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Abstract

HIV-1 infection is characterized by a chronic activation of the immune system and suppressed function of T lymphocytes.
Regulatory CD4+ CD25high FoxP3+CD127low T cells (Treg) play a key role in both conditions. Here, we show that HIV-1
positive patients have a significant increase of Treg-associated expression of CD39/ENTPD1, an ectoenzyme which in
concert with CD73 generates adenosine. We show in vitro that the CD39/adenosine axis is involved in Treg suppression in
HIV infection. Treg inhibitory effects are relieved by CD39 down modulation and are reproduced by an adenosine-agonist in
accordance with a higher expression of the adenosine A2A receptor on patients’ T cells. Notably, the expansion of the Treg
CD39+ correlates with the level of immune activation and lower CD4+ counts in HIV-1 infected patients. Finally, in a genetic
association study performed in three different cohorts, we identified a CD39 gene polymorphism that was associated with
down-modulated CD39 expression and a slower progression to AIDS.
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Introduction

HIV-1 infection is characterized by chronic immune activation

which, in combination with the progressive depletion of CD4+ T

cells, profoundly perturbs antigen-specific T cell responses [1].

The population of CD4+CD25high FoxP3+ regulatory T cells

(Treg) suppresses antigen-specific T cell responses and controls

inappropriate or exaggerated immune activation induced by

pathogens, thereby influencing the outcome of various infections

[2,3]. In particular, these cells suppress in vitro HIV-1-specific

CD4+ and CD8+ effector T-cell responses [2,4]. We, and others,

have reported an HIV-1-driven expansion of Treg expression in

chronic and acute HIV-1 infection [5,6], including a relationship

between the expansion of Treg, the level of cellular immune

activation and the depletion of CD4+ T cells in acute HIV

infection [5].

The molecular mechanisms by which Treg mediate their

suppressive activity remain poorly understood. In humans, the

Treg population exhibits considerable diversity. Phenotypically

and functionally distinct subsets of Treg can mediate suppression

through distinct mechanisms from secretion of IL-10, TGF-ß, IL-

35, Granzyme B, perforin, to CTLA-4 and GITR interactions

[7,8,9]. Recently, it has been reported that CD39 is expressed on

human and murine Treg, while CD73 is found only on the

surface of murine Treg [10,11,12]. CD39, a member of the

ectonucleotidase triphosphate diphosphohydrolase family

(ENTPD), also referred to as ENTPD-1 (EC 3.6.1.5), is the

dominant immune system ectonucleotidase that hydrolyses

extracellular ATP and adenosine diphosphate (ADP) into

adenosine monophosphate (AMP) at the sites of immune

activation. CD73 is an ecto-59-nucleotidase (59NT) that exists in

a soluble or membrane-bound form and catalyzes the dephos-

phorylation of AMP to adenosine [13,14,15]. Adenosine is a

critical regulator of innate and adaptive immune responses

[16,17], inhibiting T lymphocyte proliferation and the secretion

of inflammatory cytokines including IL-2, TNFa, and IFN-c

[13,14,15]. These effects are mediated through A2A receptors

stimulating the generation of cAMP, and are mimicked by

adenosine agonists [18]. CD39 has also been described as an

activation marker of lymphoid cells [19]. Therefore, the CD39/

Adenosine pathway may be important to the balance between

activation and regulation of effector immune responses.
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Here we tested the hypothesis that the CD39/adenosine

pathway is involved in the pathogenesis of HIV-1 disease. First,

we investigated the phenotype and the function of Treg-expressing

CD39 molecules in a cohort of chronically HIV-positive patients

and determined whether these characteristics are associated with

clinical outcomes. Second, to assess our hypothesis in an in vivo

context, we investigated whether CD39 genetic polymorphisms

were associated with rates of HIV-1 disease progression in three

independent cohorts.

Results

CD4+CD25high Treg, but not CD4+CD25low activated T
cells, from HIV-positive subjects express high density of
cell membrane CD39 molecules
In order to discriminate between Treg and activated T cells, we

further characterized Treg population as gated T cells expressing

CD4+CD25high FoxP3+high and CD127low (gating strategy is shown

in Fig. S1). These cells are designated thereafter as Treg cells while

CD4+CD25lowCD127high T cells are designated as activated

CD4+CD25low T cells (T act). First, we confirmed a significant

increase in the percentages of Treg cells in a cohort of HIV-positive

individuals, receiving either a combination of antiretroviral drugs (c-

ART+, n=39) or not (c-ART2, n=39), as compared to healthy

controls (n=25) (mean 5.8% and 6.2% respectively vs 2.4%,

P,0.0001) (Fig. 1a). As shown in Fig. 1b and 1c, percentages of

Treg expressing CD39+ (Treg CD39+) were significantly higher in

both c-ART+ and c-ART2 patients, as compared to healthy controls

(mean 2.79% and 2.26% vs 0.97%, P,0.001, Fig. 1b). Moreover,

Treg from both c-ART2 and c-ART+ subjects expressed a higher

density of CD39 molecules as compared to those from HIV-1

negative controls (mean fluorescence intensity (MFI) 1327 and 1203,

respectively, vs. 652, P,0.001 and P,0.01) (Fig. 1c).

Phenotypic analyses were performed in 16 HIV-1 positive

patients before and 12 months following c-ART initiation. Among

them, 9 patients experienced a good response to c-ART (group A;

undetectable plasma viral load at month 12), while in 7 patients

(group B) viral replication remained detectable (above 50 copies/

ml). No significant decrease of CD39 expression was observed in

group A: % Treg CD39+ (mean 6 SD): 2.461.2 vs.1.861.0 at

baseline; TregCD39+MFI (mean6 SD): 15576360 vs. 12616656

at baseline, (P.0.05 for both). Moreover, in patients with on-going

viral replication %Treg CD39+ increased significantly in spite of

ART (6.162.4 versus 3.462.3 at baseline; P= 0.043).

CD39 has also been described as an activation marker of

lymphoid cells [19]. Therefore, we looked at the percentages of

Tact in HIV-1 positive patients and controls. As expected, the

frequency of activated CD4+CD25low T cells was significantly

higher in both populations of patients as compared to controls

(Fig.S1b). Consequently, percentages of CD4+CD25lowCD39+

were significantly higher in HIV-1 positive patients as compared to

controls (Fig.S1c). In contrast to Treg, CD4+CD252 T cells from

both HIV-positive subjects and controls did not express CD39 (not

shown). Thus, an expansion of CD39+CD4+ T cells in both Treg

and T act T cell populations, which persist in patients with

controlled viral load under c-ART, is observed in HIV-1 positive

patients. In HIV-positive subjects and in HIV-negative controls,

Treg cells were mostly of CD45RA2CD28+ memory phenotype

(mean 75%). CD45RA2CD28+ Treg contained a higher

percentage of CD39+ cells as compared to CD45RA+CD28+

Treg cells (mean 65% vs. 28%, respectively, P,0.05) (Fig. S2).

Down-modulation of CD39 expression on Treg relieves
Treg-mediated inhibition of CD8 T cell proliferation and
HIV specific responses
We next investigated whether down-modulation of the CD39

enzyme can impact Treg function. First, by exposing cells to a

blocking anti-CD39 (BY40) mAb, we induced a down-modulation

of CD39 expression at the surface of the YT2C2 NK line cells

(Fig. S3a). Next, BY40 mAb down-modulated the expression of

CD39 on ex-vivo purified peripheral blood Treg from HIV-

negative controls as compared to untreated cells or cells treated

with an IgG1 control mAb (% of positive cells (mean 6 SD):

32611% vs 44613%, and 42614%, respectively) (Fig. 2a,b). In

these experiments, CD39 expression following in vitro incubation

with BY40 mAb was assessed using a commercial PE anti-CD39

(clone TU66) which has been previously checked to be non-

competitive with BY40 (Fig. S4). Finally, we found that this down

modulation effect of BY40 was associated with decreased CD39

ATPase activity on primary monocytes (Fig. S3b).

The functional consequences of CD39 down-modulation were

investigated in co-culture assays developed to evaluate the

suppressive effects of Treg on T cell proliferation [5,6,20]. As

shown in Fig. 3a and b (for one representative experiment and

pooled data from 6 HIV-positive subjects), the Treg-mediated

inhibition of anti-CD3 induced CD8 T cell proliferation was

significantly higher in HIV-positive subjects (n= 6) as compared to

HIV-negative controls (n= 6), (mean inhibition 56% vs 22.5%;

P,0.01) (Fig. 3b). Pre-incubation with anti-CD39 BY40 mAb

reversed by,50% the suppressive effect of Treg from HIV-positive

subjects (average suppression rate of 28% in the presence of Treg

pre-treated with BY40 as compared to 56% and 57% for Treg pre-

treated or not with IgG1 control mAb, (P= 0.01; one-way ANOVA

and paired T-test P= 0.01 for group by group comparisons).

Interestingly, although the suppression mediated by Treg from

HIV-negative controls was less significant, a similar effect of anti-

CD39 BY40 mAb was noted (average inhibition 12.3% as

Author Summary

HIV-1 infection is characterized by a chronic activation of
the immune system. Regulatory T cells (Treg) represent a
population of lymphocytes that controls inappropriate or
exaggerated immune activation induced by pathogens,
thereby influencing the outcome of various infections.
Several studies have shown that Treg are expanded in HIV
infected patients. However, the mechanisms of Treg
immune-modulator functions are not clearly known.
CD39 is an ectonucleotidase which converts the proin-
flammatory ATP signal into AMP and the immunosuppres-
sive adenosine in concert with CD73. A critical role of CD39
has been described for Treg in general but few studies
have analyzed its role in HIV infection. We report here an
expansion of Treg expressing CD39 in a cohort of HIV-
infected patients. In vitro these cells exerted a strong
suppressive effect on the effector CD8 T cells. Treg
inhibitory effects were relieved by CD39 down-modulation
using an anti-CD39 monoclonal antibody. Treg suppressive
effects were reproduced by an adenosine agonist in
accordance with a higher expression of the adenosine
A2A receptor on patients’ T cells. From a clinical stand
point, we show also a correlation between Treg CD39+
expansion and both immune activation and CD4+ T cell
depletion in patients. Finally, by genetic analysis of three
different cohorts of patients, we found that a CD39 gene
polymorphism associated with a lower CD39 expression
correlated with a slower progression to AIDS. Thus, our
results contribute to elucidate the mechanisms by which
Treg suppression occurs during HIV infection.

Treg CD39+ in HIV-1 Infection
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compared to 22.5%, one-way ANOVA P,0.01 and paired T-test

P,0.01). These results are in accordance with the higher density of

CD39 molecules expressed by Treg from HIV-positive subjects and

indicate that this enzyme is involved, at least in part, in the Treg-

mediated inhibition of CD8+ T cell proliferation.

Next, we evaluated the effects of Treg on the cytokine production

of CD8 T cells in response to HIV-1 antigens. Cytokine production

(IFN-c, TNFa and IL-2) of CD8-gated T cells was analyzed by intra

cytoplamic staining and flow cytometry after overnight stimulation

with a pool of whole Gag 15mer peptides (2 mg/ml). As shown in

Fig. 4, the percentages (mean 6 SD) of CD8+ Cytokines+ T cells

were 2.1+/20.7% vs. 3.3%+/21% (n= 5) in the presence of Treg

and CD4+CD252 respectively (P= 0.05). Pre-incubation of Treg

with anti-CD39 mAbs, but not with isotype control, relieved this

suppressive effect: 3.2+/20.8%, (P= 0.05).

Together, these results indicate that CD39 enzyme participates

in the Treg-mediated suppression on CD8 T cell proliferation and

responses to HIV peptides.

T cells from untreated HIV-positive subjects are more
susceptible to CD39/adenosine mediated inhibition due
to increased expression of A2A receptor
To further investigate the involvement of CD39/adenosine in

the Treg-mediated inhibition of CD8+ T cell proliferation in HIV-

Figure 1. Treg CD39 populations are significantly increased in HIV-1 infected subjects. PBMC from c-ART2 HIV-1-positive subjects (black
squares, n = 39), c-ART+ HIV-1-positive subjects (grey squares, n = 39) and HIV-negative subjects (white squares, n = 25) were analysed by flow
cytometry. The mean (min-max) CD4 T absolute counts were 411 (18–1053) and 650 (117–2523) cells/ml, in c-ART2 and c-ART+ patients, respectively.
The mean (min-max) plasma HIV RNA values were 4.6 (2.1–6.2) and 1.57 (1.1–2.03) log10 HIV-1 RNA copies/ml, in the two groups, respectively. The
percentage of CD4+CD25highFoxp3+CD127low cells (Treg) on CD4 T cells (A), of Treg CD39+ (B) and the MFI of CD39 expression on Treg (C) are
presented. Horizontal lines correspond to the mean for each data set Statistical differences were assessed by unpaired t-test assuming independent
samples, ** P,0.01, ***P,0.001.
doi:10.1371/journal.ppat.1002110.g001

Treg CD39+ in HIV-1 Infection
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1 positive subjects, we studied the effects of the A2AR agonist

CGS21680 on proliferation of anti-CD3 stimulated T cells. The

mean (6SD) inhibition of CD4+ T cells was 47% (611) and 57%

(68.3) in the presence of 0.1 and 1 mM of CGS, respectively in c-

ART2 HIV positive patients. Similarly, the same doses of CGS

inhibited by 47% and 65% the proliferation of anti-CD3 activated

CD8+ T cells from c-ART2 HIV-positive subjects (P,0.05)

(Fig. 5a,b). In contrast, the proliferation of CD4+ and CD8+ T

cells from HIV-negative controls and c-ART+ HIV-positive

subjects was much lower and below 20% at the highest dose of

CGS21680 (1 mM) (Fig. 5a,b) (P = 0.015 and P= 0.027 respec-

tively; one-way ANOVA and P,0.05 unpaired T-test for

comparison between c-ART2HIV-positive patients and the two

other groups (Fig. 5a,b).

Figure 2. Preincubation of Treg with anti-CD39 BY40 mAb down-modulates CD39 expression on Treg. (A) Representative experiment
showing the expression of CD39 on Treg from an HIV-negative donor, preincubated in medium alone (left histogram) or either with IgG1 isotype
control (middle histogram) or anti-CD39 mAb BY40 (right histogram), and co-cultured for 18 h with anti-CD3-activated autologous CD8 T cells.
Expression of CD39 was then assessed using a BY40 non-competitive anti-CD39 mAb on gated CD4+CD25highCD127lowFoxp3+ cells. (B) Pooled data
from 3 independent experiments show the percentage of CD39+ cells among Treg after co-culture as in (A). Bars represent mean +/2 SD. Statistical
differences were assessed by a paired Student t-test, * P,0.05.
doi:10.1371/journal.ppat.1002110.g002

Treg CD39+ in HIV-1 Infection
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In accordance with this, we found that both CD4+ and CD8+

purified T cells from c-ART2 HIV-positive subjects (n = 7)

expressed a significantly higher level of A2AR mRNA than c-

ART+ subjects (n = 5) or HIV-negative controls (n = 6) (Fig. 5c).

Expansion of Treg CD39+ correlates directly with
immune activation and inversely with CD4+ T cell
absolute counts in HIV-positive subjects
Since the HIV-positive subjects we studied were heterogeneous

in terms of disease duration and clinical stage, we assessed whether

CD39 expression correlated with established markers of disease

progression. The frequency of the Treg CD39+ subset correlated

directly with plasma HIV-1 viral load in the group of c-ART2

subjects (P,0.05, R= 0.45) (Fig. 6a). Moreover, the percentage of

Treg CD39+ subset correlated directly with the activation of

CD4+ T cells in c-ART2 subjects, assessed by the percentage of

CD4+HLA-DR+ (P,0.05, R= 0.66) (Fig. 6b). Finally, the

percentage of Treg CD39+ cells and CD39 MFI correlated

inversely with absolute CD4+ T cell count in c-ART2 subjects

(P,0.001, R=20.51 and P,0.001, R=20.57, respectively)

Figure 3. CD39 blocking mAb reverses the suppressive effect of Treg on the proliferation of anti-CD3 stimulated CD8+ T cells. (A)
Representative histograms showing the anti-CD3 stimulated proliferation of purified CD8+ T alone or co-cultured with Treg without pre-incubation or
pre-incubated with anti-CD39 mAb or control IgG1 (Histograms are gated on the CD8high populations). Percentage of proliferating (CFSElow) CD8+ T
cells is shown for each condition (one representative experiment from 3 performed in triplicate). (B) Pooled data showing the percentage of
proliferation inhibition of anti-CD3 stimulated CD8+ T cells from c-ART+ HIV-1-positive (n = 6) and HIV-negative subjects (n = 6) in the presence of
Treg either alone (black squares), pre-incubated with anti-CD39 mAb (white squares) or with control IgG1 (gray squares). Histograms represent means
+/2 SD. Statistical differences were assessed by one-way ANOVA followed by a paired T- test, * P,0.05, ** P,0.01.
doi:10.1371/journal.ppat.1002110.g003

Treg CD39+ in HIV-1 Infection
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(Fig. 6 c,d) as well as in c-ART+ subjects (P,0.001 , R=20.57

and P,0.01, R=20.43) (Fig. 6 e,f).

The independent prognostication value of CD39 expression on

Treg for CD4 T cell counts was studied in c-ART2 and in c-

ART+ patients, using multiple linear regression models (SPSS

v.17.0). The frequencies of Treg, Treg CD39+, Tact, Tact

CD39+, and viral load (for c-ART2 group only) were included as

predictors of CD4 absolute count. For c-ART+HIV-positive

patients, in a full model (R2=0,398, ANOVA P=0.02) the

percentage of Treg CD39+ had the most important partial

predictive effect (partial correlation coefficient 20.479), confirmed

by sequential multiple regression analysis of the same set of

variables (partial correlation coefficient 20.612 vs. 0.360 for Tact,

ANOVA P=0.001).

For c-ART2HIV-positive patients, in a full model (R2=0,392,

ANOVA sig. = 0.045), again the percentage of TregCD39+ had

the most important contribution as predictor for CD4 absolute

count, followed by CD39Tact (partial correlation coefficients

20.375, and 0. 265 respectively).

These results indicate that the frequency of Treg CD39+ is an

independent predictive factor for CD4 cell count variability.

A genetic variant of CD39 associated with a lower gene
expression is involved in slower progression to AIDS
Our results highly suggest that the frequency of Treg CD39+

cells, as well as the density of the enzyme molecule at the surface of

those cells, predict disease progression. Recently, CD39 gene

polymorphisms associated with the level of enzyme expression

have been shown to be associated with susceptibility to Crohn’s

disease [21]. In order to assess the role of CD39 on HIV-1 disease

progression, we investigated whether CD39 gene polymorphisms

could be associated with clinical outcomes. For that, we exploited

the GRIV cohort, comprising subjects exhibiting extreme profiles

of AIDS progression (LTNP, long-term non-progressors and RP,

rapid progressors) [20,22,23]. We thus performed a genetic case-

control association study on the candidate gene CD39 using the

genotype data collected from our previous genome-wide associa-

tion studies [22,23] (see Methods).

Fourteen SNPs were identified in the CD39 gene. No

polymorphism was significantly associated with rapid progression,

whereas four SNPs were significantly associated with LTNP:

rs10882665 (P= 1.3361022), rs3181123 (P= 1.3861022),

rs1933166 (P= 1.7661022), and rs11188513 (P= 3.6061022)

(Fig. S5). Of note, rs10882665 and rs3181123 are in full linkage

disequilibrium (r2=1). To eliminate a potential association with

HIV-1 infection rather than with LTNP, we compared the allelic

frequency of each of these SNPs in the RP population. The

frequency observed in the RP group was similar to the frequency

observed in the control group, confirming that this was an

association with LTNP.

To confirm these results, we used two additional independent

Caucasian cohorts that examined AIDS progression phenotype:

the ACS and the MACS cohorts (see Methods). The rs11188513

SNP (whose frequency in LTNP and control groups were,

respectively, 39% and 34%, P= 3.6061022, (Fig. 7a) was the

only polymorphism also associated with disease progression both

Figure 4. CD39 blocking mAb reverses the suppressive effect of Treg on the cytokine production of Gag-stimulated CD8+ T cells.
Pooled data showing the percentage of CD8+ T cells from c-ART2 HIV-1-positive patients (n = 5) producing cytokines (IL2/IFN-g/TNF-a) after
overnight stimulation with Gag peptides. CD8+ T cells were cultured in the presence or not of Treg (ratioJ) and in the presence or not of antiCD39
Mab or isotype control (see M&M). Histograms represent means +/2 SD. Statistical differences were assessed by a paired t-test, * P,0.05.
doi:10.1371/journal.ppat.1002110.g004

Treg CD39+ in HIV-1 Infection
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in ACS (P= 2.6461022) and MACS (P= 2.0761022) (Fig. 7b,c

and Table S1). The P values compute the probability that an

association is due to chance and the combined P value for

rs11188513 over the three cohorts was significant after Bonferroni

corrections, P=6.1161023. Importantly, as shown in Fig. 7, the

rs11188513-C allele favoured slower progression of HIV infection

in all three cohorts. This association was independent from the

CCR5 polymorphisms (P1 and Delta32) also located in chromo-

some 3, since the p value was not modified by using the CCR5

variants as covariates.

To further explore this association, we examined the Genevar

[24] and the Dixon [25] mRNA expression databases, and found a

correlation (P= 3.2661025 and P= 1.9610214, respectively)

between the rs11188513-C allele and lower expression of the

CD39 gene. Thus, the genetic association study combined with the

mRNA expression database information demonstrate that the

rs11188513-C allele is associated both with a slower progression to

AIDS and with a lower expression of CD39 gene.

Discussion

We show here the involvement of the CD39/adenosine

pathway in the Treg-mediated suppressive effect on HIV-1-

infected subjects’ T cell functions. We demonstrate that HIV-

positive subjects exhibit both a higher frequency of Treg CD39+

and a higher in vitro sensitivity of effector T cells to the suppressive

effect of adenosine, due to a higher expression of its predominant

A2A receptor. Expansion of Treg CD39+ correlates inversely with

CD4 T cell counts in HIV infection independently of plasma viral

loads and T cell activation. Finally, in a genetic association study

conducted in three different HIV-positive cohorts we show that

the level of CD39 gene expression can indeed impact the course of

disease progression.

Recent data have shown that mouse Treg constitutively express

CD39 [26], while the proportion of Treg CD39+ cells appears

highly variable in healthy human controls [10]. Therefore, in

contrast to mice, CD39 expression might delineate a subpopula-

tion of human Treg [10,27]. However, studies on human Treg

CD39+ cells are scarce. Few studies have analyzed the expression

of CD39 in HIV disease [28]. Leal et al. have shown an increased

nucleotidase activity related to enhanced CD39 expression on

lymphocytes of HIV-positive subjects [28]. More recently, and in

accordance with results presented here, an increase in the

frequency of Treg expressing CD39 has been shown in different

cohorts of HIV infected patients [29]. However, these observations

warrant further investigations on the role of CD39 and the clinical

relevance of these findings. Our results reinforce these observa-

tions and provide new insights about the biological mechanisms

involving the CD39/adenosine axis. The demonstration that

blocking of CD39 with BY40 mAb relieved, although not

completely, the suppressive effect of Treg on effector T cells

opens the way to new therapeutic interventions aimed to modulate

Treg functions [29]. Moreover, we found that Treg CD39+ inhibit

cytokine production by HIV-specific CD8 T cells, an effect

partially relieved by pre-incubation of Treg CD39+ with anti-

CD39 mAb. These results demonstrate that CD39 enzymatic

pathway is responsible, at least in part, for the inefficiency of CD8

T cells responses in chronic HIV-1 infection. In contrast, the

CD39 pathway seemed to be less predominant in coculture studies

performed with cells purified from HIV negative controls.

However, we cannot rule out that down-modulation of CD39

enzymatic activity may also interfere with other suppressive

pathways.

Our results are similar to those reported in cancer and HIV

patients in whom the purified Treg CD39+ subset mediated a

higher suppression as compared to control patients [27]. From a

clinical stand-point, it is interesting to note the persistence of a

higher frequency of Treg CD39+ cells in HIV-positive subjects

with controlled viral load, as compared to HIV-negative controls.

Likely, this may reflect ongoing chronic immune activation. We

show here that the frequency of TregCD39+ is correlated

positively to the percentages of activated CD4+ T cells expressing

HLA-DR (Fig. 6b) and a higher frequency of conventional T cells

(CD4+CD252) expressing CCR5 (not shown) which may partly

explain CD4+ T cell depletion. Alternatively, since the Treg

CD39+ subset is mostly confined to the memory CD4 T cell

compartment, this population may represent HIV-inducible Treg,

as previously reported [5,6]. Recently, an expansion of suppressive

FoxP3+CD39+ CD8 regulatory T cells associated with poor

antiviral response has been reported in HIV-infected patients [30].

In our study, we have checked that expression of CD39 molecule

on other blood subsets (B, NK and monocytes) did not vary

significantly between patients’ groups (Fig S6).

Altogether these results support the conclusion that the Treg

subset expressing a high density of both CD25 and CD39

molecules represents a highly-enriched population of suppressor T

cells in HIV-1 infected patients.

Adenosine is formed in tissue microenvironments under

inflammatory insult [16,31,32,33]. Several studies have shown

that adenosine plays an important non-redundant role in the

regulation of T cell activation [18,34,35]. Using the dose-

dependant inhibitory effect of the adenosine receptor agonist

CGS21680 [18], we confirmed the involvement of CD39/

adenosine pathway in the Treg-mediated inhibition of T cell

proliferation in HIV-1 infected patients. It is noteworthy that

CD39/adenosine inhibition affected both CD8 and CD4 T cells,

and was significantly more important in c-ART-naı̈ve HIV

positive subjects. This latter difference was due to a significantly

higher level of A2AR expression. We found that CGS21680 did

not inhibit the proliferation of T cells from c-ART treated patients.

However, as we did not evaluate CGS21680 effects on other T cell

functions, we cannot rule out that A2AR agonists may also impair

T cell cytotoxicity and production of cytokines such as IL-2 and

IFN-g rather than cell proliferation, as recently demonstrated

[36,37].

Our data provide clues to the suppressive mechanisms of Treg

in the context of chronic immune activation. CD39 expression by

Treg is important for the extracellular removal of ATP and allows

Figure 5. T cells from c-ART2 HIV-1 positive patients are more susceptible to the inhibitory effects of the adenosine agonist CGS-
21680 and express a high density of A2A receptor. (A) PBMC from one representative control (upper panel) and one c-ART2 HIV-1-positive
subject (lower panel) were labelled with CFSE and activated using anti-CD3 mAb. CGS-21680 was added at day 0 and histograms of CFSE staining of
gated CD8+ T cells are from day 5. (B) Pooled data (n = 4) from c-ART2 (black squares) and c-ART+ (grey squares) HIV-positive, and from HIV-negative
(white squares) subjects showing the dose-dependent effect of CGS-21680 on the proliferation of anti-CD3 activated CD4+ (left panel) and CD8+
(right panel) T cells treated as in (A). (C) CD4+ and CD8+ T cells were purified from the blood of c-ART2 subjects (black squares, n = 5), c-ART+
subjects (grey squares, n = 7), and HIV-negative subjects (white squares, n = 6). A2AR mRNA expression was assessed using qPCR. Results were
standardized using the expression of the S14 mRNA house-keeping gene. Horizontal lines correspond to the mean for each data set, statistical
differences were assessed by one-way ANOVA and unpaired t-test assuming independent samples, * P,0.05., * P,0.05.
doi:10.1371/journal.ppat.1002110.g005
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Treg infiltration of inflamed tissues, resulting in an increase of

local extracellular adenosine concentration by ATP catabolism

[11,38]. Extracellular ATP depletion may also increase Treg

survival and favour the local accumulation of Treg, since high

levels of ATP have been shown to be a pro-apoptotic factor

[39,40]. On the other hand, this microenvironment represents a

self-protective mechanism against immune attacks [16,41] by

inducing a rapid tolerization of activated cells, as demonstrated in

cancer models [42]. Recent data in a mice model has shown that

tissue-derived adenosine promotes peripheral tolerance by induc-

ing T cell anergy and Treg differentiation [37]. Altogether, these

studies show that initiation of T cell activation in inflamed tissue

and/or tumour microenvironments might result in the induction

of T cell unresponsiveness by an A2AR-dependent mechanism.

These observations may explain the reports of HIV infection in

which Treg coexist in tissues infiltrated with HIV-specific T cells

that are poorly capable of controlling local HIV replication

[43,44]. Of note, our study was limited to peripheral blood.

Whether, the involvement of CD39/adenosine pathway plays also

a key role in secondary lymphoid organs or in mucosa deserves

further studies.

Treg CD39+ expansion may help establish the relationship

between immune activation and Treg-mediated suppression in

HIV-1 infection. Increased ATP and adenine nucleotides in

inflamed sites may serve as substrates for Treg-expressed

nucleotidases but also may exert direct Treg-activating effects

[45]. Thus, the ATP-Treg balance might be crucial for the

regulation of inflammation. However, in the long term, CD39-

mediated inhibition of T cell proliferation might exert an adverse

effect not only on the immediate generation of T-cell immune

responses, but also on the maintenance and restoration of the T-

cell pool, thus contributing to disease progression. We also showed

that despite efficient c-ART, the percentage of Treg CD39+

remains higher in c-ART+ HIV-1 subjects as compared to

controls. Although T cells from these individuals express low levels

of A2AR, we found that Treg still exert a significant inhibitory

effect that was relieved by anti-CD39 blocking antibodies. This

observation corroborates the observation of an inverse relationship

between the frequency of Treg CD39+ and CD4+ T cell counts in

patients (Fig. 6). Although the role of Treg in HIV-1 infection

remains unclear, the identification of a novel Treg subset

participating in Treg suppression may be useful to discriminate

between a ‘‘friend or foe’’ role of Treg in HIV-1 infection.

Through a candidate gene association study, we identified a

CD39 gene variant associated with down-modulation of CD39

expression that impacts the course of disease progression, a finding

that was replicated in three different cohorts. Such high P values

for the association of this variant and CD39 expression in both

Genevar and Dixon databases are extremely rare. Since the SNP

identified is in high linkage disequilibrium (r2.0.9) with several

other SNPs within the CD39 gene, further studies are warranted to

determine which of them is a causal variant. It is important to note

that, according to the HapMap database, this SNP exists at a

allelic frequency of ,30% in the African population and at ,70%

in the Asian population, suggesting that this genetic variant may

be an important determinant of disease progression in both

populations. Overall, the genetic association study confirms in vivo

the hypotheses put forward by our experimental work: subjects

carrying the CD39-C allele are likely to exhibit a lower CD39

expression, which could impact the control of T cell immune

responses, and in turn slow down HIV-1 disease progression.

Our data show that the CD39/adenosine axis might be a novel

pathway involved in the Treg-mediated suppression in HIV

infection through both an expansion of Treg strongly expressing

the ectonucleotidase CD39, and an increased sensitivity of

patients’ T cells to adenosine. In this context, the possibility to

revert Treg-mediated inhibition using CD39-blocking mAb or by

modifying the adenosine turnover with specific drugs seems an

attractive approach for the design of novel treatments to enhance

T lymphocyte restoration and effector T cell responses.

Materials and Methods

Patients and cell populations
Blood samples were collected from HIV-1-positive subjects

either naive from treatment (c-ART–, n= 39, CD4+ T cells counts

(mean 6 SD): 3876242 cells/ml; viral load (mean 6 SD): 4,261,1

log HIV RNA copies /ml or stable under c-ART for more than 6

months (c-ART+, n = 39, CD4+ T cells counts (mean 6 SD):

4856440 cells/ml ; viral load ,1,6 log copies /ml), at the Hospital

of Infectious Diseases, Sofia, Bulgaria and Henri Mondor

Hospital, Créteil, France. Blood from 25 HIV-negative donors

was obtained at the Regional Blood Transfusion Centre, Creteil,

France. CD8+ and CD4+ T cells were purified using RosetteSep

enrichment antibody cocktails (StemCell Technologies, Vancou-

ver, BC, Canada) according to the manufacturer’s instructions.

CD4+CD25hi cells were further isolated with CD25 magnetic

beads and two passages on MS columns (Miltenyi Biotec,

Bergisch-Gladbach, Germany). The positive fraction contained

.80% Treg expressing high levels of FoxP3 transcription factor as

verified by flow cytometry (data not shown).

Proliferation and intra-cellular cytokine production assays
CD8+ T cells were stained with 0.5 mM CFSE (Molecular

probes, Eugene OR, US) as previously described [46]. CFSE-

labelled CD8+ T cells were cultivated in 96-well U-bottom plates,

coated with 5 mg/mL anti-CD3 mAb (UCHT1; Beckman

Coulter, Villepinte, France) in the presence or absence of Treg

(total cell concentration 1.256105/ml and final volume 200 ml

and the Treg/Effector ratio was 1/4 as determined in previous

studies [43,44]). In some experiments, Treg were pre-incubated

with 10 mg/ml of anti-CD39 (BY40, IgG1) or isotype control mAb

for 15 min at 37uC, and added to CD8+ T cells without a washing

step.

The effects of BY40 mAb on CD39 expression and inhibition of

ATPase activity were evaluated using YT2C2 NK cell line (flow

cytometry) and fresh monocytes using malachite green phosphate

detection kit (R&D System, Minneapolis, USA), according to

manufacturer’s instruction (See methods in the legend of Fig. S3).

To assess the effect of adenosine analogue CGS 21680, PBMC

were pre-incubated for 1 h with different concentrations of either

CGS 21680 (Sigma-Aldrich, Lyon, France) or DMSO as control.

Figure 6. CD39 expression on Treg correlates positively with viral load and T cell activation and negatively with CD4+ T cell count
in HIV-1 positive subjects. Data from c-ART2 (A, n = 31, B, n = 11, C, n = 39, D, n = 38 and, black squares) and c-ART+ HIV-1 subjects (E, n = 39, F,
n = 37, gray squares) are shown. In c-ART2HIV-1 positive subjects, the percentage of Treg CD39+ correlates directly with HIV-1 viral load (A) and the
expression of the activation marker HLA-DR on CD4+ T cells (B). The percentage of Treg CD39+ (C, E) and the MFI of CD39 expression on Treg (D, F)
correlates inversely with the absolute CD4+ T cell count in both c-ART+ and c-ART2 groups. Correlations were assessed using Spearman’s rank order
test.
doi:10.1371/journal.ppat.1002110.g006
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Cells were then stimulated with anti-CD3 for 5 days as described

above. At day 2 of culture, DMSO and CGS 21680 were added in

identical concentrations.

For intracellular staining (ICS), CD8+ T cells were stimulated in

the presence or absence of Treg (Treg/effector ratio:1/4)

overnight with a pool of whole Gag 15-mer peptides (2 mg/ml)

supplemented with anti-CD28 and anti-CD49d antibodies (1 mg/

ml of each). Brefeldine A (10 mg/ml) was added 1 h after the

peptide stimulation. Cells were surface stained with anti-CD8

mAb and ICS was performed with PE-Cy7-conjugated IFN-c,

TNFa and IL-2 antibodies. When indicated, Treg were pre-

incubated with 10 mg/ml of anti-CD39 mAb or isotype control for

15 min at 37uC, and added to CD8+ T cells without a washing

step.

A2AR mRNA quantification
Total RNA was isolated from purified CD4+ and CD8+ T cells

and RT-PCR was performed by the ABI Prism 7500 Sequence

Detection System (Applied Biosystems, Courtaboeuf, France) in

50 mL reaction with Platinum SYBR Green qPCR SuperMix-

Figure 7. Effect of rs11188513 in the GRIV, ACS and MACS study groups. (A) Allelic frequency of rs11188513-C in the GRIV LTNP population
(LTNP, n = 275) and the control group (CTR, n = 697). (B) Kaplan-Meier survival curve derived from the ACS cohort (n = 404) for time to AIDS-related
death. Genotypes CC (black), CT (dark grey) and TT (light grey). (C) Kaplan-Meier survival curve derived from the MACS cohort (n = 156) for time to
clinical AIDS. Genotypes CC (black), CT (dark grey) and TT (light grey). P-values were computed by regression in an additive model including as
covariates the 10 principal Eigenstrat components. The GRIV cohort comprised 275 LTNP and 86 RP French HIV-1 seropositive individuals of
Caucasian descent. The control group comprised 697 French HIV-1 seronegative individuals of Caucasian descent from the D.E.S.I.R. program. In the
ACS cohort, 417 HIV-1 subjects were collected on the course of HIV-1 infection using AIDS-related death as an endpoint. In the MACS cohort, 156 HIV-
1 Caucasian homosexual men were included, using time to clinical AIDS as an endpoint.
doi:10.1371/journal.ppat.1002110.g007
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UDG w/ROX (Invitrogen) and 0.2 mM of each primer. S14

mRNA which expression was found to be stable among the

different group of patients was used as control to normalize each

sample. Sequences of the A2AR- and S14-specific primers were

forward: CGAGGGCTAAGGGCATCATTG, reverse: CTCCT-

TTGGCTGACCGCAGTT) and forward: GGCAGACCGA-

GATGAATCCTCA, reverse: CAGGTCCAGGGGTCTTGG

TCC. The relative levels of A2AR mRNA were calculated using

the 22DDCT method.

Immunofluorescence and flow cytometry
Anti-CD39-PE (clone TU66), anti-CD25-PC7, anti-CD4-FITC

or Pac.blue, anti-CD8-PerCP, anti-CD3-APC, and CD28-PerCP-

Cy5.5, were products of BD Biosciences (Le Pont de Claix,

France),CD45RA-ECD from Beckman Coulter (Villepinte,

France), and CD127-Biot/ strepta-APCCy5.5, FoxP3-Alexa 488,

CCR7-APC-Alexa 750 from ebiosciences (Montrouge, France).

Blocking anti-CD39 mAb (BY40) was produced in one of our

laboratories (A.B) by immunizing mice with the YT2C2 NK cell

line. BY40 is IgG1 monoclonal antibody, which is with BY12 mAb

unique regarding its epitope mapping as we previously reported

[47]. BY40 is not cytotoxic and it inhibits directly ATPase

activities mediated by cell membrane anchored CD39 (AB

personal data and this paper Fig. S3) Cells were analysed by

LSR II (BD Immunocytometry systems). At least 20 000 CD4 or

CD8-gated events were collected for cell surface studies.

Statistical analysis
Statistically significant differences were assessed by one-way

ANOVA, followed by paired t-samples T-test, or by unpaired T-

test assuming independent samples where appropriate. Correla-

tions were assessed using Spearman’s rank order test (GraphPadu

Prism 5.0 statistical software). The independent prognostication

value of CD39 expression on Treg was evaluated in multiple linear

regression models (SPSS v.17.0).

Cohorts used for the CD39 genetic association study
The GRIV cohort. The GRIV (Genomics of Resistance to

Immunodeficiency Virus) cohort comprised 275 LTNP and 86 RP

French HIV-1 seroprevalent individuals of Caucasian descent

[20,48]. All of them are French HIV-1 seroprevalent subjects of

Caucasian descent and included on the basis of the main clinical

outcomes, CD4 T-cell count and time to disease progression: an

asymptomatic HIV-1 infection for more than 8 years, no

antiretroviral treatment and a CD4 T-cell count consistently

above 500/mm3 for LTNP; and a drop of CD4 T-cell count below

300/mm3 less than 3 years after the last seronegative test for RP.

The control group used for comparison with GRIV subjects

[22,23] comprised 697 French HIV-1 seronegative individuals of

Caucasian descent from the D.E.S.I.R. program [49]. GRIV is a

case-control study (LTNP vs. CTR or RP vs. CTR) and the

comparison of the LTNP vs. RP groups is less adequate to identify

signals for the following reasons: 1. The past experience has shown

that most signals are either linked to long-term non-progression or

to rapid progression, very rarely to both; 2. Without a control

population, the LTNP vs. RP comparison does not allow to

discriminate if a putative signal is associated to LTNP or to RP; 3.

Finally, the three groups are needed to discriminate if a signal is

linked to progression or to the acquisition phenotype.
The ACS group. 417 HIV-1 seroconverter and seroprevalent

Dutch subjects were collected from the ACS (Amsterdam Cohort

Study) on the course of HIV-1 infection using AIDS-related death

as an endpoint [50]. AIDS-related death is defined as death with

AIDS-related malignancy, death with AIDS-opportunistic

infections, or death with an AIDS-related cause not specified by

the treating physician. Written informed consent was obtained

prior to data collection for the ACS, and the study was approved

by the Academic Medical Center institutional medical ethics

committee.

The MACS cohort. 156 HIV-1 seroconverter Caucasian

homosexual men were collected from the MACS (Multicenter

AIDS Cohort Study) cohort using time to clinical AIDS (CDC

1987 definition) as an endpoint [51]. This panel was enriched with

extreme AIDS progression phenotypes (rapid progressors, and

long-term non-progressors) in order to increase the power of the

study.

Genotyping methods and quality control for the CD39

genetic association study
(For more details, see previously published works [23,50,51]).

For the GRIV (cases and controls) and ACS analyses, the CD39

genotyping data were obtained using the Illumina Infinium II

HumanHap300 BeadChips, when for the MACS analysis, they

were obtained using the Affymetrix GeneChip Human Mapping

500K Array. In each study, quality control filters (e.g. missingness,

low minor allele frequency, Hardy-Weinberg equilibrium devia-

tion) were applied to ensure reliable genotyping data as previously

described [23,50,51]. In each cohort, potential population

stratification was also considered using the Eigenstrat software

[52]. First, to confirm continental ancestries, the genotypes of each

participants group were combined with the genotypes from the

three HapMap reference populations. Among the initial ACS

group, 13 subjects were thus excluded from further analyses

(n = 404) to avoid spurious associations resulting from a non-

European ancestry. Then, in each study group of European

descent, the top ten most significant principal components were

identified and included as covariates in the regression models

described below. The rs11188513 SNP untyped in the MACS

group was imputed using Impute software [53] and the HapMap

release 21 phased data for the population of European descent

(CEU) as the reference panel.

Statistical analysis for the CD39 genetic association study
We first performed a genetic case-control association analysis in

the GRIV cohort using a logistic regression and an additive model,

including as covariates the 10 principal components identified by

Eigenstrat. All SNPs found to be significant in the GRIV cohort

were tested for replication in ACS and MACS cohorts. The SNP

rs11188513 was the only polymorphism exhibiting a significant p-

value both in ACS and MACS. For the replication in the ACS and

MACS groups, we performed Kaplan-Meier survival analysis and

regression -Cox proportional regression and linear regression for

ACS and MACS respectively- in an additive model including as

covariates the 10 principal components identified by Eigenstrat.

The significant associations (P,0.05) were also retested using age,

sex, and CCR5-P1 and D32 polymorphisms as covariates and

yielded identical results.

To evaluate the combined p-value obtained over the 3 cohorts

for each SNP, we used the classical Fisher method [54].

Ethic statements
Approval and written informed consent from all subjects were

obtained before study initiation. The study was approved by the

following ethical committees : Hospital of Infectious Diseases,

Sofia, Bulgaria and CCP IX Ile de France - Henri Mondor

Hospital, Créteil, France. Ethic statements for GRIV, MACS ACS

cohorts have been already reported [23,50,51].
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Supporting Information

Figure S1 Expression of CD39 on CD4+CD25highFoxP3+C-

D127low Treg and CD4+CD25low cells. (a) gating strategy:

Representative experiment showing the expression of CD39 on

Treg and CD4+CD25low activated T cells from an HIV-negative

donor. (b and c) PBMC from c-ART2 HIV-1 positive patients

(black squares, n = 39), c-ART+ HIV-positive subjects (grey

squares, n = 39) and HIV- negative controls (white squares,

n = 25) were analysed by flow cytometry. Percentages of

CD4+CD25low (b) CD4+CD25lowCD39+ (c) are shown. Statis-

tical differences were assessed by unpaired t-test assuming

independent samples * P,0.05, ** P,0.01, ***P,0.001).

(PPT)

Figure S2 Phenotype of Treg CD39+. CD3 T cells purified

from PBMC from c-ART2 (black histogram, n= 8) and c-ART+

(grey histogram, n= 7) HIV-positive subjects, and from HIV-

negative controls (white histogram n= 7). The distribution of naı̈ve

(CD45RA+CD282) central memory (CD45RA2CD28+) effector

memory (CD45RA2CD282) and terminal effector cells

(CD45RA+CD282) among CD4+CD25highCD127lowFoxP3+

Treg CD39+, are represented in (a). The expression of CD39

on Treg CD28+CD45RA+ and Treg CD28+CD45RA2 subsets

is represented in (b). Statistical differences were assessed by

unpaired t-test assuming independent samples, * P,0.05.

(PPT)

Figure S3 Mechanism of action of CD39 mAb BY40. (a)

Down-regulation of CD39 molecule induced by CD39 mAb

BY40. Histogram overlays represent CD39 expression on the

surface of YT2C2 NK line cells before (thick line) and after 2 h of

culture in the presence of BY40 (dotted line), in comparison to cells

stained with an irrelevant isotype control (filled histogram). This

result is representative of three independent experiments. (b)

CD39 mAb BY40 inhibits the ATPase activity of CD39.

Monocytes were cultured alone or in the presence of BY40 or

control IgG1 mAb (10 mg/mL) for 16 h. The cells were then

washed with a phosphate-free reaction buffer (containing 0.5 mM

CaCl2, 120 mM NaCl, 5 mM KCl, 60 mM glucose, and 50 mM

Tris 2HCl buffer, pH=8) and ATPase activity was initiated by

the addition of ATP at a concentration 100 M in 200 ml of

reaction buffer for 15 min at 37uC. The release of inorganic

phosphate was measured using the malachite green phosphate

detection kit (R&D System, Minneapolis, USA) according to the

manufacturer’s instructions. This result is representative of three

independent experiments. * P,0.05.

(PPT)

Figure S4 Competitivity test experiment between commercial

anti-CD39 (clone TÜ66) and BY40. Purifed CD4 T cells stained

at 4uc during 30 min. with PE anti-CD39 (clone TÜ66) with or

without BY40 at 10 mg/ml. CD39 expression was gated on

CD4+CD25high.

(PPT)

Figure S5 Genetic map of CD39 gene. Exons and introns are

symbolized by full and empty rectangles, respectively. The

positions of the ATG and STOP cordons are indicated by a

triangle (c) and by an asterisk (*), respectively. The significant

polymorphisms in the GRIV study are indicated by the symbol. Of

note, an alternative splicing variant has been described that differs

from the one presented in the position of the first exon.

(PPT)

Figure S6 Expression of CD39 on NK cells, B cells, monocytes

and CD8+ T cells. (a) Representative experiment showing the

expression of CD39 on NK cells, B cells, monocytes and CD8+ T

cells from an HIV-negative and a c-ART2HIV-positive patient.

(b) Cumulative data of CD39 expression on monocytes and B cells

(MFI) and CD8+ T cells and NK cells (%) from c-ART2HIV-

positive (n = 3), c-ART+HIV-positive (n = 3) and HIV negative

(n = 3) donors.

(PPT)

Table S1 Allelic frequencies in the different populations. the

French GRIV cohort (LTNP: long-term non-progressor ; CTR:

seronegative controls ; RP: rapid progressors), the Dutch ACS,

and the USA MACS. Unlike the GRIV cohort, ACS and MACS

are seroconverter cohorts containing subjects with all type of

progression profiles. The frequency in these two cohorts are thus

naturally similar to these observed in the control groups, and the

progression effect is observed through Kaplan-Meier curves (see

Fig. 7).

(DOCX)
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genotyping of the various cohorts. The CD39 data from the D.E.S.I.R

control group were kindly provided by Philippe Froguel, Christian Dina,

and Rob Sladek.

Author Contributions

Conceived and designed the experiments: YL. Performed the experiments:

MN MC MAJ MM MY NS SL AH AK SH. Analyzed the data: MN AB

JFZ JDL YL. Contributed reagents/materials/analysis tools: JFZ HS OD

JTH JIM AB. Wrote the paper: MN JDL YL.

References

1. Appay V, Nixon DF, Donahoe SM, Gillespie GM, Dong T, et al. (2000) HIV-

specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic

function. J Exp Med 192: 63–75.

2. Aandahl EM, Michaelsson J, Moretto WJ, Hecht FM, Nixon DF (2004) Human

CD4+CD25+ regulatory T cells control T-cell responses to human immuno-

deficiency virus and cytomegalovirus antigens. J Virol 78: 2454–2459.

3. Cabrera R, Tu Z, Xu Y, Firpi RJ, Rosen HR, et al. (2004) An

immunomodulatory role for CD4(+)CD25(+) regulatory T lymphocytes in

hepatitis C virus infection. Hepatology 40: 1062–1071.

4. Kinter AL, Hennessey M, Bell A, Kern S, Lin Y, et al. (2004) CD25(+)CD4(+)

regulatory T cells from the peripheral blood of asymptomatic HIV-infected

individuals regulate CD4(+) and CD8(+) HIV-specific T cell immune responses

in vitro and are associated with favorable clinical markers of disease status. J Exp

Med 200: 331–343.

5. Kared H, Lelievre JD, Donkova-Petrini V, Aouba A, Melica G, et al. (2008)

HIV-specific regulatory T cells are associated with higher CD4 cell counts in

primary infection. AIDS 22: 2451–2460.

6. Weiss L, Donkova-Petrini V, Caccavelli L, Balbo M, Carbonneil C, et al. (2004)

Human immunodeficiency virus-driven expansion of CD4+CD25+ regulatory T

cells, which suppress HIV-specific CD4 T-cell responses in HIV-infected

patients. Blood 104: 3249–3256.

7. Collison LW,Workman CJ, Kuo TT, BoydK,Wang Y, et al. (2007) The inhibitory

cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566–569.

8. Paust S, Lu L, McCarty N, Cantor H (2004) Engagement of B7 on effector T

cells by regulatory T cells prevents autoimmune disease. Proc Natl Acad Sci U S A

101: 10398–10403.

9. Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work.

Nat Rev Immunol 8: 523–532.

Treg CD39+ in HIV-1 Infection

PLoS Pathogens | www.plospathogens.org 13 July 2011 | Volume 7 | Issue 7 | e1002110



10. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, et al.
(2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of
extracellular ATP and immune suppression. Blood 110: 1225–1232.

11. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, et al. (2007) Adenosine
generation catalyzed by CD39 and CD73 expressed on regulatory T cells
mediates immune suppression. J Exp Med 204: 1257–1265.

12. Mandapathil M, Szczepanski MJ, Szajnik M, Ren J, Lenzner DE, et al. (2009)
Increased ectonucleotidase expression and activity in regulatory T cells of
patients with head and neck cancer. Clin Cancer Res 15: 6348–6357.

13. Airas L, Hellman J, Salmi M, Bono P, Puurunen T, et al. (1995) CD73 is
involved in lymphocyte binding to the endothelium: characterization of
lymphocyte-vascular adhesion protein 2 identifies it as CD73. J Exp Med 182:
1603–1608.

14. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006)
Adenosine 59-triphosphate and adenosine as endogenous signaling molecules in
immunity and inflammation. Pharmacol Ther 112: 358–404.

15. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of
ectonucleotidases: Structure function relationships and pathophysiological
significance. Purinergic Signal 2: 409–430.

16. Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M, et al. (2004)
Physiological control of immune response and inflammatory tissue damage by
hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22:
657–682.

17. Thiel M, Caldwell CC, Sitkovsky MV (2003) The critical role of adenosine A2A
receptors in downregulation of inflammation and immunity in the pathogenesis
of infectious diseases. Microbes Infect 5: 515–526.

18. Huang S, Apasov S, Koshiba M, Sitkovsky M (1997) Role of A2a extracellular
adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-
cell activation and expansion. Blood 90: 1600–1610.

19. Maliszewski CR, Delespesse GJ, Schoenborn MA, Armitage RJ, Fanslow WC,
et al. (1994) The CD39 lymphoid cell activation antigen. Molecular cloning and
structural characterization. J Immunol 153: 3574–3583.

20. Hendel H, Caillat-Zucman S, Lebuanec H, Carrington M, O’Brien S, et al.
(1999) New class I and II HLA alleles strongly associated with opposite patterns
of progression to AIDS. J Immunol 162: 6942–6946.

21. Friedman DJ, Kunzli BM, YI AR, Sevigny J, Berberat PO, et al. (2009) From
the Cover: CD39 deletion exacerbates experimental murine colitis and human
polymorphisms increase susceptibility to inflammatory bowel disease. Proc Natl
Acad Sci U S A 106: 16788–16793.

22. Le Clerc S, Limou S, Coulonges C, Carpentier W, Dina C, et al. (2009)
Genomewide association study of a rapid progression cohort identifies new
susceptibility alleles for AIDS (ANRS Genomewide Association Study 03).
J Infect Dis 200: 1194–1201.

23. Limou S, Le Clerc S, Coulonges C, Carpentier W, Dina C, et al. (2009)
Genomewide association study of an AIDS-nonprogression cohort emphasizes
the role played by HLA genes (ANRS Genomewide Association Study 02).
J Infect Dis 199: 419–426.

24. Ge D, Zhang K, Need AC, Martin O, Fellay J, et al. (2008) WGAViewer:
software for genomic annotation of whole genome association studies. Genome
Res 18: 640–643.

25. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, et al. (2007) A genome-wide
association study of global gene expression. Nat Genet 39: 1202–1207.

26. Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, et al. (2007) CD39 and
control of cellular immune responses. Purinergic Signal 3: 171–180.

27. Mandapathil M, Lang S, Gorelik E, Whiteside TL (2009) Isolation of functional
human regulatory T cells (Treg) from the peripheral blood based on the CD39
expression. J Immunol Methods 346: 55–63.

28. Leal DB, Streher CA, Bertoncheli Cde M, Carli LF, Leal CA, et al. (2005) HIV
infection is associated with increased NTPDase activity that correlates with
CD39-positive lymphocytes. Biochim Biophys Acta 1746: 129–134.

29. Schulze Zur Wiesch J, Thomssen A, Hartjen P, Toth I, Lehmann C, et al. (2011)
Comprehensive Analysis of Frequency and Phenotype of T Regulatory Cells in
HIV Infection: CD39 expression of FoxP3+ T regulatory cells correlates with
progressive disease. J Virol 85: 1287–1297.

30. Nigam P, Velu V, Kannanganat S, Chennareddi L, Kwa S, et al. (2010)
Expansion of FOXP3+ CD8 T cells with suppressive potential in colorectal
mucosa following a pathogenic Simian Immunodeficiency Virus infection
correlates with diminished antiviral T cell response and viral control. J Immunol
184: 1690–1701.

31. Burnstock G (2006) Pathophysiology and therapeutic potential of purinergic
signaling. Pharmacol Rev 58: 58–86.

32. Martin C, Leone M, Viviand X, Ayem ML, Guieu R (2000) High adenosine
plasma concentration as a prognostic index for outcome in patients with septic
shock. Crit Care Med 28: 3198–3202.

33. Ogura Y, Sutterwala FS, Flavell RA (2006) The inflammasome: first line of the
immune response to cell stress. Cell 126: 659–662.

34. Erdmann AA, Gao ZG, Jung U, Foley J, Borenstein T, et al. (2005) Activation of
Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in
vitro and IL-2-driven expansion in vivo. Blood 105: 4707–4714.

35. Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in
downregulation of inflammation and protection from tissue damage. Nature
414: 916–920.

36. Ohta A, Ohta A, Madasu M, Kini R, Subramanian M, et al. (2009) A2A
adenosine receptor may allow expansion of T cells lacking effector functions in
extracellular adenosine-rich microenvironments. J Immunol 183: 5487–5493.

37. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, et al. (2008) A2A
receptor signaling promotes peripheral tolerance by inducing T-cell anergy and
the generation of adaptive regulatory T cells. Blood 111: 251–259.

38. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, et al. (2006) T regulatory
and primed uncommitted CD4 T cells express CD73, which suppresses effector
CD4 T cells by converting 59-adenosine monophosphate to adenosine.
J Immunol 177: 6780–6786.

39. Aswad F, Kawamura H, Dennert G (2005) High sensitivity of CD4+CD25+
regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide
and ATP: a role for P2X7 receptors. J Immunol 175: 3075–3083.

40. Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, et al. (1996)
Characterization of adenosine deaminase binding to human CD26 on T cells
and its biologic role in immune response. J Immunol 156: 1349–1355.

41. Sitkovsky MV, Ohta A (2005) The ‘danger’ sensors that STOP the immune
response: the A2 adenosine receptors? Trends Immunol 26: 299–304.

42. Gajewski TF, Meng Y, Harlin H (2006) Immune suppression in the tumor
microenvironment. J Immunother 29: 233–240.

43. Kinter A, McNally J, Riggin L, Jackson R, Roby G, et al. (2007) Suppression of
HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-
infected individuals. Proc Natl Acad Sci U S A 104: 3390–3395.

44. Estes JD, Li Q, Reynolds MR, Wietgrefe S, Duan L, et al. (2006) Premature
induction of an immunosuppressive regulatory T cell response during acute
simian immunodeficiency virus infection. J Infect Dis 193: 703–712.

45. Lichterfeld M, Kaufmann DE, Yu XG, Mui SK, Addo MM, et al. (2004) Loss of
HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and
restoration by vaccine-induced HIV-1-specific CD4+ T cells. J Exp Med 200:
701–712.

46. Nikolova M, Lelievre JD, Carriere M, Bensussan A, Levy Y (2009) Regulatory T
cells differentially modulate the maturation and apoptosis of human CD8+ T-
cell subsets. Blood 113: 4556–4565.

47. Gouttefangeas C, Mansur I, Bensussan A, Boumsell L (1995) Biochemical
analysis and epitope mapping of mAb defining CD39. In: Schlossman SF,
Boumsell L, Gilks W, Harlan JM, Kishimoto T, et al. (1995) Leucocyte Typing
V. New York: Oxford University Press. pp 383–385.

48. Winkler CA, Hendel H, Carrington M, Smith MW, Nelson GW, et al. (2004)
Dominant effects of CCR2–CCR5 haplotypes in HIV-1 disease progression.
J Acquir Immune Defic Syndr 37: 1534–1538.

49. Balkau B (1996) [An epidemiologic survey from a network of French Health
Examination Centres, (D.E.S.I.R.): epidemiologic data on the insulin resistance
syndrome]. Rev Epidemiol Sante Publique 44: 373–375.

50. van Manen D, Kootstra NA, Boeser-Nunnink B, Handulle MA, van’t Wout AB,
et al. (2009) Association of HLA-C and HCP5 gene regions with the clinical
course of HIV-1 infection. AIDS 23: 19–28.

51. Herbeck JT, Gottlieb GS, Winkler CA, Nelson GW, An P, et al. (2010)
Multistage genomewide association study identifies a locus at 1q41 associated
with rate of HIV-1 disease progression to clinical AIDS. J Infect Dis 201:
618–626.

52. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)
Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 38: 904–909.

53. Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint
method for genome-wide association studies by imputation of genotypes. Nat
Genet 39: 906–913.

54. Fisher RA, Immer FR, Tedin O (1932) The Genetical Interpretation of Statistics
of the Third Degree in the Study of Quantitative Inheritance. Genetics 17:
107–124.

Treg CD39+ in HIV-1 Infection

PLoS Pathogens | www.plospathogens.org 14 July 2011 | Volume 7 | Issue 7 | e1002110



Copyright of PLoS Pathogens is the property of Public Library of Science and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.


