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CD32 Expression is not Associated 
to HIV-DNA content in CD4 cell 
subsets of individuals with Different 
Levels of HIV Control
Marcial García1,2, María Angeles Navarrete-Muñoz1,2, José M Ligos3, Alfonso Cabello4, 
Clara Restrepo1,2, Juan Carlos López-Bernaldo5, Francisco Javier de la Hera4, Carlos Barros6, 
María Montoya  3, Manuel Fernández-Guerrero4, Vicente Estrada7, Miguel Górgolas4, 
José M Benito  1,2 & Norma Rallón1,2

A recent study has pointed out to CD32a as a potential biomarker of HIV-persistent CD4 cells. We have 
characterized the level and phenotype of CD32+ cells contained in different subsets of CD4 T-cells 
and its potential correlation with level of total HIV-DNA in thirty HIV patients (10 typical progressors 
naïve for cART, 10 cART-suppressed patients, and 10 elite controllers). Total HIV-DNA was quantified 
in different subsets of CD4 T-cells: Trm and pTfh cells. Level and immunephenotype of CD32+ cells 
were analyzed in these same subsets by flow cytometry. CD32 expression in Trm and pTfh subsets was 
similar in the different groups, and there was no significant correlation between the level of total HIV-
DNA and the level of CD32 expression in these subsets. However, total HIV-DNA level was correlated 
with expression of CD127 (rho = −0.46, p = 0.043) and of CCR6 (rho = −0.418, p = 0.027) on CD32+ 
cells. Our results do not support CD32 as a biomarker of total HIV-DNA content. However, analyzing 
the expression of certain markers by CD32+ cells could improve the utility of this marker in the clinical 
setting, prompting the necessity of further studies to both validate our results and to explore the 
potential utility of certain markers expressed by CD32+ cells.

�e existence of HIV reservoirs is the main barrier to HIV eradication1. At cellular level HIV latency is mainly 
found in CD4 T cells with a resting memory phenotype2–4, especially in certain subsets such as peripheral folli-
cular T helper cells5. Due to the long half life of CD4 subsets harbouring proviral HIV-DNA6 as well to additional 
mechanisms of reservoir maintenance as homeostatic proliferation7 or clonal expansion8 of latently infected 
cells, the kinetics of reservoir decline is so slow that purging it with antiretroviral therapy alone is not feasible6. 
Moreover, the di�erent approaches proposed so far have failed in signi�cantly diminishing the size of the HIV 
reservoir, likely due to di�erent reasons9,10.

One of such reasons lies in the di�culty of precisely measuring the HIV reservoir size11,12, what has hindered 
the ability to compare HIV reservoir size in di�erent groups of patients and to estimate the e�ectiveness of ther-
apeutic approaches aimed to diminish it. Current assays are based either on detection of proviral HIV-DNA 
content in di�erent types of cells such as peripheral blood mononuclear cells (PBMCs), CD4 cells or subsets of 
CD4 cells, or on the quanti�cation of virus growth in culture (quantitative viral outgrowth assay, qVOA) that 
is considered the gold-standard13. An inherent drawback of these assays is that since they do not detect HIV at 
single-cell level, they are not able to identify the phenotype of every single cell carrying latent HIV, what is crucial 
for our understanding of cell types involved in the maintenance of the reservoir. Although the majority of cellular 
reservoir resides in CD4 cells with resting memory phenotype, the great majority of cells with this phenotype do 
not carry HIV. �us, identifying a cell marker speci�c for CD4 cells carrying latent HIV would be of great interest 
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not only for the understanding of cellular reservoirs but also as an easily scalable high-throughput assay to pre-
cisely measure the in vivo frequency of latently infected cells, that could be implemented in clinical trials aimed 
to purge the HIV reservoir14.

In this regard, a very recent paper has pointed to CD32a as a potential biomarker of latently infected CD4 
cells15. FcγRII (CD32) is a low-a�nity cell surface receptor of the immunoglobulin G (IgG) Fc fragment involved 
in immune response regulation. In human cells three di�erent isoforms have been de�ned, two activating recep-
tors (CD32a and CD32c), and one inhibitory receptor (CD32b)16. CD32 marker is mainly expressed on B-cells, 
monocytes, granulocytes, platelets and endothelial cells, whereas the expression of this receptor on CD4 T cells 
is controversial and it seems to be associated to CD4 T cell activation17–19. Hovewer, using an in vitro infection 
system, the authors found that CD32a was induced selectively in resting CD4 cells latently infected with HIV but 
not on those cells actively replicating HIV. Moreover, the content of proviral HIV-DNA was several hundred-fold 
higher in puri�ed CD4+CD32a+ compared to CD4+CD32a− cells from patients under antiretroviral therapy. 
From these results the authors conclude that CD32a is a good potential biomarker of persistently infected cells15.

To test this hypothesis, in the present study we have characterized the levels and phenotype of CD32+ cells 
contained in di�erent subsets of CD4 T-cells, and its potential correlation with total HIV-DNA content in two 
groups of HIV patients with HIV replication control (spontaneously or through cART) and in a group of progres-
sor HIV patients with uncontrolled HIV replication.

Results
Characteristics of study population. Table 1 shows the main characteristics of HIV patients enrolled in 
this study. Brie�y, elite controllers (EC), patients with undetectable HIV plasma viremia (pVL) in the absence of 
antiretroviral therapy (cART) (n = 10), and treated patients (TX) (n = 10), cART-suppressed patients maintain-
ing undetectable pVL, were not signi�cantly di�erent in terms of age, CD4 counts and time since HIV diagnosis 
(years between the date of HIV diagnosis and the sample collection), although proportion of males was higher 
in TX compared to EC group. Median length of EC status in EC group was 6 [3–12] years and median length 
of cART in TX group was 12 [9–16] years. Plasma HIV load and CD4 counts in TP group (typical progressor 
patients naïve for cART and with high levels of pVL, n = 10) were 4.79[4.46–4.91] log HIV-RNA copies/mL 
and 599 [518–832] cells/uL respectively. Levels of HIV-DNA in resting memory CD4 T (Trm) and peripheral T 
follicular helper (pT�) cells were lowest in EC patients (381 [74–1002] and 88 [73–291] copies/million cells in 
Trm and pT� respectively) and highest in TP patients (6768 [3674–12673] and 7737 [4921–9044] copies/million 
cells in Trm and pT� respectively), with an intermediate level in TX group (1197[619–1623] and 723 [393–1199] 
copies/million cells in Trm and pT� respectively). Moreover, when comparing only EC and TX patients, levels 
of HIV-DNA in pT� cells were signi�cantly lower in EC (p = 0.025) and a similar trend was found for Trm cells 
although the di�erence was not statistically signi�cant (p = 0.063).

Levels of CD32 expression on different CD4 subsets. Levels of CD32 expression in total CD4, Trm 
and pT� cells were analyzed by multiparameter �ow cytometry. Supplementary Fig. S1 shows a representative 
example of CD32 staining in the di�erent groups of subjects analyzed. In all subjects analyzed the population of 
CD32+ cells consisted mainly of CD32+dim cells and to a much lesser extent of CD32+bright cells. Interestingly, 
the majority of CD32+bright expressed the activation marker HLADR, except in Trm cells that by de�nition where 
HLADR-negative (Supplementary Fig. S1).

In the global comparison (Kruskal-Wallis test), levels of total CD32+ cells (dim + bright) in the di�erent 
CD4 T cells subsets analyzed were not signi�cantly di�erent between the di�erent groups of individuals (Fig. 1, 
le� graph). Overall, levels of total CD32+ cells tended to be higher in TP compared to TX, EC and HC groups in 
total CD4 T cells (median values: 10.1%, 6.6%, 9.2% and 9.2% respectively) and pT� cells (median values: 4.6%, 
3.3%, 2.7% and 3.5% respectively), although di�erences were not statistically signi�cant. Similar results were 
obtained when comparing EC versus TX groups. In Trm cells, EC showed the highest CD32 expression compared 
to TX, TP and HC groups (median values: 4.4%, 1.6%, 3.7% and 1.9% respectively). Levels of CD32+bright cells 

Characteristic

Study Group

p-valuea p-valuebEC TX TP

n 10 10 10 — —

Age (Years) 42 [35–48] 47 [44–51] 37 [31–44] 0.034 0.112

Male (%) 50 90 90 0.003 0.074

Viral load (Log copies/mL) 1.7 1.7 4.79[4.46–4.91] <0.001 NA

CD4 counts (cells/µL) 872 [634–982] 988 [585–1469] 599 [518–832] 0.354 0.595

Time since HIV diagnosis (Years) 12 [4–14] 13 [11–16] 4.5 [2–5] 0.001 0.234

Lenght of EC status (Years) 6 [3–12] NA NA — —

Lenght of treatment (Years) NA 12 [9–16] NA — —

HIV-DNA in Trm cells 381 [74–1002] 1197[619–1623] 6768 [3674–12673] <0.001 0.063

HIV-DNA in pT� cells 88 [73–291] 723 [393–1199] 7737 [4921–9044] 0.001 0.025

Table 1. Characteristics of HIV patients included in the study. Data are given as median [IQR], except sex, 
expressed as %; HIV-DNA content is expressed as copies/million cells; p-valuea: comparison between the 
3 HIV-infected groups (Kruskal-Wallis test); p-valueb: comparison between EC and TX groups (U-Mann-
Whitney test, except sex, evaluated with χ2 test); NA: not apply.
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were much lower compared to total CD32+ cells, especially in the Trm subset of CD4 cells (Fig. 1, right graph) 
in agreement with the �nding that most CD32+bright expressed the activation marker HLADR (Supplementary 
Fig. S1). Levels of CD32+bright in total CD4 T cells and in Trm cells were similar in the di�erent groups of subjects 
analyzed (median values in total CD4 T cells: 0.079%, 0.075%, 0.073% and 0.048%; median values in Trm cells: 
0.011%, 0.001%, 0.003% and 0.004% for EC, TX, TP and HC groups respectively), but in pT� subset, levels of 
CD32+bright cells were signi�cantly higher in uninfected subjects (0.47%) compared to EC, TX and TP groups 
(0.21%, 0.12% and 0.17% respectively, p = 0.009) (Fig. 1, right graph).

Intragroup comparisons were performed to ascertain di�erences in CD32 expression by di�erent subsets 
of CD4 T-cells (Supplementary Fig. S2). Regarding levels of CD32+ cells, a similar pro�le was observed in all 
study groups, with higher levels of CD32 expression in total CD4 cells compared to the rest of CD4 subsets, 
being the di�erences statistically signi�cant in all groups of subjects except in TP patients. Interestingly, levels of 
CD32+bright cells showed a di�erent pro�le with lower levels in total CD4 cells compared to pT� subset, and with 
the lowest levels observed in Trm subset.

Phenotype of CD32+ cells. Several aspects of CD32+ cells were assessed by multiparameter �ow cytom-
etry. Supplementary Fig. S3 shows heat map diagrams showing the di�erences observed in the level of expression 
of the di�erent markers analyzed, comparing the di�erent groups of HIV patients with the group of uninfected 
subjects. CD32+ cells from total CD4 cells of TP patients exhibited several alterations, mainly increased levels 
of senescence (CD28−CD57+ subset) and activation (HLADR+CD127−subset), increased expression of PD1 
marker and decreased expression of CD127 and CXCR3 markers. A similar pro�le of alterations was observed 
in CD32+ cells from Trm cells of TP patients. CD32+ from pT� of TP patients also presented some immune 
alterations though to a lesser extent. Many of these phenotypic alterations were statistically signi�cant compared 
to uninfected subjects (Supplementary Fig. S4).

CD32+ cells from HIV patients with suppressed viremia (TX and EC groups) presented lesser immune alter-
ations when compared to uninfected subjects. Overall, CD32+ cells from EC patients presented lower number 
of alterations than CD32+ cells from TX patients and the pro�le of alterations was not the same for TX and 
EC groups with some di�erences between them. In TX patients, CD32+ cells from total CD4 and from Trm 
cells presented increased levels of senescence and decreased expression of CD127 and of CCR6, whereas in EC 
patients the only alterations were an increased expression of PD1 and a decreased expression of CD127 and of 
CD28. Very few alterations were observed in CD32+ cells from pT� subset in both TX and EC patients. Some 
of these alterations were statistically signi�cant compared to uninfected subjects (Supplementary Fig. S4). Lastly, 
the phenotypic pro�le of CD32+ cells was compared between EC and TX groups of patients. �ere were some 
di�erences, although most of them were not statistically signi�cant, likely due to the small sample size (Fig. 2). 
Overall, CD32+ cells from total CD4 and from Trm cells of EC patients expressed higher levels of CCR6 marker, 
whereas an increased expression of HLADR and a diminished expression of CD28 was observed in CD32+ cells 
from pT� cells of EC patients compared to those of TX patients (Fig. 2). Further studies with larger cohorts of 
patients are needed to corroborate these �ndings.

�e di�erential expression of several markers in the CD32+ cells from di�erent groups of patients could 
be associated to the di�erent phenotype of HIV patients included in the study, some with high plasma viral 
load and others with undetectable viremia, and thus could equally a�ect both CD32+ and CD32-negative sub-
sets. To address this we analyzed the phenotype of CD32-negative cells and compared with the phenotype of 
CD32+ cells. Heat map diagrams showing the ratio of the expression level of the di�erent markers between 
CD32+ and CD32-negative cells (Supplementary Fig. S5) demonstrate clear di�erences in the phenotypic pro�le 
between these two subsets of cells. Independently of the group of subjects (EC, TX, TP or HC), CD32+ cells 
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Figure 1. Box-plots showing the levels of CD32+ (dim + bright) (le� graph) and of CD32+bright (right graph) 
cells in di�erent subsets of CD4+ T-cells from uninfected subjects (green boxes), elite controller (blue boxes), 
cART-suppressed (red boxes) and cART naive (yellow boxes) HIV patients. P-values for the global comparison 
(Kruskall-Wallis test) are shown. Dotted line in the right graph represents the threshold for detection of 
CD32+bright cells (0.01% of cells), established using the �uorescence minus one (FMO) control. ns: non 
signi�cant (p > 0.05).
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were more senescent (CD28−CD57+), more exhausted (PD1+) and more activated (HLADR+ and/or CD38+) 
than CD32-negative cells. In contrast CD32+ cells showed a lower expression of CD28 and CD127 compared to 
CD32-negative cells. �ese di�erences were observed in total CD4 T cells, in Trm and in pT� cells.

Correlation between CD32 expression and total HIV-DNA content. In the whole population of 
HIV patients (EC, TX and TP groups together), we explored the potential correlations between CD32 expression 
in di�erent subsets of CD4 cells (total CD4 cells, Trm cells and pT� cells) and the total HIV-DNA levels in Trm 
and pT� subsets of CD4 cells. �ere were no signi�cant correlations (Supplementary Table S6).

However there were several signi�cant correlations between the phenotype of CD32+ cells and total HIV-DNA 
level in the di�erent subsets of CD4 cells (Supplementary Table S6). Expression of CD127 by CD32+ cells from total 
CD4 T cells was correlated with HIV-DNA levels in Trm cells; on the other hand, signi�cant correlation between 
CD127 and CD57 expression on CD32+ cells from total CD4 T cells and total HIV-DNA in pT� cells was observed. 
A similar pro�le was found for the phenotype of CD32+ cells from Trm cells, with CD127 and CD57 markers being 
the ones that showed the highest correlations with HIV-DNA levels in Trm cells (Supplementary Table S6).

Since the expression levels of these phenotypic markers varied across the di�erent groups of HIV patients 
(TP with high level of plasma viremia versus EC and TX with undetectable plasma viremia), a partial correla-
tion coe�cient was calculated a�er adjusting by this factor. A�er doing this, the majority of signi�cant correla-
tions disappeared (data not shown). �e only correlations that remained signi�cant a�er adjusting by type of 
patient were the CCR6 expression on CD32 cells from total CD4 cells with HIV-DNA level in Trm cells and the 
CD127 expression on CD32 cells from total CD4 cells with HIV-DNA level in pT� cells (Fig. 3). Interestingly, 
CCR6 expression on CD32-negative CD4 T cells was also signi�cantly correlated with total HIV-DNA level in 
Trm cells (data not shown), suggesting that CCR6 marker is associated to HIV-DNA content independently of 
CD32 expression and supporting a more relevant role for CCR6 than for CD32 in the HIV-DNA content of the 
Trm cells. In contrast to CCR6, no correlation between CD127 expression on CD32-negative CD4 T-cells and 
total HIV-DNA was observed (data not shown). �us, the expression of CD127 seems to be associated to total 
HIV-DNA only in CD32+ cells.

Interestingly, the same analysis only in the groups of patients with undetectable plasma HIV viremia (EC 
and TX groups) revealed that only the expression of CCR6 marker on CD32+ cells was correlated with levels of 
HIV-DNA in Trm cells and this correlation remained signi�cant a�er adjusting by type of patient (Fig. 3). �e 
same was observed for CCR6 in CD32-negative CD4 T-cells (data not shown).

Discussion
�e present study was designed to test the suitability of CD32 molecule as a marker of cells carrying latent HIV 
and thus as a surrogate measure of HIV-DNA content. For this purpose, we measured levels of CD32 in total CD4 
cells and in subsets of CD4 cells carrying persistent HIV in di�erent groups of HIV-infected patients, and checked 
the potential correlations between CD32 expression and levels of total HIV-DNA in di�erent subsets of CD4 
cells. �e main �ndings of our study are: a) �ere were no signi�cant di�erences in the level of CD32 expression 
by CD4 cells between di�erent groups of HIV patients strati�ed according to the level of HIV viral suppression; 
b) Levels of CD32 expression did not correlate with levels of total HIV-DNA; c) Expression of certain markers 
by CD32 cells did correlate with the levels of total HIV-DNA; d) CD32+ cells present a di�erential phenotype 
compared to CD32- cells, highlighting the increased expression of HLA-DR what could support that this CD32+ 
subpopulation is involved in productive HIV infection more than in latent infection.

CD32 has been recently proposed as a potential marker of cells carrying latent HIV15 and this has raised 
great expectations since an easily measurable marker of HIV latency would be an invaluable tool in the �ght 
against HIV reservoirs. Brie�y, the �ndings in the study by Descours et al. pointing to CD32 as a potential marker 
of HIV reservoir were: selective induction of CD32 a�er infection of resting CD4 cells; several hundred-fold 
enrichment of HIV-DNA in CD4 cells expressing CD32, especially in the very rare CD32bright population; several 
thousand-fold enrichment of inducible replication-competent virus in CD32+ cells. However, as the authors 
point out, not all HIV-DNA was present in CD4 cells expressing CD32 and not all CD32+ cells carried HIV-DNA.

To test the potential utility of CD32 as marker of cells carrying latent HIV, we �rst compared the levels of 
CD32+ cells in di�erent subsets of CD4 cells harbouring proviral HIV-DNA and in di�erent groups of HIV 
patients with di�erent levels of HIV control and of total HIV-DNA levels, under the assumption that CD32 
expression will parallel the levels of total HIV-DNA. However, our results demonstrate similar levels of CD32 

Figure 2. Box-plots showing the levels of di�erent subsets of CD32+ cells from total CD4+ cells (A), from Trm 
cells (B), and from pT� cells (C) in elite controller HIV patients (blue boxes), and in cART-suppressed patients 
(red boxes). P-values for Mann-Whitney U test are shown.
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expression in the di�erent groups of patients analyzed, in spite of the di�erent levels of total HIV-DNA observed 
in these groups of patients, in agreement with very recently published studies20,21. �is �nding was independent of 
the CD4 cell subset analyzed (total CD4, Trm or pT� subsets) and is in agreement with a very recent report show-
ing only very slight di�erences in the levels of CD32 expression when comparing HIV patients (either viremic 
or aviremic) and uninfected subjects22. Moreover, in our study we were able to clearly di�erentiate two popula-
tions of CD32+ cells in the majority of individuals analyzed: a dim population comprising the great majority of 
CD32+ cells and a very scarce bright population, in agreement with the study of Descours et al.15. Interestingly 
the CD32+bright population presented the highest enrichment in HIV-DNA in the study of Descours et al.15. �us 
we tested if the levels of CD32+bright cells di�ered among HIV patients according to levels of total HIV-DNA. As 
for total CD32+ cells, we did not �nd signi�cant di�erences between the di�erent groups of patients. Lastly, we 
compared levels of CD32 in di�erent subsets of CD4 cells and found that CD32 was not preferentially expressed 
on those subsets where the majority of latently infected cells reside (Trm and pT� cells), being the expression on 
total CD4 cells higher than in Trm or pT� subsets of CD4 cells, suggesting that other subsets of CD4 cells such 
as naïve cells and/or activated cells express even higher levels of CD32 than CD4 cells with memory phenotype, 
what is in agreement with a very recent study showing a positive correlation between CD32 expression and acti-
vation levels of T cells22. Taken together, our results regarding the levels of CD32+ cells do not support CD32 as 
a surrogate marker of latently HIV infected CD4 cells.

Next, we analyzed the potential correlations between the level of CD32 expression and the levels of total 
HIV-DNA in di�erent subsets of CD4 cells and found no signi�cant correlations, in agreement with recent 
reports20–22. Only a slight trend of correlation between CD32 expression on pT� cells and total HIV-DNA levels 
in this subset was found, that disappeared a�er adjusting by the type of patient (with or without detectable HIV 
viremia). �is lack of correlation is in accordance with the results regarding the levels of CD32 and reinforces the 
lack of support to CD32 as a surrogate marker of latently HIV-infected cells in HIV patients with di�erent degrees 
of viral replication.

We also evaluated the expression of several phenotypic markers by CD32+ cells in order to check for the 
existence of phenotypic di�erences between the di�erent groups of HIV patients that could be associated with 
the levels of total HIV-DNA. CD32+ cells from TP patients presented several phenotypic alterations as compared 
to cells from uninfected subjects. Overall, CD32+ cells from HIV patients with uncontrolled viral replication 
(TP) presented a more di�erentiated, activated and senescent phenotype as well as diminished expression of 
chemokine receptors CXCR3 and CXCR5. Some but not all of these alterations were normalized in patients with 
undetectable plasma viremia (TX and EC) and interestingly there were some di�erences in the phenotypic pro�le 

Figure 3. Scatter-plots showing the correlations between phenotype of CD32+ cells and levels of total HIV-
DNA in di�erent subsets of CD4 cells, in the whole population of HIV patients (upper row) and in patients with 
undetectable plasma viremia (lower row). Partial correlation coe�cients and p-values a�er adjusting by type of 
patient are shown inside the plots.
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of CD32+ cells between TX and EC patients in spite of similar levels of HIV suppression. �ese phenotypic dif-
ferences between groups of patients were speci�c for CD32+ cells, since the majority of these di�erences did not 
exist when analyzing the phenotype of CD32-negative cells, suggesting that the disease phenotype (uncontrolled 
versus controlled viral replication) does not equally a�ect the phenotype of CD32+ and CD32-negative subsets 
of T cells. Moreover, we found some interesting phenotypic di�erences between CD32+ and CD32-negative cells 
suggesting that, compared to CD32-negative, CD32+ cells present a characteristic phenotype that could favor 
productive HIV infection in this cell subpopulation as has been recently suggested23.

Of the many phenotypic markers analyzed on CD32+ cells, CD127 and CCR6 were among the markers show-
ing the highest di�erences between groups of patients. Moreover, CD127 and CCR6 were the only markers that 
showed a signi�cant correlation with levels of total HIV-DNA a�er adjusting by patient´s group. Both corre-
lations were inverse and thus lower levels of CD127 or CCR6 expression on CD32+ cells were associated with 
higher levels of total HIV-DNA, suggesting a role for these markers in HIV reservoir. CD127 is the receptor for 
IL7, a cytokine with a pivotal role in T-cell homeostasis24 and in CD4 memory cells survival and expansion25. 
�e role of IL7 in HIV persistence is controversial and previous studies have reported both a latency-reversing 
e�ect26,27, but also priming for HIV-reservoir maintenance due to the e�ect of IL7 on survival and expansion of 
infected CD4 cells28–30. �e inverse association we found between CD127 expression by CD32+ cells and total 
HIV-DNA content suggest that cells not expressing CD127, and thus not able to respond to IL7, could have a 
higher contribution to HIV reservoir. We did not measure total HIV-DNA in cells according to CD127 expression 
and thus we couldn´t con�rm this hypothesis. In contrast to our hypothesis, a previous study reported that the 
majority of HIV-DNA in CD4 T cells is present in CD127+ cells31, although they did not compare HIV-DNA 
levels between CD127+ with CD127- cells and thus the question is still open.

CCR6 expression was inversely correlated to levels of total HIV-DNA in the whole population of HIV patients. 
Interestingly this correlation was also observed in HIV patients with undetectable HIV plasma viremia (EC and 
TX groups together), suggesting a role for this marker in HIV reservoir in patients with complete suppression of 
viral replication. CCR6 plays an important role in redirecting T cells to gut-associated lymphoid tissue (GALT)32 
and is considered a marker of �17 cells33. Di�erent �ndings support a multifaceted role for CCR6 in HIV patho-
genesis, contributing to both HIV dissemination and to immunity against HIV34. Regarding HIV reservoirs, two 
recent studies have shown that CCR6+ CXCR3+35 or CCR6+36 cells are enriched in HIV-DNA, supporting a 
role for CCR6 in the maintenance of HIV persistence37. �e inverse association we found between CCR6 and 
total HIV-DNA seems counterintuitive with these studies. However, other mechanisms not related to di�erential 
content of HIV-DNA in CCR6+ versus CCR6- could explain the inverse association. For example, longer survival 
and proliferation of CCR6+ cells38 could dilute the contribution of CCR6-expressing cells to HIV-DNA and this 
would explain the inverse correlation. Also, given that CCR6 is a marker of �17 cells, the inverse correlation 
could simply re�ect the fact that those patients with lower total HIV-DNA (EC) are also able to maintain a more 
preserved mucosal immunity as indicated by a more preserved �17 population39. Lastly, the relatively low corre-
lation coe�cient may suggest a spurious correlation biased by other factors not controlled in our study.

�ere are some controversial issues in our study. First, Descours et al. described the selective induction of 
CD32a a�er HIV infection of resting CD4 T cells; however, there is no an available antibody speci�c for CD32a. 
�e only antibody designed to detect the CD32a isoform has shown a very low resolution40. �e anti-CD32 anti-
body clone FUN-2 used in our study and in the study by Descours et al.15 does not distinguish between di�erent 
CD32 isoforms (CD32a, CD32b and CD32c)20,23,41 and thus, we cannot distinguishing them by �ow cytometry. 
�erefore, a particular isoform of CD32 cannot be associated with enrichment in HIV-DNA. Second, the meas-
urement of total HIV-DNA and the absence of virus growth assays to evaluate replication-competent virus in our 
study could raise concerns; however, several authors recently noted the relevance of measuring total HIV-DNA 
as a marker of viral reservoir dynamics with clinical implications42,43. �e authors suggested that both integrated 
and total HIV-DNA provides an inducible and functional reservoir and predicts ex vivo viral outgrowth43,44. 
Additionally, it has been highlighted that the establishment of HIV latency and virus production from uninte-
grated genomes follows direct infection of resting CD4+ T-cells45. Moreover, the use of ddPCR to quantify the 
total HIV-DNA levels has been associated with greater precision and reproducibility to quantify low HIV-DNA 
levels compared to other techniques measuring integrated HIV-DNA46.

In summary, ours is the �rst study performing an in-deep characterization of CD32+ cells in HIV patients with 
di�erent levels of HIV suppression and cell-associated HIV-DNA with the aim to ascertain the suitability of CD32 
as a surrogate marker of total HIV-DNA levels. Overall the results of our study do not support the use of CD32 
as marker of cells carrying latent HIV and sheds light on the phenotype of CD32+ cells, highlighting important 
phenotypic di�erences potentially associated with HIV persistence and prompting the necessity of further studies 
with larger cohort of HIV patients to both validate our results and to explore the potential utility of certain markers 
expressed by CD32+ cells that could potentially improve the utility of this marker in the clinical setting.

Materials and Methods
Study population. �is is a cross-sectional study including patients with chronic HIV-1 infection distrib-
uted in three di�erent groups: 10 elite controller (EC group) patients with undetectable HIV plasma viremia 
(pVL) in the absence of antiretroviral therapy (cART); 10 cART-suppressed patients maintaining undetectable 
pVL (TX group); and 10 typical progressor patients naïve for cART and with high levels of pVL (TP group). 
Patients were recruited from four di�erent hospitals in Madrid, Spain, during a period of 12 months. Inclusion 
criteria for HIV patients have been described elsewhere47. A group of 10 uninfected subjects were also included 
as control group (HC group). �e study protocol was approved by the Ethical review board of the Instituto de 
Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain in accordance with the declaration of Helsinki. 
All individuals participating in the study signed an informed consent form.
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Purification of resting memory CD4 T (Trm) and peripheral follicular helper T (pTfh) cells.  
Starting form fresh peripheral blood mononuclear cells (PBMCs), two di�erent subsets of CD4 T-cells were puri-
�ed: resting memory CD4 T (Trm) cells (de�ned as CD4+CD45RO+CD25−CD69−HLADR−) and peripheral 
T follicular helper (pT�) cells (de�ned as CD4+ CD45RO+ CXCR5+). For this purpose, immunomagnetic sep-
aration was employed as has been described elsewhere47. Purity of each CD4 subset was tested by �ow cytometry 
using a Sony Spectral �ow cytometer. Median [Interquartile range] purity for the Trm cells in the whole popula-
tion of subjects analyzed was 95%[93–97%] and for the pT� cells was 92%[90–93%].

Measurement of cell-associated HIV DNA. Proviral HIV DNA was quanti�ed in Trm and pT� cells 
from each HIV patient. Total cellular DNA was extracted using a QiAmp DNA Mini-Kit following manufacturer 
instructions. Content of HIV DNA (expressed as copies of HIV-DNA per million cells) was quanti�ed using an 
ultrasensitive digital droplet PCR (ddPCR) as has been already described47.

Immunophenotypic analysis. Levels of CD32 expression in Trm, pT�, and total CD4 cells, as well as phe-
notype of CD32+ cells, were analyzed by multiparametric �ow cytometry. For this purpose, three di�erent panels 
of monoclonal antibodies were designed to stain PBMCs, Trm and pT� cells respectively. Each panel included 11 
di�erent monoclonal antibodies plus a cell viability dye. Using these staining panels, di�erent characteristics of 
CD32+ cells were analyzed, including senescence, apoptosis, activation, exhaustion, homing potential, response 
to homeostatic cytokines (CD127 marker, receptor of IL7 cytokine involved in B and T cell development), as well 
as expression of chemokine receptors CXCR3, CCR6 and CXCR5. A list of monoclonal antibodies included in 
each staining panel is shown in Supplementary Table S7 and a detailed description of staining and analysis pro-
tocol in Supplementary Methods.

Statistical analysis. �e main characteristics of the study groups are expressed as median [interquartile 
range]. Di�erences between the di�erent groups of subjects for the di�erent parameters analyzed were tested 
using non-parametric tests (Kruskall-Wallis, Mann-Whitney U-test and Wilcoxon signed-rank as appropriate). 
Spearman´s Rho correlation coe�cient was used to test the existence of correlations between continuous varia-
bles and Chi-square test for the association between categorical variables. All statistical analyses were performed 
using SPSS so�ware version 15 (SPSS Inc., Chicago, IL, USA). Heat map diagrams were realized using GraphPad 
Prism version 7 (GraphPad So�ware, CA, USA). All p-values were two-tailed and were considered signi�cant 
when lower than 0.05.

Data Availability Statement
All data generated or analyzed during this study are included in this published article.
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