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ORIGINAL ARTICLE

CD4+ Regulatory and Effector/Memory T Cell Subsets
Profile Motor Dysfunction in Parkinson’s Disease
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R. Lee Mosley & Howard E. Gendelman
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Abstract Animal models and clinical studies have linked the
innate and adaptive immune system to the pathology of Par-
kinson’s disease (PD). Despite such progress, the specific
immune responses that influence disease progression have
eluded investigators. Herein, we assessed relationships be-
tween T cell phenotype and function with PD progression.
Peripheral blood lymphocytes from two separate cohorts, a
discovery cohort and a validation cohort, totaling 113 PD
patients and 96 age- and environment-matched caregivers
were examined by flow cytometric analysis and T cell prolif-
eration assays. Increased effector/memory T cells (Tem), de-
fined as CD45RO+ and FAS+ CD4+ T cells and decreased

CD31+ and α4β7+ CD4+ T cells were associated with pro-
gressive Unified Parkinson’s Disease Rating Scale III
scores. However, no associations were seen between im-
mune biomarkers and increased age or disease duration.
Impaired abilities of regulatory T cells (Treg) from PD
patients to suppress effector T cell function was observed.
These data support the concept that chronic immune stim-
ulation, notably Tem activation and Treg dysfunction is
linked to PD pathobiology and disease severity, but not
disease duration. The association of T cell phenotypes with
motor symptoms provides fresh avenues for novel bio-
markers and therapeutic designs.
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Introduction

Parkinson’s disease (PD) is the most common neurodegener-
ative motor disorder (Hirtz et al. 2007). Loss of dopaminergic
neurons and dopamine characterize the progressive loss of
motor function and disease severity. Mounting experimental
and clinical evidence has linked neuroinflammation to the
pathobiology of PD (Mosley et al. 2012) whereby activated
microglia and astrocytes comprise integral components of PD
pathology (Pouplard and Emile 1984; Barker and Cahn 1988;
McGeer et al. 1988; McGeer and McGeer 2008). Moreover,
CD4+ and CD8+ T cells are found in close proximity to dopa-
minergic neurons in both PD brains (Brochard et al. 2009) and
in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-trea-
ted mice (Kurkowska-Jastrzebska et al. 1999; Benner et al.
2008). In peripheral blood, decreased numbers of total lympho-
cytes are linked to decreased CD4+ T cell counts and percen-
tages (Hoffman et al. 1978; Bas et al. 2001; Hisanaga et al.
2001; Baba et al. 2005; Calopa et al. 2010), which parallel
reduced naïve and increased memory CD4+ T cells (Fiszer et
al. 1994; Bas et al. 2001; Calopa et al. 2010), increased
CD4brightCD8dull T cells expressing CD45RO and FAS (Hisa-
naga et al. 2001), and increased CD4+ CD25+ Tcells (Bas et al.
2001; Baba et al. 2005; Rosenkranz et al. 2007; Calopa et al.
2010). Although the cause and effects of such changes in T cell
pools have not been precisely delineated, it is possible that T
cells influence neurodegeneration. In support of this idea, mod-
ified forms of alpha synuclein (α-syn) are present in the periph-
ery (Beach et al. 2010) and may act as neoantigens to break
immune tolerance, and as such induce effector T cell (Teff)
responses and subsequent neurotoxic reactions. Indeed, studies
in our own laboratory demonstrated that induction of Teff
speeds nigrostriatal degeneration following nitrated α-syn im-
munization (Benner et al. 2008). More recent works show that
such effects are mediated through Th17 cells. These cells serve
to exacerbate neurodegeneration while regulatory T cells (Treg)
elicit neuroprotective responses as demonstrated in MPTP-in-
toxicated mice (Reynolds et al. 2010). In addition, Treg function
is diminished in α-syn-immunized mice from which neurotoxic
Th17 cells are isolated. Furthermore, decreased numbers of Treg
are associated with increased rates of progression of amyotro-
phic lateral sclerosis (Beers et al. 2011; Rentzos et al. 2012)
another neurodegenerative movement disorder.

Based on these findings, we hypothesized that alterations in
the frequency, phenotypes and function of CD4+ T cells and
CD4+ Tcell subsets exist in PD, and that altered immune status
co-exists with disease severity. Herein, we describe alterations
in the peripheral CD4+ Tcell, Treg, and Teff populations of PD
patients compared with caregiver control subjects as well as

with clinically-scored disease severity. Phenotypic markers for
effector/memory T (Tem) cells were associated with clinical
outcomes of disease severity, but not disease duration, and in
vitro, Treg function was decreased. These data provide evi-
dence of regulatory dysfunction with chronic activation of the
adaptive immune system in PD which may have profound
influence on ongoing inflammatory-induced neuropathology
and disease progression associated with PD.

Materials and methods

Subjects and sample collection

Blood sampleswere obtained aseptically by venipuncture from
PD patients (n0113) and age- and environment-matched con-
trols (n096), in two cohorts, a discovery cohort (Cohort A) and
a validation cohort (Cohort B). The samples were assessed by
flow cytometric analysis of peripheral bloodmononuclear cells
(PBMC) and used as sources for isolation of CD4+ T cell
subsets. Participants were recruited through the University of
Alabama at Birmingham (UAB) Movement Disorders Clinic,
Neurological Consultants of Nebraska (NCNE), and the Depart-
ment of Neurological Sciences at the University of Nebraska
Medical Center (UNMC). Patients and controls providedwritten
informed consent using IRB-approved forms. PD was diag-
nosed using UK Brain Bank clinical criteria. Patients and con-
trols with a history of an autoimmune or inflammatory disorder
and those receiving chronic immunosuppressive therapy were
excluded. Controls were identified from among spouses and
caregivers and are hereafter referred to as “caregivers”. A brief
screening was conducted to exclude caregivers with symptoms
likely to represent PD. Data on patients were collected using
standard PD-DOC data forms: demographics, primary diagnosis,
PD features, diagnostic features, family history, environmental
risk, UPDRS-III, and Hoehn and Yahr (HY) stage. At UAB,
50 ml of whole blood were collected in acid citrate dextrose
(ACD)-coated tubes (BD Vacutainer), coded and shipped with
an ice pack overnight to the University of Nebraska Medical
Center and processed within 24 h of collection. At NCNE and
UNMC, 70 ml of whole blood were collected in heparin-coated
tubes (BD Vacutainer), coded, and stored at room temperature
until possessing, which occurred within 2 h of collection. Com-
plete blood cell count with differential analysis was conducted on
blood samples collected in EDTA-coated tubes (BD Vacutainer).

Preparation of peripheral blood mononuclear cells and T cells

PBMC were collected by density gradient centrifugation using
lymphocyte separation medium per manufacturer’s instructions
(MP Biomedicals) and either used in proliferation assays, or
frozen in fetal calf serum with 10 % dimethyl sulfoxide
(DMSO) and stored in liquid nitrogen. Additionally, peripheral
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blood lymphocytes (PBL)were collected by elutriation of healthy
donors, and enriched for naïve T cells using CD4+ T Cell
Enrichment Columns (R&D Systems) following the manufac-
turer’s instructions with modifications including the addition of
antibodies against CD25, CD8, and CD16 (BD Biosciences).
Naïve T cells, greater than 94 % pure, were frozen in fetal calf
serumwith 10%DMSO and stored in liquid nitrogen until use as
responder T cells (Tresp) in proliferation assays. For
proliferation assays, Tresp were thawed and labeled with
carboxyfluorescein succinimidyl ester (CFSE) following the
manufacturer’s instructions (CFSE, Molecular Probes).

Cell sorting and flow cytometric analysis of phenotype
and proliferative status

We performed multicolor flow cytometric analysis using a
FACSCalibur flow cytometer (Becton Dickinson) with
fluorochrome-conjugated monoclonal antibodies against
the following antigens: CD4 (FITC or Alexa Fluor [AF]-
700), CD25 (PE), CD127 (PerCP-Cy 5.5), FoxP3/Scurfin
(AF-647), CD95/FAS/Apo1 (APC), CD31/PECAM-1
(AF647), CD39/ENTPD1 (APC), CD49d/Integrin α4 (APC
or PE-Cy 7), CD103 (AF-647), CD45RO (APC), CD45RA
(AF-700), Integrinβ7 (APC), CD29/integrinβ1 (AF700) (BD
Biosciences, San Jose, CA, USA). Isotype-matched mouse or
rat monoclonal antibodies were used as negative controls. Data
analysis was conducted using BD FACSDiva Software version
6.1.3 (BD Biosciences, San Jose, CA, USA). In separate
experiments, PBMC that were freshly-isolated from whole
blood of PD patients and caregivers, were enriched for CD4+
T cells by negative selection with magnetic beads using Auto-
MACS (Miltenyi Biotec) per manufacturer’s instructions. Un-
stained lymphocytes were used as a negative control, and anti-
mouse Ig, κ/Negative Control Compensation Particles (BD
Biosciences) were used to optimize fluorescence compensation
settings for fluorescence activated cell sorting (FACS) of CD4
+ enriched T cells using a FACSAria II (Becton Dickinson).
Naïve T cells were identified as CD4+CD25-CD127+, Treg
were identified as CD4+CD25+CD127- and Teff were identi-
fied as CD4+CD25+CD127+, as expression of the alpha-chain
of the IL-7 receptor, CD127, is inversely correlated with ex-
pression of FoxP3 and CD4+CD25+CD127-/low Treg are
hypo-proliferative and suppressive (Liu et al. 2006; Seddiki
et al. 2006). Cells isolated by FACS were plated with CFSE-
labeled Tresp in RPMI 1640medium supplemented with 10 %
heat inactivated human AB serum (Atlanta Biologicals Inc.),
2 mM L-glutamine, 55 uM 2-ME, 100 U/ml penicillin, and
100 μg/ml streptomycin, with 25 mM HEPES, 1 mM sodium
pyruvate, 1X non-essential amino acids. T cells were activated
by engagement of CD3 and CD28 with Dynabeads
(Invitrogen), and proliferation was analyzed on day 3.5 by
multicolor flow cytometric analysis.

Gene expression analysis

PBMCwere thawed and enriched for CD4+ Tcells by negative
selection with magnetic beads using AutoMACS (Miltenyi
Biotec) per manufacturer’s instructions. CD4+ Tcells were then
cultured for 20 h in RPMI 1640 medium supplemented with
10% heat inactivated humanAB serum, 2mML-glutamine, 55
μM 2-ME, 100 U/ml penicillin, and 100 μg/ml streptomycin,
with 25mMHEPES, 1mM sodium pyruvate, 1X non-essential
amino acids with anti-CD3/CD28 Dynabeads (Invitrogen).
mRNA was isolated using a RNeasy Mini Kit with on-
column DNase digestion on a QIAcube according to the man-
ufacturer’s protocol (QIAGEN). RNAwas stored at −80° C in
RNase-free water. PCR reactions were conducted using the
RT2 Profiler PCRArrayHuman Th1-Th2-Th3with RT2 SYBR
Green qPCR Master Mix on an Eppendorf realplex Master-
cycler ep gradient S (SABiosciences a QIAGEN Company).

Bioinformatics correlation network creation via node
seeding

Cell surface markers that were differentially expressed by flow
cytometric analysis in the PD group compared to caregivers were
used to build networks for correlation analysis. Nodes in the
networks represent cell surface markers. Edges represent the
weighted correlation of each gene and an associated p-value.
Correlations with p-value >0.0005 were not considered statisti-
cally significant and edges outside that threshold were discarded;
all correlations met this threshold. Edge width and opacity refers
to strength of correlation (positive or negative correlation).

Statistical analysis

Fisher’s exact tests were used to examine the association of
categorical participant characteristics with disease status. A
two-sample t-test was used to examine the association of age
with disease status. Normality of flow cytometric data was
assessed using the Anderson-Darling test. Since many of the
flow cytometric measures did not pass the test for normality,
values were compared between caregivers and PD patients
using a non-parametric Mann–Whitney test. To control for the
false discovery rate at the α level, p values obtained from
comparing flow cytometric data of caregivers and PD patients
were adjusted using Benjamini–Hochberg adjustment for
multiple comparisons. Pearson product–moment correlation
coefficients were used to determine correlations between anti-
gens measured by flow cytometric analysis and UPDRS-III
score, and FAS and CD45RO. Linear regression was used to
determine if age or UPDRS-III score predict variables mea-
sured by flow cytometry. Associations of flow cytometric data
(CD45RO+RA−, FAS and α4β7) with UPDRS-III scores
(binned into 3 groups), were assessed using Kruskal–Wallis
non-parametric ANOVAwith post hoc pairwise comparisons
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of PD patients verses controls conducted with Dunn’s multiple
comparison test. Regression analysis was used to adjust for
gender; a general linear model on rank-transformed CD31
values was used to evaluate CD31 and UPDRS-III followed
by a Bonferroni adjustment for multiple comparisons. Statis-
tical analyses were conducted using Prism (GraphPad Soft-
ware, Inc) or IBM SPSS (IBM).

Results

We collected data from two cohorts of PD patients and care-
givers; a discovery cohort (Cohort A) and a validation cohort
(Cohort B). Descriptive statistics of Cohorts A and B demon-
strate that gender, and self-reported exposure to pesticides
(Cohorts A and B), chemical solvents and heavy metals (Co-
hort B) were associated with PD (supplemental Table S1).
More importantly, both cohorts were comprised of PD patients
and caregivers that were similar between cohorts with respect
to age, disease duration, motor function and disease severity;
the latter two scored by practicing neurologists using part III
of the United Parkinson’s Disease Rating Scale (UPDRS), the
most commonly used assessment of disease severity (Leddy et
al. 2011). In the pilot study, Cohort A, whole blood samples
from PD patients (n041) and caregivers (n031) were evalu-
ated by flow cytometric analysis in an un-blinded fashion to
investigate phenotypic leukocyte antigens of interest. Those
analyses suggested that peripheral immune T cell phenotypic
changes resided in the CD4+ T cell, CD4+CD25+CD127-
Treg and CD4+CD25+CD127+ Teff populations in PD, and
that the percentage of effector/memory T cells (Tem) were
increased (supplemental Table S2). Based on these prelimi-
nary results, a prospective blinded study was designed for a
second, but larger, validation cohort, Cohort B, consisting of
72 PD patients and 65 caregivers (supplemental Table S1).

Lymphocyte and CD4+ T cell frequencies in PD

To define changes in the numbers and phenotype of CD4+ T
cells, Treg and Teff of PD patients in Cohort B, we conducted
flow cytometric analyses of peripheral bloodmononuclear cells
(PBMC) from PD patients and caregivers. CD4+ T cell pop-
ulations were identified by high expression of CD4 and low
side scatter, and Treg and Teff were identified within the CD4+
T cell population as CD25+CD127- and CD25+CD127+, re-
spectively (Liu et al. 2006; Seddiki et al. 2006) (Fig. 1a). To
confirm identification of Treg, the intracellular transcription
factor forkhead box P3 (FoxP3) was measured. As expected,
the percentage of FoxP3+ Treg was consistently and signifi-
cantly higher than the percentage of FoxP3+ Teff in both PD
patients and caregivers, suggesting that CD4+CD25+CD127-
Tcells are Treg (Liu et al. 2006) (supplemental Fig. S1). CD4+
T cell frequency was decreased in PD patients compared to

caregivers (Fig. 1b), while no significant differences were seen
in the percentages of Treg and Teff amongst PD patients and
caregivers (supplemental Fig. S1).

To determine whether the decreased percentage of CD4+ T
cells in cohort B was due to reductions in the absolute number of
CD4+ T cells or an increase in other lymphocyte populations,
complete blood count (CBC) and differential counts of PD
patients were compared to caregivers. Hemoglobin concentra-
tions, total white blood cell, absolute lymphocyte and CD4+ T
cell counts were assessed for Cohort B (Table 1). Compared to
caregivers, PD patients presented diminished percentages of lym-
phocytes and decreased absolute lymphocyte counts with in-
creased percentages of neutrophils. Using the CD4+ T cell
percentages from flow cytometric analyses and absolute lympho-
cyte counts from differentials, we calculated absolute CD4+Tcell
counts, which were significantly decreased in PD patients com-
pared to caregivers.

Increased effector/memory CD4+ T cells in PD

Phenotypic changes in the CD4+ T cell, Treg and Teff pop-
ulations were assessed by flow cytometric analysis (Table 2).
CD4+ T cells from PD patients demonstrated increased
percentages of CD45RO+ events and FAS+ events than care-
givers, while the percentages of CD45RA+ and CD31+
CD4+ T cell events were decreased in PD. The percentages
of integrin α4β7+ cells were decreased significantly in PD
patients, and integrin α4β1+ CD4+ Tcells were elevated slight-
ly, though not significantly (p00.08). Within the Teff and Treg
populations, FAS+Teff were increased andCD45RA+Teff were
significantly decreased in PD patients compared to caregivers,
while there were no differences observed in the Treg population.
Significant differences in phenotypic markers of CD4+ T cell
subsets determined by Mann–Whitney comparison remained
significant after Benjamini-Hochberg adjustment for multiple
comparisons (Table 2). Although gender was associated with
disease status (Table S1), the percentages of CD45RO+, FAS+
and integrin α4β7+ events in the CD4+ T cell population of the
PD group remained significantly different from that of the care-
giver group after adjusting for gender. However, the percentage
of CD4+ Tcells and the percentages of CD4+ Tcells expressing
CD45RA, CD31, and integrin α4β1 were not significantly
different after adjusting for gender.

CD45RO+CD4+ T cells increase with age (Douek et al.
1998). However, the mean age of PD patients compared to
caregivers were not significantly different (Table S1), suggest-
ing that the increase in the percentages of CD45RO+CD4+ T
cells in PD patients compared to caregivers was not age-
associated. Previous studies have demonstrated that a high
percentage of CD45RO+ memory CD4+ T cells are FAS+
(Miyawaki et al. 1992), and as expected, regardless of diagno-
sis, the percentages of CD45RO+CD4+ T cells and FAS+
CD4+ T cells were found to be strongly correlated
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(supplemental Fig. S2A). In addition, we found a moderate
negative correlation between percentages of CD45RO+CD4+
T cells and CD31+ CD4+ T cells among all Cohort B partic-
ipants (supplemental Fig. S2B), and found a weak negative
correlation between the percentages of CD31+ and FAS+CD4+
T cells (supplemental Fig. S2C).

Association of disease severity with T cell phenotypes

We assessed the relationship of phenotypic alterations in CD4+
T cells, Treg and Teff with age, clinical measures of disease
severity and disease duration. Linear regression demonstrated
that age was not predictive of the variation in the percentage of
CD4+ T cells that were CD45RO+ in PD patients (r200.044,
p00.13) or caregivers (r200.003, p>0.05) (data not shown).
We found a moderate positive correlation between UPDRS-III
score and the percentages of CD45RO+CD4+ T cells
(Fig. S3A), and a weak positive correlation between UPDRS-
III score and the percentage of FAS+CD4+ T cells (Fig. S3B).
The percentages of CD31+CD4+ Tcells demonstrated a strong
negative correlation with UPDRS-III (Fig. S3C) and integrin

α4β7+ CD4+ T cells showed a moderate negative correlation
with UPDRS-III (Fig. S3D). CD45RO expression by Teff was
weakly correlated with UPDRS-III (Pearson r00.24, data not
shown), while CD31 expression on Teff showed a strong
negative correlation with UPDRS-III score (Fig. S3E), and
α4β7+ Teff were show a moderate inverse correlation with
UPDRS-III score (Fig. S3F). No correlations of disease dura-
tion as measured by years since diagnosis could be established
with the percentages of CD45RO+, FAS+, CD31+, or integrin
α4β7+ CD4+ T cells (data not shown).

To further investigate the relationship between disease se-
verity and CD4+ Tcells, we next assessed flow cytometric data
of caregivers and PD patients segregated into 3 groups based
on UPDRS-III scores of: 1–20 (n025), 21–30 (n028), and ≥31
(n016). Nonparametric ANOVA indicated differences among
groups with respect to the percentages of CD45RO+, α4β7+,
and FAS+CD4+ T cells (Fig. 2a-c), and Dunn’s adjustment for
multiple comparisons demonstrated that the significant differ-
ences occurred between caregivers and PD patients with a
UPDRS-III score ≥31 with respect to the percentages of
CD45RO+ and α4β7+ CD4+ T cells. After adjusting for

Fig. 1 Gating strategy for flow cytometric analysis of PBMC and CD4+
T cell and Teff frequency. a Representative flow cytometric scatter plots
used for data collection. The CD4+ T cell population was identified by
high expression of CD4 and low side scatter (left panel). Treg and Teff
were identified within the CD4+ Tcell population as CD25+CD127− and

CD25+CD127+ (right panel). b The percentage of CD4+ lymphocytes
for Cohort B. CD4+ data (b) are expressed as means ± SEM, and
significant differences between CD4+ T cell means were determined by
Mann–Whitney test for 63 caregivers and 71 PD patients where *p≤0.05

Table 1 Complete blood counts and differential counts from PD patients compared to caregiver controls of Cohort B

Caregivers PD patients p values

n Mean ± SEM Median Range n Mean ± SEM Median Range Mann–Whitney

Hgb (g/dL) 47 13.7±0.2 13.8 11.1–17.3 59 14.1±0.2 14 11.6–17.3 0.08

WBCx 103/μL 47 6.4±0.3 6 3.6–11.4 59 6.2±0.2 6 3.3–12.1 0.57

Neutrophil (%) 36 57.5±1.8 60 27–77 43 63.6±1.5 64 43–86 0.01

Lymphocyte (%) 36 29.7±1.6 28.5 10–59 43 24.1±1.2 23 7–38 0.01

Monocyte (%) 36 8.6±0.4 8 5–14 43 8.4±0.3 8 4–13 0.75

Eosinophil (%) 36 3.7±0.3 3 0–9 43 3.4±0.5 3 0–13 0.70

Basophil (%) 36 0.6±0.1 1 0–1 43 0.4±0.1 0 0–2 0.12

Absolute Lymphocyte
count/μL

36 1829.3±174 1537.5 737–6726 43 1434.6±89.4 1340 570–3335 0.04

aAbsolute CD4+ count/μL 36 801.3±115.4 591.5 334.3–4424 43 541.3±37.9 469.4 207–1231 0.008

a Absolute CD4+ T cell count was calculated using the percentage of CD4+ T cells determined by flow cytometric analysis with the absolute
lymphocyte count determined by differential
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gender, there was a significant association between CD31 and
UPDRS-III score, and Bonferroni adjustment for multiple com-
parisons revealed a significant difference between controls and
PD patients with UPDRS-III score ≥31 and PD patients with a
UPDRS-III score of 1–20, compared to those with a UPDRS-
III score ≥31 (Fig. 2d). In the Teff population, CD45RO+ was
associated with UPDRS-III, with significant differences occur-
ring between PD patients with a UPDRS-III score ≥31 and
caregivers and those with a score between 1 and 20 (Fig. 2e).
After adjusting for gender, percentages of CD31+ CD4+ Tcells
were associated with UPDRS-III, and Bonferroni adjustment
for multiple comparisons demonstrated that PD patients with
UPDRS-III scores of 1–20 were significantly different from
those with a score ≥31 (Fig. 2f). In the Treg population, the
percentages of CD45RO+ and FAS+ cells were not associated
with UPDRS-III scores, but α4β7+ Treg percentages were
associated with UPDRS-III (Fig. 2g). After adjusting for gen-
der, percentages of CD31+ Treg were associated with UPDRS-
III scores, wherein Bonferroni adjustment for multiple compar-
isons demonstrated that the percentages of CD31+ Treg in PD
patients with a UPDRS-III score ≥31 were significantly less
than those from patients with scores of 1–20 (Fig. 2h).

Treg suppressive function, but not CD4+ T cell proliferative
capacity is affected in PD

We next conducted in vitro functional assays to determine
whether Treg isolated from PD patients had reduced ability to
suppress the proliferation of CD4+CD25- responder T cells
(Tresp) from healthy allogeneic donors. CD4+CD25hiCD127-
Treg, CD4+CD25-CD127hi naïve T cells and CD4+
CD25+CD127hi Teff were isolated by fluorescence-
activated cell sorting from PBMC of PD patients and care-
givers (Fig. 3a). Treg were serially-diluted and co-cultured
with anti-CD3/anti-CD28-coated beads and a constant num-
ber of CSFE-labeled Tresp. As indicators of T cell activation

and proliferation, we measured CD25 for the former and the
loss of CSFE for the latter by flow cytometric analysis
(Fig. 3a, left histograms). We first tested whether Treg from
PD patients compared to caregivers would equally suppress
proliferation of Tresp at all dilutions (PD/CG, Treg-mediated
suppression 0 1). We found that PD Treg showed decreased
ability to suppress Tresp proliferation at the greatest dilution
(1:0.125) (Fig. 3b). This raises the possibility that microenvir-
onments in which Treg are greatly outnumbered, differentially
inhibit Treg function in PD compared to caregivers. CD25
expression on T cells increases upon activation (Depper et al.
1984), and thus should be inhibited in the presence of Treg.
Indeed, CD25 expression was correlated with Treg dilution for
PD patients (r200.48, p<0.001) and caregivers (r200.67, p<
0.001). However, Treg from PD patients did not suppress
expression of CD25 differentially than caregivers (Fig. 3c,
PD/CG, Treg-mediated suppression 0 1). To determine if the
increase in memory T cell phenotype in PD is due to hyper-
proliferative naïve T cells (nT) or effector T cells (Teff), we
isolated and measured the proliferative response of Teff and nT
after CD3/CD28 stimulation (Fig. 3a, right histograms). No
significant differences in proliferative capacity of Teff (Fig. 3d)
or nT (Fig. 3e) were found between PD patients and caregivers
suggesting that aberrant proliferation of nT or Teff does not
contribute to the phenotypic skewing towards Tem.

CD27 mRNA is decreased, while IL-9 and IL-6
are increased in CD4+ T cells from PD patients

To elucidate potential causes of phenotypic changes in the
CD4+ T cell population, we conducted quantitative reverse
transcription polymerase chain reaction (qRT-PCR) for gene
expression associated with helper T cell phenotypes in CD3/
CD28-activated CD4+ T cells from PD patients (n07) and
caregivers (n09). mRNA levels of the anti-apoptotic cytokine,
IL-9, were increased by 3.1-fold. IL-6 mRNA levels were

Table 2 Phenotypic analysis of CD4+ T cells and subsets from PD patients compared to caregivers in Cohort B

Population Population
Subset

Caregivers PD patients p-values

n Mean ±
SEM (%)

Median
(%)

Range
(%)

n Mean ±
SEM (%)

Median
(%)

Range
(%)

Mann–
Whitney

Benjamini-
Hochberg

CD4+ T cells CD45RO+ 62 64.4±1.5 65.2 37.6–93.4 71 69.6±1.5 69.7 22.4–91.4 0.009 0.028

CD45RA+ 62 27.5±1.4 27.8 3.0–54.0 71 22.4±1.5 21.4 2.1–72.8 0.004 0.028

FAS+ 65 60.0 ± 1.8 61.2 27.7–96.1 72 67.0±1.7 67.6 22.4–93.3 0.006 0.028

CD31+ 65 28.8±0.9 28.1 14.7–47.3 72 25.3±0.9 25.6 10.6–41.2 0.014 0.031

Integrin α4β7+ 53 37.6±1.5 36.6 20.8–60.0 58 31.8±1.3 33.3 12.0–55.6 0.021 0.034

Integrin α4β1+ 41 52.5±1.5 50.7 38.2–78.2 47 55.6±1.6 54.5 34.4–82.0 0.08 0.10

CD25+ 64 13.2±0.4 13.0 6.8–21.1 71 13.7±0.4 13.3 7.1–20.8 0.48 0.54

CD127+ 64 63.7±0.8 64.0 44.0–77.0 71 64.2±0.8 64.7 44.9–79.6 0.66 0.66

CD4+CD25+
CD127+
Teff

CD45RO+ 60 88.1±0.8 89.9 69.4–97.6 70 89.2±0.9 91.6 57.0–98.4 0.07 0.08

CD45RA+ 60 5.2±0.6 3.7 0.2–20.4 70 4.6±0.7 2.8 0.2–33.9 0.05 0.06

FAS+ 63 89.9±1.3 92.2 35.4–99.3 71 92.7±0.8 95.0 60.9–98.8 0.04 0.06
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significantly increased by 2.3-fold, while CD27 mRNA ex-
pression was diminished by 1.6-fold (data not shown). Mem-
ory T cells have been shown to increase IL-9 production after
anti-CD3/CD28 stimulation in vitro (Soler et al. 2006). IL-6 is
associated with chronic inflammatory responses (Gabay
2006), and CD27 expression is reduced on mature lympho-
cytes (Hintzen et al. 1993). Thus, these data further support

the results demonstrating chronic inflammatory responses in
PD and skewing of CD4+ Tcells towards the Tem phenotype.

Bioinformatics networks propose a PD immunophenotype

Flow cytometric analyses above (Table 2, Fig. 2 and
Fig. S3) suggest that phenotypic markers of Tem are linked

Fig. 2 CD4+ T cell and Teff
phenotypes are associated with
UPDRS-III score. Flow
cytometric data of caregivers and
PD patients from Cohort B were
binned into 4 groups based on
UPDRS-III scores: caregivers
(CG, n061), 1–20 (n025),
21–30 (n028), and ≥31 (n016).
The percentages of CD4+ T cells
expressing CD45RO (a), α4β7
(b), FAS (c), and CD31 (d) in
each group were associated with
UPDRS-III group (p<0.05).
Percentages of CD45RO+ (e)
and CD31+ (f) Teff and the
percentages of α4β7+ (g) and
CD31+ (h) Treg in each group
were associated with UPDRS-III
group (p<0.05). Data are the
percent-positive of T cells with
medians (horizontal lines).
Significant differences among
groups were determined by
Kruskal-Wallis nonparametric
ANOVA (CD45RO, α4β7 and
FAS) or by general linear model
(CD31), and pair-wise compari-
sons were determined by either
Dunn’s or Bonferroni adjust-
ments for multiple comparisons
(CD31) where * p≤0.05,
**p≤0.01, and ***p≤0.001
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to PD. To investigate associations among phenotypic
markers of Tem, we utilized bioinformatics to conduct pair
wise computations of Pearson correlations for each possible
combination of phenotypic markers within each dataset (PD
patient and caregiver). The absolute differences in the cor-
relation scores of the edges of the PD and caregiver net-
works were calculated and are presented as a Correlation

Difference Network (Fig. 4). The network structures for
both the PD and caregiver groups were conserved fairly
strongly. While the edges emanating from CD31 consisted
of the strongest differences in correlation, the association of
CD31 with gender most likely contributes to this difference.
The weaker correlation coefficient of α4β1 with α4β7 in
PD compared to that of caregivers suggest that the increased

Fig. 3 Treg from PD patients are
dysfunctional while naïve T cells
(nT) and Teff show no alterations
in proliferative capacity. aTreg,
nTand Teff were identified within
the CD4+ T cell population as
CD25hiCD127-, CD25-CD127+,
and CD25+CD127+, respectively
(top, center dot plot). CFSE-
labeled CD4+CD25− allogeneic
Tresp were co-cultured with
serially-diluted Treg. By flow
cytometric analysis, CFSE was
measured to determine the per-
centage of Tresp that proliferated,
and the percentage of CD25+
Tresp was measured as an indi-
cation of activation (histograms,
left panels). The proliferative
capacity of isolated CFSE-labeled
Teff and nTwas measured by
flow cytometric analysis of CFSE
(histograms, right panels). b Inhi-
bition of proliferation of Tresp by
Treg at ratios of 1:1 (n028), 1:0.5
(n026), 1:0.25 (n028) and
1:0.125 (n025) of Tresp to Treg,
demonstrating that Treg from PD
patients had decreased inhibitory
capacity at the 1:0.125 dilution
(p00.006). c CD25 expression
was not altered at any dilution. d
The percentage of proliferating
Teff did not differ (p<0.05) for
PD patients (n034) compared to
caregivers (n032). e The per-
centage of proliferating nT did not
differ (p<0.05) for PD patients
(n016) compared to caregivers
(n015). Data are expressed as the
percentage of proliferating cells
out of all CFSE+ events.
Significant differences among
groups were determined by
Kruskal-Wallis nonparametric
ANOVA, and pair-wise compari-
sons determined by Dunn’s mul-
tiple comparison’s post-hoc
analysis (b, c) or by
Mann–Whitney test (d, e)
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variation in the CD4 T cell pool of PD patients is due to the
increased percentage of integrin α4β7+ CD4+ T cells. Sim-
ilarly, the difference in the correlation coefficients of α4β1
with CD45RO in PD patients compared to caregivers is likely
due to the increased percentage of CD45RO+ CD4+ Tcells in
PD. Thus, these data further support the accumulation of Tem
in PD patients.

Discussion

This report demonstrates associations between PD, environ-
mental exposures, gender, effector memory Tcells (Tem) and
Treg function. While previous studies have found alterations
in PD lymphocyte and CD4+ T cell populations, we now
confirm and extend these results by demonstrating that
changes in CD4+ T cell, Treg and Teff phenotypes are asso-
ciated with motor function scores determined by UPDRS-III;
the most commonly used assessment of disease severity
(Leddy et al. 2011). Moreover, PD patients with UPDRS-III
scores of 30 or higher had increased CD45RO+ and
FAS+CD4+ T cells and decreased α4β7+ and CD31+ CD4+
T cells; indicative of increased effector/memory T cells. De-
spite best medical management provided to PD patients,
UPDRS scores increase over time and parallel disease pro-
gression (Holloway 2009). Thus, the UPDRS-III “on medica-
tion” score is a reasonable proxy for disease severity. This
report is the first, to our knowledge, that has associated PD
motor severity with T cell phenotypes. Specifically, the pre-
dominance of Tem in more severe stages of disease supports a
role of chronic immune activation in disease progression.

A principal question that arises from these studies is how
can this occur? PD is a disease of the nervous system and
engagement of peripheral T cell responses seems ill connected.
However, mounting evidence implicates both the innate and
adaptive immune systems in the pathobiology of PD. Aberrant

species of α-syn in Lewy bodies are linked to microglial
activation, oxidative stress, neuroinflammation, and loss of
dopaminergic neurons in affected brain regions (Czlonkowska
et al. 1996; Zhang et al. 2005; Reynolds et al. 2008). The same
protein species are also found in the periphery (Beach et al.
2010). Nitrated-α-syn, but not unmodified α-syn is found in
cervical lymph nodes of MPTP-treated mice (Benner et al.
2008), and modified forms of α-syn are in gut tissue of PD
patients (Lebouvier et al. 2010); Forsyth et al. 2011). The
presence of modified forms of α-syn in lymph nodes and gut
tissues present a means for neoantigen exposures and activation
of the adaptive immune system. To test this hypothesis, we
previously investigated whether N-α-syn-specific T cells adop-
tively transferred to MPTP-intoxicated recipient mice could play
a role in nigrostriatal degeneration. We observed that vasoactive
intestinal peptide (VIP)-induced natural regulatory T cells (Treg)
were neuroprotective, while N-α-syn-specific helper Tcells (Th1
and Th17) exacerbated MPTP-induced neuronal degeneration
(Reynolds et al. 2010). Therefore, we further hypothesized that
alterations in the frequency, phenotypes or function of CD4+ T
cells, Treg and Teff are operative in PD patients and associated
with disease severity or duration. This study demonstrates that T
cell phenotypes, specifically those of the effector/memory line-
age, are associated with clinical outcomes of disease severity.

It was previously suggested that the relative lymphopenia in
PD could be caused by FAS-mediated apoptosis related to
CD25 (Bas et al. 2001). Indeed, we observed increased lym-
phocyte FAS expression in PD patients as previously reported
(Calopa et al. 2010). However, increases in apoptosis may not
be due to FAS alone (Calopa et al. 2010). In addition to an
increase in FAS, we observed diminished CD31 expression,
which was associated with disease severity. CD31, or platelet
endothelial cell adhesion molecule-1 (PECAM-1), is expressed
on most naïve CD4+ T cells, but is decreased on naïve T cells
undergoing homeostatic proliferation (Azevedo et al. 2009)
and on effector memory T cells (Ashman and Aylett 1991;
Demeure et al. 1996), particularly those activated by the T cell
receptor (Kohler and Thiel 2009). Using qRT PCR, we found
no detectable diminution of CD31 mRNA transcripts in PD
patients; a finding that is not unexpected since CD31 is not
regulated at the transcript level (Fornasa et al. 2010). Under
normal conditions, CD31-signaling controls the amplitude of
clonal expansion and is required for establishment of regulatory
functions and T cell tolerance (Lebouvier et al. 2010) by
negatively regulating TCR-mediated signal transduction
(Newton-Nash and Newman 1999; Kohler and Thiel 2009).
Recent studies using CD31 deficient mice support the role of
CD31 in controlled T cell activation and survival, and demon-
strate that loss of CD31 increases T cell susceptibility to apo-
ptosis (Ross et al. 2011). Thus, the decrease in CD31 on PD
CD4+ T cells, particularly in those with advanced motor dys-
function, may contribute to the decrease in CD4+ T cell counts
by increasing apoptosis. In addition, while CD31−/− mice are

Fig. 4 Correlation difference networks of caregivers and PD patients.
Differences network interactions are demonstrated by the correlation
difference network, where edge width and opacity reflects the correla-
tion difference score (n=37 CG, 46 PD). Correlations with p-value
>0.0005 were not considered statistically significant, and edges outside
that threshold were discarded
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known to display normal numbers of CD25+FoxP3+ Treg,
CD31−/− Treg have impaired regulatory function at low
Treg:Tresp ratios (Lebouvier et al. 2010). Here, we found
that the percentages of CD31+ Treg in PD patients nega-
tively correlated with disease severity, and Treg function
was reduced at low Treg:Tresp ratios. The negative cor-
relation and association of CD31 with disease severity
and the memory phenotype suggest that decreased CD31
may be attributed to increased T cell activation (Kohler
and Thiel 2009), yet it is possible that the loss of CD31 is
also aberrant and contributes to decreased Treg function
in PD as seen in CD31−/− mice.

Our results support previous studies demonstrating an in-
crease in CD45RO+CD4+ T cells in PD (Fiszer et al. 1994;
Bas et al. 2001; Calopa et al. 2010). However, we observed
additional markers of memory T cells that were differentially
expressed in PD. The observed increase in CD45RO+ and
decrease in CD45RA+CD4+ T cells paralleled the increase in
FAS+CD4+ T cells and decrease in CD31+ CD4+ T cells,
which are characteristics of activated or proliferating T cells
(Oyaizu et al. 1994; Demeure et al. 1996). In this context,
decreased expression of CD27 at the mRNA level in the CD4
+ T cell population suggests that the Tem phenotype is in-
creased in PD (Hintzen et al. 1993). Tem cells and central
memory T cells (Tcm) are distinct subsets of memory T cells
defined by function (Pepper and Jenkins 2011). The Tem pool
contains Th1, Th2, and cytotoxic T cells that migrate to
inflamed peripheral tissues and have immediate effector func-
tion, while Tcm home to secondary lymphoid tissues and have
little effector function but are able to proliferate and differen-
tiate into effector T cells (Th1, Th2, Th17) in response to
antigenic stimulation (Sallusto et al. 2004). Both memory T
cell subsets are highly responsive to antigenic stimulation but
have reduced proliferative capacity and an increased propen-
sity to undergo apoptosis (Sallusto et al. 1999, 2004). This
lends further support to the observed relative lymphopenia
and reduced CD4+ T cell numbers in PD found here and
previously. The co-stimulatory molecule, CD27 functions to
promote survival of activated and memory T cells and to
generate the effector T cell pool (Hendriks et al. 2003). How-
ever, memory T cells acquire the CD45RA-CD27- Tem phe-
notype after chronic antigenic stimulation (De Jong et al.
1992). These data support a predominating Tem cell pheno-
type in PD patients, which is a significant finding as it strongly
supports the hypothesis that PD has chronic inflammatory
components at play in the periphery. This notion is further
supported by the observation that chronic infection, and thus
chronic antigenic stimulation, leads to decreased expression of
CD31 and CD27 (Yonkers et al. 2011).

We also observed a significant decrease in α4β7+ CD4+ T
cells and a slight increase in α4β1+ CD4+ T cells in PD
patients compared to caregivers. Low expression of α4β7
and high expression of α4β1 are characteristic of brain-

tropic T cells (Denucci et al. 2009), as the interaction between
α4β7 and mucosal addressin cell adhesion molecule 1 (MAd-
CAM-1) allows for entry into the gut (Agace 2006), andα4β1
and vascular cell adhesion molecule 1 (VCAM-1) on endothe-
lial cells allows for entry of T cells into the brain (Engelhardt
and Ransohoff 2005). While the observed increase in α4β1+
CD4 T cells in the current study was not significant and was
associatedwith gender, the significant decrease inα4β7+ CD4
T cells alone may nonetheless be indicative of brain tropic T
cells. Alternatively, these data may suggest an increase in
inflammatory responses in the gut. Increased expression of
MAdCAM-1 on endothelial cells in inflamed gut tissue aug-
ments α4β7+ T cell homing and compartmentalization to the
gut, leading to decreased frequency of in α4β7+ T cells in the
peripheral blood (Di Sabatino et al. 2009). No studies have yet
to investigate inflammation per se in gut tissue of PD patients.
However, studies of PD gut tissue have demonstrated the
presence of proinflammatory immune mediators (Lebouvier
et al. 2010; Forsyth et al. 2011). Histopathological studies of
PD gut mucosa demonstrate increased intestinal permeability,
which correlated with E. coli bacteria, nitrotyrosine and α-syn
staining (Forsyth et al. 2011). Furthermore, non-motor symp-
toms can precede PD diagnosis by several years or decades and
persist as the disease progresses (Strang 1965). In the context
of these prodromes and Braak staging of Parkinson’s disease
neuropathology, our findings of chronic inflammation in the
periphery strengthens the “dual hit” theory, which suggests that
the etiology of PD may be infection by a pathogen that gains
entry to the CNS through the periphery (e.g., nasal and gut
tissues) (Hawkes et al. 2007).

In summary, we posit that a chronic-inducer of T cell
stimulation in the periphery exists in PD and provides an
association between the adaptive immune system activity
and motor dysfunction. Notably, we observed that immuno-
logical markers of chronic T cell activation are associated
with disease severity, but not age or duration of disease. As
UPDRS-III scores (i.e., motor dysfunction) increase, the
Tem cell phenotype, indicative of chronic activation, pre-
dominates. CD45RA expression decreases while CD45RO
expression increases; cell surface expression of α4β7 and
CD31 decline while FAS expression increases, and CD27
transcription levels decrease. The decrease in CD31 in com-
bination with increased FAS, contributes to apoptosis and
the subsequent relative lymphopenia. In addition, the de-
crease in CD31 on Treg in PD patients with more severe
motor dysfunction, may contribute to impaired suppressive
function at lower Treg:Tresp ratios. Altogether, these data
combined with recent reports of increased intestinal perme-
ability and the presence of modified α-syn, Lewy body and
infectious inflammatory mediators in the PD gut tissue, lend
support to the “dual hit” theory whereby peripheral engage-
ment of antigens such as modified-self α-syn affect disease
progression.
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