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Abstract: Plasmodium falciparum-infected erythrocytes (Pf IEs) present P. falciparum erythrocyte mem-
brane protein 1 proteins (Pf EMP1s) on the cell surface, via which they cytoadhere to various endothe-
lial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing
through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 dif-
ferent Pf EMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners.
Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded Pf EMP1s have
a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and
many other cell types. Here, we discuss why the interaction between Pf IEs and CD36 is optimal to
maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing
minimal harm to the host in most infections.

Keywords: Plasmodium falciparum; malaria; sequestration; cytoadhesion; endothelial cell recep-
tor; CD36

1. Introduction

Despite progress in malaria control, malaria remains one of the most important infec-
tious diseases worldwide. In 2020, about 267 million malaria cases, including 409,000 deaths,
were recorded [1]. Concerning all malaria parasites, the deadliest, Plasmodium falciparum,
has a complex life cycle that alternates between Anopheles mosquitoes and humans. The
asexual cycle that takes place in humans consists of the liver stage (multiplication of the
parasite in hepatocytes) and the intraerythrocytic cycle (multiplication of the parasite in
erythrocytes). Each intraerythrocytic cycle lasts approximately 48 h, during which the
merozoite that invaded the erythrocyte develops through the ring stage to the tropho-
zoite and finally the schizont. At the end of the intraerythrocytic cycle, the newly formed
merozoites are released, ready to invade new erythrocytes. Some merozoites develop
into gametocytes, which must be taken up by female Anopheles mosquitoes to complete
their sexual development. The complexity of the parasite’s life cycle and its masterful
ability to evade its elimination by the host immune system challenge our efforts to combat
the disease.

To survive in the human host, P. falciparum has evolved unique mechanisms, two of
which, called sequestration and antigenic variation, rely mainly on a highly diverse protein
family, the P. falciparum erythrocyte membrane protein 1 (Pf EMP1). The Pf EMP1s, which
the parasite exposes on the surface of its host cell from the trophozoite stage onwards, have
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at least a dual function. First, they bind to various endothelial cell receptors (ECRs) on the
walls of blood vessels (sequestration), thereby disappearing from the peripheral circulation
and bypassing removal by the spleen. Unlike other plasmodial species, the deformability
of P. falciparum infected erythrocytes (Pf IEs) decreases as the parasite matures, so that
circulating trophozoites and schizonts would be retained in the spleen and removed from
circulation by resident macrophages [2–6]. Second, Pf EMP1 represents the main target of
the humoral immune response [7], but due to the presence of numerous copies of var genes
encoding Pf EMP1, the parasite can sequentially present different Pf EMP1 variants on the
surface of its host cell and use them for sequestration. The ability to alter the presented
Pf EMP1 by antigenic variation enables the parasite to stay one step ahead of the immune
system and maintain long-lasting, chronic infections, e.g., for bridging dry seasons [8–12].

2. The PfEMP1 Family

The Pf EMP1 family is encoded by about 45–90 var genes per parasite genome [12].
Expression of the var genes is mutually exclusive in ring-stage parasites, such that only a
single Pf EMP1 variant is present on the surface of trophozoite- or schizont-stage Pf IEs at
any given time [13,14] for review [10]. Mutually exclusive expression relies on very complex
mechanisms. These are based on both epigenetic regulation and cis-acting DNA elements
and RNA transcripts involved in var gene activation and silencing (for review [10]).

The var genes and their encoding Pf EMP1s vary greatly from parasite to parasite,
and recombination constantly generates new variants, so there is an enormous repertoire
of var genes in nature [13–16]. The molecular masses of Pf EMP1s range from 150 to
400 kDa. These proteins consist of an intracellular acidic terminal segment (ATS domain),
a transmembrane domain, and a variable, extracellularly exposed region responsible for
receptor binding. This extracellular region contains a single N-terminal segment (NTS; main
classes A, B, and pam) and a variable number of different Duffy binding-like domains (DBL;
main classes α–ζ and pam) and cysteine-rich interdomain regions (CIDR; main classes
α–δ and pam) [17–20]. Approximately two-thirds of var genes localize in the subtelomeric
regions of the chromosomes. Most of the subtelomeric and central localized var genes are
located in regions of electron-dense heterochromatin at the nuclear periphery, with the
active var gene shifting to the region of lower electron density [14]. Depending on the
chromosomal localization, the upstream sequence, and the direction of transcription of the
var genes, Pf EMP1s can be classified as A, B, C, or E [17,21–23].

A few conserved, strain-transcendent var variants have been described: var1, var2csa
(group E), and var3. The var1 gene occurs in two variants in the parasite population, var1-
3D7 and -IT, is often conserved as a pseudogene, and the encoded protein may not be
presented on the erythrocyte surface [12,24]. VAR2CSA has an atypical domain architecture,
mediates binding to chondroitin sulfate A (CSA) in the placenta, and is, thus, important
in pregnancy-associated malaria [25]. VAR3 proteins are very short Pf EMP1s with un-
known receptor binding phenotypes [26]. Analysis of 399 different Pf EMP1 sequences
from seven P. falciparum genomes allowed the identification of 23 domain cassettes (DCs)
that could be important for protein folding and binding to human ECRs, as well as for
reflecting recombination breakpoints [17]. About 10% of Pf EMP1s variants belong to group
A and are usually longer proteins with a head structure that includes a DBLα1 and either
a CIDRα1 domain (CIDRα1.4–7) that binds to the endothelial protein C receptor (EPCR)
or a CIDRβ/γ/δ domain with unknown receptor binding phenotype [12]. Groups B and
C make up the majority of Pf EMP1s (at least 75%) and typically have DBLα0-CIDRα2–6
head structures that bind to CD36, followed by only two additional extracellular domains
(DBLδ1, CIDRβ/γ). A subset of chimeric B-type proteins (group B/A, also known as
DC8-containing proteins) has a DBLα2 domain (chimeric DBLα0/1 domain) and an EPCR-
binding CIDRα1.1 or CIDRα1.8 domain typically attached to a complement component
C1q receptor (C1qR)-binding DBLβ12 domain [27–34]. Thus, the head structure confers
mutually exclusive binding properties to either EPCR (14%), CD36 (72%), CSA (3%), or to
one or more unknown ECRs via the CIDRβ/γ/δ domains (10%) or VAR3 (1%) [35]. Con-
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cerning the C-terminal to the head structure, most Pf EMP1s have additional DBL domains,
of which certain subsets of the DBLβ domains bind intercellular adhesion molecule-1
(ICAM-1) [36,37] or C1qR [38]. As an example, the Pf EMP1 repertoire of the P. falciparum
isolate IT4 is shown in Figure 1.
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Figure 1. Pf EMP1 repertoire of the P. falciparum isolate IT4, adapted from [17]. ECR binding phe-
notype [36]. Color code: light brown: N-terminal segment (NTS); bright green: Duffy binding-like
(DBL)α1; light blue: DBLα2, DBLα0; dark grey: Cys rich inter-domain regions (CIDR)α1; light grey:
CIDRα2–6; dark green: CIDRγ; orange: DBLβ; yellow: DBLγ; green: DBLδ; pink: DBLε; blue: DBLζ;
purple: DBLε; IT4var04: light yellow: DBL/CIDRpam: pink: DBLεpam.

3. Knobs—Anchor Point for PfEMP1s

Pf EMP1s are concentrated in nanoscale, electron-dense protrusions of the plasma
membrane of Pf IEs, the so-called knobs. They are formed in erythrocytes about 16 h
after parasite invasion and reach their highest density 20 h after infection [39,40]. Single
knobs have a hemispherical ellipsoid shape with a minor axis of 20 nm and a major axis of
120 nm [41]. Knobs are composed of various submembrane structural proteins, including
the major protein of this structure, knob-associated histidine-rich protein (KAHRP). These
consist of Pf EMP3, the ring-infected red cell antigen (RESA), the mature parasite-infected
red cell surface antigen (MESA)/Pf EMP2, and Pf 332 [41,42]. The knobs consist of a highly
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organized skeleton made of a spiral structure located beneath specialized areas of the
erythrocyte membrane (Figure 2) [43]. The arrangement of Pf EMP1s in a cluster near the
top of the knobs is assumed to increase the binding capacity of Pf IEs, especially under flow
conditions (see below) [44–47].

Microorganisms 2022, 10, x FOR PEER REVIEW 4 of 17 
 

 

3. Knobs—Anchor Point for PfEMP1s 
PfEMP1s are concentrated in nanoscale, electron-dense protrusions of the plasma 

membrane of PfIEs, the so-called knobs. They are formed in erythrocytes about 16 h after 
parasite invasion and reach their highest density 20 h after infection [39,40]. Single knobs 
have a hemispherical ellipsoid shape with a minor axis of 20 nm and a major axis of 120 
nm [41]. Knobs are composed of various submembrane structural proteins, including the 
major protein of this structure, knob-associated histidine-rich protein (KAHRP). These 
consist of PfEMP3, the ring-infected red cell antigen (RESA), the mature parasite-infected 
red cell surface antigen (MESA)/PfEMP2, and Pf332 [41,42]. The knobs consist of a highly 
organized skeleton made of a spiral structure located beneath specialized areas of the 
erythrocyte membrane (Figure 2) [43]. The arrangement of PfEMP1s in a cluster near the 
top of the knobs is assumed to increase the binding capacity of PfIEs, especially under 
flow conditions (see below) [44–47]. 

 
Figure 2. The knobs of PflEs. (A) Transmission electron micrographs of uninfected and synchronised 
trophozoite-stage P. falciparum culture 24–28 h post-infection. The parasites were cultivated in the 
presence of human serum (10%), and the PfIEs were subjected to gelatin sedimentation to enrich 
knobby PfIEs [40,48]. (B,C) atomic force microscopic three-dimensional images of the surface of un-
infected and trophozoite-stage PfIEs [40]. Images in (B) show magnifications directly from the mem-
brane surface of the erythrocytes shown in (C). (D) Simplified schematic illustration of the structure 
of knobs. 

4. Endothelial Cell Receptors (ECRs) 
At least 24 ECRs were described as binding partners for PfIEs. These include EPCR, 

gC1qR, ICAM-1, and CD36, mentioned above, as well as platelet endothelial cell adhesion 
molecule-1 (PECAM-1), CSA (adhesion to placental epithelium) [49], heparan sulphate, 
hyaluronic acid, neuronal cell adhesion molecule (NCAM), P-selectin, E-selectin, vascular 
cell adhesion molecule-1 (VCAM-1), thrombospondin, fractalkine, ανβ3- and αVβ6-integ-
rin, fibronectin, CD9, CD151, multidrug resistance protein 1 and 2, erythropoietin receptor 
1, and tumour necrosis factor receptor (TNFR) 1 and 2 [6,33,37,48,50–53]. To date, only a 
few ECRs have been shown to interact via PfEMP1, and PfEMP1 binding domains have 
only been identified for CD36, ICAM-1, EPCR, PECAM-1, and gC1qR [18,27,32,33,54].  

5. Cytoadhesion of PfIEs 
Cytoadhesion of PfIEs to ECRs in the vascular bed of organs, such as the brain, heart, 

lung, stomach, skin, and kidney is a central component of the pathogenesis of malaria [3–
6,55–57]. In addition to the blockage of capillaries by the cytoadhesion of the PfIEs, there 

Figure 2. The knobs of Pf IEs. (A) Transmission electron micrographs of uninfected and synchronised
trophozoite-stage P. falciparum culture 24–28 h post-infection. The parasites were cultivated in the
presence of human serum (10%), and the Pf IEs were subjected to gelatin sedimentation to enrich
knobby Pf IEs [40,48]. (B,C) atomic force microscopic three-dimensional images of the surface of
uninfected and trophozoite-stage Pf IEs [40]. Images in (B) show magnifications directly from the
membrane surface of the erythrocytes shown in (C). (D) Simplified schematic illustration of the
structure of knobs.

4. Endothelial Cell Receptors (ECRs)

At least 24 ECRs were described as binding partners for Pf IEs. These include EPCR,
gC1qR, ICAM-1, and CD36, mentioned above, as well as platelet endothelial cell adhesion
molecule-1 (PECAM-1), CSA (adhesion to placental epithelium) [49], heparan sulphate,
hyaluronic acid, neuronal cell adhesion molecule (NCAM), P-selectin, E-selectin, vascu-
lar cell adhesion molecule-1 (VCAM-1), thrombospondin, fractalkine, ανβ3- and αVβ6-
integrin, fibronectin, CD9, CD151, multidrug resistance protein 1 and 2, erythropoietin
receptor 1, and tumour necrosis factor receptor (TNFR) 1 and 2 [6,33,37,48,50–53]. To date,
only a few ECRs have been shown to interact via Pf EMP1, and Pf EMP1 binding domains
have only been identified for CD36, ICAM-1, EPCR, PECAM-1, and gC1qR [18,27,32,33,54].

5. Cytoadhesion of PfIEs

Cytoadhesion of Pf IEs to ECRs in the vascular bed of organs, such as the brain,
heart, lung, stomach, skin, and kidney is a central component of the pathogenesis of
malaria [3–6,55–57]. In addition to the blockage of capillaries by the cytoadhesion of
the Pf IEs, there is also an increased production of inflammatory cytokines, endothelial
dysfunction, and increased vascular permeability in the affected tissue [58,59]. As a result
of the immune response triggered by the growth and sequestration of the parasites, patients
develop fever, headache, muscle pain, and rigor [3,60–63]. Depending on the age and
immune status of the patient, severe, fatal complications such as cerebral malaria (CM),
lung damage, kidney failure, acidosis, and severe anemia may occur [3,62,63]. Both children
and adults can be affected by cerebral malaria, but while severe malaria puts children at
higher risk for anemia and convulsions, liver dysfunction and kidney failure are more
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common in adults. In addition, the clinical picture of severe malaria clearly depends on
age, with mortality increasing significantly with age [64].

6. Pathology Induced by Cytoadhesion

Different Pf EMP1s have different binding properties to ECRs and are associated with
different clinical outcomes (see review [4]). Several studies have shown that severe malaria
is associated with the expression of group A and B/A Pf EMP1s and, in particular, with
variants possessing EPCR binding capacities [65–69]. In contrast, infections dominated by
CD36-binding parasites show mild disease courses [33,35,68,70–72].

Since Pf EMP1s are multi-domain proteins, it has already been shown that some vari-
ants can mediate adhesion to multiple ECRs (dual binder) [36,37,73,74]. Examples include
Pf EMP1 variants that interact with ICAM-1 and EPCR or CD36. Dual binding to ICAM-1
and EPCR specifically enhances the binding of Pf IEs to endothelial cells (ECs) under physi-
ologically higher shear stresses. Expression of these variants has been associated with an
increased risk of developing CM, including induction of brain swelling and disruption of
the blood-brain barrier [36,74–76]. Less is known about the role of dual ICAM-1 and CD36
binding Pf EMP1s, mainly of group B, but ICAM-1 and CD36 have been shown to work
together to enhance the binding of Pf IEs to microvascular cells [27,37,66,77,78].

7. ECR-Specific Expression in Relation to the Origin of the Endothelial Cells

ECs derived from different organs presenting different ECRs on their cell surface. It
is known that EPCR and ICAM-1 are presented on brain ECs and are mainly bound by
DC8- and group A Pf EMP1s [33,36,74,75,79]. Ortolan and colleagues have recently shown
that the same Pf EMP1s that cytoadhere to brain ECs also bind EPCR intestinal and renal
ECs. In this context, it is suggested that a binding axis between the brain, gut, and kidney
may contribute to the multi-organ complications of severe malaria [80]. In contrast, CD36
is not presented on brain ECs, or only in very low amounts, and was also not detected
on intestinal and peritubular renal ECs [81,82]. Thus, in contrast to EPCR, CD36 seems to
occur mainly in the microvascular beds of non-vital organs. As mentioned above, several
studies have linked EPCR- or dual EPCR- and ICAM-1-binding Pf EMP1s to severe malaria,
which most likely occurs in individuals without preformed immunity [33,68,72,79,83–85].
For example, Wichers and colleagues recently demonstrated a clear association between the
expression of Pf EMP1s, which have an EPCR-binding phenotype, with first-time infection
and severe malaria [84]. Transcripts for CD36-binding variants were found more frequently
in parasites from non-severely infected and pre-exposed patients.

Interestingly, however, in the same study, CD36-binding variants are overrepresented
in all groups of adult malaria patients analyzed, even in severe cases and in first-time
infected individuals [84], which is in stark contrast to the pattern seen in severely ill chil-
dren [70]. The authors speculate that this could be the reason for multisystemic disease
symptoms in adult malaria patients. Alternatively, parasites in these less ill adult patients
compared to children could have a less dominant expression of EPCR-binding Pf EMP1 [84].
Further studies also showed that parasite cytoadhesion to CD36 correlates with the develop-
ment of mild malaria [70,85,86]. Accordingly, both factors, the already acquired immunity
and the age of patients, seem to favor the expression of CD36-binding variants.

8. Hierarchy of var Expression during the Human Blood Phase

Independent analyses of first-generation blood-stage parasites from malaria-naive
human volunteers infected with P. falciparum sporozoites have shown remarkably consis-
tent expression of a broad repertoire of var genes, primarily type B (P. falciparum strain
NF54: [87–90]; unpublished data for P. falciparum strain 7G8). This broad expression pattern
is modulated by existing host immunity. In African pre-exposed individuals, the expression
of many variants at the parasite population level is reduced to very few or a single B-type,
possibly reflecting gaps in the host antibody repertoire [91]. In severe disease, expression
of var genes shifts toward group A or A/B for unknown reasons, resulting in expression
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of Pf EMP1 with EPCR and/or ICAM-1 or a yet unknown binding domain [65,84,92–96].
Group A Pf EMP1s are therefore thought to possess binding phenotypes that confer a selec-
tive advantage for parasites to replicate asexually, e.g., by decreasing splenic clearance, but
at the same time favors the development of severe malaria [31]. In this context, it has been
shown that antibodies for the EPCR binding domains (CIDRα1.1/4–8) are acquired faster
and earlier in life than those to the CD36 binding domains (CIDRα2–6) in endemic areas and
that this is associated with protection against severe malaria, including CM [31,65,95,97,98].
This raises the question of the evolutionary advantage of A-type expression for the parasite
since cytoadhesion in vital organs via EPCR and ICAM-1 may lead to rapid death of in-
fected individuals and thus not to transmission of the parasite to the mosquito. On the other
hand, the rapid development of the protection of individuals from severe malaria could
therefore be an advantage for the parasites, as they would be less likely to harm their hosts
in the event of re-infection [93]. Later in the course of asymptomatic infection, Pf IEs appear
to have altered cytoadherence properties, as more developed, “older” parasites circulate
in the blood than in symptomatic cases. This observation suggests that these parasites
either express a lower total amount of Pf EMP1 on the host cell surface or a different set
of Pf EMP1 variants with less adhesive binding domains [99]. Since it is already known
that chromosomal location determines the on-and-off rate of var genes [100], it would
be plausible that parasites in primary infections initiate expression of the most telomeric
B-type var genes, then tend to express A-types during severe disease, but in the case of
long-lasting asymptomatic infections may then express centrally located C-types, which are
known to have very slow off rates in comparison to subtelomeric var genes. The concept of
an initial high var gene switching rate to establish infection and a slower switching rate of
later expressed genes to maintain infection was already proposed 20 years ago [101,102].

9. P. falciparum and CD36

Looking at the Pf EMP1 family, the question arises why, depending on the parasite
genome, between 75–85% of var genes encode Pf EMP1s, which have a CIDRα2–6 domain
for CD36 binding [17,27,31]. Interestingly, the CIDRα domains were shown to be present
only in the P. falciparum-containing branch (clade B) of the Laverania subgenus. This could
indicate that the binding to CD36 provides a selective advantage for P. falciparum [103].
What kind of selection advantage this was is yet unclear.

What advantage does the parasite have in retaining this large number of CD36-binding
Pf EMP1 variants in its genome? Additionally, what is the difference between the individual
variants or, more generally, between CD36 binding mediated by group B or C Pf EMP1s?

10. CD36

CD36 is a pattern recognition receptor (PRR) that belongs to the class B scavenger
receptor family. It is a glycoprotein present in many tissues and involved in several key
processes. These include lipid processing and uptake, thrombostasis, glucose metabolism,
immune function, angiogenesis, and fat taste (for review [104–108]. CD36 is found on
platelets, mononuclear phagocytes, adipocytes, hepatocytes, myocytes, some epithelia and,
as mentioned above, expressed on the endothelia of liver, spleen, skin, lung, muscle, and
adipose tissue [81,82,109]. On microvascular ECs, CD36 is a receptor for thrombospondin-
1 and related proteins and functions as a negative regulator of angiogenesis. At least
60 variants have been described in the coding region of the CD36 gene. The mutations of
CD36 caused by gene variants can also influence the adhesion of Pf IEs and ECs. This could
directly influence the severity of a malaria infection via the degree of cytoadhesion. There
are several studies on this, but with contradictory results [110]).

11. CD36 Binding PfEMP1 Variants—Benefits for Parasite and Host

Several observations may help explain why a large number of CD36-binding Pf EMP1
variants is not only beneficial for parasite development, but may also be an advantage for
the infected host.
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A. The parasite targets a region of CD36 that is essential for its physiological role in
fatty acid uptake because mutation of F153 disrupts the interaction of CD36 with
CIDRα2–6 but also abolishes the binding of CD36 to oxidized LDL particles. This
reduces the likelihood that the human host can escape from Pf EMP1 binding by
altering its CD36 [28].

B. In contrast to the EPCR binding surface of CIDRα1 domains, which protrudes and
is a structure that is likely to be well recognized by antibodies, the CD36 binding
site is concave, and the conserved hydrophobic residues are hidden in a pocket, so
maybe they are less easily recognized. In addition, the binding site is surrounded by
a sequence-diverse protein surface containing a flexible loop that may make antibody
recognition less likely. This unique interaction site of the parasite with CD36, which
protects essential residues from exposure to the immune system, appears to allow
the parasite to utilize an antigenically diverse set of CIDRα2–6 for cytoadhesion to
CD36 to be protected from splenic clearance [28].

C. CD36 is found in cells of the innate and adaptive immune system [104–108]. It
has been shown that Pf IEs can adhere to dendritic cells (DCs). This attachment
inhibits maturation of these cells and their ability to stimulate T cells. Thus, the
parasite can trigger dysregulation of the immune system. This favors the devel-
opment of the parasite by impairing the host immune system’s ability to clear the
infection [108,111–114]. However, there is also an observation that the mechanism of
DC inhibition by Pf IEs may be independent of Pf EMP1 and CD36 [115].

D. The previously determined hierarchy of var expression upon parasite entry into
human blood begins with group B and suggests that most parasites bind to CD36,
as they all encode a CD36-binding phenotype. Most infected individuals, including
those who are not immune, do not develop severe malaria, and cytoadhesion of
Pf IEs occurs in extensive microvascular beds in tissues other than the brain (skin,
muscle, adipose tissue). Therefore, cytoadhesion in such non-vital tissues could
promote survival and transmission of the parasite while minimizing host damage
and death [87–90].

E. Antibody-induced selective binding and internalization of CD36 do not result in
proinflammatory cytokine production by human macrophages. Interestingly, CD36-
mediated phagocytosis of Pf IEs also did not result in cytokine secretion by primary
macrophages [116]. However, CD36-mediated binding of Pf IEs increases the likeli-
hood of phagocytosis by macrophages. This can lead to a reduction in parasitemia,
but also allows the parasite to maintain a viable infection without causing too much
damage to the host through high parasitemia [108,114,117,118].

F. DCs react to P. falciparum very early during infection and can, thus, influence the
development of immunity. Internalization of Pf IEs by DCs and subsequent pro-
inflammatory cytokine production of DCs, NK, and T cells depends on CD36. No-
tably, plasmacytoid DCs regulate innate and adaptive immunity to malaria via the
production of proinflammatory cytokines. As this effect is particularly evident at
low levels of parasitemia, the role of CD36 for malaria immunity appears to take
place early during infection and to promote the development of protective immunity
against malaria [118,119].

All these observations underline the importance of CD36 for malaria. During long
co-evolution, a fine balance has evolved between host and parasite, allowing the parasite
to multiply but harming the host as little as possible.

12. Binding Phenotypes of PfIEs

Cytoadhesion of Pf IEs is divided into the three phases: “tethering”, “rolling”, and
“immobilization”, comparable to leukocyte diapedesis [120–122]. However, the dynamics
of cytoadhesion of Pf IEs to the vascular endothelium is controversial. For example, some
authors describe cytoadhesion to ICAM-1 as rolling, and to CD36 as stationary, or vice
versa [123–127]. However, there is increasing evidence that Pf IEs are very likely to roll over
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CD36 [126–131]. Recently, the binding phenotype for different ECRs was investigated using
a laminar flow system with transgenic Chinese hamster ovary (CHO) cells carrying different
ECRs on their surface [127]. Rolling was observed upon interaction with CD36, and the
rolling behavior of disc-shaped Pf IEs at the trophozoite stage (flipping) differed from the
rolling behavior of round-shaped Pf IEs at the schizont stage (continuous rolling) (Figure 3).
Moreover, Pf IEs in the schizont stage roll more stably than Pf IEs in the trophozoite stage
at different shear stresses [127]. The rolling motion of Pf IEs was also seen on transgenic
mouse fibroblasts presenting CD36 [128] and on recombinant CD36 instead of transgenic
eukaryotic cells [129]. As described above, the dermal endothelium has large amounts
of CD36. Rolling movements of PfIEs have also been found on dermal ECs, as well
as on human skin grafts, on which large amounts of CD36 are found [126,128,130,131].
Additionally, last but not least, the rolling CD36 binding phenotype was also confirmed
by in silico modeling [132,133]. However, depending on the experimental setup, the
parasite isolates used, and the parasite stage, different velocities were measured at similar
shear forces. For trophozoite-stage parasites confronted with recombinant CD36, average
velocities between 140 µm/min to 680 µm/min were measured at a shear force of 1.6 Pa,
depending on the isolate [129]. When transgenic CHO cells presenting CD36 on the surface
were used instead of recombinant CD36 in a similar experimental setup, average velocities
ranging from 11 µm/min to 33 µm/min, i.e., a 12–20 fold lower value, were measured, also
depending on the parasite stage and isolate [127]. If Pf IEs cytoadhere for approximately
30 h during their intraerythrocytic development, they travel distances between 25–122 cm
or 2–6 cm, respectively, depending on the experimental setup [127,129]. In both cases,
however, the probability of passing over the spleen and being removed accordingly is low.
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Figure 3. Presumed sequence of sequestration of Pf IEs to the vascular endothelium. 1. Adhesion and
rolling over CD36. 2. Over time: endothelial activation, cytokine release. 3. Cytokine/chemokine-
induced presentation of various receptors (e.g., ICAM-1, P-selectin, CD9). 4. Adhesion of Pf EMP1s
with different binding phenotypes (created with BioRender).

Further studies showed that initial contact of Pf IEs to CD36 under flow conditions
activates Scr-family kinases, leading to dephosphorylation of CD36 via p130CAS signaling.
This increases the binding affinity of Pf IEs to CD36 and, thus, leads to increased adhesion
of the Pf IEs. This mechanism also leads to actin cytoskeletal remodeling and subsequent
CD36 clustering, which further increases Pf IE adhesion [128,131,134]. It is postulated that
a small number of strongly adherent Pf IEs activate the endothelium, and thus enhance the
cytoadhesion of most parasites [131]. However, the binding mode of Pf IEs also seems to be
strongly dependent on the respective ECR. For ICAM-1, CD9, P-selectin, as well as CSA,
stationary binding, instead of rolling, was observed under flow conditions [127] (Figure 3).
Stationary binding to ICAM-1 was also demonstrated in an earlier study [126]. However,
while binding to CD36 occurred at shear forces below 4 dyn/cm2, binding to ICAM-1, CD9,
P-selectin, and CSA occurred mostly at lower shear forces (from 2 dyn/cm2) [127].
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Of note, the origin and environment of the ECR studied (recombinant or presented
on eukaryotic cells) also seems to be important for characterising the binding phenotype.
Antia and colleagues observed a rolling binding type for Pf IEs, with an average rolling
velocity of about 10 µm/s at 1–2 kPa and of 1–3 µm/s when recombinant ICAM-1 or CD36
was used, respectively [123]. Interestingly, in the same study, stationary binding of Pf IEs,
as also described by Lubiana and colleagues [127], was observed on transgenic CHO cells
presenting ICAM-1 [123]. However, the binding showed large variations. Thus, the Pf IEs
came to a standstill for a few seconds, but were then also able to detach from the CHO cells
again [123].

13. Importance of Knobs for Cytoadhesion

It is well established that knobs play a crucial role in the cytoadhesion of P. falci-
parum [45,47,48,127,135]. Among other findings, Pf IEs from patients with hemoglobin S
(HbS) or hemoglobin C (HbC; both hemoglobin mutations protect against severe complica-
tions and death from malaria [136–138]) have been found to exhibit reduced cytoadhesion
to microvascular endothelial cells [139,140]. The results suggest that HbS and HbC alter the
erythrocyte membrane in a manner that inhibits the transport and/or docking of parasite
proteins and impairs the ability of the parasite to remodel the surface of its host cell. This
also leads to the fact that the knobs can no longer be formed correctly, and Pf EMP1 is also
no longer presented correctly [139,140].

In the absence of knobs, parasite adhesion to CD36 was observed only under static
conditions, but not under flow conditions simulating the situation in human blood [47,141].
In the absence of knobs on the surface of Pf IEs, the rolling distance is shortened compared
to knob-positive Pf IEs [127]. The more stable rolling described above, and the rolling
over longer distances of the schizont stage, is most likely related to the uniform coverage
of the surface with knobs [130]. Furthermore, the adhesion force seems to be lower in
the schizonts than in the trophozoites [142]. The comparison of knob-negative and knob-
positive Pf IEs suggests that the presence of knobs stabilises the ligand-receptor interaction
due to the concentrated amount of Pf EMP1 on the knob surface (Figure 4) [46,127].
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Figure 4. Cytoadhesion of knobby and knobless Pf IEs to transgenic CHO cells presenting CD36 on the
cell surface (CHOCD36) under static and flow conditions and at different temperatures. (A) Adhesion
of Pf IEs (red; anti-glycophorin A) to CHOCD36 cells (blue: nucleus (DAPI), green: cell surface (CD36-
GFP fusion protein) under static binding conditions. (B) Cytoadhesion of knobbless (−K) and knobby
(+K) Pf IEs to CHOCD36 cells. (C) Trajectories showing the rolling binding behavior of knobless (−K)
and knobby (+K) Pf IEs to CHOCD36 cells. (D) Average number of knobless (−K) and knobby (+K)
Pf IEs adhering to CHOCD36 cells at 37 ◦C (blue) and 40 ◦C (red) at a shear stress of 0.9 dyn/cm2 [127].
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Another important observation could be made under fever conditions. Only knob-
positive Pf IEs were able to bind to different ECRs (CSA, CD36) at 40 ◦C with preserved
ECR-specific binding mode (rolling or stationary) (Figure 4) [48,127]. Measurement of the
binding force between Pf IEs and CSA by force spectroscopy showed a decrease in binding
force at febrile temperatures, but the number of bound Pf IEs increased. It was hypothesized
that this increase in binding is due to non-specific binding despite the decrease in force [143].
Again, however, a study showed that, at febrile temperatures, binding affinities to CD36
and ICAM-1 decreased [144].

In summary, there is strong evidence that the presence of knobs on the surface of Pf IEs
is an essential prerequisite for the parasite circulating in the bloodstream to adhere to the
endothelium even under febrile conditions. An evolutionary pressure for the formation of
knobs on Pf IEs in the human host is therefore operative.

14. Conclusions

CD36 is the main receptor for Pf IE cytoadhesion to the vascular endothelium. Due
to the rolling behavior and the resulting short contact of parasites with CD36 on the ECs,
these ECs may not or are only slightly activated. Likely, only B group Pf EMP1s with a
particularly strong binding affinity to CD36 or dual binding properties, as well as the
increase in parasitemia and the accompanying stimulation of the immune system and
the release of proinflammatory cytokines, lead to an activation of the endothelium and
thus also to the presentation of other ECRs such as ICAM-1 or P-selectin. Finally, Pf IEs
with different binding phenotypes can also adhere, with static binding leading to further
activation of the endothelium and the immune system.

Further observations highlight the role of CD36 in P. falciparum infection. (i) A large
number of Pf EMP1s containing a CD36 binding domain [17,27,31]; (ii) the binding of
Pf IEs to DCs via CD36, which inhibits their cell maturation and ability to stimulate NK
and T cells [108,111–114]; (iii) CD36-mediated phagocytosis of Pf IEs does not result in
cytokine secretion by macrophages [116] (however, it may result in a reduction in par-
asitemia [108,114,117,118]); (iv) in the early stage of infection, internalization of CD36-
binding Pf IEs by DCs leads to increased cytokine production and activation of NK and T
cells, which promotes the establishment of protective immunity [118,119].

Thus, CD36 is of great importance for establishing a finely regulated equilibrium
between the parasite and the host, whereby the parasite can multiply and spread while the
host experiences little damage.
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