 9.33 10.83 11 50 
11 11 11 11 10.73 11 10.97 11 10.67 11 11 11 4.80 10.13 11 100 

8.40 8.83 7.40 8.40 6.10 9 9.77 9.53 9.33 9.83 9.77 8.10 9.03 7.37 7.93 30 

WOA 6.83 5.83 6.13 8.3 3.20 9.3 9.93 9.73 9.17 9.97 9.77 7.77 3.83 8 7.30 50 
5.33 4.17 5.87 6.20 3.43 9.27 7.70 9.67 9 10 9.30 6.07 9.63 7.97 5.53 100 
5.80 7.37 4.50 7.03 6.87 7.73 7.57 6.43 5.9 8 7.63 5.63 4.13 8.80 6.1 30 

KH 4.33 7.97 3.93 4.57 8 6.70 6.73 6.73 7.3 8.03 6.17 4.63 4.97 9.03 5 50 
2.80 4.97 4.8 4.93 7.87 6.43 4.37 5.13 7.97 8.03 4.43 8 4.70 10.10 7.97 100 
4.20 6.73 3.93 3.33 7.53 3.60 6.07 5.33 4.23 2 4.53 2.07 8.07 2.53 1.4 30 

ABC 4.67 7.07 4.53 2.77 6.87 3.30 7.17 4.33 3.33 3 4.37 2.53 7.5 3.2 2.47 50 
5.47 7.17 4.17 2.60 6.40 3.33 9.43 5.50 3.03 2.97 6.20 2.80 7.23 2.70 2.63 100 
4.83 5.10 3.77 2.43 5.33 2.47 2.57 2.43 2.17 1 2.03 3.17 8.83 2.60 2.53 30 

GABC 3.03 4.83 2.43 2.47 5.93 2.63 2.73 2.33 2.1 2 2.33 2.43 8.80 2.27 2.53 50 
3.77 6 2.73 2.40 5.77 4.1 5.50 3.23 2.03 2.03 3.37 2.20 8.67 2.43 2.37 100 
9.03 7.63 9.33 4.67 7.97 3.87 7.20 5.97 4.63 4 4.7 4 9.47 5 4.97 30 

Best-so-far  ABC 9.33 7.83 7.63 5.73 8.93 4.53 6.77 5.53 4.93 4 5.60 4.83 9.07 5.03 5.97 50 
8.5 9.13 8.23 2.80 7.40 6.63 8.07 6.57 6.40 4 7.20 4.77 9.10 5.40 5.47 100 

Table 7 Continued 

30F 29F 28F 27F F26 F25 F24 F23 F22 F21 F20 F19 F18 F17 F16 D         Fun  
  Alg.  

1.07 1.03 1 1.70 1.63 1.07 3.07 1 1.17 2.50 1.20 1.07 1.40 1.10 1.33 30 

CCSA 1.13 1 1 2.03 1.57 1.07 1.33 1.10 1.40 1.03 1.03 1 1.03 1.07 1.37 50 

1 1 2 2 1.30 1 1 1 1.1 1 1.20 1 1 1.03 1.03 100 
5.40 7.03 3.93 8.90 3.20 6.30 5.37 7.10 2.47 6.40 6.13 2.97 1.60 5.73 5.70 30 

CSA 6.07 7.03 5.77 8.40 2.90 5.43 4.23 7.17 2.57 4.37 4.40 4.03 2 5.57 4.83 50 
4.93 6.33 5.07 8.53 6.23 4.37 7.13 7.13 5.80 4.63 3.50 4.03 2 4.30 5.17 100 
9.17 9.83 7.80 1.57 9.53 10 9.73 9.83 9.23 9.23 9.87 8.60 8.57 9.63 9.37 30 

BA 9.77 9.93 2.7 1 9.70 10 9.80 9.70 8.03 9.13 9.27 9.17 9.40 9.87 9.43 50 
10 9.90 1 1 10 10 9.87 9.70 6.90 9.43 9.37 9.93 8.77 9.97 9.5 100 

5.30 4.73 9 6.67 6.37 5.87 5.90 5.73 7.37 5.43 3.60 2.73 5.23 3.23 4.90 30 

CLPSO 5.1 5.83 9.83 6.97 6.93 8.27 4.73 6 8.03 7.60 4.17 4.20 7.13 5.47 6.33 50 
5.73 7.50 9.60 7.17 6.20 8.50 5.97 6 9.53 6.97 6.40 6.23 8.8 7.97 7.87 100 
7.90 4.67 8.7 6.23 6.60 8.13 3.73 4.17 7.97 4.47 5.87 6.70 6.97 5.20 5.13 30 

GWO 7.93 4.53 8.7 5.87 5.37 8.47 2.07 2.57 5.97 2.60 4.73 8.23 4.67 3.77 3.8 50 
8.10 3.33 7.67 6 2.93 8.50 2.90 4.47 3.40 2.03 3.03 8.07 4.10 2.37 3.20 100 
11 11 11 11 11 11 11 10.97 11 10.97 10.9 11 11 11 11 30 

EEGWO 11 11 11 11 11 11 10.97 11 11 11 10.9 11 10.97 11 10.97 50 
11 11 11 10.97 10.93 11 11 11 11 11 11 11 11 11 11 100 

8.80 9 7.87 8.87 9.10 7.80 8.67 8.67 8.93 9.67 8.63 9.40 8.53 8.93 9.23 30 

WOA 8.47 9 7.87 9.03 9.27 7.2 8.20 8.70 9.37 9.83 8.73 8.90 7.97 8.97 9.33 50 
8.53 9.03 5.93 8.30 8.93 5.70 8.13 8.10 9.10 9.30 8.90 7.47 4.5 8.70 9.43 100 
8.03 8.03 4.73 9.20 7.70 6.63 8.60 8.30 2.97 7.20 7.87 7.90 5.80 7.90 8.23 30 

KH 7.67 7.9 5.5 9.57 7.77 4.83 8.93 8.43 7.37 6.17 7.73 7.13 7.10 8.03 7.07 50 
6.03 7.13 7.40 10.03 7.97 5.37 8.87 9.07 6.97 8.20 6 5.10 4.23 6.50 6.50 100 
2.87 3.80 3.07 4.30 2.60 2.57 2.6 3.30 5 3.03 4.47 4.60 6.33 4.93 4.03 30 

ABC 2.63 3.90 4.07 4.27 2.97 3.1 6.87 3.97 3.83 4.90 5.87 3.90 5.13 3.83 3.7 50 
2.93 3.63 4 4.20 3.67 2.97 3.70 3.07 3.57 4.67 5.67 3.17 7.20 3.70 2.93 100 
2.07 2.20 2.67 3.23 3.30 2.43 3.63 3.07 3.80 2.60 3.33 4.23 3.90 3.07 2.83 30 

GABC 2.23 2.13 2.4 3.07 3.8 2 4.30 3.03 3.50 2.97 4.20 2.30 3.80 3.67 3.83 50 
2.07 2.10 3 3.13 2.77 2.03 2.50 2.03 3.10 3.07 4.97 2.1 5.53 3.73 3.80 100 
4.40 4.63 6.23 4.33 4.97 4.20 3.70 3.87 6.10 4.50 4.10 6.80 6.67 5.27 4.23 30 Best-so-far  

ABC 
4 3.73 7.17 4.80 4.73 4.63 4.57 4.33 4.93 6.40 4.97 6.13 6.80 4.77 5.33 50 

5.67 5.03 9.33 4.67 5.07 6.57 4.93 4.43 5.53 5.70 5.97 7.90 8.87 6.73 5.57 100 



 
 

 
 
 

 
 

5.6.2. Mean Absolute Error (MAE) test 

As a statistical measure of a difference between two continuous variables, mean absolute 

error (MAE) computed by Eq. (9) shows how far estimates or forecasts are from the actual 

values.  

  

Table 8 Overall rank by Friedman test for large-scale problems with D=1000 

Best-so-
far  ABC 

GABC ABC KH WOA EEGWO GWO CLPSO BA CSA CCSA   Alg. 
Fun  

10 9.60 10.40 5.13 3.87 5.87 2 7.73 7.27 3.13 1 F1 
5.27 6.07 9 9.93 2.13 10.80 2.87 7.07 5.20 6.67 1 F2 
6.20 6.33 8.73 9.67 3.07 9.87 2.07 6.13 8.80 4.13 1 F3 
9.73 9.60 10.60 5 4 6 2 7.60 7.47 3 1 F4 
5.47 6.80 8.60 10.2 2.27 10.73 2.87 6.73 4.13 7.20 1 F5 
5.47 6.40 9 9.73 3 9.60 2 6.40 9.33 4.07 1 F6 

10.40 9.53 10 5.07 4 5.93 2 7.80 7.27 3 1 F7 
9.93 9.67 10.4 5 3.87 6 2 7.53 7.47 3.13 1 F8 

10.40 9.67 9.93 5.07 3.93 5.93 2 7.33 7.67 3.07 1 F9 
5.47 6.60 8.87 9.73 2.40 10.80 2.60 6.47 4.93 7.13 1 F10 
5.93 6.27 8 9 2.93 10.20 2.07 6.47 9.47 4.07 1 F11 
9.93 9.47 10.60 5.07 4 5.93 2 7.87 7.13 3 1 F12 
9.73 9.80 10.47 5.7 3.80 5.93 2 7.73 7.27 3.20 1 F13 

10.13 9.33 10.53 5.07 3.87 5.93 2 7.80 7.20 3.13 1 F14 
5.33 6.27 8.93 10 2.27 10.47 2.87 6.80 5.20 6.87 1 F15 
5.80 6.60 8.93 9.60 3 9.80 2 6.33 8.73 4.20 1 F16 
9.80 9.67 10.53 5.07 4 5.93 2 7.53 7.47 3 1 F17 
10 9.60 10.40 5 3.93 6 2 7.73 7.27 3.07 1 F18 

10.13 9.40 10.47 5.07 4 5.93 2 7.67 7.33 3 1 F19 
10.40 9.33 10.27 5 4 6 2 7.87 7.13 3 1 F20 

8.276 8.301 9.733 6.96 3.417 7.6825 2.168 7.230 7.19 4.054 1 
Avg. 
Rank 
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Table 9 P-value of Friedman test in CEC 2017 and CEC 2010  

CEC 2017 

F30 F28 F25 F20 F15 F10 F7 F1 D 

7.084E-55 5.245E-52 1.419E-53 5.807E-48 3.148E-50 2.734E-50 2.726E-50 4.326E-56 30 
4.043E-56 1.708E-55 3.309E-56 2.837E-42 1.10E-50 6.938E-50 2.112E-54 8.628E-58 50 
9.344E-57 8.912E-58 9.316E-57 1.057E-43 2.549E-53 1.813E-49 1.215E-56 6.074E-58 100 

CEC 2010 

F20 F18 F15 F13 F10 F8 F6 F1 D 
1.018E-26   1.538E-26 3.338E-23 1.880E-26 8.453E-24 1.817E-26 9.822E-25 1.9127E-26 1000 



MAE =  1NF∑|Oi − yi|NF
i=1  

 

(9) 

Where Oi is the global optimum of the function i, NF is the number of functions, and yi is 

the best result of the function i obtained by the algorithms. Table 10 shows the results of 

performance of MAE criteria on the results of tests for different dimensions 30, 50 and 100 in 

CEC 2017 functions, and dimension 1000 in CEC2010 functions. 

 
Table 10 Mean absolute error in different dimensions   

Algorithms 
MAE 
D=30 

Rank 
D=30 

MAE 
D=50 

Rank 
D=50 

MAE 
D=100 

Rank 
D=100 

MAE 
D=1000 

Rank 
D=1000 

CCSA 502.5183 1 2.2877E+04 1 1.1356E+08 1 1.2098E+10 1 

CSA 1.9508E+09 4 6.3620E+21 3 4.3961E+84 4 1.3306E+11 3 

BA 1.3798E+35 10 7.1697E+66 10 4.7138E+154 9 1.9154E+11 6 

CLPSO 3.4927E+16 8 1.9842E+44 7 3.7458E+121 7 2.0192E+11 7 

GWO 6.9483E+15 6 1.6994E+37 6 8.1058E+97 5 8.8258E+10 2 

EEGWO 2.9539E+41 11 1.6275E+70 11 2.1144E+163 11 1.8734E+11 5 

WOA 2.2478E+16 7 6.2187E+44 8 8.6773E+129 8 1.2906E+11 3 

KH 8.7571E+19 9 2.2963E+53 9 3.3333E+150 10 1.7328E+11 4 

ABC 8.9938E+05 3 3.5308E+22 4 1.0660E+70 3 2.4058E+11 9 

GABC 2.2533E+05 2 2.1723E+16 2 6.3377E+61 2 2.3462E+11 8 

Best-so-far ABC 1.6096E+11 5 1.7524E+32 5 5.9946E+104 6 2.4161E+11 10 

 

5.7. Impact analysis of the modifications  

Thus far, the experimental and statistical results prove that CCSA is superior to other 

compared algorithms. This section is to analyse the impact of the introduced conscious 

neighborhood and the strategies NLS, NGS and WAS. As the pseudo code of CCSA shown, 

firstly, the neighborhood of each crow ci is generated by Definition 2. Then, contrary to CSA 

which selects a search strategy for all different problems unconsciously, CCSA uses either NLS 

or NGS by comparing the quality of the neighborhood with the non-neighborhood. If fbestlocal 

< fbestglobal, then the quality of the neighborhood is considered good enough to be exploited 

using NLS because clocal is a random neighbor. Otherwise, CCSA explores the non-

neighborhood towards the cglobal by selecting k dimensions randomly and changing their values 

using Eq. (6). Eventually, WAS is used to correct the position of the crow ci if it could not 

acquire a better fitness after using either NLS or NGS. Therefore, to analyse the impact of our 

modification, four algorithms CSA, NLS+WAS, NGS+WAS, and CCSA are considered and 

their behavior is compared for solving different problems. 

Fig. 17 shows the average of the best fitness of all crows in each iteration (the average 

best-so-far) on some functions of CEC 2017 with different dimensions. As the curves showed 

for unimodal functions F1 and F2, the average distance between solutions found by CCSA and 



NLS+WAS is less than others which is evident the impact of using NLS in the exploitation. 

Meanwhile, for multi-modal functions F5 and F9 which have a large number of local optima, 

the average distance between solutions found by CCSA and NGS+WAS is less than others 

which is evident the impact of using NGS in the exploration. The average distance between 

solutions found by CCSA and other algorithms for hybrid benchmark functions F18 and F20, 

and for composition function F22 show that CCSA is better than NLS+WAS and NGS+WAS 

in term of the balance between local and global search and premature convergence. In fact, 

applying the introduced conscious neighborhood for selecting search strategy and using 

strategies NLS, NGS and WAS enhance CCSA for solving different problems.     

Fig. 17 The average distance between solutions found by CSA, NLS+WAS, NGS+WAS and CCSA 

 



5.8. Solving applied problems of engineering design using CCSA 

Applicability of the optimization algorithms for real-world applications is usually 

evaluated by real-world problems such as engineering design problems [11,64,65]. Therefore, 

in this section, the applicability of CCSA is evaluated and compared with other state-of-the-art 

swarm intelligence algorithms using four engineering design problems (described in the 

Appendix) as follows: 

F1: Parameter estimation for frequency modulated (FM) sound waves  

F2: Pressure vessel design problem 

F3: Three-bar truss problem 

F4: Welded beam design problem 

In this experiment, the population size (N), the maximum number of iterations (MaxIt) and 

the number of the run were set to 200, 1500 and 30 respectively. Tables 11-14 show that CCSA 

finds the best optimal values for variables of these four engineering problems compared to 

other algorithms.  

 

Table 11 Parameter estimation for frequency modulated (FM) sound wave 

Algorithm 
Optimal values for variables Optimum  

cost 𝑎1 𝜔1 𝑎2 𝜔2 𝑎3 𝜔3 

CCSA 1.0000 5.0311 1.5000 -4.8000 -2.0000 4.9000 2.7889E-11 
CSA 0.0195 -2.4574 -1.5678 1.6408 -5.7668 4.5536 14.1112 
BA 0.3357 5.0981 0.4667  5.4750 4.7526  -5.0051 23.1104 
CLPSO 1.0485 4.9866 -1.4922 4.8086 -2.0223 -4.9030 0.2039 
GWO 1.0038 4.9995 -1.4934 4.8002 -1.9993 -4.8998 0.0013 
EEGWO 0.5160 5.0089 -0.7298 0.6853 -2.7159 4.6224 24.9337 
WOA 0.5715 -5.0077 3.2597 -4.8165 0.0050 -6.3046 13.3999 
KH -0.6615 0.0381 3.8776 0.5511 -1.8855 -3.2441 16.2655 
ABC -1.0208 -4.9949 -1.4431 -4.8001 2.0372 -4.8994 0.0633 
GABC -0.9992 -5.0011 -1.5005 -4.7992 1.9994 -4.9003 5.1475E-04 
Best-so-far ABC 1.0048 4.9944 -1.4800 4.8029 2.0029 4.8997 0.0088 

 



 

Table 12 Results for pressure vessel design problem 

Algorithms 
Optimal values for variables Optimum 

cost Ts Th R L 

CCSA 0.7782    0.3847    40.3197   199.9991 5.8853E+03 

CSA 4.5792    80.599    81.430  118.9119 7.7613E+03 

BA 0.9284 0.4589 48.1000 114.1757 6.1950E+03 

CLPSO 0.7903    0.3905    40.8171   194.0763 5.9425E+03 

GWO 0.7782    0.3848    40.3203   200.0000 5.8860E+03 

EEGWO 1.9370    0.9962    79.0153    10.0000 1.8012E+04 

WOA 0.7833    0.3872    40.5855   196.3311 5.8943E+03 

KH 1.0397    0.5247    53.2363    74.6464 6.6129E+03 

ABC 0.7786    0.4082    40.3266   200.0000 5.8897E+03 

GABC 0.7782    0.3848    40.3231   199.9534 5.8858E+03 
Best-so-far ABC 0.7786    0.3850    40.3251   199.9855 5.8898E+03 

 

Table 13 Results for the three-bar truss problem 

Algorithms 
Optimal values for variables 

Optimal weight 
x1 x2 

CCSA 0.78865625 0.40830170 2.63895844E+02 

CSA 0.69660225 0.88149073 2.63897198E+02 

BA 0.78871035 0.40814873 2.63895848E+02 

CLPSO 0.78872952 0.40809450 2.63895848E+02 

GWO 0.78868348 0.40822490 2.63895864E+02 

EEGWO 0.78898946 0.40736223 2.64283957E+02 

WOA 0.78667553 0.41393360 2.63898802E+02 

KH 0.90058694 0.06744589 2.64062751E+02 

ABC 0.78858225 0.40861455 2.63896340E+02 

GABC 0.78876674 0.40798940 2.63895865E+02 

Best-so-far ABC 0.78836577 0.40912463 2.63895976E+02 

 
 

Table 14 Results of the welded beam design problem 

Algorithms 
Optimal values for variables Optimum  

cost h  l t b 

CCSA 0.2057     3.4702     9.0362     0.2057 1.7249 

CSA 0.1628     8.1441     1.2523     1.3875 1.8162 

BA 0.1971 3.7889 8.7538 0.2193 1.8052 

CLPSO 0.2058     3.4736     9.0260     0.2062 1.7275 

GWO 0.2057     3.4721     9.0366     0.2057 1.7251 

EEGWO 0.1778     6.4368     9.0584     0.2314 2.2859 

WOA 0.2070     3.5250     8.9756     0.2085 1.7450 

KH 0.1573     4.8676     9.3590     0.2050 1.8747 

ABC 0.2077     3.4707     8.9381     0.2110 1.7506 

GABC 0.2011     3.5423     9.1140     0.2058 1.7317 

Best-so-far ABC 0.1983     3.6412     9.0351     0.2058 1.7364 

6. Discussion  

This section aims to analyze the experimental results of CCSA and relate them to its 

structure and operators. The results and convergence curves shown in Table 2 and Fig. 12 prove 

the superiority of the proposed algorithm on the majority of unimodal benchmark functions. 

The main reason for this merit of CCSA in the exploitation and convergence rate is using the 

local search based on the introduced conscious neighborhood. Moreover, CCSA uses the 

introduced NLS for local search when for a random neighbor clocal fbestlocal < fbestglobal which 

means its neighbors can be considered as candidate solutions and be exploited. 

The results and curves in Table 3 and Fig. 13 show that CCSA benefits from high 

exploration for multi-modal functions which have a large number of local optima. This is 

mostly because when fbestlocal ≥ fbestglobal which means the chance of having a candidate 

solution among the neighbor is very low then CCSA explores the search space to find a 

promising zone. Meanwhile, the CCSA algorithm increases the exploration by changing only 

k dimensions toward cglobal which makes it far from the greedy fashion. 



As the results in Tables 4 and 5 and the convergence curves of Figs. 14 and 15 shown, the 

proposed algorithm is superior to the compared algorithms for hybrid and composite 

benchmark functions. Because of having the characteristic of maintaining the continuity around 

the local and global optima in these functions, these results prove that CCSA increases the 

balance between global and local search and reduces the premature convergence. The main 

reason is that CCSA uses introduced conscious neighborhood which increases its focus around 

the candidate solutions. Moreover, it uses the introduced WAS to correct the position of those 

crows that could not acquire a better fitness by using either NLS or NGS in order to escape 

from local optima. The convergence curves presented in Figs. 12-15 guarantee convergence of 

CCSA because they show the fitness of crows is decreased over the course of iterations.  

Besides the experimental results, the statistical results tabulated in Tables 7- 10 reveal that 

the proposed algorithm is statistically significant as compared to the compared algorithms. The 

results in Tables 11-14 show that CCSA outperforms the compared algorithms for solving 

applied problems of engineering design. As a summary, the overall performance comparison 

is shown in Table 15. 

 

 

 

7. Conclusions and future works 
 

The intelligent behavior of crows inspires the crow search algorithm (CSA) in order to 

solve optimization problems. However, it selects a search strategy unconsciously by comparing 

a constant value of awareness probability (AP) with a random number. Consequently, it mostly 

suffers from lacking a proper balance between local and global search and having premature 

convergence, especially in large-scale problems. Moreover, its efficiency for solving some 

multi-modal, hybrid and composition problems are not sufficient enough. To tackle these 

weaknesses, in this paper, an improved version of CSA named conscious neighborhood-based 

crow search algorithm (CCSA) was proposed. 

Table 15 Overall comparison of the proposed CCSA with other state-of-the-art swarm intelligence algorithms 

Bird behavior Marine 
animal  

behavior 

Terrestrial 
animal  behavior 

Insects  behavior Categories of  swarm 
intelligence 
algorithms 

CCSA CSA 
[17] 

CLPSO 
[13] 

BA 
[18] 

WOA 
[11] 

KH 
[2] 

EEGWO 
[21] 

GWO 
[20] 

Best-so-far 
ABC [23]  

GABC 
[14] 

ABC 
[22] 

             Algorithms 
 

Properties 
High High High High High High High High High High Low Local searchability 
High High High Low High High High Low High High High Global searchability 

High Low High Low Low High Low Low High High Low Balance between local 
& global search 

Low High High High High High High High High High High Premature 
convergence  

High Low Low Low Low High High Low Low Low Low High dimension ability 



In the proposed algorithm, a new neighborhood concept is defined to perceive the search 

space and select local and global search strategies consciously. Furthermore, the movement of 

crows in the search space is improved using three new strategies NLS, NGS, and WAS. In 

addition, WAS recognizes the crows located in the flat or local optima and provides another 

opportunity for them by changing their position during the different jump-flies. The experiment 

results and relevant discussions support the following conclusions: 

 Using the introduced conscious neighborhood enhances the exploitation and the 

balance between local and global search. 

 Using introduced NLS and NGS strategies improve the ability of exploitation and 

exploration. 

 The introduced WAS strategy increases the balance between global and local search 

and reduces premature convergence. 

 CCSA is more efficient than the compared algorithm for different unimodal, multi-

modal, hybrid and composition problems in several dimensions. 

 CCSA is also superior to the compared algorithms for solving large-scale global 

optimization problems. 

 The proposed CCSA is applicable for solving engineering design problems. 

CCSA is developed for single-objective and continuous problems. Therefore, multi-

objective and binary versions of this algorithm may be developed as future works for solving 

multi-objective and discrete problems. Moreover, using CCSA for solving optimization 

problems in different applications and domains can be another valuable future work. 
 

Appendix  
 
Four engineering problems used in Section 5.7 are described as follows. 

F1: Parameter estimation for frequency modulated (FM) sound wave [66] 

FM is a highly complex multimodal problem with strong epistasis that generates a sound 

similar to the target. This problem has a parameter vector X= [𝑎1, 𝜔1, 𝑎2, 𝜔2, 𝑎3, 𝜔3] with six 

dimension and the minimum fitness value is 𝑓(𝑥 𝑖) = 0. To estimate the sound wave, it uses 

the following Eqs. (A.1) and (A.2) where 𝜃 = 2𝜋100 and the parameters are set between [-6.4, 

6.35]. In addition, the fitness function is computed by Eq. (A.3).  

 

(A.1) 𝑦(𝑡) =  𝑎1 × sin (𝜔1 × 𝑡 × 𝜃 + 𝑎2 × sin (𝜔2 × 𝑡 × 𝜃 + 𝑎3 × sin (𝜔3 × 𝑡 × 𝜃))) 



(A.2) 𝑦0(𝑡) = (1.0) × sin ((5) × 𝑡 × 𝜃 − (1.5) × sin ((4.8) × 𝑡 × 𝜃 +  2 × sin ((4.9) × 𝑡× 𝜃))) 
(A.3) 𝐹(𝑥 ) =  ∑(𝑦(𝑡) − 𝑦0(𝑡))2100

𝑡=0  

 

F2: Pressure vessel design (PVD) problem [67]   

In PVD problem, the objective function is to minimize the total cost, including the cost of the 

material, forming and welding shown in Fig. A.1. In this problem, there are four decision 

following variables: x1 is the thickness of the shell (Ts), x2 is the thickness of the head (Th), x3 

is the inner radius (R), and x4 is the length of the cylindrical section of the vessel, not including 

the head (L). This problem with four optimization constraints is formulated by Eq. (A.4). 

 

 

Consider              𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [𝑇𝑠  𝑇ℎ  𝑅   𝐿], 
Min                   𝑓(𝑥 ) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3 2 + 3.1661𝑥1 2𝑥4 +                                            19.84 𝑥1 2𝑥3, 
Subject to             𝑔1(𝑥 ) =  −𝑥1 + 0.0193𝑥3 ≤ 0,                                 𝑔2(𝑥 ) =  −𝑥2 + 0.00954𝑥3 ≤ 0,                                 𝑔3(𝑥 ) =  −𝜋𝑥3 2𝑥4 − 43𝜋𝑥3 3 + 1,296,000 ≤ 0,                                 𝑔4(𝑥 ) =  𝑥4 − 240 ≤ 0, 
Variable range     0 ≤ 𝑥𝑖 ≤ 100,              𝑖 = 1,2                                 10 ≤ 𝑥𝑖 ≤ 200            𝑖 = 3,4 

(A.4) 

 
 
 
 
 
 
 

 
Fig. A.1 Design of pressure vessel problem  

 
 
F3: Three-bar truss problem 

In this problem, the volume of a statistically loaded three-bar truss is to be minimized. The 

schematic of the three-bar truss problem is shown in Fig. A.2. The formulation of this 

optimization problem is computed by Eq. (A.5). 

 

(A.5) Min                         𝑓(𝑥 ) = (2√2𝑥1 + 𝑥2) × 𝑙, 
Subject to              𝑔1(𝑥 ) =  √2𝑥1+𝑥2√2 𝑥1 2 +2𝑥1𝑥2 𝑃 − 𝜎 ≤ 0,                                  𝑔2(𝑥 ) =   𝑥2√2𝑥1 2 + 2𝑥1𝑥2 𝑃 − 𝜎 ≤ 0, 



                                 𝑔3(𝑥 ) =  1√2𝑥2 + 𝑥1 𝑃 − 𝜎 ≤ 0, 
Variable range     0 ≤ 𝑥𝑖 ≤ 1,              𝑖 = 1,2    
                            l = 100cm, P = 2 kN/cm2, and  𝜎 = 2 kN/cm2  

 
 

 

Fig. A.2 Three-bar truss problem    

 

F4: Welded beam design (WBD) problem [67] 
 

In this problem, there are four decision variables including h(x1) is the thickness of weld, l(x2) 

is the length of the clamped bar, t(x3) is the height of the bar, and b(x4) is the thickness of the 

bar. Fig. A.3 represents the schematic of the welded beam. The objective function is designed 

for the minimum the fabrication cost subject to constraints on shear stress (t), bending stress in 

the beam (u), buckling load on the bar (Pc), end deflection of the beam (d). The formulation of 

the WBD problem is computed by Eq. (A.6). 

 

 

Consider               𝑥 = [𝑥1𝑥2𝑥3𝑥4] = [ℎ   𝑙   𝑡   𝑏], 
Min                         𝑓(𝑥 ) = 1.10471𝑥1 2𝑥2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2), 
Subject to              𝑔1(𝑥 ) = 𝜏(𝑥 ) − 𝜏𝑚𝑎𝑥 ≤ 0,                                  𝑔2(𝑥 ) =  𝜎(𝑥 ) − 𝜎𝑚𝑎𝑥 ≤ 0,                                  𝑔3(𝑥 ) = 𝛿(𝑥 ) − 𝛿𝑚𝑎𝑥 ≤ 0,                                  𝑔4(𝑥 ) =  𝑥1 − 𝑥4 ≤ 0,                                  𝑔5(𝑥 ) =  𝑃 − 𝑃𝑐(𝑥 ) ≤ 0,                                  𝑔6(𝑥 ) =  0.125 − 𝑥1  ≤ 0,                                  𝑔7(𝑥 ) =  1.10471𝑥1 2 + 0.04811𝑥3𝑥4(14.0 + 𝑥2) − 5.0 ≤ 0, 
Variable range     0.1 ≤ 𝑥𝑖 ≤ 2,              𝑖 = 1,4                                 0.1 ≤ 𝑥𝑖 ≤ 10            𝑖 = 2,3 

(A.6) 

 



 

Fig. A.3 Welded beam design (WBD) problem  
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