
T
h
e
 J

o
u
rn

a
l 
o
f 
E
x
p
e
ri

m
e
n
ta

l 
M

e
d
ic

in
e

ARTICLE

JEM © The Rockefeller University Press $8.00

Vol. 203, No. 7, July 10, 2006 1701–1711 www.jem.org/cgi/doi/10.1084/jem.20060772

1701

Over the past decade, there have been tremen-

dous advances in our understanding of the ba-

sic processes that control immune tolerance. 

The identi� cation of CD4+CD25+ regulatory 

T (T reg) cells as an important component of 

self-tolerance has opened a major area of inves-

tigation in immunology and numerous studies 

have demonstrated the potent in� uence of 

T reg cells in suppressing pathologic immune 

responses in autoimmune diseases, transplanta-

tion, and graft-versus-host disease (for reviews 

see references 1–6). T reg cells have a unique 

and robust therapeutic pro� le. The cells re-

quire speci� c TCR-mediated activation to de-

velop regulatory activity, but their e� ector 

function appears to be nonspeci� c, regulating 

local in� ammatory responses through a combi-

nation of cell–cell contact and suppressive cy-

tokine production (7–9). Moreover, there are 

several therapeutic interventions that appear to 

promote T reg cell development and function 

(10, 11). This so-called “adaptive” T reg cell 

population shares many of the attributes of 

 thymic-dependent, natural T reg cells, but can 

di� er in critical cell surface biomarkers and 

functional attributes (12). For instance, Tr1 and 

Th3 cells have been described that produce 

IL-10 and TGFβ, respectively (13, 14). These 

results have led to novel approaches in immu-

notherapy just as the ability to isolate and ex-

pand this cell subset in mice has led to novel 

therapeutic interventions in immunological 

diseases (6, 15). However, a major obstacle to 

the study and application of T reg cells in the 
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Regulatory T (T reg) cells are critical regulators of immune tolerance. Most T reg cells are 

de� ned based on expression of CD4, CD25, and the transcription factor, FoxP3. However, 

these markers have proven problematic for uniquely de� ning this specialized T cell subset in 

humans. We found that the IL-7 receptor (CD127) is down-regulated on a subset of CD4+ 

T cells in peripheral blood. We demonstrate that the majority of these cells are FoxP3+, 

including those that express low levels or no CD25. A combination of CD4, CD25, and 

CD127 resulted in a highly puri� ed population of T reg cells accounting for signi� cantly 

more cells that previously identi� ed based on other cell surface markers. These cells were 

highly suppressive in functional suppressor assays. In fact, cells separated based solely on 

CD4 and CD127 expression were anergic and, although representing at least three times 

the number of cells (including both CD25+CD4+ and CD25−CD4+ T cell subsets), were as 

suppressive as the “classic” CD4+CD25hi T reg cell subset. Finally, we show that CD127 can 

be used to quantitate T reg cell subsets in individuals with type 1 diabetes supporting the 

use of CD127 as a biomarker for human T reg cells.
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human setting has been the lack of speci� c cell surface bio-

markers to de� ne and separate T reg cells from other regula-

tory or e� ector T cell subsets.

Although many studies indicate that CD25 is a crucial cell 

surface marker for the regulatory subset (16, 17), unlike the 

mouse, several studies have suggested that only the CD4+ T 

cell subset expressing the highest levels of CD25 (termed 

CD25hi) have in vitro suppressive activity (16). Moreover, 

the addition of other markers such as HLA-DR suggest that 

even a lower percentage (often <1%) of CD4+ T cells com-

prise the suppressive T cell subset. Finally, some markers such 

as CTLA-4 and GITR, which have been reported to be ex-

pressed on T reg cells (18–21), are also expressed on potent 

e� ector T cells and as such make immunophenotyping and 

determination of their functional role problematic (22, 23). 

This has led to several disparate reports of T reg cell quanti� -

cation in disease settings. For instance, some studies suggest 

that the quantity of CD4+CD25hi T reg cells is de� cient in 

type 1 diabetes (T1D) (24), whereas others suggest that the 

number and function of these cells is normal in T1D (25). 

Moreover, the ability to isolate only limited numbers of these 

cells from peripheral blood has made expansion of this regu-

latory cell population problematic.

One signi� cant advance in the study of mouse and hu-

man T reg cells has been the discovery of the transcription 

factor, FoxP3, as a major marker and functional regulator of 

T reg cell development and function (26–29). In a series of 

elegant mouse and human genetic studies, investigators dem-

onstrated that mutations in the FoxP3 gene were linked to 

the autoimmune manifestations observed in the Scurfy mouse 

and humans with immune dysregulation, polyendocrino-

pathy, enteropathy, X-linked syndrome (IPEX) disease (28). 

Subsequent studies in the mouse showed that FoxP3-de� -

cient animals lack T reg cells, whereas overexpression of the 

FoxP3 protein leads to profound immune suppression (30). 

Although recent studies have questioned whether all T reg 

cells are FoxP3+ or whether all FoxP3+ T cells are regula-

tory, FoxP3 protein remains the best and most speci� c 

marker of T reg cells to date (30). In this regard, � ow cyto-

metric and immunohistochemical analyses that FoxP3 is ex-

pressed in signi� cantly more T cells than previously identi� ed 

using the other available cell surface markers, including 

CD25. FoxP3 protein is found in CD25low and negative 

CD4+ T cells and under certain conditions some CD8+ T 

cells (30, 31). Thus, it is likely that many of the natural and 

adaptive T reg cells are missed in current biomarker studies, 

calling into question the conclusions related to de� ciencies 

or defects in certain autoimmune settings. Importantly, as 

FoxP3 is an intracellular protein, it cannot be used to sepa-

rate human T reg cells for functional studies or in vivo ex-

pansion for cellular therapy, thereby limiting its use in the 

human setting.

In an e� ort to de� ne new biomarkers of human T reg 

cells, we have combined gene expression microarray, � ow 

cytometry, and functional assays to identify new cell surface 

proteins that distinguish human T reg cells. We observed that 

IL-7R (CD127) is down-regulated on all human T cells after 

activation. In contrast with the reported reexpression of 

CD127 on the majority of e� ector and memory T cells (32–

35), FoxP3+ T cells remain CD127lo/−. In fact, the CD127lo/−, 

FoxP3+ T cells accounted for a signi� cant percentage of 

CD4+ T cells in the peripheral blood. We demonstrate that 

FoxP3 interacts with the CD127 promoter and, given its 

purported repressor function, likely contributes to the re-

duced expression of CD127 in T reg cells. Finally, we show 

that the isolated CD4+ CD127lo/− T cell subset is anergic and 

suppresses alloantigen responses in vitro. Together, these data 

suggest a dichotomy between memory T cells, namely IL-

2RloIL-7Rhi and regulatory FoxP3+ T cells, which in most 

instances up-regulate IL-2R while remaining IL-7Rlo/− (30). 

Thus, the CD127 biomarker can be used to selectively enrich 

human T reg cells for in vitro functional studies and poten-

tially in vivo therapy.

RESULTS
Lack of correlation between FoxP3 and CD25 
in human CD4+ T cells
Previous studies in mouse using FoxP3-GFP knockin mice 

have demonstrated that FoxP3 does not always correlate with 

CD25 expression (36). Because current e� orts in humans 

have focused on the use of CD25 to isolate and quantify T 

reg cells, we analyzed the expression of FoxP3 in the various 

CD4+ T cell subsets. Peripheral blood cells from normal sub-

jects were puri� ed on Ficoll gradients and cell surfaces stained 

with anti-CD4 and anti-CD25 mAbs. This staining was fol-

lowed by cell membrane permeabilization and intracellular 

staining with a monoclonal anti-FoxP3 mAb. As seen in Fig. 1, 

although the majority of CD4+CD25hi cells (top 2% of gate) 

Figure 1. FoxP3 is expressed on a signi� cant percentage of CD4+ 
T cells independent of CD25 expression. Human PBMCs were cell sur-

face stained using a combination of anti-CD4 and anti-CD25 mAbs. Once 

� xed, the cells were stained additionally with anti-FoxP3 mAb. Data are 

representative of >20 independent individuals and >10 experiments. The 

numbers in the histograms indicate the percentage of FoxP3+ cells.
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were FoxP3+ (ranging from 84.5–96.8% in three individuals), 

there were considerable numbers of FoxP3+ cells that were 

CD25 dull or even negative. In fact, if FoxP3 expression 

is assessed on all the CD4+CD25+ T cells, independent of 

level of CD25 expression, between 27 and 52.7% of the cells 

were FoxP3+. Thus, up to 7.5% of the CD4+ T cells express 

this putative T reg cell marker. No signi� cant staining was 

observed using an isotype control IgG-Alexa 488, whereas a 

second anti-FoxP3 mAb from Biolegend gave similar results 

(unpublished data). An analysis of FoxP3 expression in the 

CD4+CD25− T cell subset showed that <5% of the 

CD25−CD4+ T cells expressed FoxP3, although that per-

centage was probably an overestimate as the result of some 

background staining using the isotype control Ig. However, 

given the large numbers of cells in this gate, there are likely 

to be at least some CD4+CD25− T cells that are FoxP3+. 

Thus, rather than <2% of the CD4+ T cells falling into a 

 putative T reg cell subset, as many as 8–10% of the CD4+ 

T cells may be regulatory in nature.

Analysis of novel T reg cell–speci� c cell surface molecules
To identify additional cell surface markers associated 

with function and phenotype of T reg cells, microarray 

analysis was performed comparing mRNA expressed by 

CD4+CD25hi T cells with CD4+CD25neg T cells isolated 

from healthy donor PBMCs. mRNA was prepared from 

three blood donors and cRNA was prepared and tested 

on A� ymetrix U133A GeneChips. The sorting parameters 

were based on published studies in which the top 1–2% of 

CD4+CD25+ T cells was selected as the prototypic T reg 

cell subset (16, 37). Among the genes that di� ered between 

the two subsets, IL-7R (CD127) expression was noted to 

be expressed at 2.4-fold lower levels in CD4+CD25hi T 

cells as compared with CD4+CD25neg T cells. To con-

� rm the � ndings, mRNA isolated from three independent 

CD4+CD25hi and CD4+CD25neg T cell preparations was 

examined by quantitative real-time PCR (qPCR). Expres-

sion of CD127 mRNA was inversely correlated with CD25 

expression. In fact, the level of expression was 3.14 lower 

in the CD4+CD25hi T cells as compared with CD4+CD25− 

T cells (range: 2.26–4.21-fold).

As predicted by the gene expression studies, the majority 

of the CD4+CD25+ cells, especially the CD4+CD25hi T 

cells had low expression of CD127 (Fig. 2 a). However, not 

all of the CD4+CD127lo/− T cells were CD25+. In fact, 

a signi� cant percentage of CD4+CD127− T cells (15.8% in 

this individual) was CD25 negative. That said, the majority 

of the CD4+CD25− T cells were CD127 bright (73.8%), 

Figure 2. Expression of FoxP3 on different CD4+CD127+/− human 
T cell subsets. (a) PBMCs were harvested from human peripheral blood 

and stained with CD4, CD25, CD127 as well as intracellularly with FoxP3-

speci� c mAbs, then analyzed on a Becton-Dickinson FACSCalibur. 

(b) Human PBMCs were stained for cell surface expression of CD4 and 

CD127. The stained cells were � xed and stained intracellularly for FoxP3. 

For analysis, the PBMCs were gated on lymphocytes (based on forward 

and side light scatter) and analyzed for CD127 and FoxP3 expression. The 

numbers in the dot plot indicate the percentage of gated cells expressing 

the relevant marker. Data are representative of >20 independent indi-

viduals and >10 experiments.

Figure 3. Expression of FoxP3 on different CD4+CD127+/− mouse 
T cell subsets. Mouse spleen and lymph node cells were stained for cell 

surface expression of CD4 and CD127. For analysis, the spleen cells from 

FoxP3-GFP mice were gated on lymphocytes (based on forward and side 

light scatter) and analyzed for CD127 and FoxP3 (GFP) expression. The 

numbers in the dot plot indicate the percentage of gated cells expressing 

the relevant marker. The letters A and B in the quadrants represent the gray 

and thick solid lines (bottom). (b) Spleen and lymph node cells isolated from 

FoxP3 transgenic mice were stained for cell surface expression of CD4, 

CD25, and CD127. For analysis, the spleen cells were gated on CD4+ lym-

phocytes (based on forward and side light scatter) and analyzed for CD127 

and FoxP3 expression. The numbers in the dot plot indicate the percentage 

of gated cells expressing the relevant marker. The letters A, B, and C in the 

quadrants represent the dotted, thin solid, and thick solid lines (bottom).
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 accounting for the di� erential expression observed in the 

gene array analyses. More importantly, � ow cytometric anal-

ysis of FoxP3 expression in CD127 positive and negative T 

cell subsets showed that the majority of FoxP3+ T cells were 

in the CD127lo/– T cell subset (Fig. 2 b). Interestingly, the 

relative expression of CD127 was inversely correlated with 

FoxP3 with the highest FoxP3-expressing CD4+ T cells ex-

pressing the lowest levels of CD127. These results were uni-

formly observed in >20 individuals examined.

Similar results were observed in mice. CD4+ T cells iso-

lated for FoxP3-GFP knockin mice were stained for CD127 

(36, 38). The vast majority of the mouse CD4+FoxP3+ T 

cells were CD127lo/− (Fig. 3 a). Additional analyses of these 

mice showed that CD4+CD25+FoxP3+ T reg cells were 

CD127lo/−, however, as in humans, CD127 was a better 

marker than CD25 because all the CD4+ T cells were 

CD127lo/− independent of CD25 expression (Fig. 3 b).

Further studies were conducted to determine the rela-

tionship of CD4, CD127, FoxP3, and CD25 using multipa-

rameter � ow cytometry (Fig. 4). The overwhelming majority 

of CD4+CD25+CD127lo/− T cells express FoxP3 (94% in 

this individual) (Fig. 4 a). However, a signi� cant percent-

age of CD4+CD25−CD127lo/− cells are also FoxP3+ (35% 

in this individual), although the mean � uorescence is often 

less than the CD4+CD25hi cells. In sharp contrast, there were 

few FoxP3+ T cells in the CD4+CD127+ subset except a 

small percentage among those that expressed CD25 (Fig. 4 b). 

Interestingly, back-gating of the CD4+CD127+FoxP3+ 

subset showed that the expression of CD25 in these T cells 

was intermediate and distinct from the CD25hi subset 

Figure 4. Expression of FoxP3 on different CD4+ T cell subsets. 
(a) Human PBMCs were stained for cell surface expression of CD4, CD25, and 

CD127. The stained cells were � xed and stained intracellularly for FoxP3. For 

analysis, the PBMCs were gated on CD4+ lymphocytes (based on forward 

and side light scatter and CD4 staining) and analyzed for CD127 and FoxP3 

expression. The boxes represent arbitrary designations of CD25+ versus 

CD25− cells. The numbers in the histograms indicate the percentage of 

gated cells expressing the relevant marker. (b) Human PBMCs were stained 

for cell surface expression of CD4, CD25, and CD127. The stained cells were 

� xed and stained intracellularly for FoxP3. For analysis, the PBMCs were 

gated on lymphocytes (based on forward and side light scatter) and ana-

lyzed for CD4, CD25, CD127, and FoxP3 expression. The boxes represent 

arbitrary designations of CD127+ versus CD127lo/− cells. The numbers in the 

dot plot indicate the percentage of gated cells expressing the relevant 

marker. (c) Similar staining and analysis was performed on whole blood 

obtained from 10 healthy individuals. Each symbol represents an individual 

person and the narrow bar represents the mean percentage of FoxP3+ T 

cells on either CD4+ T cells gated based on CD25 and/or CD127 expression.

 o
n
 J

u
ly

 1
2
, 2

0
1
3

je
m

.ru
p
re

s
s
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

Published July 3, 2006

http://jem.rupress.org/


JEM VOL. 203, July 10, 2006 1705

ARTICLE

 described as “classic” T reg cells (unpublished data), suggest-

ing that they may be a transitional cell. Finally, it is impor-

tant to note that in this individual (which is representative 

of most individuals tested), there was a signi� cant percent-

age of FoxP3+ T cells in the CD4+CD25−CD127lo/− T cell 

subset. Back-gating showed that these cells fell within the 

CD25int populations (unpublished data). Similar results were 

observed in PBMCs obtained from 10 healthy donors stained 

for cell surface expression of CD4, CD127, CD25 followed 

by intracellular staining with FoxP3-speci� c mAb (Fig. 4 c 

and Table I). Examination of multiple individuals con� rmed 

that the majority of the CD4+FoxP3+ T cells were within 

the CD25+CD127lo/− subset; however, in some individuals, 

a signi� cant percentage of the CD25−CD127lo/− and/or 

CD25+CD127+ T cells were FoxP3+. As seen in Table I, 

�40% of the CD4+CD127lo/− cells were FoxP3+ as com-

pared with only 2.5% of the CD4+CD127+. Signi� cantly, 

on average >85% of the CD4+CD25+CD127lo/− cells 

were FoxP3+. Thus, CD127 is a better cell surface marker 

than CD25 for the identi� cation of CD4+FoxP3+ T cells; 

however, the best combination of cell surface markers is 

CD4+CD25+CD127lo/−, which accounts for �80% of the 

FoxP3+ depending on the individual. Thus, a broad gating 

strategy of CD4+CD25+CD127lo/− results in a highly puri-

� ed FoxP3+ T cell population as compared with the other 

subsets (Fig. 4 b).

ChIP-chip analysis of FoxP3 interaction with CD127
The data clearly showed a “general” relationship between 

FoxP3 expression and CD127 down-regulation. However, 

we were struck with the apparently inverse correlation be-

tween FoxP3 and CD127 protein (Fig. 2 b). These results 

suggested that there may be a direct structural relationship 

between the transcription factor, FoxP3, and CD127 tran-

scription. This was especially attractive given previous stud-

ies suggesting that FoxP3 represses gene expression (39). 

Chromatin immunoprecipitation (ChIP) of transcription 

 factor-bound genomic DNA followed by microarray hybrid-

ization (chip) of IP-enriched DNA is a new technology that 

allows genome-wide analysis of transcription factor binding. 

ChIP-chip data are di� erent than classical microarray gene 

expression data obtained by measuring mRNA levels in that 

they examine direct control of gene transcription, not just 

potentially indirect downstream regulation. We performed 

ChIP-chip experiments on anti-CD3/anti-CD28–expanded 

CD4+CD25hi human T reg cells (37). Anti-FoxP3 or control 

rabbit Ig was used to precipitate cross-linked protein–DNA 

complexes from nuclear lysates. The cross-linking of the im-

munoprecipitated material was removed and protease treated, 

and the DNA was puri� ed and ampli� ed. The resultant ma-

terial was hybridized to the whole genome using GeneChip 

Human Tiling 1.0R Array Set (A� ymetrix 900774) to iden-

tify the locations of binding sites for FoxP3. Statistical analysis 

was performed to determine sites that were selectively as-

sociated with FoxP3 protein and not rabbit Ig. The IL-7R 

promoter region scored among the various sites bound by the 

FoxP3 protein immunoprecipitates (unpublished data). The 

CD127 promoter binding was con� rmed by qPCR. Oligo-

nucleotide primers spanning the CD127 promoter region 

were used on anti-FoxP3 immunoprecipitated DNA from 

CD4+CD25hi human T reg cells (Fig. 5). There was a strong 

enrichment of CD127 DNA ampli� ed from the anti-FoxP3 

immunoprecipitates as compared with the rabbit Ig immu-

noprecipitates speci� cally in the IL-7R promoter region, but 

not other DNA sequences surrounding this area on the ge-

nome. These data support the direct regulation of CD127 

by FoxP3.

Figure 5. ChIP-chip and ChIP-qPCR analysis of FoxP3 bound DNA 
from CD4+CD25hi human T reg cells. Anti-FoxP3 or control rabbit Ig 

was used to precipitate cross-linked protein–DNA complexes from ex-

panded CD4+CD25hi human T reg cells lysate. The cross-linking of the 

immunoprecipitated material was removed and protease-treated and the 

DNA was puri� ed and ampli� ed. The resultant material was hybridized to 

the whole genome using GeneChip Human tiling 1.0R array set to identify 

the locations of binding sites for FoxP3. Two sets of graphs: FoxP3 IP ver-

sus the Ig control and FoxP3 IP versus Input DNA were generated on the 

hs.NCBIv35 version of the genome essentially following the method de-

scribed in Cawley et el. (reference 50). (a) Signal enrichment graphs of IL-

7R locus (chr5:35863179-35918811). Several regions in IL-7R locus are 

predicted to be positive (chr5:35892564-35892809 promoter) and negative 

(chr5:35890618-35890846 2K upstream; chr5:35907667-35907852 

Intron 4; chr5:35911721-35911888 intron 7 and exon 8). (b) SYBR green 

qPCR of IL-7R chromosomal regions. FoxP3 IP versus the IgG fold enrich-

ment ratio was determined from duplicate ChIP assay evaluated in dupli-

cate by real time PCR.

Table I. Percent of FoxP3+ T cells in CD127 subsets

Mean % of FoxP3 Range

CD4+ CD127lo/– 41.5 22.8–58.5

CD4+ CD127+ 2.5 1.2–5.0

CD4+ CD127lo/–CD25+ 86.6 67.4–93.6

CD4+ CD127lo/–CD25– 25.5 14.8–39.5

CD4+ CD127+ CD25+ 22.9 11.5–39.2

CD4+ CD127+ CD25– 1.8 1.0–3.3

The average CD4+ CD127 lo/– gate was 14% (range 10-19%).

 o
n
 J

u
ly

 1
2
, 2

0
1
3

je
m

.ru
p
re

s
s
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

Published July 3, 2006

http://jem.rupress.org/


1706 CD127 (IL-7R) IDENTIFIES T REGULATORY CELLS IN HUMANS | Liu et al.

Suppression of allogeneic mixed lymphocyte response (MLR) 
using different CD4+ T cell subsets
Although the low expression of CD127 correlated with 

FoxP3 expression, several studies have questioned whether 

FoxP3 is always a marker of T reg cells in humans. Thus,  we 

examined the ability of CD4+CD25+CD127lo/− T cells and 

other subsets to suppress an allogeneic MLR. PBMCs were 

sorted into four subsets based on CD127, CD25, and CD4 

expression. First, we examined the ability of the individual 

subsets to respond to the allogeneic APCs. As can be seen 

in Fig. 6, as previously reported, the CD4+CD25hi T cell 

subset was anergic when stimulated with alloantigen consis-

tent with the fact that these cells were FoxP3+ and com-

prise the “classical” T reg cell subset. Similarly, neither of 

the CD127lo/− subsets, CD25+ or CD25− CD4+ T cells or 

the bulk of CD4+CD127lo/− T cells responded in the allo-

geneic MLR, suggesting that like the CD4+CD25hi T cells, 

these cells were anergic (37). In contrast, the CD4+CD127+ 

T cell subset responded normally to alloantigen consistent 

with publications suggesting that these cells represented 

naive and memory T cell compartments (32,  34, 40). Similar 

results were observed when the cells were stimulated with 

anti-CD3 and anti-CD28 (unpublished data), suggesting 

that like “classical” T reg cell subsets, the FoxP3-expressing 

cells were anergic. Next, the various subpopulations were 

added to an allogeneic MLR and compared for their ability 

to suppress T cell proliferation. The CD4+CD127lo/−CD25+ 

T cell subset suppressed the MLR as well or better that 

CD4+CD25hi T cells (Fig. 7). This is signi� cant because this 

subset represents at least threefold more CD4+ T cells in-

cluding both CD25 intermediate and negative subsets. Thus, 

CD127 is more than just another marker of CD4+CD25hi T 

reg cells, but allows for the identi� cation and isolation of a 

signi� cantly more inclusive suppressive T cell subset. In fact, 

suppressive activity was independent of CD25 as both the 

CD4+CD127lo/−CD25+ and CD4+CD127lo/−CD25− T cell 

subsets suppressed the MLR, although in multiple studies the 

CD4+CD127lo/−CD25+ T cells suppressed responses more 

e� ectively than the CD4+CD127lo/−CD25− T cell subset, 

especially at lower T reg cell:T responder ratios. These re-

sults are consistent with the lower percentage and level of 

expression of FoxP3+ cells in this T cell subset. Neither of 

the CD127+ cells suppressed the MLR reproducibly (n = 9). 

These results suggested that CD127 is a su�  cient marker for 

de� ning the CD4+ T reg cell subset. To demonstrate this 

directly, PBMCs were sorted based only on the expression 

of CD4 and CD127 and examined in an allogeneic MLR. 

Figure 6. Proliferative response of isolated T cell subsets. Buffy 

coat samples were sorted based on CD4, CD127, and CD25 expression. 

30,000 sorted cells were put into culture with allogeneic anti-CD3–

 depleted, irradiated, third-party PBMCs as stimulators. T cells were 

 incubated for 7 d at 37°C in 5% CO2. 16 h before the end of the incu-

bation, 1 μCi 3H-thymidine was added to each well. Plates were 

 harvested and data were analyzed. Data are representative of nine 

 separate experiments.

Figure 7. Suppression of allogeneic MLR by individual T cell sub-
sets. Buffy coat samples were sorted based on CD4, CD127 and CD25 

expression. 30,000 sorted cells were combined with 100,000 autologous 

PBMCs as responders, and 100,000 allogeneic anti-CD3–depleted, irradi-

ated third-party PBMCs as stimulators. T cells were incubated for 7 d at 

37°C in 5% CO2. 16 h before the end of the incubation, 1 μCi 3H-thymi-

dine was added to each well. Plates were harvested and data were ana-

lyzed. Data representative of nine separate experiments sorting seven 

different subpopulations of CD4+ cells indicated (a) CD127+CD25+, 

CD127+CD25−, CD127lo/−CD25+, CD127lo/−CD25− and (b) CD127lo/−, 

CD25hi, CD127+. 100,000 responders are present in each well with de-

creasing numbers of sorted cells added at 1:1 ratio (30,000:100,000), 

1:1/2 (15,000 sorted cells), 1:1/4 (7,500 sorted cells), 1:1/16 (1,875 sorted 

cells) in comparison to sorted cells alone. Results are represented as 

counts per minute (CPM).
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The CD4+CD127lo/− T cell subset was anergic (Fig. 6) 

and suppressed the MLR almost as e�  ciently as the 

CD4+CD127lo/−CD25+ or CD4+CD25hi T cells (Fig. 7 b).

Frequency of CD4+CD25+CD127lo/− T cells from patients 
with T1D
Previous studies have suggested that T reg cell numbers might 

be de� cient in patients with T1D (24). To investigate quan-

titative di� erences in the T reg cell populations in patients 

with T1D versus control subjects, peripheral blood T cells 

were stained with CD4, CD25, CD127, and FoxP3. Rep-

resentative examples of the staining of healthy controls and 

patients with T1D are shown in Fig. 8 a. The frequency of 

FoxP3+ T cells in each subset was not signi� cantly di� erent 

between T1D and control subjects. This included the puta-

tive CD4+CD25+CD127lo/− and CD4+CD25−CD127lo/− 

T reg cells. Additional patients and controls were analyzed 

and a scatter plot of all the data is shown in Fig. 8 b. Al-

though the percentages of FoxP3+ T cells among the CD4+ 

T cells in the two groups were higher than those reported 

for the CD4+CD25hi T reg cell subset, the patterns matched 

those previously observed. There was no signi� cant di� er-

ence in the percentage of FoxP3+ T cells in any of the T 

cell subsets between control and T1D samples. As an ex-

ample, the CD4+CD25+CD127lo/− subset in controls had a 

mean of 66.1% FoxP3+ cells (SD 11.3%; range 53.7–82.8%) 

versus the healthy control individuals (mean 65.5%; SD 

8.66%; range 45.4–76.2%). These results are in contrast with 

some reports that found di� erences in the percentage of 

CD4+CD25hi T cells in T1D subjects when analyzed as a 

percentage of CD4+ T cells.

D I S C U S S I O N 
The emergence of T reg cells as an essential pathway in main-

taining immune tolerance has opened the opportunity for a 

better understanding of immune homeostasis and the poten-

tial for therapeutic intervention. However, unlike the mouse, 

the human phenotyping of T reg cells has been complex. 

Typically, investigators have noted that the most suppressive 

T reg cells coincide with the CD4+ T cells with the brightest 

CD25 staining. Unfortunately, the ability to accurately gate 

for CD25 is rather arbitrary as no other cell surface marker 

can be used to de� nitively identify the subset. Baecher-Allen 

has suggested that other markers such as HLA-DR allows for 

subdividing the CD4+CD25hi subset to enrich T reg cell ac-

tivity even further (41). However, this additional marker 

suggests that the number of T reg cells is even less than previ-

ously suggested although a recent paper published by this 

same group showed that DR− T reg cells are suppressive as 

well but with a di� erent kinetics and di� erent mechanism 

(42). The identi� cation of FoxP3 as a speci� c transcription 

factor that marks these cells suggests that there may be a larger 

population of T reg cells in human peripheral blood than 

previously appreciated, although this has been controversial 

as the result of unanticipated expression in several activated 

CD25− T cell populations (30, 38). However, these studies 

have been compromised by the absence of cell surface mark-

ers that can be used to isolate these and other T cell subsets to 

examine T reg cell activity because FoxP3 cannot be used as 

a means to purify the cells for function. In this paper, we 

demonstrate that CD127 expression is an excellent biomarker 

of human T reg cells, especially when combined with CD25. 

The combination of these markers identi� es T reg cells that 

account for up to 7–8% of CD4+ T cells, a signi� cantly 

greater percentage than identi� ed by previous approaches. 

Moreover, these cells suppress the proliferative response of 

alloreactive T cells in an MLR and are themselves anergic 

to the same stimuli, characteristics shared by CD4+CD25hi 

human T reg cells.

These results raise several critical issues. First, because the 

majority of CD4+FoxP3+ T cells may fall outside the typical 

gate for human T reg cells, studies used for functional and 

immuno phenotypic analyses are potentially missing a large 

number of putative T reg cells. This has important implica-

tions in determining quantitative di� erences in patients with 

a variety of diseases. Second, the fact that CD4+CD127−CD25− 

T cells suppress an allogeneic MLR calls into question those 

Figure 8. Frequency of various T cell subsets in patients with T1D 
versus healthy control subjects. (a) FACS data are depicted from two 

healthy control and two individuals with T1D. Individual histograms are 

depicted to show the FoxP3 expression in CD4+ T cells subdivided into the 

various CD25 and CD127 subsets. (b) Individual FoxP3 expression data is 

depicted from total 10 healthy control individuals and 16 patients with 

T1D. Each symbol represents an individual subject and the narrow bar 

represents the mean percentage of FoxP3+ T cells in various T cell subsets 

(CD4+ T cells gated based on CD25 and/or CD127 expression as indicated 

at the bottom of the graph).
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studies suggesting that FoxP3 is not a “good” marker for T 

reg cell activity. It may be that FoxP3 is an excellent marker 

and that the small populations that arise during normal T cell 

activation are indeed adaptive T reg cells expanding as a con-

sequence of suboptimal or supraoptimal TCR signaling. It 

should be emphasized, however, that not all FoxP3+ T cells 

are necessarily T reg cells and their activity may depend on 

the level of FoxP3 expression and isoforms of the protein 

 expressed. However, these CD4+CD25+CD127lo/−, once iso-

lated, may be treated in vitro with TGFβ or other factors to 

enhance T reg cell function in these cells. Third, e� orts to 

select T reg cells for in vitro expansion may be hindered by 

the underestimation of T reg cells in any separation strategy 

based on CD25 expression. The ability to identify and select 

a signi� cantly greater number of T reg cells circulating in the 

peripheral blood of humans, especially those with autoim-

mune diseases, is likely to make it easier to expand su�  cient 

cell numbers for immunotherapy. Finally, the identi� cation 

of CD127 as a marker that distinguishes e� ector/memory 

from T reg cells may suggest that anti-CD127 therapy might 

be appropriate for the treatment of autoimmune diseases such 

as T1D, systemic lupus erythematosis, or multiple sclerosis.

The identi� cation of CD127 as a useful marker was her-

alded by genetic observations. First, microarray analysis of 

mRNA from individual T cell subsets showed that CD127 

was expressed at signi� cantly lower levels in CD4+CD25hi 

versus CD4+CD25− T cells. Unlike the majority of activated 

T cells, which rapidly reexpress CD127 and memory T cells 

that express high levels of CD127, the T reg cell population 

remains CD127lo/−. There may be two reasons for this. First, 

T reg cells may be constantly undergoing antigenic stimula-

tion that is CD28 dependent, resulting in continued signaling 

that shuts down CD127 mRNA transcription. In this regard, 

it is interesting to note that activation of naive T cells by anti-

CD3 plus anti-CD28 but not anti-CD3 alone led to a rapid 

down-regulation of CD127 (unpublished data), suggesting 

that CD28 signals are uniquely involved in regulating CD127 

down-regulation. Alternatively, and not mutually exclu-

sively, is the possibility that FoxP3 expression in this T cell 

subset controls CD127 expression. There are several reasons 

that this may be the case. As illustrated in the � ow cytometric 

staining pro� les, the more FoxP3 expression, the less CD127 

(Fig. 2 b). In addition, overexpression of FoxP3 in transgenic 

mice results in a uniformly CD127lo/− population of cells 

with suppressive activity. Finally, data generated using CHiP 

analysis (� rst by ChIP-Chip followed by ChIP-qPCR) sug-

gested that the CD127 promoter is a target for FoxP3 bind-

ing. It will be critical to determine whether the low expression 

of CD127 is indeed a consequence of constant antigen expo-

sure in vivo or FoxP3 up-regulation resulting in CD127 gene 

repression, although these are not mutually exclusive.

The CD4+CD127lo/−CD25− T cells suppress quite ef-

fectively, although the percentage of FoxP3+ T cells in this 

subset can be quite variable. These results suggested that the 

CD127 marker may be useful in identifying di� erent sub-

types of T reg cells including Tr1 and TH3 cells. In this 

regard, there are currently several settings, including the 

treatment of humans with T1D with anti-CD3 that induces 

T cells with a regulatory phenotype (11, 31, 43, 44). These 

studies, which mimic similar results in T reg cell–de� cient 

mice treated with nonmitogenic anti-CD3 (10), indicate that 

it may be possible to identify an “adaptive” T reg cell re-

sponse using CD127 as a biomarker in addition to lower 

CD25 expression previously observed on these cells.

One of the more intriguing aspects of the results is the 

seeming dichotomy in cytokine receptor expression in mem-

ory T cells versus T reg cells. Although a high percentage of 

T reg cells now appear to be IL-7R low and IL-2R positive, 

memory T cells have the opposite phenotype, expressing high 

levels of IL-7R and low levels of IL-2R. The theoretical basis 

for this di� erential expression is unclear but it may re� ect 

the evolution of distinct pathways for cell survival and expan-

sion of these T cell subsets. For instance, it is possible that 

T reg cells may play a critical role in normal homeostasis. 

Thus, the cells attempt to regulate the earliest immune per-

turbation that may occur in the absence of a pathogenic re-

sponse. Because IL-2 is an “early cytokine” produced rapidly 

by activated T cells in the draining lymph nodes, IL-2 may be 

a critical signal for awakening the T reg cell response that can 

e� ectively suppress T cell expansion in these lymphoid tissues 

(45). In contrast, IL-7 is commonly produced locally in sites 

of in� ammation leading to increased survival and expansion 

of e� ector cells. If this localized IL-7 expression promoted T 

reg cell expansion, it might be counterproductive. Moreover, 

avoiding competition for the use of the common γ chain by 

these receptors would enhance the functionality of the cyto-

kine function. Finally, it should be noted that the situation 

might be quite distinct in thymus when all the pre–T and 

immature T cells are CD127+ and CD25+. At this stage in 

development, other factors might come into play to deter-

mine the di� erentiation pathways that determine whether a 

T cell becomes a T reg cell or a naive conventional T cell.

Several studies have examined the number and function 

of T reg cell cells in humans with autoimmune diseases. In 

some settings, such as multiple sclerosis, T1D, and autoim-

mune polyglandular syndrome II, the data, based on the 

number and function of CD4+CD25hi T reg cells, suggest 

that there are either fewer T reg cells or less functional T reg 

cells in diseased individuals (24, 46–48). However, in T1D 

and other autoimmune diseases, there have been contradic-

tory results (25, 49). In the present study, we reevaluated T 

reg cells in patients with T1D as compared with normal indi-

viduals. Using the new markers, FoxP3 and CD127, we ana-

lyzed the frequency of CD4+CD25+FoxP3+CD127lo/− T 

cells. In this study, it is clear that human T reg cells as de� ned 

by CD4, CD25, CD127, and FoxP3 expression are present 

within the same range of percentages as control individuals 

with no autoimmunity (Fig. 8, a and b). Moreover, the func-

tionality of the T reg cells isolated from the patients with 

T1D cannot be distinguished from healthy control subjects 

(unpublished data). We cannot explain the basis for di� er-

ences between our studies and those of others in the T1D 
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� eld. It has been suggested that the discrepancy might be the 

result of subtle di� erences in � ow cytometry–based tech-

niques for cell separation or di� erent mAbs used. However, 

our use of distinct markers that identify the overwhelming 

bulk of T reg cells in human peripheral blood is likely to be 

a more de� nitive assessment of the T reg cell numbers and 

functional potential in this patient population. Lastly, it is in-

teresting to note that several of the T1D patients had high 

T reg cell numbers as compared with the bulk of the control 

and T1D subjects. This is consistent with some studies in 

other autoimmune diseases in which the frequency of 

CD4+CD25hi T cells was reported to be increased as com-

pared with controls. Moreover, these results � t with mouse 

studies, demonstrating increased T reg cell number at the 

time of T1D disease onset as well as other immune disease 

settings (unpublished data). We hypothesize that rather than 

a T reg cell de� ciency being the cause of disease precipita-

tion, there is actually increased T reg cell activity in an at-

tempt to stem the increasingly aggressive e� ector cells that 

may indeed become T reg cell resistant.

In summary, we have determined that CD127 is an ex-

cellent marker of T reg cells in human peripheral blood. The 

cell surface marker is expressed at low levels on an over-

whelming majority of T reg cells and distinguishes up to 10% 

of CD4+ T cells as potential T reg cells. Moreover, the cell 

surface marker can be used, in the absence of CD25 to sepa-

rate a suppressive T cell subset and will thus be a useful tool 

for the selection and expansion of T cell for diagnostics and 

therapeutic applications.

MATERIALS AND METHODS

Antibodies. The human antibodies (PE-conjugated anti-CD127, APC-

conjugated anti-CD25, PerCP-conjugated anti-CD4) were used for staining 

and in sorting and were provided by Becton Dickinson (BD Biosciences). 

Alexa488-conjugated anti-FoxP3 was purchased from BioLegend and intra-

cellular staining was performed according to the manufacturer’s instructions 

and modi� ed as follows: 5 × 105 cells were stained with cell surface markers 

for 30 min at 4°C and � xed for 30 min using 1x Fix/Perm bu� er. After three 

washes, cells were permeabilized in Perm bu� er with DNase I (Sigma-

 Aldrich) for 30 min followed by three washes. Then cells were blocked with 

human IgG and stained with anti–human FoxP3 Alexa488-conjugated (Bio-

Legend; clone 206D). The following anti–mouse antibodies were purchased 

from the indicated sources: anti-CD4, anti-CD25, and mouse IgG1 (isotype 

control) (BD Biosciences) and CD127 (eBioscience).

Subjects. A total of 16 patients with longstanding T1D were studied. 

 Patients (age range 16–56 yr, mean age 34, with a disease duration >5 yr) 

were recruited from the Barbara Davis Center for Childhood Diabetes. 

 Diagnosis of T1D was made primarily by the presence of biochemical auto-

antibodies or presentation of hyperglycemia with ketosis in childhood. None 

of the diabetic subjects had severe nephropathy or neuropathy. As controls, 

10 subjects (age range 20–50 yr, mean age 29) with no family history of dia-

betes mellitus were also tested. Blood samples were obtained with informed 

consent under Institutional Review Board approved protocols at either the 

University of Colorado Health Sciences Center or UCSF as needed.

Sorting of CD4+ T cell subsets for � ow cytometry and functional 

studies. Human T cells were isolated from leukopacs (Blood Centers of the 

Paci� c). In some cases, negative selection using RosetteSep human CD3 de-

pletion Cocktail (StemCell Technologies, Inc.) was performed. 100–120 × 106 

PBMCs were washed once, counted, and resuspended in sorting bu� er 

(PBS + 0.1% BSA + 1 mM EDTA) at 100 × 106 per ml in a 15-ml conical 

tube. After addition of 1 μl/1 million cell volume PerCP-conjugated anti-

CD4, 1 μl/1 million cells PE-conjugated anti-CD127, and 0.7 μl/million 

cells APC-conjugated anti-CD25 antibodies, the cell suspension was mixed 

gently and incubated at 4°C for 30 min. Cold FACS sorting bu� er was 

added up to a volume of 15 ml and T cells were pelleted and resuspended at 

20 × 106 per ml. Labeled T cells were sorted using a FACSAria (Becton 

Dickinson). The sorted gates for the various T cell subsets were set to in-

clude only those events exhibiting the CD4-speci� c � uorescence that were 

also within the lowest density region of a scatter plot. This amounted to be-

tween 11.4% and 33.9% (mean 20.87%) (n = 22) of the total number of 

events for the CD4+ T cells. Based on the CD4 gate, cells were further gated 

based on CD127 and/or CD25 expression (CD4+CD127+/−CD25+/− and 

CD4+CD127+/− alone independent of CD25 as well as CD25hi conven-

tional T reg cells). Cells were collected into 100% human AB serum (Cam-

brex) and washed once with media (RPMI 1640/5% human serum) until 

they were ready to be plated in suppression assay. Sorted T reg cells were 

95–98% CD4+CD25hi with a typical yield of 5–12 × 105 T cells per sort, 

whereas CD4+CD127−CD25+ cells had a typical yield of 0.9–1.2 × 106 

and 98% purity.

Isolation of CD4+CD25hi and CD4+CD25− cells for GeneChip 

 arrays. Human CD4+ T cells were isolated by negative selection from leu-

kopacs (Stanford University Blood Center) using RosetteSep Human CD4+ 

T cell Cocktail (StemCell Technologies, Inc.). 0.75–1.25 × 108 CD4+ T 

cells (>90% purity by FACS) were washed once, counted, and resuspended 

in FACS staining bu� er (PBS + 0.1% BSA) at 10 × 106 per ml in a 50-ml 

conical tube. After addition of 1/90 volume Cy-5–conjugated anti-CD4 

(BD Biosciences) and 1/100 FITC-conjugated anti-CD25 (DakoCytoma-

tion) antibodies, the cell suspension was mixed gently and incubated on ice 

for 45 min. Cold FACS staining bu� er was added to a volume of 50 ml and 

T cells were pelleted and resuspended at 20 × 106 per ml. Labeled T cells 

were incubated on ice for 45 min and submitted to � ow sorting on a Dako-

Cytomation MoFlo high-speed cell sorter. The sort gates were set to include 

only those events exhibiting the highest levels of CD25-speci� c � uores-

cence (CD4+CD25hi cells) or lowest levels (CD4+CD25neg cells) that were 

also within the lowest density region of a scatter plot. This amounted to be-

tween 0.8% and 1.4% of the total number of events for the CD4+ T cells for 

each subset.

RNA isolation. Total RNA was isolated from T reg cells using the total 

RNA isolation protocol from the RNA RT-PCR Miniprep kit (Stratagene) 

with the following modi� cations: 100,000 cells were lysed in 150 μl of lysis 

bu� er. To digest DNA, 2 U of DNase was added/μg nucleic acid, and 

 phenol/CHCl3 (Sigma-Aldrich) was used to purify total RNA followed by 

ethanol precipitation. The quantity of total RNA was measured using Nano-

drop ND 100 (Nanodrop Technologies). 100 ng of each RNA sample was 

used for target labeling by a two-round ampli� cation protocol. This protocol 

was modi� ed from the A� ymetrix eukaryotic small sample prep by using 

6 pMol of T7 primer and 3 μg/μl of the random primer.

GeneChip arrays and data analysis. A total 16 of human HG-U133A 

GeneChip arrays were used in this study (A� ymetrix). 10 μg of fragmented 

cRNA per GeneChip hybridization were processed on the A� ymetrix Flu-

idic station 450 and GeneChip scanner GCS2500 (Hewlett-Packard Com-

pany). Gene expression pro� le was analyzed with MAS5.0 (Microarray Suite 

version 5.0; A� ymetrix) and used for data acquisition and normalization. 

Present genes were de� ned by selecting genes that were present in three out 

of four arrays. Signal intensities of all present genes for the activated and 

control groups were combined and analyzed by Student’s t test. Signi� cant 

genes were selected with P < 0.05. The “signal log ratio” (SLR) and “in-

crease” or “decrease” call was generated by comparison analysis MAS5.0 and 

used for calculating fold changes between groups. We selected 9 out of 16 

pair-wise comparisons for particular genes that showed increase or decrease 
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at fold change >2.0. In the second step, signal intensities of present genes 

were analyzed with Signi� cance Analysis of Microarrays (SAM) and applied 

for analyzing and determining the gene list based on the number of signi� -

cant genes that were identi� ed by Student’s t test and fold change. The � nal 

signi� cant genes were combined from the aforementioned two steps. Two-

dimensional hierarchical clusters are generated using GeneSpring 6.0 software 

(Silicon Genetics).

Real-time PCR analysis. RNA was isolated using RNeasy mini kits 

(QIAGEN) according to the manufacturer’s instructions. For cDNA syn-

thesis, 500 ng total RNA was transcribed with cDNA transcription reagents 

using SuperScriptIII reverse transcriptase and oligo(dT)12-18 (Invitrogen), 

according to the manufacturer’s instructions. Gene expression was measured 

in real-time with the GeneAmp 7900 Sequence Detection System (Applied 

Biosystems) using primers and QuantiTect SYBR green PCR Kit purchased 

from QIAGEN. The expression level of a gene in a given sample was rep-

resented as 2−∆∆Ct where ∆∆CT = [∆CT(experimental)] − [∆CT(medium)] and 

∆CT = [CT(experimental)] − [CT(housekeeping)]. Data are presented and  normalized 

to the glyceraldehyde phosphate dehydrogenase (GADP).

Suppression assays. Suppression assays were performed in round-bottom 

96-well microtiter plates. 100,000 responder PBMCs from the same cell 

source as sorted populations, 30,000 sorted cells (one of seven di� erent 

sorted subtypes based on CD25 and/or CD127 expression), 100,000 alloge-

neic irradiated CD3-depleted PBMCs were added as indicated. Responder 

ratio indicated refers to T reg cell to responder where 1 sorted:1 responder 

is 30,000 sorted cells: 100,000 PBMC responder cells. APCs consisted of al-

logeneic PBMCs depleted of T cells using StemSep human CD3+ T cell de-

pletion as per the manufacturer’s recommendations (StemCell Technologies, 

Inc.) and irradiated with 40 Gy. Cells were plated in the following order in 

50 μl per well: sorted cells, responders, and APCs. No additional stimulus 

was added to the wells; however, additional media was added to each well so 

the � nal volume was 200 μl per well. Wells surrounding culture wells were 

� lled with PBS to prevent evaporation. T cells were incubated for 7 d at 

37°C in 5% CO2. 16 h before the end of the incubation, 1 μCi 3H-thymi-

dine was added to each well. Plates were harvested using a Tomtec cell 

 harvester and 3H-thymidine incorporation was determined using a 1450 

 microbeta Wallac Trilux liquid scintillation counter.

Antibody staining and FACS analysis. 5 × 104 T cells per sample were 

washed once with FACS staining bu� er (PBS + 0.1% BSA) and resuspended 

in 100 μl bu� er. 1 μl of � uorescence-conjugated speci� c antibodies (1 μg/

million T cells) was added and T cells were lightly vortexed and incubated 

on ice for 20 min. 500 μl of staining bu� er was added to each sample and 

T cells were pelleted, resuspended in 200 μl bu� er, and analyzed on a � ow 

cytometer (Becton Dickinson, FACScalibur). Intracellular staining was con-

ducted using the recommended procedure obtained from BD Biosciences or 

eBioscience where indicated.

Chromatin immunoprecipitation–DNA microarray (ChIP-chip). 

Human CD4+CD25hi T reg cells were expanded in vitro as described previ-

ously (37). Chromatin � xation and immunoprecipitation were performed 

using chromatin immunoprecipitation assay kit (Upstate Biotechnology) as 

recommended by the manufacturer. Expanded human T reg cell were � xed 

in 1.1% formaldehyde. Protein–DNA cross-linked cell pellets were resus-

pended in SDS-Lysis Bu� er (1 ml per 108 cells) and incubated for 10 min on 

ice. Lysates were sonicated to shear DNA to lengths between 200 and 1,000 

basepairs and centrifuged for 10 min at 13,000 revolutions/min at 4°C to 

remove debris. The sonicated cell supernatant was diluted 10-fold in ChIP 

Dilution Bu� er with protease inhibitors (Upstate Biotechnology) to reduce 

nonspeci� c background and the diluted cell supernatant was precleared 

with 40 μl of a Protein A Agarose-50% slurry per 1 ml lysate for 30 min 

at 4°C with agitation. Cross-linked protein–DNA complexes were immuno-

precipitated using control rabbit Ig or a�  nity-puri� ed rabbit polyclonal 

anti–human FoxP3 (a gift from R. Khattri and F. Ramsdell, Celltech, Lt., 

Seattle, WA). The cross-linking of the material was reversed and protein-

ase K treated to remove protein from the DNA. The remaining DNA was 

puri� ed with QIAquick PCR Puri� cation Kit (QIAGEN) and ampli� ed 

by LMPCR (ligation-mediated PCR) as described previously (50). Array 

hybridization and analysis were performed at A� ymetrix as described previ-

ously (51). SYBR green qPCR was performed to verify the binding sites 

predicted by the arrays. Primers for the PCR reactions included: IL-7R pro-

moter: 5′-primer, 5′-C A G G G A A T A T C C A G G A G G A A -3′; 3′-primer, 5′-

T G T G T G A G C C A G T G T G T A T G A A -3′; IL-7R 2K upstream: 5′-primer, 

5′-T T T G G G A T T T C T C C T T G A A C A -3′; 3′-primer 5′-T C T C T G G G C-

A T T T C A A A A C C -3′; IL-7R intron 4:5′ primer, 5′-G A G G T G G C A G A-

A G A G T G G A G -3′; 3′-primer, 5′-T G C A T C A C A C T G C A A A C A A A -3′; 

and IL7-R intron 7 and exon 8:5′-primer, 5′-A C A T G C T G G C A A T T C T-

G T G A -3′; 3′-primer, 5′-T C T G G C A G T C C A G G A A A C T T -3′.
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