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ABSTRACT
◥

In chronic infections and in cancer, persistent antigen stimula-
tion under suboptimal conditions can lead to the induction of T-cell
exhaustion. Exhausted T cells are characterized by an increased
expression of inhibitory markers and a progressive and hierarchical
loss of function. Although cancer-induced exhaustion in CD8 T
cells has been well-characterized and identified as a therapeutic
target (i.e., via checkpoint inhibition), in-depth analyses of exhaus-
tion in other immune cell types, including CD4 T cells, is wanting.
While perhaps attributable to the contextual discovery of exhaus-
tion amidst chronic viral infection, the lack of thorough inquiry into
CD4 T-cell exhaustion is particularly surprising given their impor-
tant role in orchestrating immune responses through T-helper and

direct cytotoxic functions. Current work suggests that CD4 T-cell
exhaustion may indeed be prevalent, and as CD4 T cells have been
implicated in various disease pathologies, such exhaustion is likely
to be clinically relevant. Defining phenotypic exhaustion in the
various CD4T-cell subsets and how it influences immune responses
and disease severity will be crucial to understanding collective
immune dysfunction in a variety of pathologies. In this review, we
will discuss mechanistic and clinical evidence for CD4 T-cell
exhaustion in cancer. Further insight into the derivation and
manifestation of exhaustive processes in CD4 T cells could reveal
novel therapeutic targets to abrogate CD4 T-cell exhaustion in
cancer and induce a robust antitumor immune response.

Introduction
T-cell dysfunction can strongly impact both physiologic and

pathologic states. Among the known modes of T-cell dysfunction,
exhaustion has garnered an increasing degree of recent attention. As
exhaustion was initially described as a hyporesponsive T-cell state in
chronic lymphocytic choriomeningitis viral (LCMV) infections (1–3),
significant effort was initially aimed at characterizing exhaustion in
virus-combating CD8 T cells, specifically. A hallmark of mice exposed
to chronic infection with LCMV Clone-13, exhaustion has come to
encompass a broad state of CD8 T-cell dysfunction resulting
from persistent antigen exposure under suboptimal conditions (4),
including inadequate CD4 T-cell help (5–7). It has evolved as a
transcriptionally programmed and host-adaptive state designed to
limit collateral immunologic damage in conditions of failed pathogen
clearance and continued antigen exposure, establishing a “stalemate”
of sorts between host and pathogen.

More recently, exhaustion has become an acknowledged mode of
T-cell dysfunction in cancer as well (8, 9). Importantly, the upregula-
tion of exhaustion-demarcating immune checkpoints by T cells has

been associated with the development of tumor resistance to check-
point blockade therapies (10). Although restoration of exhausted CD8
T-cell function is a primary goal for checkpoint inhibition, CD4 T cells
are also liable to suffer exhaustion and contribute to rejuvenation of the
antitumor immune response after checkpoint blockade. However,
thorough investigations into the definition, prevalence, and mechan-
isms of CD4 exhaustion remain lacking. This presents a gap in our
understanding of the summative immune dysfunction characterizing a
number of disease states where CD4 T-cell function is relevant,
including cancer.

CD4 T cells perform a wide variety of functions within the adaptive
immune system and are best known for their role as T helper (Th) cells,
including Th1, Th2, Th17, and regulatory T-cell (Treg) subsets. Impor-
tantly, CD4T cells license dendritic cells (DC) to allow optimal priming
ofCD8Tcells, providekey signals for antibody class switching, promote
bactericidal activity of phagocytes, recruit neutrophils, influence angio-
genesis, and secrete cytokines, in addition to perhaps possessing direct
cytotoxic functions (Fig. 1; refs. 11–13). Likewise, CD4 T cells appear to
possess significant plasticity, allowing subsets to transition between one
another, broadening their functional impact (14).

CD4T cells are strongly implicated in the development of antitumor
responses (Table 1), as they can enhance tumoricidal activity of
other antitumor effector cells, such as CD8 T cells and macro-
phages (6, 15, 16). Some CD4 subsets, particularly Th2 and Tregs, are
known to negatively affect the antitumor response by decreasing
antigen presentation and dampening T-cell effector functions, respec-
tively. Furthermore, certain CD4 T cells appear able to directly lyse
tumor cells (11, 12), and adoptive transfer of tumor-specific CD4 T
cells alone has demonstrated impressive efficacy in some studies (17).
Direct tumor cell recognition and killing by CD4 T cells requires class
II major histocompatibility complex (MHC), and overexpression of
class II MHC transactivator (CIITA) on murine mammary adeno-
carcinoma cells increased interferon-gamma (IFNg) and granzyme B
production in CD4 T cells and restricted tumor growth (18). These
studies remain controversial, however, as many tumor cells will not
have the antigen presentation machinery required to properly load
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peptides onto MHC-II. Nevertheless, CD4 T cells with a cytotoxic
transcriptional profile have been found enriched in patients respond-
ing to immune checkpoint blockade (19).

Given the diverse repertoire of CD4 T-cell capacities, dysfunction
in this compartment is assuredly relevant. In this review, we will
discuss the current best evidence for the delineation and signifi-
cance of CD4 T-cell exhaustion in cancer. A brief overview of CD4
T-cell exhaustion in chronic infections, transplantation, and auto-
immune diseases will also provide context across pertinent pathol-
ogies. Understanding these processes is anticipated to aid in iden-

tifying novel therapeutic targets and considerations for improving
the antitumor responses.

Overview of Exhaustion
The framework for our current understanding of CD4 T-cell

exhaustion is generated from the more extensively studied CD8 T-cell
exhaustion, elegantly reviewed by McLane and colleagues (20). When
antigen clearance fails and exposure is maintained, as in the setting of
chronic infection or cancer, an exhausted T-cell phenotype may
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Figure 1.

Overview of CD4 T-cell functions. CD4 T cells are most well known for their Th cell functions (displayed on the right). Through recognition of the TCR of the peptide-
MHC complex, CD4 T cells mediate increased maturation and activation of DCs. This process allows augmented CD8 T-cell effectors upon interaction with the
activatedDCs. Furthermore, CD4T cells increaseB-cellmaturation, antibody class switching, and affinitymaturation, and enhancephagocytosiswithinmacrophages
(Mf). Aside from helper functions, CD4 T cells possess both direct and indirect tumor cytotoxicity capacities (displayed on the left). Direct cytotoxicity was
demonstrated by cytotoxic CD4 T expressing class I–restricted T-cell–associated molecule (CRTAM). Indirect cytotoxicity could also be guided by CD4 T cells
through interaction with antigen-presenting cells (APC) or natural killer cells. Adapted from an image created with BioRender.com.
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emerge. A primary feature of exhausted T cells is the sustained
coexpression of multiple inhibitory surface receptors, referred to
commonly as immune checkpoints. The function of these checkpoints
is to permit protective curbing of T-cell activity following immune
activation. The “classical” immune checkpoints include cytotoxic T
lymphocyte–associated protein 4 (CTLA4) and programmed cell
death protein 1 (PD-1). Newer “alternative” checkpoints include
molecules such as T-cell immunoglobulin and mucin-domain con-
taining-3 (TIM3); lymphocyte-activation gene 3 (LAG3); B- and
T-lymphocyte attenuator (BTLA); 2B4; T-cell immunoreceptor with
Ig and ITIM domains (TIGIT); and SLAM Family Member 6
(SLAMF6; refs. 21, 22). These inhibitory receptors (checkpoints) are
known to be expressed on exhaustedT cells, withmounting checkpoint
expression associated withmore severe phenotypes (8, 10). The typical
characteristics of CD8 T-cell exhaustion include antigen load–
dependentandtemporallyprogressive lossofeffectoractivity(8,23,24),
loss of proliferative capacity (25, 26), altered expression of transcrip-
tion factors (27, 28), loss of antigen-independent homeostatic prolif-
eration (29), and modified epigenetic landscapes (30–32) and
metabolic requirements (28, 33, 34). In turn, disruption of the
PD-1/programmed death ligand 1 (PD-L1) pathway, in particular,
has demonstrated the capacity to reverse features of the exhausted
phenotype and restore T-cell proliferative and effector function (35).

Recent evidence suggests that the exhausted phenotype in CD8 T
cells is not homogeneous and includes lineage spanning, stage-like
“progenitor” (SLAMF6þTIM3�) and “terminally-differentiated”
(SLAMF6�TIM3þ) subtypes (21, 26), with varied capacities for effec-
tor function and proliferation dispersed among the subgroups. Ter-
minally exhausted CD8 T cells are further characterized by higher
levels of PD-1 on their surface. Whereas progenitor exhausted CD8 T
cells remain capable of co-producing multiple cytokines and can
proliferate in vivo, terminally exhausted CD8 T cells are limited to
single cytokine production and upregulation of granzyme B. Further-
more, only progenitor exhausted subsets are capable of responding to
anti–PD-1 treatment (21, 26). SLAMF6-positive CD8 T cells express
the transcription factor T-cell factor 1 (TCF1) (21), which has been
linked to the preservation of effector functions (36). Loss of TCF1 with
concomitant upregulation of multiple coinhibitory receptors is asso-
ciated with the terminally differentiated exhaustion phenotype and a
further decline in effector functions (21) and/or adoption of immu-
noregulatory function (37). While exhausted CD8 T cells retain the
ability to recognize antigen through their T-cell receptor (TCR),
antigen exposure fails to elicit a robust, meaningful cytotoxic
response (23).

Our current grasp of CD4 T-cell exhaustion is decidedly anemic
when compared with the above understanding we have acquired for
CD8s. To begin, an accepted definition of CD4 T-cell exhaustion has
not yet been established, limiting the capacity to properly assign the
term definitively. Much of the research on CD4 T-cell exhaustion to
date has focused merely on the expression versus absence of coin-
hibitory receptors and/or cytokine production, with data being sug-
gestive of an exhausted state (Fig. 2). Further research is required to
determine whether additional criteria delineating CD8 T-cell exhaus-
tion, including loss of antigen-independent homeostatic prolifera-
tion (29, 38, 39), alterations in metabolic profiles (28, 33, 34), and
unique epigenetic features (30–32), also apply to exhausted CD4 T
cells. Likewise, it will be crucial to understandwhetherCD4 exhaustion
evolves in a similar stage- and lineage-dependent manner to CD8 T
cells (30, 31), and whether or not there are differing relative suscep-
tibilities to and impacts for exhaustion in the various CD4 subsets.

Evidence for CD4 T-Cell Exhaustion
Original evidence: chronic infections

As CD8 T-cell exhaustion was first defined in chronic LCMV
infection, this remains a logical place to begin when analyzing the
evidence for a similar exhausted state among CD4 T cells. Compared
with acute infections, chronic LCMV infections induce markedly
greater expression of exhaustion-suggestive immune checkpoints on
CD4 T cells (40, 41). Upregulation of these same inhibitory receptors
typical of CD8 exhaustion has also been identified on CD4 T cells in
other chronic and recurrent infections, suggesting an analogous CD4
T-cell exhaustion phenotype (42–44). Similar to what is seen withCD8
T cells, antigen-specific CD4 T cells (45–49) and CD4 T cells from
infected tissues (50, 51) express higher levels of the relevant coin-
hibitory receptors, drawing a parallel role for antigen exposure in the
induction of the seemingly matched CD4 exhausted state. Accord-
ingly, increased coinhibitory receptor expression is generally associ-
ated with more advanced disease (52–56), while successful disease
treatment correlates in turn with reduced expression of the same
markers (56–58). However, upregulation of inhibitory markers is not
sufficient to call a cell exhausted, as some coinhibitory receptors are
also activation markers (59).

Importantly, then, functional deficits are also observed amidst
the phenotypically exhausted CD4 T-cell compartment following
chronic infection (45, 60–63). In LCMV in particular, CD4 T-cell
differentiation in the presence of persistent antigen resulted in upre-
gulation of coinhibitory molecules (62), premature contraction of the

Table 1. Overview of CD4 populations and their contributions to tumor immunity.

T-cell subset Master regulator Cytokine Functions within the tumor

Th1 Tbet IFNg * Activate macrophages to phagocytose
* Promote recruitment of antigen-presenting cells
* Enhance CD8 effector function
* Inhibit angiogenesis

Th2 GATA3 IL4, IL5, IL13 * Recruit eosinophils
* Inhibit antigen processing by dendritic cells

Th17 RORgt IL17 * Promote angiogenesis
* Recruit neutrophils

Regulatory T-cell FoxP3 IL10, TGFb * Decrease effector functions of tumor-infiltrating T cells

Cytotoxic CD4 T cells Runx3 Perforin, granzymes * Direct tumor cytotoxicity

Abbreviations: FoxP3, Forkhead Box P3; GATA3, GATA binding protein 3; IFNg , interferon gamma; IL, interleukin; RORgt, retinoic acid receptor–related orphan
nuclear receptor gamma; Runx3, RUNX Family Transcription Factor 3; Tbet, T-box expressed in T cells; TGFb, transforming growth factor beta.
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antigen-specific immune population (41, 61), reduced cytokine pro-
duction (41, 61), decreased splenic motility (62), and poor recall
responses upon a secondary challenge (61). Reduced CD4 effector
functions and increased expression of inhibitory molecules could be
induced upon exposure of CD4 T cells to TNF (64) and fibrinogen-like
2 (FGL2; ref. 65). A link between decreased performance of CD4T cells
and exhaustion was established through increased motility and cyto-
kine production following anti–PD-1 treatment (41, 62), although
recovery of function was inconsistent (46, 59, 63, 66–68).

Exhaustion is also characterized (and confirmed) by prescribed and
stereotyped transcriptional programs. Various studies examining
transcriptional programs within CD4 T cells have provided mecha-

nistic insight into factors that may be involved in the establishment of
CD4 T-cell exhaustion during LCMV or other chronic infection
response. Such studies suggest roles for upregulation of IKZF2 (encod-
ing Helios; ref. 42), Klf4 (42), protein tyrosine phosphatase, nonre-
ceptor type 22 (PTPN22; ref. 69), cAMP-responsive element modula-
tor (CREM; ref. 69), and PR/SET domain 1 (PRDM1, encodes Blimp1;
ref. 45). Likewise, exhaustion in CD4 T cells has been observed with
loss or downregulation of ThPOK (70) and nuclear factor of activated
T cells (NFAT; ref. 71).

Not all effector functions of CD4 T cells are necessarily compro-
mised during chronic infections: perforin (72) and granzyme B (73)
production in CD4 T cells is increased in patients with HIV when
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Consequences of CD4T-cell exhaustion onCD4Th functions. Although the details of CD4T-cell exhaustion remain to bedeciphered, negative effects on proliferation,
cytokine production, B-cell help, and CD8 effector functions have been reported. In addition, CD4 T cells with reduced effector functions upregulate immune-
regulatory proteins, such as T-cell immunoglobulin and mucin domain-3 (TIM3) and PD-1, paralleling phenotypes observed in exhausted CD8 T cells. Whether CD4
T-cell exhaustion negatively impacts macrophage activation and direct tumor cytotoxicity remains to be determined. Further research is required to determine
whether loss of antigen independent homeostatic proliferation and alterations in epigenetic and metabolic profiles are features of exhausted CD4 T cells, similar to
exhausted CD8 T cells. Abbreviations: Bat3: human leukocyte antigen B (HLA-B)–associated transcript 3; CREM: CAMP responsive element modulator; Fut7:
fucosyltransferase 7; IRF4: interferon regulatory factor 4; Klf4: Kr€uppel-like factor 4; NFAT: nuclear factor of activated T cells; NFIL3: nuclear factor, interleukin 3
regulated; NR4A1: nuclear receptor subfamily 4 group Amember 1; PRDM1: PR/SET domain 1 (encodes Blimp1); PTPN22: protein tyrosine phosphatase, non-receptor
type 22; Zbtb7b: zinc finger and BTB domain containing 7B (encodes ThPOK). Adapted from an image created with BioRender.com.
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compared with healthy controls, for instance. Interestingly, such
regain of cytotoxic function has also been described for “terminally”
exhausted CD8 T cells (21). Therefore, the acquisition or retention of
these functions might simply indicate varying exhaustion stages, again
eliciting similarities with observations made amidst CD8 T-cell
exhaustion.

Evidence and significance in cancer
Cytotoxic CD8 T cells promote antitumor immunity that can be

correspondingly restricted by their tumor-induced diversion down a
pathway toward exhaustion (8, 9, 74–76). Yet, a successful antitumor
immune response requires the coordination of a variety of non–T cells
constituting the tumor microenvironment (TME), including macro-
phages, DCs, B cells, and others. Given the role CD4 T cells play in
orchestrating the responses by each of these cell types, the potential
impact that exhaustion might have amidst the tumor-infiltrating or
even systemic CD4 population is substantial. Likewise, the direct
cytotoxic role that CD4 T cells can have in mediating antitumor
immunity (11–13) makes them a particularly germane population in
cancer. As an extension, restoration of exhausted CD4 T-cell function
by checkpoint blockade, if feasible, may contribute significant clinical
benefit in tumors, either by improving direct CD4 antitumor activity or
increasing CD4 helper functions.

Canonical and alternative inhibitory receptors suggestive of
exhaustion on CD4 T cells (PD1, CTLA4, LAG3, TIM3, TIGIT) have
been identified in multiple solid tumors and hematologic
malignancies (77–82) in both humans and mice (Table 2). In many
cases, similar to that seenwith chronic infection, the expression of such
checkpoints has been associatedwithmore advanced disease states and
diminished progression-free survival (83–85). Furthermore, successful
anticancer therapies have been associated with reductions in the level

of these markers on the surface of CD4 T cells (86–88), while failure to
achieve complete remission and/or disease relapse has positively
correlatedwith their persistent or enhanced expression (86, 89, 90–92).

As with CD8 exhaustion, a number of coinhibitory receptors may
also serve to denote T-cell activation (59). Therefore, their expres-
sion alone is not sufficient to signal the true emergence of exhaus-
tion. Functional and transcriptomic correlates are needed. Ulti-
mately, it is a balance between costimulatory and coinhibitory
signals that provide a gain adjustment on the immune response.
Currently, however, such phenotypic and functional assessments of
tumor-infiltrating CD4 T cells remain somewhat lacking. Func-
tional deficits in CD4 proliferation, cytokine production, signaling,
and provision of B-cell help have varied according to tumor type
and source of CD4 T cells (93–99). Nonetheless, current studies in a
variety of cancers indicate a correlative relationship between typical
markers of T-cell exhaustion on CD4 T cells and the degree of
disease severity. Likewise, at least partial restoration of CD4 effector
functions has been observed after treatment with checkpoint inhi-
bitors (Table 2; refs. 84, 93, 97, 100).

To evaluate whether apparent CD4 T-cell exhaustion parallels the
development of CD8 T-cell exhaustion, Rausch and colleagues (101)
and Malandro and colleagues (102) investigated the role of antigen
stimulation on CD4 T-cell function using murine melanoma models.
Persistently increased antigen availability reduced CD4 proliferation,
cytokine production, and antitumor responses and increased check-
point expression on CD4 T cells. Checkpoint inhibition induced
only a variable recovery of CD4 effector functions in their hands.
Furthermore, clinical observations demonstrate that tumor-
infiltrating CD4 T cells express higher levels of coinhibitory markers
compared with circulatory (98, 103, 104) or adjacent tissue-infiltrating
CD4 T cells (100, 105, 106). These data indicate that perpetual antigen

Table 2. Overviewof coinhibitory and costimulatorymarkers assessed invariousprimary tumors.Markerswere either assessed as single
positive or double positive.

Primary tumor Coinhibitory markers
Costimulatory
marker Main conclusions

Melanoma PD1, CTLA4, LAG3, TIGIT,
TIM3

2B4 * Continuous antigen stimulation decreases antitumor activity (101, 102)
* Long-term remission in murine models after aLAG3 þ aPDL1 (112, 113)

Lung cancer PD1, CTLA4, LAG3, BTLA,
CD69, TIM3

2B4 * Patients with a high CD4 PD-1þ frequency had decreased overall and progression-
free survival, independent of clinical characteristics (145)

GBM PD1, TIM3, LAG3, CTLA4 * Majority of PD-1þ CD4 T cells were IL7Ra negative (104)
* Increased proliferation upon aPD1 observed only in the presence of PD1- CD4 T

cells (95)
* PD1hi Tregs exhibit decreased suppressive functions and increased IFNg

production (114)
* Clonal expansion was observed among tumor-infiltrating CD4 T cells (8)

Breast PD1, TIM3 * aPD-1 treatment increased TCR signaling (97), proliferation (146), cytokine
production (98)

* Overexpression of MHC-II on tumor cells reduces exhaustion in CD4 T cells and
increases tumor control (18)

Head and neck TIGIT, LAG3, TIM3, PD1,
CD69

* aTIGIT delayed tumor progression, although direct effect on CD4 T cells not
assessed (103)

Gastrointestinal PD1, CTLA4, TIM3, LAG3 ICOS * Checkpoint inhibitors decreased suppressive ability of Tregs (147) and partially
restored effector functions (84, 94)

* TIM3þ cells expressed increased cycle-dependent kinase inhibitors, preventing cell-
cycle entry. aTIM3 restored cell proliferation (100)

AML PD1, CD57, CD69, CTLA4,
TIM3, LAG3

ICOS * aCD86 and ICOS-ligand prevented the emergence of exhausted CD4 T cells (148)

CLL PD1, TIM3, TIGIT 2B4, CD226 * aTIGIT impaired IFNg and IL10 production in the presence of tumor cells the TIGIT
ligand (CD155; ref. 111)

Multiple myeloma PD1, TIM3, CTLA4 CD40L * Gradual decrease in CD40L expression with more advanced disease (149)
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encounters can induce a severe, and potentially irreversible, exhaus-
tion phenotype that mimics terminal exhaustion in CD8 T cells (21).

To further investigate parallels between the development of CD4
T-cell and CD8 T-cell exhaustion and differentiation states, Fu and
colleagues examined the transition from progenitor exhaustion
(SLAMF6þTIM3�) to terminal exhaustion (SLAMF6�TIM3þ; ref. 21)
occurring among CD4 T cells within amurinemelanomamodel. They
observed a downregulation of TCF1 and SLAMF6 on tumor-
infiltrating CD4 T cells compared with CD4 T cells in the spleen,
indicating more prevalent differentiation into the terminally
exhausted state within tumors. Furthermore, treatment with anti–
PD-L1 resulted in an increase in TCF1 and a decrease in TIM3 and
LAG3 on CD4 T cells, indicating maintenance of the progenitor
exhausted subset (107). These data were corroborated by experiments
performed in human samples of head and neck, ovarian, and cervical
tumors (108). In contrast to terminally exhaustedCD8Tcells, terminal
exhaustion in CD4 T cells was represented by the expression of CD39,
rather than TIM3. CD39þ cells were found to have higher levels of
PD-1, produce fewer cytokines, and were more likely to produce a
single cytokine (predominantly IFNg) rather than coproduce multiple
cytokines. Treatment with anti–PD-1 increased cytokine production,
upregulated CD40 ligand (CD40L), and increased DCmaturation and
CD8 proliferation, indicating increased CD4 helper functions (108).
Paralleling CD8 T-cell exhaustion, CD39þ CD4 T cells expressed the
highest level of thymocyte selection-associated high mobility group
box (TOX; ref. 109) and lost expression of TCF1 (21). The parallel of
increased TOX expression with that described in CD8 exhaustion is of
particular interest, as TOX has recently been found to initiate the
epigenetic changes associated with the exhausted phenotype (110).
Epigenetic changes are hallmarks of CD8 T-cell exhaustion (30–32),
and this similarity should drive further investigation into the epige-
netic landscape of CD4 T-cell exhaustion.

Drawing additional similarities to terminally exhausted CD8T cells,
studies suggest that exhausted CD4 T cells may actually gain certain
additional functionality, as the acquisition of noncanonical T-cell
function was observed among putatively exhausted CD4 T cells in
solid tumors. For instance, C-X-C Motif Chemokine ligand 13
(CXCL13) was found to be exclusively produced by PD1hi CD4 T
cells in non–small cell lung cancer (106), suggesting a skew toward
effector function in what otherwise resembled exhausted CD4 T cells.
Conversely, increased effector function might not translate to
increased tumoricidal activity. For instance, enhanced IFNg produc-
tion was observed in CD4 T cells positive for the inhibitory marker
TIGIT in patients with chronic lymphocytic leukemia. In spite of the
improved secretion of proinflammatory cytokines, TIGIT expression
on CD4 T cells was also associated with more advanced disease, and
TIGIT blockade hindered tumor cell viability in vitro, despite also
decreasing IFNg production (111).

Mouse tumor models have been utilized to better evaluate the
impact and relevance of CD4 T cells and CD4 T-cell exhaustion for
antitumor immunity. Adoptive transfer of melanoma-specific CD4 T
cells into a RAG1 knockout recipient resulted in tumor regression.
However, a subset of mice presented with tumor relapse. CD4 T cells
taken from the recurrent tumors expressed fewer cytokines, increased
levels of coinhibitory receptors (112), andwere unable to induce tumor
regression when transplanted into a secondary tumor-bearing host,
suggesting the emergence of response-limiting exhaustion (113).
Meanwhile, combination therapy with anti–PD-L1 and anti-LAG3
decreased checkpoint expression, increased CD4 effector functions,
and resulted in durable tumor control (112, 113). The lack of CD8 T
cells in thismodel indicates a significant role for CD4T-cell exhaustion

in facilitating tumor escape. Furthermore, these data suggest that
checkpoint blockade strategies aimed at CD4 T cells could very well
improve tumor control.

Tumor models have likewise been utilized to shed light on impor-
tant considerations for CD4 T-cell exhaustion, including the relative
frequency of exhaustion within the various CD4 subsets. For instance,
examining the directly cytotoxic CD4 T-cell subset, we return to an
aforementioned study in which tumor cells overexpressing CIITA
were generated to permit CD4 recognition of class II MHC-expressing
tumors (18). Despite increased cytotoxic CD4 T-cell–mediated tumor
control of these tumors, outgrowth eventually occurred, with associ-
ated upregulation of coinhibitory markers on tumor-infiltrating CD4
T cells. This expansion was reversed with anti-CTLA4 treatment,
highlighting the role of CD4T-cell exhaustion in tumor progression, as
well as the capacity for cytotoxic CD4 T cells, specifically, to undergo
an exhaustion program (18).

Interestingly, exhaustion-indicative expression of immune check-
points has also been observed on the Treg subset of CD4 T cells in the
tumors of patients with glioblastoma multiforme (GBM; ref. 114) and
hepatocellular carcinoma (115). This suggests that exhaustion among
CD4 T cells may not be limited solely to effector CD4 T cells. PD1-
expressing Tregs in patients with GBM demonstrate enrichment of
exhaustion-related genes and decreased suppressive capacities (114),
indicating that suppressive functionsmay be exhaustion-susceptible as
well. Given the substantial role Tregs play limiting cellular immunity in
GBM (and other cancers; refs. 116, 117), selective strategies for
reversing exhaustion in cytotoxic and Th1-type CD4 T cells while
maintaining or enhancing it in Tregs may represent challenging but
worthwhile future directions. Accordingly, understanding whether
exhaustion-inducing mechanisms are the same in each of these CD4
subsets becomes an important endeavor.

In addition to exhaustion, anergy (118, 119) and senescence (120)
have been recognized as modes of T-cell dysfunction that negatively
influence antitumor immunity (121, 122). Although these states
overlap with regard to various functional and/or phenotypic elements,
themechanisms eliciting the phenotypes are distinct. In contrast to the
relatively insidious development of T-cell exhaustion following con-
tinuous antigen stimulation, for instance, T-cell senescence is associ-
ated with cell-cycle arrest due to shortening of telomeric ends or
danger signals, such as oxidative stress (123, 124). Likewise, anergy
develops at priming, subsequent to excessive stimulation of the TCR
without proper costimulatory signals. Although inhibitory receptors
such as PD1, CTLA4, TIM3, and LAG3 aremore commonly associated
with T-cell exhaustion, other markers, such as CD57 and killer cell
lectin-like receptor subfamily G member 1 (KLRG1), are more com-
monly associated with senescence (124). Unlike senescence T cells,
however, progenitor exhausted T cells are capable of responding to
checkpoint blockade (21), allowing restoration of function. Further
explorations will be required to further delineate these hypo- or
unresponsive states and unravel the relative contributions that each
of these modes of CD4 dysfunction makes to hindering antitumor
immunity.

Ultimately, the data reviewed above begin to establish CD4 T-cell
exhaustion as a unique differentiation state impacting antitumor
immunity, paralleling exhaustion inCD8T cells. Further comparisons,
including epigenetic and metabolic profiles between exhausted and
nonexhausted CD4 T-cell states, will be essential. These experiments
will increase our understanding of the complex immune responses
generated to cancer and persistent infections and could provide novel
therapeutic targets. Additional insights should be gathered by evalu-
ating other pathologies where CD4 exhaustion has been identified. In

CD4 T-Cell Exhaustion in Cancer

AACRJournals.org Clin Cancer Res; 27(21) November 1, 2021 5747

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/27/21/5742/3091893/5742.pdf by guest on 26 August 2022



addition to cancer and chronic infections, these can include trans-
plantation and autoimmune diseases.

Salient studies in transplantation and autoimmune diseases
Studies into transplantation and autoimmune diseases can help

shed light on the possibility of modulating CD4 T-cell exhaustion as a
therapeutic strategy. In contrast to cancer and chronic infections,
CD4 T cells in transplantation and autoimmunity are a source of
undesirable activity and collateral host tissue damage. In the case of
hematopoietic stem cell (HSC) and solid organ transplantation, CD4T
cells have been demonstrated to play a significant role in allograft
rejection (125, 126) by providing help to the two major cell subsets
responsible for tissue damage: cytotoxic donor-specific CD8 T cells
and B cells (127). Therefore, inducing specific CD4 T-cell
tolerance (128–130) or exhaustion could potentially mitigate the need
for systemic immunosuppression by selectively restraining graft-
specific effector cells while leaving the remainder of the immune
system capable of responding to foreign antigens, reducing the risk
of infections and malignancy.

Upregulation of coinhibitory molecules on CD4 T cells is observed
following HSC (131, 132) and solid organ transplantation (133).
Transgenic overexpression of TIM3 on CD4 T cells resulted in
decreased proinflammatory cytokine production and prevented
immune-mediated graft pathology (134), indicating a direct role for
TIM3 on CD4 T cells in the prevention of rejection. Mechanistically,
loss of IFN regulatory factor 4 (IRF4) or Fucosyltransferase 7 (Fut7) in
CD4 T cells induced graft tolerance through the establishment of
exhaustion in these cells. Graft rejection could be initiated in the early
phases after transplant upon treatment with monoclonal antibodies
interfering with the PD-1–PD-L1 pathway (135, 136). However,
irreversible dysfunction was established in IRF4 knockout (KO)
CD4 T cells if anti–PD-1 treatment was delayed until 30 days
posttransplant (135).

Much like transplantation, the management of autoimmune dis-
eases frequently involves systemic immunosuppression, and the role of
CD4 T cells in autoimmune pathology has long been recog-
nized (137, 138). Conversely, a negative correlation between CD4
inhibitory receptor expression and disease severity has been observed
in a rheumatoid arthritis population (139), although this has not been a
consistent finding (140). Insights into the role of CD4 T-cell exhaus-
tion and its influence on disease severity in autoimmunity comes from
mechanistic studies evaluating Nuclear Receptor Subfamily 4 GroupA
Member 1 (NR4A1), Nuclear Factor Interleukin 3 Regulation (NFIL3),
and human leukocyte antigen B (HLA-B)–associated transcript 3
(Bat3). Upregulation of NR4A1 and NFIL3 and downregulation of
Bat3 increased expression of exhaustion markers on CD4 T cells and
decreased cytokine production and disease severity (141–143). In
addition, persistent stimulation of CD4 T cells with endogenous
peptides resulted in loss of cytokine production and proliferation,

upregulation of inhibitory markers, and delayed onset of autoimmune
diabetes (144).

Conclusion and Future Directions
Compared with CD8 T-cell exhaustion, the impact of CD4 T-cell

exhaustion in cancer and other disease states has remained relatively
underappreciated. Current studies have provided mostly phenotypic
data, and investigations into additional criteria established for CD8
T-cell exhaustion, such as metabolic profiles and epigenetic land-
scapes, will be required to determine whether CD4 exhaustion likewise
comprises a distinct and progressing T-cell differentiation state. Our
current mechanistic understanding of factors involved in CD4 T-cell
exhaustion is summarized in Fig. 2. Further evaluation of CD4 T-cell–
specific factors will be essential to increase our understanding of the
mechanistic derivations of exhaustion in this population. Analysis of
factors associated with CD4 T-cell exhaustion in other pathologies
should be extended into tumor models to evaluate similarities and
differences inmechanistic determinants. It remains to be seen whether
the processes underlying CD4 T-cell exhaustion are similar across
different disease pathologies and CD4 subsets, or whether different
convergent transcriptional programs happen to result in the same
terminally differentiated fate. Furthermore, in-depth assessment of the
potentially differential susceptibility of various CD4 T-cell subsets to
exhaustion will be required to increase our understanding of its
consequences, as well as the relative contribution of each CD4 T-cell
subset to antitumor immunity. Finally, examination of the dynamics
of the initiation and progression of CD4 T-cell exhaustion and
assessment of the role of tumor cells and the TME in the process will
be invaluable to understanding parallels and differences between
CD4 and CD8 T-cell exhaustion. Crystallizing these insights will
be vital to increase our understanding of CD4 T-cell exhaustion and
its therapeutic implications.
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