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ABSTRACT 

 

CD8
+
 T CELL EFFECTOR FUNCTION AND TRANSCRIPTIONAL 

REGULATION DURING HIV PATHOGENESIS 

Korey R. Demers 

Michael R. Betts 

 

A detailed understanding of the immune response to human immunodeficiency 

virus (HIV) infection is needed to inform prevention and therapeutic strategies that aim to 

contain the AIDS pandemic. The CD8
+
 T cell response plays a critical role in controlling 

viral replication during HIV infection and will likely need to be a part of any vaccine 

approach. The qualitative feature of the CD8
+
 T cell response most closely associated 

with immunologic control of HIV infection is its cytotoxic capacity. The pore-forming 

protein, perforin, is a major determinant of the cytotoxic capacity of CD8
+
 T cells. In the 

context of chronic HIV infection, enhanced perforin expression by HIV-specific CD8
+
 T 

cells is associated with greater control over HIV replication. However, individuals 

experiencing chronic progressive infection (CP) often demonstrate a diminished ability to 

express this important cytolytic molecule. HIV-specific CD8
+
 T cells from CP also 

express lower levels of the T-box transcription factor T-bet, an upstream regulator of 

CD8
+
 T cell effector differentiation and function. Whether HIV-specific CD8

+
 T cells 

from progressors possess effector capacity during the earliest stages of infection and 

subsequently lose it remains unclear. The relationship between perforin, T-bet, and the 

closely related transcription factor eomesodermin (Eomes) also remains largely 
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undefined in the context of acute, chronic, or controlled HIV infection. In this work, we 

report that CD8
+
 T cell responses had high cytotoxic potential during acute HIV infection 

but perforin expression quickly waned with the resolution of peak viremia. Importantly, 

perforin was maintained in HIV-specific CD8
+ T cells with high levels of T-bet, but not 

necessarily in a population of T-bet
Lo HIV-specific CD8

+ T cells that expanded as 

infection progressed. During chronic infection there was a generalized increase in 

perforin expression for both total memory and HIV-specific CD8
+
 T cells that was 

dissociated from both T-bet and Eomes. Of note, however, individuals in which perforin 

remained closely associated with T-bet demonstrated greater in vivo control of HIV 

replication. Collectively, our data imply that loss of transcriptional regulators responsible 

for driving strong cytotoxic responses, such as T-bet, contributes to CD8
+
 T cell 

dysfunction during chronic progressive HIV infection. 
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CHAPTER 1 

INTRODUCTION 

 

 

Overview 

A recent UNAIDS report estimates that there are currently 36.7 million people 

infected with human immunodeficiency virus (HIV), the causative agent of acquired 

immunodeficiency syndrome [AIDS](UNAIDS, 2016). With almost 2 million deaths 

each year from AIDS-related illnesses, HIV/AIDS remains one of the leading causes of 

death globally. While extensive prevention education initiatives and therapeutic 

intervention have contributed to reducing incidents of HIV infection and mortality over 

the last decade, the number of new infections remains high at more than 2.1 million new 

infections annually (UNAIDS, 2016). These data highlight the continued need for an 

effective vaccine that can either prevent new infection or improve clinical outcome. 

There are three potential strategies for a HIV vaccine design: a humoral approach, 

a cellular approach or a combination of the two. While initial attempts to induce 

protection via humoral responses (AIDSVAX B/B and AIDSVAX B/E) or cellular 

responses (STEP trial) provided little to no protection (Buchbinder et al., 2008; Gilbert et 

al., 2005; Pitisuttithum et al., 2006), the Thai RV144 vaccine trial, which aimed to elicit 

both humoral and cellular immunity, met with partial success and provided the first 

evidence that it may be possible to protect against HIV acquisition (Rerks-Ngarm et al., 

2009). However, the RV144 vaccine strategy failed to elicit strong neutralizing antibody 

activity or CD8
+
 T cell responses (Haynes et al., 2012; Montefiori et al., 2012). In 

addition, the protective effects were modest and of limited durability, and there is some 
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question as to whether the results are generalizable to groups with greater risk of HIV 

acquisition than the cohort examined in the RV144 trial (McMichael and Haynes, 2012). 

It will take several years to determine if the RV144 ALVAC-HIV/AIDSVAX B/E 

approach is truly protective or can be improved upon, and it is important that alternate 

vaccine strategies be pursued to either complement the ALVAC-HIV/AIDSVAX B/E 

vaccine or replace it in the case of its failure. 

 A truly efficacious HIV vaccine will likely need to induce several arms of the 

immune system, including antiviral cellular responses mediated by CD8
+
 T cells. As 

such, a detailed understanding of the properties of CD8
+
 T cells that correlate with 

virologic control is essential to focus vaccine development on strategies that will elicit 

appropriate cellular responses. The recent failure of the Merck STEP trial appeared to 

suggest that CD8
+ 

T cell responses incapable of preventing infection nor lower viral set-

point following infection (McElrath et al., 2008). However, there is substantial 

correlative evidence indicating CD8
+
 T cell responses play a significant role in 

controlling HIV infection at some level, if not completely (Borrow et al., 1994; Borrow et 

al., 1997; Carrington and O'Brien, 2003; Dalmasso et al., 2008; Goonetilleke et al., 

2009b; Koup et al., 1994; Salazar-Gonzalez et al., 2009). Additionally, recent data from 

preclinical rhesus macaque studies suggests that CD8
+
 T cells induced by vaccination can 

indeed provide some degree of protection from SIV infection (Barouch et al., 2012; 

Hansen et al., 2011; Hansen et al., 2013a; Hansen et al., 2009; Liu et al., 2009), 

supporting the idea that if strong responses in the right state of activation and anatomical 

location can be induced they could be effective. Together, these studies tell us we must 

extend our understanding of CD8
+ 

T cell responses beyond the examination of a single 
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function, such as IFN-γ, to define the optimal measures on which to infer vaccine 

efficacy. In this work we examined CD8
+
 T cell cytotoxic potential, the transcription 

factors that drive this effector state, and their relationship with in vivo control of HIV 

replication in the hope of identifying useful targets for development of novel 

immunotherapeutics as well as vaccines. 

 

Biology and pathogenesis of Human Immunodeficiency Virus 

It is believed that the AIDS epidemic started in the mid- to late 1970s although it 

was not recognized as a new disease until 1981 when a growing number of young, 

previously healthy individuals began succumbing to an unusual opportunistic infection 

(Pneumocystis carinii pneumonia) and presenting with Kaposi Sarcoma (Hymes et al., 

1981; Masur et al., 1981). In addition to the rare diseases, afflicted individuals 

demonstrated marked depletion of CD4
+
 T cell from their peripheral blood. By late 1982 

epidemiologic evidence indicated AIDS was an infectious disease (CDC, 1982). In 1983 

researchers were able to isolate an infectious agent from the inflamed lymph nodes of a 

patient and found the agent possessed many characteristic of retroviruses (Barre-Sinoussi 

et al., 1983). Further study of the retrovirus showed that it was cytopathic to PBMC, 

targeting CD4
+
 T cells in particular (Klatzmann et al., 1984a). Morphologic and genetic 

studies placed the retrovirus in the genus Lentivirus and in 1986 it was finally called 

human immunodeficiency virus, or HIV (Coffman 1986). 

 Consistent with the loss of CD4
+
 T cells from infected individuals as well as the 

preferential targeting of CD4
+
 cells in culture, the CD4 transmembrane protein was itself 

identified as the primary cell-surface receptor of HIV (Dalgleish et al., 1984; Klatzmann 
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et al., 1984b). However, it was soon realized that CD4 alone was not sufficient for entry 

into target cells. It took an additional twelve years before chemokine receptor type 5 

(CCR5) and CXC chemokine receptor type 4 (CXCR4) were determined to function as 

the principal coreceptors for the virus (Deng et al., 1996; Dragic et al., 1996; Feng et al., 

1996). Engagement of CD4 and chemokine receptor by the surface envelope (Env) 

glycyprotein on HIV allows the viral membrane to fuse with the target cell membrane 

resulting in the microinjection of the viral core (Ray and Doms, 2006). Once inside, the 

viral reverse transcriptase enzyme initiates the generation of a double-stranded DNA 

version of the HIV RNA genome. The newly formed DNA copy of the viral genome then 

enters the nucleus of the cell and is permanently integrated into the chromosomal DNA. 

Once integrated, HIV largely relies on host cell machinery to replicate and generate new 

virions. 

 The disease course following infection with HIV is typically broken down into 

three phases: (1) the acute, (2) asymptomatic, and (3) AIDS. During the acute phase, 

which takes place within the first few weeks following infection, there are massive levels 

of viral replication and a concomitant depletion of CD4
+
 T cells both in the 

gastrointestinal tract and in the peripheral blood (Brenchley et al., 2004; Daar et al., 

1991). The first immune responses to HIV are also detectable during this time, but 

typically prove to be insufficient to completely control the virus. Following the resolution 

of peak viral replication, infection enters the asymptomatic phase during which viral load 

achieves a steady state of around 10
3
 to 10

4
 copies of HIV RNA per ml of plasma. 

Although infected individuals remain outwardly healthy during this time, internally the 

remaining pool of CD4
+
 T cells is gradually being depleted. After an indeterminate 
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amount of time, but typically within 5-10 years, the immune systems of untreated patients 

collapse completely thereby exposing them to attack from opportunistic infections and 

other diseases typically controlled in healthy individuals. It is thought that loss of the 

support CD4+ T cells provide to sustain immune defenses ultimately leads to this 

collapse and increased vulnerability (Rowland-Jones, 2003). 

 

CD8
+ 

T cell function 

CD8+ T cells are an integral part of the host immune defense against intracellular 

pathogens. Antigen-specific CD8
+ 

T cells are heterogeneous populations capable of 

performing multiple functions. Several studies have demonstrated this heterogeneity 

during the responses to HIV-1, CMV, and EBV infections (Appay et al., 2000; Catalina 

et al., 2002; Gillespie et al., 2000; Hamann et al., 1997; Makedonas et al., 2010). These 

responses include production of cytokines and chemokines, cytolytic effector molecules 

and antigen-specific lysis of major histocompatibility complex (MHC) class I matched 

target cells. The majority of responding CD8
+ 

T cells exert multiple functions following 

stimulation, but they can also respond with as little as one (depending on the number of 

parameters measured). Many of these functions are readily detectable by ELISpot or flow 

cytometry, and play specific, and potentially differential, roles in immunity against a 

variety of viruses. Several of the functions associated with CD8
+ 

T cells that are 

frequently assessed in response to HIV infection are described briefly below: 
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Interferon (IFN)-γ  

IFN-γ is the only member of the type II class of interferons, a family of cytokines 

originally discovered for their ability to interfere with influenza virus replication (Isaacs 

and Lindenmann, 1957). IFN-γ is the single most commonly used function to assess 

CD8
+
 T cell responses to infection or vaccination. It promotes a general antiviral state by 

inducing the conversion of the constitutive proteasome to the immunoproteasome 

(Groettrup et al., 1996), upregulating expression of the TAP transporter proteins (Cramer 

et al., 2000; Epperson et al., 1992), and increasing expression and stability of MHC class 

I molecules (Johnson and Pober, 1990; Wallach et al., 1982). In some contexts, IFN-γ 

also increases the susceptibility of virally infected cells to apoptosis by increasing the 

expression of the TNF-α receptors and Fas/FasL (Tsujimoto et al., 1986; Xu et al., 1998). 

However, IFN-γ may also enhance HIV replication (Biswas et al., 1992). Thus in the 

context of HIV infection IFN-γ is potentially both beneficial and detrimental to inhibiting 

viral replication. 

 

Interleukin (IL)-2 

IL-2 is the primary growth factor for T cells (Dinarello and Mier, 1986). Although 

typically considered a CD4
+
 T cell cytokine, CD8

+
 cells are also quite capable of 

producing IL-2 (Zimmerli et al., 2005). It has no direct antiviral effector function, but it 

does promote expansion of CD4
+
 and CD8

+
 cells, thereby amplifying the effector 

response to pathogens (Seder et al., 2008). IL-2 may also be important for programming 

CD8
+
 T cells for better memory generation and effector function (Williams et al., 2006). 

IL-2 production by CD8
+ 

T cells is correlated with proliferation of CD8
+
 cells 
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independent of CD4
+ 

T cell IL-2 production (Zimmerli et al., 2005), and both IL-2 

production and proliferation are preserved in nonprogressive HIV infection (Betts et al., 

2006; Migueles et al., 2002). However, IL-2-induced activation and proliferation of CD4
+ 

T cells may also increase the availability of target cells for infection as well as increase 

viral replication by infected cells (Davey et al., 1997). 

 

Tumor necrosis factor (TNF)-α 

TNF-α is a member of the TNF superfamily and was first identified by its ability to 

induce necrosis in solid tumors (Carswell et al., 1975). It has subsequently been shown to 

be an important antiviral factor due to its role as a mediator of apoptosis as well as 

inflammation and immunity (Aggarwal, 2003; Kull, 1988; Lazdins et al., 1997). TNF-α is 

initially expressed as a biologically active homotrimer on the cell surface that the matrix 

metalloprotease TNF-α converting enzyme can subsequently cleave into its soluble form 

(Black et al., 1997). Soluble TNF-α preferentially binds TNF-RI, which, upon being 

bound, initiates a signaling cascade that induces apoptosis of infected cells. Membrane 

bound TNF-α binds TNF-RII and plays an important role in driving NF-κB activation and 

inflammation (Chen and Goeddel, 2002; Wajant et al., 2003b). TNF-α also promotes an 

antiviral state by enhancing expression of MHC class I and by inducing expression of IL-

12 and IL-18 which are both important for upregulating production of IFN-γ by CD8
+
 T 

cells (Feldmann et al., 1995; Johnson and Pober, 1990; Scheurich et al., 1986). However, 

similar to IFN-γ and IL-2, activation of cells induced by TNF-α can also result in 

increased production of virus (Duh et al., 1989; Folks et al., 1989; Harrer et al., 1993). 
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Chemokines 

Both CD4
+
 and CD8

+ 
T cells secrete a variety of chemotactic cytokines (chemokines) 

upon activation (Rollins, 1997). Chief among them are the β-chemokines macrophage 

inflammatory protein-1α (MIP-1α) and -1β (MIP-1β) and regulated upon activation 

normal T cell expressed and secreted (RANTES). MIP-1α and MIP-1β can be found in 

cytotoxic granules while RANTES is stored in a separate secretory compartment called 

the RANTES secretory vesicle (RSV) (Catalfamo et al., 2004; Wagner et al., 1998). Both 

types of granules are rapidly released following T cell activation. New MIP-1α and MIP-

1β synthesis occurs within a few hours of activation, while RANTES can take several 

days to be upregulated following its initial release. All three contribute to an 

inflammatory response primarily by recruiting leukocytes to the site of injury or 

infection.  

β-chemokines were the first noncytotoxic factors secreted by CD8
+
 T cells to be 

identified that directly inhibit HIV replication (Cocchi et al., 1995). They inhibit 

replication in vitro by binding their cognate chemokine receptor, CCR5, which serves as 

a coreceptor for viral binding and entry into target cells. Binding of β-chemokines to 

CCR5 is thought to block access to and induce the internalization of the receptor 

(Copeland, 2002). The exact role the β-chemokines play during HIV infection in vivo 

may still be a matter for debate. β-chemokines do not appear to prevent infection of 

monocytes and may actually enhance viral replication in these cells (Dragic et al., 1996; 

Moriuchi et al., 1996; Schmidtmayerova et al., 1996). RANTES (but not MIP-1α or MIP-

1β) can increase attachment of HIV to cells in a manner independent of both CD4 and 

CCR5 and increase replication by activating signal transduction pathways (Trkola et al., 
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1999). Serum β-chemokine concentrations do not correlate with HIV disease status, 

although patients with progressive infection tend to have higher levels than those with 

non-progressive infection (Saha et al., 1998). There is also the suggestion that 

physiologic levels of β-chemokines are not high enough to exert anti-HIV activity 

(Mackewicz et al., 1997), although there is the possibility that concentrations are 

sufficient for inhibition in the microenvironment of the CD8
+
 T cell. Thus, while these 

molecules have been shown to have inhibitory effects in vitro, they may in fact fuel 

infection in vivo by not only recruiting uninfected target cells to sites of active viral 

replication but also by enhancing infection of those cells. 

 

CD8
+
 T cell antiviral factor (CAF) 

CAF was originally defined in the context of HIV infection and the demonstration of its 

activity provided the first indication that CD8
+
 T cells possess the ability to inhibit HIV 

replication (Walker et al., 1986). CAF is a noncytolytic, diffusible lymphokine that lacks 

identity with IFN-α, IFN-β, TNF-α, IL-4, IL-6 or the β-chemokines MIP-1α, MIP-1β and 

RANTES (Leith et al., 1997; Mackewicz et al., 1994; Rubbert et al., 1997; Walker and 

Levy, 1989). Aside from, there is little known and much debate about the exact nature of 

CAF (Chang et al., 2003; Mackewicz et al., 1994; Vella and Daniels, 2003). It may be the 

activity of one or more cytokines or chemokines acting together, or it could be an as yet 

unidentified molecule (Chang et al., 2002). In the case of HIV, CAF appears to function 

by suppressing HIV long terminal repeat (LTR)-mediated gene expression in CD4
+ 

T 

cells (Copeland et al., 1997). It does not block HIV entry (Copeland et al., 1997), proviral 

integration (Mackewicz et al., 2000), or reverse transcription (Chang et al., 2003), nor is 
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it MHC class I restricted (Vella and Daniels, 2003). Due to CAF activity being neither 

HIV-antigen specific nor produced only by CD8
+
 T cells has led to the hypothesis that it 

may in fact be part of an innate rather than an adaptive immune response (Chang et al., 

2002; Le Borgne et al., 2000). Despite this, the suppressive capacity of CAF appears to 

be real and further investigation is warranted to determine its identity. 

 

Cytotoxicity 

Perhaps the most important function of CD8
+
 T cells is to recognize and kill infected 

cells. This function has been shown to be important for control of several infections, 

including EBV (Callan, 2003), CMV (Belz and Doherty, 2001; Gillespie et al., 2000), 

HBV (Guidotti et al., 1996), and HCV (Lechner et al., 2000). CD8
+
 T cells 

predominantly mediate killing through the secretion of granzymes and perforin (Peters et 

al., 1991; Shankar et al., 1999). Granzymes are serine proteases that cleave caspases to 

induce apoptosis (Bots and Medema, 2006; Heusel et al., 1994) and perforin is a pore-

forming protein that is required for delivery of granzymes into a target cell (Bolitho et al., 

2007; Voskoboinik et al., 2006). Both of these proteins are contained within lytic 

granules and are released early after CD8
+
 T cell activation into the immunological 

synapse formed between the CD8
+
 T cell and a target cell. This process of degranulation 

is MHC class I restricted and antigen specific and likely plays an important role in 

control of viral infection in vivo (Trambas and Griffiths, 2003). 

 CD8
+
 T cells can also mediate killing by the Fas-Fas ligand (FasL) pathway. FasL 

is upregulated by CD8
+
 T cells following activation by a target cell (Rouvier et al., 1993). 

Cross-linking of membrane bound FasL and the cell surface death receptor Fas expressed 
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on targets cells induces assembly of an intracellular death-inducing signaling complex 

(DISC) (Kischkel et al., 1995). DISC formation causes activation of a caspase cascade 

that ultimately leads to apoptosis of the target cell. Individual CTL are thought to be 

capable of both FasL- and perforin-mediated killing (He and Ostergaard, 2007), however, 

cytolysis of HIV-infected target cells appears to be largely perforin-mediated with no 

clear evidence of a contribution of FasL-mediated killing by HIV-specific CD8
+
 T cells 

(Shankar et al., 1999). In addition, reports that a soluble form of FasL can not only block 

apoptosis but also induce proliferation and NF-κB activation of HIV target cells raises the 

possibility that its role in infection is not always directly antagonistic (LA et al., 2009; 

Wajant et al., 2003a). 

 

Assessing CD8
+
 T cell antiviral responses 

Early studies of CD8
+
 T cell response to HIV employed cytotoxicity assays, such as the 

chromium release assay (CRA), to measure HIV-specific CTL activity. The CRA was 

used to show that HIV-specific CD8
+ 

T cells have direct cytotoxic effects against HIV-

infected CD4
+ 

T cells (Walker et al., 1987) and was important in establishing the link 

between emergence of HIV-specific CTL and resolution of peak viremia during primary 

HIV infection (Koup et al., 1994). However, questions were raised about the ability of the 

assay to link CTL activity and HIV viral load during chronic infection (Ogg et al., 1998). 

The CRA is also laborious, relatively insensitive, highly variable, and, most importantly, 

provides little information about the cytolytic CD8
+ 

T cells themselves other than that 

they can kill. 
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Direct detection and quantification of antigen-specific CD8
+ 

T cells by MHC class 

I tetramer technology or IFN-γ production offered more rapid, more sensitive and less 

variable assays than measurement of cytotoxicity by the CRA. While an inverse 

relationship between simple frequency of HIV-specific CD8
+ 

T cells and plasma viral 

load was initially established on the basis of tetramer staining (Ogg et al., 1998), this 

finding was not supported by subsequent studies that found no relationship between the 

frequency of IFN-γ producing HIV-specific CD8
+ 

T cells and HIV viral load (Addo et al., 

2003; Betts et al., 2001; Gea-Banacloche et al., 2000). It was proposed that these 

disparate findings were the result of a significant portion of the circulating tetramer-

staining CD8
+ 

T cell population being functionally impaired (Kalams and Walker, 1998; 

Zajac et al., 1998). While early studies in this area have shown that the majority of 

tetramer-positive HIV-specific CD8
+ 

T cells can produce IFN-γ (Appay et al., 2000; 

Goulder et al., 2000), high expression of inhibitory markers including PD-1, CD160, 

2B4, and Lag-3 on HIV-specific CD8+ T cells may indicate some degree of functional 

insufficiency (Blackburn et al., 2009; Day et al., 2006; Petrovas et al., 2006; Trautmann 

et al., 2006; Yamamoto et al., 2011). 

IFN-γ was presumed to be an antiviral marker largely because CD8
+ 

T cell clones 

that produced it early after stimulation became CTLs after further culture (Jassoy et al., 

1993; Morris et al., 1982). This, combined with its ease of measurement by ELISpot or 

flow cytometry, made IFN-γ a popular choice for detecting HIV-specific cellular 

responses in both HIV-infected individuals and participants in HIV vaccine trials. 

However, studies have demonstrated the inadequacy of IFN-γ as a surrogate marker for 

HIV control. One study found a positive correlation between frequency of IFN-γ-
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producing HIV-specific CD8
+ 

T cells and HIV viral load (Betts et al., 2001), and the 

failure of the STEP trial further highlighted the misinterpretation of IFN-γ as a surrogate 

of protection: 77% of vaccinees had an IFN-γ response to one or more HIV antigens by 

ELISpot, yet there was no protection from infection or enhanced viral control following 

infection (McElrath et al., 2008). While increased rates of escape mutations within 

vaccine-targeted CD8
+
 T cell epitopes indicate that vaccine-induced immune pressure 

was exerted on the virus, the nature of the selective forces has not been defined (Rolland 

et al., 2011). More recently, studies have shown more directly that the magnitude of IFN-

γ responses does not correlate with CD8
+ 

T cell HIV inhibitory activity (Chen et al., 

2009; Yang et al., 2012). Thus, while IFN-γ may be a good indicator of the presence of a 

response, it cannot be used alone to infer the anti-HIV capacity of T cells. 

As discussed earlier, responding CD8
+ 

T cell have the capacity to produce several 

different functions, and measuring a single function such as IFN-γ likely does not 

describe the true extent of an antigen-specific immune response. This idea was confirmed 

by studies based on the murine LCMV model of infection. The Armstrong strain of 

LCMV is cleared following acute infection while the clone 13 strain results in chronic 

infection. Following resolution of acute infection by the Armstrong strain, a subset of 

LCMV-specific IFN-γ-producing CD8
+ 

T cells emerges that also produces IL-2 

(Kristensen et al., 2002). This same subset does not appear following chronic infection 

with LCMV clone 13, as LCMV-specific cells continue to produce only IFN-γ. Wherry et 

al. extended these findings to show that CD8
+ 

T cells are not only multifunctional, but 

that functional capacity of LCMV-specific CD8
+ 

T cells is gradually lost in the context of 

chronic clone 13 infection (Wherry et al., 2003). Cells producing IL-2 were the first 
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functional subset lost, followed by those producing TNFα, while IFN-γ was the most 

resistant to this “functional exhaustion”. These studies demonstrate that individual CD8
+ 

T cells are capable of responding with multiple functions simultaneously and that 

measuring IFN-γ alone fails to exclude T cells that are potentially impaired in their 

functional capacity. They also indicate that including more than one functional marker 

during the assessment of cellular responses to infection or vaccination will identify cells 

with greater antiviral potential. 

 Appay et al. and Sandberg et al. were the first to demonstrate the functional 

complexity of human CD8
+ 

T cell responses (Appay et al., 2000; Sandberg et al., 2001). 

They examined cellular responses to either HIV and CMV (Appay et al., 2000) or CMV 

alone (Sandberg et al., 2001) and showed that different cells specific for the same antigen 

were capable of producing TNF-α, IFN-γ and MIP-1β or IL-2, TNF-α and IFN-γ, 

respectively. Technical limitations prevented either of these studies from examining the 

capacity of individual antigen-specific cells to co-produce cytokines or chemokines, 

however, advances in flow cytometry technology allowing the concurrent measure of up 

to 18 functional and phenotypic markers soon provided a new tool for assessment of 

responses (Perfetto et al., 2004). The first true demonstration of multifunctional T cells in 

humans came when De Rosa et al. examined responses of antigen-specific T cells elicited 

by HBV- and HIV-vaccination or natural infection, measuring five different functions 

(IL-2, TNF-α, IFN-γ, MIP-1β and IL-4) simultaneously (De Rosa et al., 2004). Both 

CD4
+ 

and CD8
+ 

T cells displayed a surprising breadth and complexity of responses that 

could not have been captured by the measurement of any single function alone. Antigen-

specific CD8
+ 

T cells were capable of producing IL-2, TNF-α, IFN-γ, and MIP-1β alone 
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or in combination. Importantly, there were several functional subsets that did not include 

IFN-γ production and thus would have been missed had IFN-γ been measured alone. This 

study established that measurement of multiple functions provides a more sensitive and 

complete evaluation of T cell responses elicited by vaccination or natural infection. It 

also presented the possibility that distinct functional expression patterns might provide 

correlates of protection or disease progression. 

 

Immune correlates of control of HIV 

 Untreated HIV infection typically results in a chronic progressive disease that 

culminates in AIDS within 10 years, but a subset of less than 1% of infected individuals 

spontaneously control viral replication to undetectable levels by standard clinical assays 

in the absence of therapy. This group of so-called “elite controllers” (ECs) experience 

very slow rates of CD4
+
 T cell decline and rarely progress to AIDS (Sedaghat, 2009; 

Migueles and Connors, 2010; Sajadi, 2009). Because of this ECs have been studied 

extensively to better understand the mechanism(s) responsible for their enhanced capacity 

to suppress HIV replication. It was hoped that by comparing the immune responses of 

ECs to those of individuals with chronic progressive infection (CPs) targets could be 

identified that would facilitate the design of vaccines or therapeutic strategies to prevent 

or control infection. 

 

Innate immunity 

There is evidence that myeloid dendritic cells (DCs) from ECs have enhanced antigen-

presenting capabilities (Huang et al., 2010). They also demonstrate lower levels of pro-
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inflammatory cytokine secretion. These characteristics make them potent inducers of 

CD8
+
 T cell responses without also contributing to a state of generalized immune 

activation. Plasmacytoid DCs are the main source of the cytokine IFN-α, an important 

modulator of innate restriction factors and a potent enhancer of CD8
+
 T cell and natural 

killer (NK) cell responses (Bosinger and Utay, 2015; Urban et al., 2016). Plasmacytoid 

DCs are maintained at levels similar to HIV-negative individuals whereas they are 

depleted in the peripheral blood of individuals with progressive infection (Barblu et al., 

2012; Machmach et al., 2012). Despite these differences between ECs and CPs, there is 

no clear evidence that either DC subset makes a significant contribution to control or to 

HIV pathology. 

 NK cells target and kill infected cells non-specifically via killer immunoglobulin 

receptors (KIRs). Expression of certain KIRs, such as KIR3DS1 and its ligand BW4, is 

associated with slower progression of HIV disease (Martin et al., 2007). However, these 

same KIRs were not found to be overrepresented in a group of ECs making their 

contribution to control ambiguous (O'Connell et al., 2009). In addition, while there is 

evidence of viral sequence evolution as a result of NK-mediated pressure (Alter et al., 

2011), the in vitro antiviral activity of NK cells from ECs was found to be relatively 

weak (O'Connell et al., 2009). Finally, experimental depletion of NK cells during either 

acute or chronic infection in the nonhuman primate SIV model had no impact on the 

kinetics of viral replication(Choi et al., 2008a; Choi et al., 2008b). It should be noted, 

however, that an antibody against CD16 was used to deplete NK cells in these 

experiments and not all NK cells express CD16 in nonhuman primates. Together these 
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studies indicate innate immunity plays an important role in overall immunity to HIV 

infection but there is little evidence to correlate NK cells or DC responses with control. 

 

Humoral immunity 

B cells produce antibodies to fight invading pathogens. Antibodies mediate their 

protective effects in many ways, including through antibody-dependent cell-mediated 

cytoxicity (ADCC) or through neutralization, a process in which the antibody sterically 

hinders the pathogen-host interaction. One recent report indicated ECs might have 

increased ADCC capacity (Lambotte et al., 2009), but this could not be confirmed in a 

follow-up study (Smalls-Mantey et al., 2012). Neutralizing antibodies can arise early 

infection, select for Env escape variants, and impede viral replication (Bar et al., 2012; 

Liao et al., 2013; Mahalanabis et al., 2009; Wei et al., 2003). However, increased range 

of neutralizing antibody specificities is typically associated with high viral loads and as 

such they are rarely found in EC (Bailey et al., 2006; Deeks et al., 2006; Doria-Rose, 

2010; Lambotte et al., 2009; Mahalanabis et al., 2009; Pereyra et al., 2008; Sather et al., 

2009). In addition, the development of highly potent broadly neutralizing antibodies 

capable of targeting multiple HIV variants can take two to four years and likely require 

the continued presence of moderate to high levels of viremia (Burton and Mascola, 

2015). Together these studies suggest antibody responses play a limited role in the 

control of viral replication in ECs. 
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CD4+ T cells 

CD4
+
 T cells are a critical component of adaptive immune responses to infection given 

the support they provide to developing B cells and CD8
+
 T cells. However, CD4

+
 T cells 

are also the primary targets of HIV and their progressive loss over the course of infection 

is linked to development of opportunistic infections and CD8+ T cell dysfunction 

(Altfeld and Rosenberg, 2000; Douek et al., 2002; Kalams et al., 1999). CD4+ T cells 

from EC are more functional, with greater frequency of cells able to produce IL-21 or 

simultaneously express IL-2 and IFN-γ (Chevalier et al., 2011; Emu et al., 2005; 

Lichterfeld et al., 2004; Pereyra et al., 2008). CD4+ T cell responses are largely similar 

when comparing ECs and antiretroviral therapy suppressed individuals, however, leading 

some to question whether differences between EC and CP CD4
+
 T cells are a 

consequence or cause of controlled viral replication (Tilton et al., 2007). One recent study 

found a correlation between acute phase CD4
+
 T cell cytotoxic capacity and set point 

viral loads, but it remains to be determined if a similar phenomenon occurs in individuals 

with EC status (Soghoian et al., 2012). It is also unclear if targeting of specific CD4
+
 T 

cell epitopes is associated with control. Thus, although there is little current evidence to 

suggest it, a direct role for CD4
+
 T cells in suppressing HIV replication cannot be ruled 

out entirely. 

 

CD8+ T cells 

There is strong correlative and direct evidence that CD8
+
 T cells are critical for control of 

HIV replication. This comes from both HIV infection in humans and simian 

immunodeficiency virus (SIV) infection in nonhuman primates (NHP). First, the 
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resolution of peak viremia during acute HIV infection is temporally associated with the 

expansion of HIV-specific CD8
+
 T cells (Borrow et al., 1994; Koup et al., 1994). Second, 

immunologic pressure exerted by HIV- and SIV-specific CD8
+
 T cells is linked to the 

emergence of viral escape mutations during acute and chronic infection (Allen et al., 

2000; Borrow et al., 1997; Evans et al., 1999; Goonetilleke et al., 2009b; Salazar-

Gonzalez et al., 2009). Third, there is a strong correlation between specific MHC class I 

alleles and non-progressive infection in both humans and rhesus macaques (Carrington 

and O'Brien, 2003; Dalmasso et al., 2008; Goulder et al., 1997; Loffredo et al., 2007; 

Yant et al., 2006). Finally, experimental depletion of CD8
+
 T cells in SIV-infected rhesus 

macaques results in a concomitant loss of control of viral replication (Jin et al., 1999; 

Schmitz et al., 1999).   

 Historically, neither the quantity nor the breadth of the HIV-specific CD8
+ 

T cell 

response has correlated with protection. However this is based almost entirely on analysis 

of IFN-γ responses alone, which is likely not representative of the true response to 

infection. Given the capacity of CD8
+
 T cells to produce multiple functions, it was 

possible that the key to protection was a matter of quality of the response rather than 

simply quantity. Zimmerli et al. were the first to show that higher quality HIV-specific 

CD8
+
 T cell responses consisting of simultaneous production of IL-2 and IFN-γ, 

compared to IFN-γ alone, differentiate nonprogressive and progressive HIV infection, 

respectively (Zimmerli et al., 2005). The ability of nonprogressor CD8
+
 T cells to 

produce IL-2 was consistent with the maintenance of greater proliferative capacity than 

for cells from progressors (Migueles et al., 2002; Zimmerli et al., 2005). This data 

suggested that quality of the response was indeed important. To investigate this 
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association further, our lab measured five T cell functions (IL-2, IFN-γ, TNF-α, MIP-1β 

and CD107a) simultaneously to characterize HIV-specific CD4
+ 

and CD8
+ 

T cell 

responses in a cohort of progressors and nonprogressors (Betts et al., 2006). This study 

demonstrated that while the absolute frequency of HIV-specific CD8
+ 

T cells does not 

correlate with viral control, the frequency of specific functional subsets does correlate 

with control. Comparing the functional profiles of the HIV-specific CD8
+ 

T cell 

responses between progressors and nonprogressors, the two groups were differentiated by 

a higher degree of functionality in the nonprogressors than in the progressors. A 

population of CD8
+ 

T cells capable of producing all five functions was observed almost 

exclusively in the nonprogressors, and a subset of CD8
+ 

T cells producing IFN-γ, TNF-α, 

MIP-1β and CD107a was also more prevalent in this group than in progressors. These 

responses were consistent across multiple HIV proteins (Gag, Pol, Env and 

Tat/Rev/Vif/Vpr/Vpu). Furthermore, within the progressor group the magnitude and 

proportion of the HIV-specific CD8
+ 

T cell responses positive for these same five- and 

four-function subsets inversely correlated with viral load. This demonstrates that by 

measuring multiple functions simultaneously it is possible to discern a difference 

between progressive and nonprogressive HIV infection based on the functional capacity 

of HIV-specific CD8
+ 

T cell responses. 

In support of an association between polyfunctional cells and protection during 

infection, Darrah et al. demonstrated that vaccine-elicited polyfunctional CD4
+
 T cells 

are far better at providing protection to mice challenged with Leishmania major than 

dualfunctional or monofunctional cells (Darrah et al., 2010; Darrah et al., 2007). 

However, a similar phenomenon for CD8
+
 T cells has not been established in this or other 
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models of infection and the role of polyfunctional CD8
+
 T cells in the context of HIV 

infection is surrounded by questions. First, how can polyfunctionality be a significant 

correlate of protection when only a small proportion of nonprogressor HIV-specific CD8
+ 

T cells actually produce five functions and some nonprogressors do not have this or any 

other measurable functional subset (Betts et al., 2006; Emu et al., 2008)? Second, why do 

polyfunctional HIV-specific CD8
+ 

T cells induced in progressors during antiviral therapy 

generally fail to impart virologic control upon cessation of therapy (Davey et al., 1999; 

Ortiz et al., 2001; Rehr et al., 2008)? Finally, how do IL-2, TNF-α, IFN-γ, and MIP-1β 

become protective in combination when they are not individually associated with 

protection and they all have potentially pleiotropic effects in the context of HIV infection 

(as discussed earlier)? Is it a synergistic effect of multiple functions acting in concert, or 

the ability of polyfunctional antigen-specific CD8
+
 T cells to produce more cytokine on a 

per cell basis (Ferre et al., 2009; Precopio et al., 2007)? Is it simply that these cells are 

functional in a way not yet measured? Ultimately, it is a question of whether 

polyfunctional HIV-specific CD8
+
 T cell responses are a cause or consequence of 

control. It is possible polyfunctionality, as defined by the above measures, is not 

indicative of the direct protective capacity of a cell but rather is a surrogate of a 

protective response. This is highlighted by the fact that vaccine studies in which 

polyfunctional CD8+ T cell response were induced but were unable appreciably control 

HIV replication. 

  Cytotoxicity is one function of CD8
+
 T cells that is unequivocally antiviral, as 

direct killing of virally infected cells will certainly impact viral replication. Cytotoxic 

capacity can be assessed directly or indirectly by several different methods, each with its 
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own advantages and disadvantages. As discussed earlier, direct cytotoxic capacity of 

CTLs can be assessed in vitro using the chromium release assay, or by a similar 

fluorescence-based assay, and these assays were important for establishing the role of 

CTL in controlling HIV infection (Borrow et al., 1994; Koup et al., 1994; Walker et al., 

1987). Although several studies have since used the CRA to show HIV-specific CD8
+ 

T 

cells from ECs maintain greater cytotoxicity than those from CPs (Andersson et al., 1999; 

Appay et al., 2000; Zhang et al., 2003), the connection between the results of these assays 

and the in vivo state has been questioned (Ogg et al., 1998). Critics of this interpretation 

cite the prolonged culture and expansion of cells in vitro required to generate sufficient 

numbers of CTLs for quantitative CRA (Doherty, 1998), which likely introduces bias in 

CTL analysis as it only measures the subset of memory and effector cells capable of 

proliferating and remaining functional under artificial conditions. Additionally, these 

assays only measure the effects of CTL on the target cells, without providing any 

phenotypic or functional characteristics about the CTL itself. This represents a critical 

loss of information when trying to determine the exact nature of these cells. 

CD8
+
 T cell cytotoxic potential can also be assessed directly by flow cytometry. 

Unlike the cytotoxicity assays, this method does not measure killing but rather 

determines killing potential based on the perforin and granzyme content of the CD8
+
 T 

cell, with the concept that CD8+ T cells that do not express these markers would be 

incapable of killing targets. The advantage to this method is that flow cytometry permits 

measurement of additional parameters, thus providing a more complete picture of the 

cells with killing potential. Perforin content of antigen-specific CD8
+
 T cells can be 

measured by staining resting cells with MHC class I tetramers or by peptide-stimulation. 
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When Appay et al. compared perforin content of CP antigen-specific CD8
+
 T cells 

identified directly ex vivo by tetramer staining, they found that HIV-specific CD8
+
 T cells 

were deficient for perforin compared to CMV-specific CD8
+
 T cells (Appay et al., 2000). 

However, MHC class I tetramer staining may provide sufficient stimulation to induce 

perforin release, resulting in an underestimation of perforin content. Also, by measuring 

perforin content of resting cells, only immediate killing potential is measured and the 

sustainability of the cytotoxic response cannot be determined. To assess serial killing 

potential, CTLs had to be stimulated and perforin content measured after the cells were 

allowed to progress through multiple rounds of proliferation. Several studies measuring 

cytotoxic potential in this way suggested that HIV-specific CD8
+
 T cells from ECs 

maintain the ability to upregulate perforin, a property that was deficient in CPs 

(Andersson et al., 1999; Appay et al., 2000; Migueles et al., 2002). While these results 

were in line with the results from the cytotoxicity assays, they also shared the same 

potential for memory subset bias introduced by the need for prolonged culture. 

 As a result of the difficulty in measuring cytotoxic factors in activated cells 

directly ex vivo, we developed an assay that utilized CD107a expression on CD8
+
 T cells 

as a surrogate marker of killing capacity (Betts et al., 2003). CD107a lines the 

membranes of cytotoxic granules and is exposed on the cell surface following activation 

and degranulation of CD8
+
 T cells. This technique was used recently to suggest 

cytotoxicity is one of the primary mechanisms responsible for both the enhanced HIV 

inhibitory potential of CD8
+
 T cells from ECs as well as for the emergence of HIV escape 

mutants during acute infection (Ferrari et al., 2011; Freel et al., 2010; Freel et al., 2012). 

It is important to note, however, that although expression of CD107a correlates well with 
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the exocytosis of perforin and cytotoxicity (Betts et al., 2003; Hersperger et al., 2008), it 

does not directly equate to actual killing as not all granules contain perforin or granzymes 

(Wolint et al., 2004). 

Through further testing, we soon discovered that the most commonly used 

perforin antibody (clone δG9) was sensitive to the degranulation assay, which required 

the use of monensin to neutralize intracellular pH (Hersperger et al., 2008). By using a 

different monensin-insensitive perforin antibody (clone D48) we found that CD8
+
 T cells 

are capable of rapidly (within 4-6 hours) upregulating perforin following antigen-specific 

stimulation without the requirement for proliferation (Hersperger et al., 2008; Makedonas 

et al., 2009). We also found that newly synthesized perforin can traffic directly to the 

immunological synapse in a process that largely bypasses cytotoxic granules (Makedonas 

et al., 2009). This new perforin antibody thus allowed a direct assessment of antigen-

specific CD8
+
 T cell cytotoxic potential directly ex vivo. Used in conjunction with 

standard intracellular cytokine staining (ICS) we could now assess cytokine production 

and cytotoxic potential simultaneously.  

In an attempt to better understand the HIV-specific CD8
+
 T cell mechanisms of 

viral control we re-evaluated HIV-specific CD8
+
 T cell polyfunctional responses, 

including the ability to rapidly upregulate perforin. Comparing the functional profiles of 

HIV-specific CD8
+ 

T cell responses from a cohort of elite controllers and chronic 

progressors we confirmed that elite controllers have a higher frequency of polyfunctional 

cells compared to chronic progressors based on the expression of IL-2, IFN-γ, TNF-α, 

MIP-1β and CD107a (Hersperger et al., 2010). HIV-specific CD8
+ 

T cells from elite 

controllers also have a greater ability to rapidly upregulate perforin directly ex vivo 
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compared to progressors. This identified a function of the elite controller HIV-specific 

CD8
+ 

T cell response that confered an enhanced ability to directly eliminate HIV-infected 

cells. Interestingly, however, there was no link between perforin upregulation and 

polyfunctionality. Rather, perforin expression was associated with cells of limited 

functional capacity, most frequently seen in combination with production of MIP-1α or 

degranulation (CD107a). Thus, while highly polyfunctional cells are a correlate of 

control, so too are oligofunctional cells, depending on the functions produced. The 

question then became which of these populations, if either, is involved in control of 

viremia. Freel et al. recently demonstrated that HIV-specific CD8
+
 T cell capacity to 

inhibit HIV replication in vitro is correlated with the expression of MIP-1β and CD107a 

and not linked to upregulation of IL-2, TNF-α or IFN-γ (Freel et al., 2010). While 

noncytolytic mechanisms likely play some role in inhibition (Freel et al., 2012; Killian et 

al., 2011), given our findings it is not unreasonable to speculate that many of the cells 

expressing MIP-1β and CD107a are also upregulating perforin and inhibiting mainly 

through cytotoxicity, although this hypothesis has not been confirmed. Still, these studies 

only establish that HIV-specific CD8
+
 T cells found during controlled HIV infection have 

greater functional capacity and inhibitory potential, they do not tell us if these responses 

are actively involved in virus control or they are a result of control by some other 

mechanism. 

 

Transcriptional regulation of CD8
+
 T cell differentiation and function 

Understanding the underlying mechanisms involved in CD8
+
 T cell differentiation 

and function may provide insight into the factors responsible for the dysfunction 
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observed during chronic infection. To this end, several transcription factors have been 

identified that regulate the transition of CD8
+
 T cells into effector cells, including the T-

box transcription factors T-box expressed in T cells (T-bet) and eomesodermin (Eomes). 

While the majority of our current knowledge about the transcriptional control of CD8
+
 T 

cell function comes from mouse models, we and others have recently begun assessing the 

role these transcription factors play in human T cell effector function. Below, we discuss 

what we know from mouse models as well as our recent findings regarding CD8
+
 T cell 

dysfunction in the context of HIV infection. 

T-bet and Eomes are T-box binding transcription factors that play important roles 

in promoting CD8
+
 T cell effector differentiation and function. The T-box is a 180-190 

amino acid sequence highly conserved across T-box family members that acts as a DNA-

binding domain. T-bet and Eomes share 74% sequence identity in their T-box domains, 

but lack sequence similarity outside this region. Like other T-box binding transcription 

factors, they mediate developmental transitions through epigenetic modifications (Miller 

and Weinmann, 2009).  

T-bet was originally identified as a determinant of TH1 cell lineage commitment 

(Szabo et al., 2000), but subsequent work demonstrated its importance also as a regulator 

of CD8
+
 T cell effector differentiation and function (Joshi et al., 2007; Sullivan et al., 

2003; Takemoto et al., 2006). T-bet positively regulates several genes associated with 

effector function, including perforin, granzyme B, β-chemokines and IFN-γ (Jenner et al., 

2009), and negatively regulates genes such as IL-2 and PD-1 (Jenner et al., 2009; Kao et 

al., 2011; Szabo et al., 2000). Although T-bet activity was originally described as being 

required for CD4
+
 and CD8

+
 T cell IFN-γ expression and cytotoxicity, these functions 
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were not completely ablated in T-bet knock-out mice, suggesting the existence of a T-bet-

independent regulatory mechanism (Sullivan et al., 2003; Szabo et al., 2002). This 

observation led to the discovery that CD8
+
 T cells also express Eomes, which shares both 

redundant and reciprocal functions with T-bet (Pearce et al., 2003). The genes under the 

control of Eomes have not been as well defined as for T-bet, but knockdown of Eomes in 

activated CD8
+
 T cells causes decreased expression of IFN-γ, perforin, and granzyme B, 

indicating there is at least some overlap with T-bet in promoting effector function. 

Combined T-bet and Eomes deficiency results in the loss of CTL identity and anomalous 

production of IL-17 by CD8
+
 T cells (Intlekofer et al., 2008), suggesting that T-bet and 

Eomes coordinately regulate CTL differentiation.  

Conversely, T-bet and Eomes appear to play opposing roles in the generation of 

memory CD8
+
 T cells. Both transcription factors cause the upregulation of IL-2Rβ 

(CD122), which is required for long-term memory CD8
+
 T cell survival and homeostatic 

proliferation in response to IL-15 signals (Intlekofer et al., 2005). However, whereas high 

expression of Eomes correlates with a central memory (TCM) phenotype, high expression 

of T-bet represses IL-7Rα expression to drive formation of effector (TE) and effector 

memory (TEM) subsets at the expense of TCM cell generation (Banerjee et al., 2010; Rao et 

al., 2010). T-bet is highest in early effector CD8
+
 T cells but progressively declines as 

memory cells form while Eomes is initially upregulated in early effector CD8
+
 T cells, 

but increases during the effector to memory transition (Joshi et al., 2011). These 

divergent expression patterns may be partly explained by the way these transcription 

factors are induced. T-bet is rapidly induced in activated CD8
+
 T cells downstream of 

TCR signaling and augmented by inflammatory signals such as IL-12 (Joshi et al., 2007; 
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Takemoto et al., 2006). Expression of T-bet initiates a positive feedback loop by 

upregulating IL-12Rβ, thereby increasing sensitivity to additional IL-12. Eomes 

induction is less well defined. However, studies indicate it is induced subsequent to T-

bet, amplified by IL-2 and repressed by IL-12 (Takemoto et al., 2006). This suggests the 

differential expression patterns of T-bet and Eomes in CD8
+
 T cells, and in turn the 

differentiation state, depends on the degree of inflammation in the immediate 

environment of the cell. 

 

Transcription factors in murine models of chronic infection 

As discussed earlier, normal differentiation and function of virus-specific CD8
+
 T cells is 

altered during chronic infection and exposure to persistent antigen. Effector cells fail to 

form functional memory populations and instead gradually become more exhausted. A 

few transcription factors have been shown to play a role in this process, including Blimp-

1, T-bet and Eomes (Kao et al., 2011; Paley et al., 2012; Shin et al., 2009; Wherry et al., 

2007). Blimp-1 drives effector differentiation during acute infection; however, in the 

context of chronic infection Blimp-1 also promotes the expression of the inhibitory 

receptors PD-1, CD160, 2B4 and Lag3, thereby inducing an exhausted state (Shin et al., 

2009). T-bet sustains virus-specific CD8
+
 T cell responses during chronic infection and 

suppresses the expression of PD-1. As T-bet expression decreases over time during 

chronic infection PD-1 levels and CD8
+
 T cell dysfunction both increase (Kao et al., 

2011). Eomes also sustains virus-specific CD8
+
 T cell responses during chronic infection, 

but its expression is also associated with a more terminally exhausted state with high PD-

1 expression levels, indicating Eomes also plays a role in promoting exhaustion (Doering 
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et al., 2012; Paley et al., 2012). Thus, the same transcription factors responsible for 

driving effector CD8
+
 T cell differentiation and memory formation during acute infection 

are also responsible for limiting responses and preventing immunopathology in the 

context of chronic infection. Any attempt to manipulate these factors for purposes of 

immunotherapy will have to take these dual roles into account so that potential functional 

gains are not negated by simultaneously increasing terminal differentiation and 

exhaustion. 

 

Transcriptional regulation of human CD8
+
 T cells 

Although the molecules described above have been studied extensively in mouse models, 

much less is known about them in the context of human immunology. Investigation of 

transcription factors in human lymphocytes at the single cell level is largely limited to T-

bet and Eomes as poor reagent availability precludes the assessment of other transcription 

factors at this time. In the first report to fully characterize the expression of T-bet and 

Eomes in healthy human T cells, we found that Eomes is typically expressed with T-bet 

in CD8
+
 T cells and, in most cases, is bimodally distributed (McLane et al., 2013). T-bet, 

on the other hand, has a distinct trimodal expression pattern with a clear intermediate (or 

T-bet
Lo

) population in the majority of individuals. We also found that differential T-bet 

expression levels are associated with specific functional characteristics: T-bet
Lo

 and 

negative cells are more likely to express IL-2 compared to T-bet
Hi

 cells, which tend to 

express perforin and granzyme B (Makedonas et al., 2010). This data is in agreement 

with data from mouse models in which T-bet promotes perforin and granzyme B 

expression while repressing IL-2 production. T-bet and Eomes expression patterns also 
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closely associate with memory phenotype (McLane et al., 2013; van Aalderen et al., 

2015) [Fig. 1]: naïve cells express little to no T-bet; TCM cells express very low levels of 

both; there are more TEM cells expressing T-bet overall, but with low MFI; and TE cells 

express high levels of T-bet, with a large population of cells having high T-bet MFI. 

Eomes association with memory phenotype in healthy humans diverges somewhat from 

the mouse model, although there may be instances in human infections where these may 

be more similar (Paley et al., 2012). We found that significantly more cells in the TE and 

TEM subsets express Eomes than in the TCM subset and, in the case of TEM cells, Eomes is 

also expressed at a higher MFI. Polychromatic imaging cytometry (Amnis Imagestream
X
) 

analysis of the T-bet
Hi

 and T-bet
Lo

 cells revealed an important difference in the 

localization of T-bet in resting human T cells; nuclear localization was generally 

observed in T-bet
Hi

 cells cytoplasmic localization was more common in T-bet
Lo

 cells 

(McLane et al., 2013). Looking at T-bet expression levels and localization in memory 

populations, TCM cells generally have low levels of T-bet that is in the cytoplasm whereas 

TE cells tend to express higher levels of T-bet which is mostly nuclear. Thus while a cell 

may contain T-bet, if it is not expressed at high enough levels it remains sequestered in 

the cytoplasm of the cell and is transcriptionally inactive.  

 

T-bet expression by HIV-specific CD8
+
 T cells 

Having previously shown that HIV-specific CD8
+
 T cells from chronic progressors have 

a reduced ability to upregulate perforin compared to ECs, we examined the potential role 
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Figure 1. Linear model of CD8+ T cell differentiation with relative expression levels 

of T-bet and Eomes at each stage. Following antigen-specific activation of a naïve 

CD8
+
 T cell, both T-bet and Eomes expression increase, driving effector differentiation. 

Fully effector differentiated CD8
+
 T cells have higher levels of T-bet relative to Eomes 

and to other differentiation states. Lower levels of T-bet relative to Eomes allow 

generation of memory CD8
+
 T cells. Most effector memory CD8

+
 T cells express T-bet 

but at lower levels relative to effector cells whereas central memory CD8
+
 T cells express 

little or no T-bet. Whether changes in Eomes levels are necessary or changes in the ratio 

of T-bet:Eomes due to the decreased T-bet expression is sufficient to achieve the 

different differentiation states is not clear. It is also not clear what the roles of other 

transcription factors such as Blimp1 and Runx3 might be in determining differentiation 

state. It should be noted that this represents one of several possible models, including a 

non-linear model in which all differentiation states arise directly from the naïve cell due 

to differential localization of the transcription factors to progeny during cell division. 
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of T-bet in driving effector function in each of these two groups (Hersperger et al., 2011). 

Similar to the expression pattern observed in normal healthy donors, perforin and 

granzyme B were closely associated with T-bet
Hi

 CD8
+
 T cells in the context of HIV 

infection. More importantly, we demonstrated that T-bet is significantly lower in HIV-

specific CD8
+
 T cells from CPs compared to ECs. Recent reports from Ribeiro-Dos-

Santos et al. and Buggert et al. confirmed this finding, showing reduced T-bet mRNA 

and protein production during chronic HIV infection (Buggert et al., 2014; Ribeiro-dos-

Santos et al., 2012). 

 

Conclusions and Thesis Goals 

The identification of immune correlate(s) of protection will help form the basis on 

which to engineer and assess HIV vaccines and cure strategies. The ability of HIV-

specific CD8
+
 T cells to clear infected cells through cytotoxic mechanisms represents the 

strongest indication of protective potential to date. However, HIV-specific CD8
+
 T cells 

from most chronically infected individuals demonstrate diminished ability to upregulate 

the key cytolytic molecule, perforin. Understanding if, when, and why effector CD8
+
 T 

cell responses are lost over the course of HIV infection could provide insight for 

strategies that aim to induce or maintain this function. As such, the primary goal of this 

project was to assess the dynamics of perforin expression in ex vivo HIV-specific CD8
+
 

over the course HIV infection. A secondary aim was to determine the relationship 

between perforin expression and the transcription factors T-bet and Eomes, during both 

acute infection and in chronically infected individuals who differentially control viral 

replication in the absence of therapy. 
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CHAPTER 2 

TEMPORAL DYNAMICS OF CD8
+
 T CELL EFFECTOR RESPONSES DURING 

PRIMARY HIV INFECTION 

 

Summary 

The loss of HIV-specific CD8
+
 T cell cytolytic function is a primary factor 

underlying progressive HIV infection, but whether HIV-specific CD8
+
 T cells initially 

possess cytolytic effector capacity, and when and why this may be lost during infection, 

is unclear. Here, we assessed CD8
+
 T cell functional evolution from primary to chronic 

HIV infection. We observed a profound expansion of perforin
+
 CD8

+
 T cells immediately 

following HIV infection that quickly waned after acute viremia resolution. Selective 

expression of the effector-associated transcription factors T-bet and eomesodermin in 

cytokine-producing HIV-specific CD8
+
 T cells differentiated HIV-specific from bulk 

memory CD8
+
 T cell effector expansion. As infection progressed expression of perforin 

was maintained in HIV-specific CD8
+
 T cells with high levels of T-bet, but not 

necessarily in the population of T-bet
Lo

 HIV-specific CD8
+
 T cells that expand as 

infection progresses. Together, these data demonstrate that while HIV-specific CD8
+
 T 

cells in acute HIV infection initially possess cytolytic potential, progressive 

transcriptional dysregulation leads to the reduced CD8
+
 T cell perforin expression 

characteristic of chronic HIV infection. 
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Introduction 

CD8
+
 T cells play a central role in the control of HIV replication. During acute 

infection the emergence of HIV-specific CD8
+
 T cells correlates with resolution of peak 

viremia (Borrow et al., 1994; Koup et al., 1994), and in the nonhuman primate model 

experimental depletion of CD8
+
 T cells prior to infection with simian immunodeficiency 

virus delays resolution of acute viremia until the CD8
+
 T cell pool is reconstituted 

(Schmitz et al., 1999). Further evidence of the immunologic pressure exerted by CD8
+
 T 

cells is manifest by CTL escape mutations throughout all phases of HIV infection and the 

association of certain MHC class I alleles with superior control of viral replication 

(Borrow et al., 1997; Carrington and O'Brien, 2003; Fischer et al., 2010; Goonetilleke et 

al., 2009a; Migueles et al., 2000; Price et al., 1997). However, for the vast majority of 

infected individuals control is incomplete and ultimately fails in the absence of therapy. 

A better understanding of the CD8
+
 T cell response to HIV may inform the design of 

vaccines, therapeutics, or eradication strategies designed to stimulate or potentiate the 

natural response to infection resulting in better, if not complete, control. 

 The CD8
+
 T cell response to viral infection is multifaceted, including the ability 

to proliferate, produce multiple cytokines and chemokines, degranulate, and induce 

cytolysis upon contact with infected targets (Demers et al., 2013). During chronic 

progressive infection, HIV-specific CD8
+
 T cells have impaired proliferative potential 

(Migueles et al., 2002; Migueles et al., 2009; Zimmerli et al., 2005), are less capable of 

multifunctional responses (Almeida et al., 2007; Betts et al., 2006), and have reduced 

cytotoxic capacity (Appay et al., 2000; Chen et al., 2009; Hersperger et al., 2011; 

Migueles et al., 2008; Saez-Cirion et al., 2007). The primary mechanism by which CD8
+
 



	   35	  

T cells kill virally infected cells is via exocytosis of granules containing the cytolytic 

proteins perforin and granzyme B (Barry and Bleackley, 2002; Podack, 1989). Control of 

HIV viremia has been associated with the ability of CD8
+
 T cells from chronically HIV-

infected donors to upregulate these cytotoxic effector molecules following in vitro culture 

(Migueles et al., 2008), and we have shown that CD8
+
 T cell cytotoxic potential, defined 

by the ability to rapidly upregulate perforin following brief stimulation ex vivo, correlates 

inversely with viral load (Hersperger et al., 2010).  

Effector CD8
+
 T cell development is coordinated by an array of transcription 

factors (Kaech and Cui, 2012). Murine studies have identified the T-box transcription 

family members T-bet and eomesodermin (Eomes) as important regulators of the 

differentiation and function of cytotoxic effector T cells (Cruz-Guilloty et al., 2009; 

Pearce et al., 2003; Sullivan et al., 2003). T-bet positively regulates genes associated with 

effector functions including perforin, granzyme B, and IFN-γ (Hersperger et al., 2011; 

Jenner et al., 2009), whereas Eomes is associated with the expression of perforin as well 

as proteins involved in maintenance of memory CD8
+
 T cells (Banerjee et al., 2010; 

Cruz-Guilloty et al., 2009; Joshi et al., 2007; Pearce et al., 2003). While previous studies 

suggested a level of redundancy in the gene targets of these transcription factors, recent 

data show that the balance of T-bet and Eomes expression within a cell is a determinant 

of the differentiation pathway and functionality of the cell (Buggert et al., 2014; Joshi et 

al., 2007; McLane et al., 2013; Paley et al., 2012; van Aalderen et al., 2015). In the 

context of chronic HIV infection, HIV-specific CD8
+
 T cells with high levels of T-bet 

demonstrate greater overall functionality and maintain the ability to express perforin 

whereas cells with a T-bet
Lo

Eomes
Hi 

phenotype are less differentiated, less functional, 
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exhausted, and express little to no perforin (Buggert et al., 2014; Hersperger et al., 2011). 

Notably, during chronic progressive infection the T-bet
Lo

Eomes
Hi 

phenotype dominates 

the HIV-specific CD8
+
 T cell pool (Buggert et al., 2014). It remains unclear if low T-bet 

levels and the associated deficiency in perforin expression results from progressive loss 

on the part of responding HIV-specific CD8
+
 T cells or if responding cells are inherently 

dysfunctional throughout the infection period. 

Much of our current knowledge regarding the dynamics of CD8
+
 T cell responses 

during acute infection is derived from murine models, particularly following infection 

with lymphocytic choriomeningitis virus, gammaherpesvirus, or influenza (Butz and 

Bevan, 1998; Doherty and Christensen, 2000; Murali-Krishna et al., 1998). Infection by 

these viruses induces rapid and substantial activation and expansion of antigen-specific 

CD8
+
 T cells. Following resolution of acute viremia, the virus-specific population 

contracts, giving rise to memory cells that provide long-term protection. Human antiviral 

CD8
+
 T cell responses have primarily been assessed in the context of chronic infection, 

after the memory pool has been established (Appay et al., 2000; Catalina et al., 2002; 

Demers et al., 2013; Lechner et al., 2000; Urbani et al., 2002). Recent studies have 

examined development of human CD8
+
 T cell responses to a range of primary infections, 

including attenuated yellow fever virus, attenuated vaccinia virus, influenza, tick-borne 

encephalitis virus (TBEV), hantavirus, and Epstein-Barr virus (Blom et al., 2015; 

Lindgren et al., 2011; Miller et al., 2008; Odumade et al., 2012; Precopio et al., 2007; 

Wilkinson et al., 2012), demonstrating that antigen-specific cells have immediate 

cytotoxic capacity directly ex vivo during the acute phase of these infections. The few 

studies to examine the earliest responses to HIV showed that HIV-specific CD8
+
 T cells 
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have limited functionality during the acute phase of infection but did not assess cytotoxic 

potential or regulation by T-bet or Eomes (Ferrari et al., 2011; Ndhlovu et al., 2015), 

leaving the question unresolved as to whether these effector molecules are induced during 

acute infection. 

Here, we examined the temporal dynamics of the CD8
+
 T cell effector response in 

peripheral blood of subjects experiencing acute primary HIV infection. We found that 

infection elicited a robust and highly activated response with immediate cytotoxic 

potential within the peripheral CD8
+
 T cell pool and that cells responding to short in vitro 

stimulation with HIV peptides were able to degranulate and rapidly upregulate perforin 

de novo. However, HIV-specific CD8
+
 T cells rapidly lost the ability to upregulate 

perforin following resolution of peak viremia. Loss of perforin expression coincided with 

a concurrent reduction in the expression of T-bet, but not Eomes, on a per-cell basis. Our 

data provide evidence of a robust and physiologically appropriate response during the 

earliest phase of acute HIV infection that is rapidly lost during progressive chronic 

infection, due in part to an inability to express sufficient levels of T-bet to properly drive 

effector differentiation. 

 

Materials and Methods 

Study participants: Eleven HIV-1 acutely infected participants were enrolled as part of 

the RV217 Early Capture HIV cohort (Dr. Merlin Robb, Military HIV Research 

Program), nine were enrolled in the CHAVI 001 acute infection cohort (Dr. Barton 

Haynes, Center for HIV/AIDS Vaccine Immunology), and twelve were enrolled in the 

Montreal Primary Infection cohort (Drs. Nicole Bernard Jean-Pierre Routy, McGill 
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University). Participant demographics are summarized in S1 Table. Acute HIV-1 

infection was determined by measuring plasma HIV RNA content and HIV-specific 

antibodies using ELISA and Western blot. Fiebig staging (Fiebig et al., 2003) 

immediately following the first positive visit or at the screening visit was used to 

characterize the timing of infection for RV217 and CHAVI participants, respectively. 

The only exception was RV217 donor 40067 for which the estimated date of infection 

was taken as the midpoint between the last negative and first positive visit. For the 

Montreal Primary Infection cohort the following guidelines proposed by the Acute HIV 

Infection Early Disease Research Program sponsored by the National Institutes of Health 

were used to estimate the date of infection: the date of a positive HIV RNA test or p24 

antigen assay available on the same day as a negative HIV enzyme immunoassay (EIA) 

test minus 14 days; or the date of the first intermediate Western blot minus 35 days. In 

addition, information obtained from questionnaires addressing the timing of high-risk 

behavior for HIV transmission was taken into account in assigning a date of infection 

when consistent with biological tests. The timing of visits relative to estimated date of 

infection for all acutely HIV infected donors used in this study is provided in Fig 1a. 

Study participants were antiretroviral therapy naïve at all time points analyzed, consistent 

with the standard of care at the time of study. HIV-1 viral loads were measured using the 

Abbot Real-Time HIV-1 assay (RV217; Abbot Laboratories, Abbott Park, IL), COBAS 

AMPLICOR HIV-1 monitor test, version 1.5 (CHAVI; Roche Diagnostics, Branchburg, 

NJ), or the UltraDirect Monitor assay (Montreal; Roche Diagnostics, Branchburg, NJ). 

HIV set point viral loads were defined as the average of all viral load measurements 
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between 90 and 365 days post-infection in the absence of therapy with the requirement 

for at least two viral load measurements during this period. 

For HIV-negative cohorts, volunteers were administered the live-attenuated YFV-

17D vaccine (YF-Vax, Sanofi Pasteur), the live vaccinia smallpox vaccine (Dryvax, 

Wyeth Laboratories), or challenged with influenza A/Brisbane/59/07. YF-Vax was 

administered subcutaneously in the arm, Dryvax was administered by scarification of the 

upper arm with three pricks of a bifurcated needle, and influenza A virus was 

administered intra-nasally. Peripheral blood mononuclear cells (PBMCs) from pre-

vaccination or pre-infection time points were available for most donors along with 

several time points post-vaccination or infection. PBMC for YFV-vaccinated donors 

were provided by Dr. Mark Slifka (Orgeon Health and Science University) or Drs. Rafi 

Ahmed and Rama Akondy (Emory University); vaccinia-vaccinated donor samples were 

provided by Dr. Mark Slifka (Orgeon Health and Science University); influenza-infected 

donor samples were provided by Dr. Andrew McMichael (Oxford University). Pre-

infection time points from all cohorts, including RV217 participants, along with PBMCs 

obtained from fifteen healthy human subjects through the University of Pennsylvania’s 

Human Immunology Core were combined for a total of 41 healthy donor data points. 

 

Peptides: Potential T cell epitope (PTE) peptides corresponding to the HIV-1 Gag  and 

Nef proteins were obtained from the NIH AIDS Reagent Program (NIH, Bethesda, 

Maryland, USA). PTE peptides are 15 amino acids in length and contain naturally 

occurring 9 amino acid sequences that are potential T cell determinants embedded in the 

sequences of circulating HIV-1 strains worldwide, including subtypes A, B, C, D and 
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circulating recombinant forms (CRF). As such, these peptide pools provided the coverage 

necessary for the T cell stimulation assays performed in this study given the broad 

geographical distribution of our study participants and diversity of infecting viruses (S1 

Table). Lyophilized peptides were dissolved in dimethyl sulfoxide (DMSO, Sigma-

Aldrich, St Louis/Missouri, USA), combined into two pools at 400 µg/ml, and stored at -

20°C. 

 

PBMC stimulation: Cryopreserved PBMCs were thawed and rested overnight at 2x10
6
 

cells/ml in RPMI medium supplemented with 10% fetal bovine serum, 2 mM L-

glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin. Cell viability was checked 

both immediately after thawing and after overnight rest by trypan blue exclusion. 

Costimulatory antibodies (anti-CD28 and anti-CD49d, 1 µg/mL each; BD Biosciences) 

and pre-titrated fluorophore conjugated anti-CD107a was included at the start of all 

stimulations. PBMCs were incubated for 1 hour at 37°C and 5% CO2 prior to the addition 

of monensin (1 µg/mL; BD Biosciences) and brefeldin A (10 µg/mL; Sigma-Aldrich) 

followed by an additional 5 hour incubation at 37°C and 5% CO2. For peptide 

stimulations, peptides from the two Gag PTE pools were added to a single tube of cells 

such that each individual peptide was at a final concentration of 1 µg/ml. As a negative 

control, DMSO was added to the cells at an equivalent concentration to the one used for 

peptide stimulation. 

 

Antibody reagents: Antibodies for surface staining included CCR7 APC-Cy7 (clone 
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G043H7; Biolegend), CCR7 APC-eFluor780 (clone 3D12; eBioscience), CD4 PE-Cy5.5 

(clone S3.5; Invitrogen), CD8 BV711 (clone RPA-T8; Biolegend), CD8 Qdot 605 (clone 

3B5; Invitrogen), CD14 BV510 (clone M5E2; Biolegend), CD14 Pacific Blue (clone 

M5E2; custom), CD14 PE-Cy5 (clone 61D3; Abcam), CD14 PE-Cy7 (clone HCD14; 

Biolegend), CD16 Pacific Blue (clone 3G8; custom), CD16 PE-Cy5 (clone 3G8; 

Biolegend), CD16 PE-Cy7 (clone 3G8; Biolegend), CD19 BV510 (clone HIB19; 

Biolegend), CD19 Pacific Blue (clone HIB19; custom), CD19 PE-Cy5 (clone HIB19; 

Biolegend), CD19 PE-Cy7 (clone HIB19; Invitrogen), CD45RO ECD (clone UCHL1; 

Beckman Coulter), CD45RO PE-CF594 (clone UCHL1; BD Biosciences), CD107a PE-

Cy5 (clone eBioH4A3; eBioscience), CD107a PE-Cy7 (clone H4A3; Biolegend), and 

HLA-DR Pacific Blue (clone LN3; Invitrogen). Antibodies for intracellular staining 

included: CD3 BV570 (clone UCHT1; Biolegend), CD3 BV650 (clone OKT3; 

Biolegend), CD3 Qdot 585 (clone OKT3; custom), CD3 Qdot 650 (clone S4.1; 

Invitrogen), Eomes Alexa 647 (WD1928; eBioscience), Eomes eFluor 660 (WD1928; 

eBioscience), IFN-γ Alexa 700 (clone B27; Invitrogen), Perforin BV421 (clone B-D48, 

Biolegend), Perforin Pacific Blue (clone B-D48; custom), Perforin PE (clone B-D48, Cell 

Sciences), T-bet FITC (clone 4B10; Biolegend), and T-bet PE (clone 4B10; eBioscience). 

 

Flow cytometric analysis: At the end of the stimulations, cells were washed once with 

PBS prior to be being stained for CCR7 expression for 15 min at 37°C in the dark. Cells 

were then stained for viability with aqua amine-reactive viability dye (Invitrogen) for 10 

min at room temperature in the dark followed by addition of a cocktail of antibodies to 

stain for surface markers for an additional 20 min. The cells were washed with PBS 
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containing 0.1% sodium azide and 1% BSA, fixed and permeabilized using a 

Cytofix/Cytoperm kit (BD Biosciences), and stained with a cocktail of antibodies against 

intracellular markers for 1 h at room temperature in the dark. The cells were washed once 

with Perm Wash buffer (BD Biosciences) and fixed with PBS containing 1% 

paraformaldehyde. Fixed cells were stored at 4°C in the dark until acquisition. Antibody 

capture beads (BD Biosciences) were used to prepare individual compensation controls 

for each antibody used in the experiment. ArC Amine Reactive beads (ThermoFisher 

Scientific) were used to generate a singly stained compensation control for the aqua 

amine-reactive viability dye. 

 For each stimulation condition, a minimum of 250,000 total events were acquired 

using a modified LSRII (BD Immunocytometry Systems). Data analysis was performed 

using FlowJo (TreeStar) software. Gating strategy is provided in Fig. 2. Reported 

antigen-specific data have been corrected for background based on the negative (no 

peptide) control, and only responses with a total frequency twice the negative control and 

above 0.01% of total memory CD8
+
 T cells (after background subtraction) were 

considered to be positive responses. By analyzing the data in this way, we examined 

cytolytic protein production resulting from antigen-specific stimulation and ensured that 

its expression was considered only within responding CD8 ︎ T cells expressing at least one 

other functional parameter. Whereas IFN-γ, CD107a, and MIP-1α were used to identify 

antigen-specific CD8
+
 T cells for some donors, only IFN-γ and CD107a were used 

consistently for all donors and figures depicting antigen-specific data were derived from 

analysis of cells expressing these two markers unless otherwise noted. 
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Figure 2. Gating strategy for the polychromatic flow cytometric staining panel. 

General gating strategy for a representative donor to identify total CD8
+
 T cells, CCR7 

and CD45RO memory subsets, total perforin
+
 cells, T-bet

+
 cells, Eomes

+
 cells, and 

responding cells (IFN-γ
+
, CD107a

+
, or MIP-1α) following stimulation with Gag peptides. 

Gag-specific cells were assessed to be perforin
+
 if they expressed perforin in conjunction 

with IFN-γ, CD107a, or MIP-1α.
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Table 1. Acute/early HIV cohort demographics 
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Statistical analysis: All statistical analysis was performed using Stata (version 14.0). 

Graphs were generated using Stata or GraphPad Prism (version 5.0a). Generalized  

estimating equations (GEEs) with robust variances were used to test for changes while 

adjusting for repeated measurements on the same individuals (Liang and Zeger, 1986). In 

instances where many values were at 100% a random-effects tobit regression model was 

used to do a combined analysis of the percent of data points at 100% versus differences in 

values for data points below 100%. P values were Holm-adjusted for multiple 

comparisons. Bars represent approximations of the means generated by the models. 

Lowess smoothers were used to represent the mean over time for longitudinal data. 

Correlations were determined using Spearman’s rank correlation test (non-parametric; 

two-tailed). 

 

Results 

Acute HIV infection is associated with an expansion of the effector memory CD8
+
 T cell 

pool 

Longitudinal samples were obtained from 32 subjects experiencing primary HIV 

infection (Fig. 3A), 28 of whom had at least one acute time point (36 time points total; 

median 54 d from infection, range 23-100 d) and 23 with at least one chronic time point 

(40 time points total; median 551 d, range 367-880 d). Samples were drawn from three 

separate cohorts of acutely infected individuals: the CHAVI001 acute-infection cohort, 

the Montreal Primary Infection cohort, and the RV217/ECHO cohort. These cohorts 

provided broad geographical representation including North America, East Africa,  
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Figure 3. Timing of study participant samples and dynamics of HIV plasma viral 

loads, CD4
+
 T cell counts and CD8

+
 T cell counts. (A) Timing of samples relative to 

estimated time of infection for the three acute/early HIV cohorts: CHAVI (purple), 

Montreal (blue), and RV217 (red). Plasma HIV RNA copies/ml (B), absolute CD4
+
 T 

cells counts (C), and CD8
+
 T cell counts for all 32 donors (D). Lowess smoothers were 

used to represent the mean over time for longitudinal data. 
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Malawi, and Thailand (Table 1). Subjects were antiretroviral therapy naïve at all time 

points, consistent with the standard of care at the time of study, and none controlled viral  

load to undetectable levels (Fig. 3B). The mean peak viral load was 5.2 log10
 
RNA 

copies/ml for the entire study population (7.0 log10
 
RNA copies/ml for the better-

characterized RV217 donors) and 4.42 log10
 
RNA copies/ml at set point. Peripheral blood 

CD4
+
 T cell counts and CD8

+
 T cell counts both declined over the study period (average 

rates of 80 cells/mm
3
 per year and 75 cells/mm

3
, respectively; Fig. 3C and 3D). Samples 

from 41 seronegative healthy donors, including pre-infection time points for the 11 

RV217 acute subjects (median -210 d from infection, range -41 to -478 d; Fig. 3A and 

Table 1), were analyzed for comparison.  

To determine if different phases of infection were associated with changes in 

circulating CD8
+
 T cell differentiation and activation, we assessed the size and 

composition of the memory CD8
+
 T cell pool (Fig. 4). Relative to HIV-negative donors, 

HIV-infected subjects had a significantly larger memory (non-CCR7
+
CD45RO

-
) CD8

+
 T 

cell pool in both the acute and chronic phases of infection (Fig. 4A and 4B). Of note, the 

frequency of total memory CD8
+
 T cells at the earliest post-infection time points 

inversely correlated with peak viral load, but not with set point viral load (Fig. 4C and 

data not shown). In addition to the larger memory pool we also observed a shift in the 

distribution of memory subsets in infected subjects, with significantly higher proportions 

of central memory (CCR7
+
CD45RO

+
) and, predominately, effector memory (CCR7

-

CD45RO
-
) subsets during acute infection (Fig. 4D). Only the effector memory pool 

remained significantly elevated into the chronic phase. There was no difference in the  
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Figure 4. Memory distributions, activation, and proportion of cytotoxic peripheral 

CD8
+
 T cells for healthy donors and following HIV infection. (A) Representative flow 

cytometric plots of CCR7 versus CD45RO from a pre- (day -159) and acute (day 28) 

infection time point for one donor. (B) Proportion of circulating total memory CD8
+
 T 

cells for all healthy donors (HD), acute HIV time points (23-100 d), and chronic HIV 

time points (>365 d). (C) Peak viral load plotted against total memory CD8
+
 T cells at the 

earliest available time point post-infection (23-41 d) for each RV217 donor. Spearman’s 

rank correlation test was used to determine significance. (D) Memory subsets as 

determined by CCR7 and CD45RO staining for all healthy donors (circles), acute HIV 

time points (squares), and chronic HIV time points (triangles). (E) Proportion of memory 

CD8
+
 T cells that express HLA-DR over time from infection for four RV217 subjects. 

Pre-infection time points were set as day 0 for analysis. (F) Representative flow 

cytometric plots of perforin and HLA-DR expression by memory CD8
+
 T cells from a 

pre- (day -238), acute (day 31), and chronic (day 420) infection time point for one donor. 

§ Day 420 sample was acquired and analyzed at a later date than earlier samples resulting 

in a different gating scheme. For consistency, gates were set using naïve 

(CCR7
+
CD45RO

-
) CD8

+
 T cells, which generally do not express perforin or HLA-DR. 

(G) Proportion of memory CD8
+
 T cells that express perforin for healthy donors (HD), 

acute HIV time points (23-100 days), and chronic HIV time points (> 365 days). All data 

represent direct ex vivo assessment with no in vitro stimulation. *** denotes a P value < 

0.001. Statistics based on a GEE population-averaged model with Holm adjusted P value. 

Bars represent approximations of the means generated by the models. 
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proportion of the effector cell pool (CCR7
-
CD45RO

-
) during either phase of infection, 

although the relative frequency of these cells did appear to be larger as infection 

progressed (Fig. 4D).  

When we examined the activation state of the memory pool for four RV217 

subjects by measuring surface expression of HLA-DR, we found massive levels of 

activation within the memory CD8
+
 T cell compartment following HIV infection (Fig. 

4E), in agreement with recent data from Ndhlovu et al. (Ndhlovu et al., 2015). To 

determine if this population of highly activated cells expressed cytolytic molecules 

directly ex vivo we measured perforin content. We found that almost all HLA-DR
+
 cells 

expressed perforin during the acute phase (Fig. 4F). In addition, we observed a 

significantly greater proportion of perforin
+
 cells in both acute and chronic phases of 

infection compared to healthy donors (Fig. 4G). There was, however, no significant 

association between the frequency of perforin
+
 CD8

+
 T cells and viral load at any time 

point (data not shown). Together, these data show that during acute HIV infection a large 

proportion of the peripheral CD8
+
 T cell pool is highly activated and primed to exert 

cytotoxic effector activity but the absolute magnitude of total cytotoxic CD8
+
 T cells 

does not predict set point viral load. 

 

HIV infection increases the total peripheral cytotoxic CD8
+
 T cell pool  

We next examined if the large frequency of cytotoxic CD8
+
 T cells observed during acute 

HIV infection was consistent across other acute viral infections. We compared the total 

CD8
+
 T cell responses of subjects from the RV217 cohort with those of HIV-negative 

individuals who were vaccinated with attenuated vaccinia virus (VV) or attenuated  
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Figure 5. Timing of HIV-seronegative study participant samples. Timing of samples 

for HIV-seronegative healthy donors relative to vaccination with live attenuated vaccinia 

virus (A), live attenuated yellow fever virus (B), or experimental infection with influenza 

(C). 
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yellow fever virus (YFV)-17D, or experimentally infected with a H1N1 strain of 

influenza virus (Fig. 5A-5C). Vaccination with VV or YFV elicits a robust and highly 

specific CD8
+
 T cell response that peaks approximately two weeks after inoculation and 

is largely resolved by four weeks (Miller et al., 2008). The peripheral CD8
+
 T cell 

response to influenza is less robust, peaks at 1-2 weeks, and resolves by four weeks post-

infection (Wilkinson et al., 2012).  

Consistent with the comparison between healthy donors and acute phase HIV 

infection (Fig. 4B), both the total memory CD8
+ 

T cell pool and the effector memory 

subset increased significantly from pre- to acute HIV infection (Fig. 6A and data not 

shown). There was also a significant increase in the proportion of perforin
+
 cells over the 

first thirty days of infection, with almost all (>90%) circulating memory CD8
+
 T cells 

expressing perforin in some donors (Fig. 6E). When we examined the CD8
+
 T cell 

responses to in vivo stimulation following vaccination with VV or YFV, or infection with 

influenza, we did not observe significant changes in the size or distribution of the 

peripheral memory pool (Fig. 6B-6D and data not shown). We did find increased levels 

of activated HLA-DR
+
 cells in some donors after vaccination with VV and YFV, but 

frequencies of perforin
+
 cells remained relatively stable throughout the entire vaccine 

course (Fig. 6F and 6G and Fig. 7A-7D). Only infection with influenza resulted in a 

slight but significant increase in perforin
+
 cells at d28 post-infection (Fig. 6H). While 

these models of acute viral infections do have limitations in their use as comparators for 

our HIV-infected donors (e.g. different antigen loads, different localizations, and more 

precise timing of infection), overall these data show the dramatic increase in cytotoxic 

cells that takes place in the peripheral blood of HIV acutely infected subjects is  
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Figure 6. Dynamics of the total CD8+ T cell memory pool and cytotoxic response 

following infection with HIV, vaccinia virus, yellow fever virus, or influenza. 

Proportion of total memory CD8
+
 T cells for longitudinal time points from donors either 

naturally infected with HIV (A), vaccinated with attenuated vaccinia virus (Dryvax; B), 

vaccinated with live yellow fever virus (YFV-17D; C), or experimentally infected with 

influenza (strain H1N1; D). Frequency of memory CD8
+
 T cells that express perforin 

following infection with HIV (E), vaccinia (F), yellow fever (G) or influenza (H). Pre = 

pre-infection or pre-vaccination time points. Pre-infection time points for HIV, vaccinia, 

and YFV, were set as day 0 for analysis. All data represent direct ex vivo assessment with 

no in vitro stimulation. * denotes a P value < 0.05. Statistics based on a GEE population-

averaged model with Holm adjusted P value. Bars represent approximations of the means 

generated by the models. Lowess smoothers were used to represent the mean over time 

for longitudinal data. 
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Figure 7. Activation of peripheral memory CD8

+
 T cells for HIV-negative 

individuals following vaccination with live attenuated vaccinia virus or live 

attenuated yellow fever virus. (A) Representative flow cytometric plots of perforin 

versus HLA-DR for two vaccinia-infected subjects. (B) Proportion of memory CD8
+
 T 

cells that express HLA-DR over time from infection for all vaccinia-vaccinated subjects. 

(C) Representative flow cytometric plots of perforin versus HLA-DR for two yellow 

fever-vaccinated subjects. (D) Proportion of memory CD8
+
 T cells that express HLA-DR 

over time from infection for five yellow fever-infected subjects. All data represent direct 

ex vivo assessment with no in vitro stimulation.  
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significantly more pronounced compared to live-attenuated vaccination or influenza 

infection. 

 

HIV-specific CD8
+
 T cell cytotoxic capacity decreases as HIV infection progresses 

We next sought to determine if the cytotoxic potential of HIV-specific cells demonstrated 

similar dynamics to the total memory CD8
+
 T cell pool during acute to chronic HIV 

infection. To identify HIV-specific cells we focused on the detection of IFN-γ production 

and CD107a-marked degranulation following a short-term in vitro stimulation with 

peptides derived from the HIV-1 Gag and Nef proteins (Betts et al., 2003; Betts et al., 

2006; Ferrari et al., 2011; Ndhlovu et al., 2015). In agreement with previous studies that 

evaluated HIV-specific cells longitudinally by functional responses or tetramer staining 

(Ferrari et al., 2011; Trautmann et al., 2012), we found no difference in the absolute 

magnitude of responding cells for either protein over time (Fig. 8A and data not shown). 

Consistent with the memory distribution of the total CD8
+
 T cell pool, Gag-specific cells 

largely had an effector memory phenotype in the acute phase of infection but became 

more equally distributed between effector and effector memory subsets for early chronic 

time points (Fig. 8B and 8C). Also in agreement with previous data, cells tended to 

degranulate more readily than upregulate IFN-γ in the acute phase of infection [Fig. 8D 

and data not shown](Ferrari et al., 2011; Ndhlovu et al., 2015). The high proportion of 

degranulating cells suggested that the HIV-specific response might be cytotoxic over the 

course of infection, as analysis of the total CD8
+
 T cell pool had indicated. However, 

degranulation is not an absolute surrogate of cytolytic potential (Hersperger et al., 2010; 

Wolint et al., 2004), nor does it indicate whether the cells will continue to be cytotoxic  
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Figure 8. Magnitude and functionality of HIV-specific responses over time. (A) 

Frequency of Gag-specific CD8
+
 T cells within the memory CD8

+
 T cell pool over time 

as determined by measurement of IFN-γ expression or degranulation (CD107a) in 

response to peptide stimulation. (B) Memory distributions for Gag-specific CD8
+
 T cells 

(red) overlaid on total CD8
+
 T cells (black) for a representative donor. (C) Memory 

distributions for responding Gag-specific CD8
+
 T cells as determined by CCR7 and 

CD45RO staining for acute (squares), and chronic (triangles) HIV time points. (D) 

Proportion of total responding Gag-specific CD8
+
 T cells that have upregulated IFN-γ or 

degranulated at acute and chronic time points. (E) Gag-specific CD8
+
 T cells (red) 

overlaid on total memory CD8
+
 T cells (black) for a representative donor. Percentages 

represent frequency of responding Gag-specific cells within a quadrant. § Day 420 

sample was acquired and analyzed at a later date than earlier samples resulting in a 

different gating scheme. For consistency gates were set using naïve (CCR7
+
CD45RO

-
) 

CD8
+
 T cells. (F) Proportion of total responding Gag-specific CD8

+
 T cells that 

upregulated perforin in response to peptide stimulation (n = 28). * denotes a P value < 

0.05 and ** denotes a P value < 0.01. Statistics based on a GEE population-averaged 

model with Holm adjusted P value or random-effects tobit regression. Bars represent 

approximations of the means generated by the models. Lowess smoothers were used to 

represent the mean over time for longitudinal data. 
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following the initial granule release (Makedonas et al., 2009). To assess cytotoxic 

potential more directly, we measured perforin expression levels within the Gag- and Nef- 

specific cells (Fig. 8E and data not shown). The majority of cells that responded to direct 

ex vivo stimulation rapidly upregulated perforin during the earliest time points following 

infection, suggesting that the early HIV-specific response was likely highly cytotoxic. In 

contrast to the bulk memory CD8
+
 T cell pool, however, as acute viremia was resolved 

there was a rapid loss of perforin expression by both HIV-1 Gag- and Nef-specific CD8
+
 

T cells (Fig. 8F and data not shown). 

A large proportion of HIV-specific CD8
+
 T cells have previously been shown to 

upregulate β-chemokines independently of degranulation during acute HIV infection 

(Ferrari et al., 2011). To determine if β-chemokine-producing cells similarly expressed 

perforin, we assessed expression of MIP-1α by responding cells in a subset of subjects. 

Inclusion of MIP-1α did not significantly change the overall magnitude of Gag-specific 

cells detected over time, though it did identify a subset of cells not captured by IFN-γ or 

CD107a (data not shown). Importantly, the dynamics with which expression of perforin 

by
 
Gag-specific cells was lost was the same with or without MIP-1α (data not shown). 

Combined, these data show similarities in the total and Gag-specific CD8
+
 T cell 

responses in both differentiation state and cytotoxic potential, suggesting the bulk of 

activated cells during acute HIV infection could be comprised of HIV-specific CD8
+
 T 

cells. 
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Dissociation of T-bet and Eomes expression from cytolytic potential in memory CD8
+
 T 

cells in acute HIV infection 

Studies in both murine models and humans have strongly linked the transcription factors 

T-bet and Eomes to the regulation of effector CD8
+
 T cell differentiation and function, 

including the expression of perforin (Blom et al., 2015; Cruz-Guilloty et al., 2009; 

Hersperger et al., 2011; Joshi et al., 2007; Makedonas et al., 2010; Pearce et al., 2003; 

Sullivan et al., 2003). To gain further insight into the evolution of the cytotoxic CD8
+
 T 

cell response to HIV we assessed the expression of T-bet and Eomes over the course of 

infection. For healthy donors, including HIV pre-infection time points, perforin 

expression was directly associated with T-bet and/or Eomes expression such that the 

majority of perforin
+
 cells were either T-bet

+
Eomes

+
 or T-bet

+
Eomes

-
 (Fig. 9A and 9B). 

In contrast, acutely HIV-infected individuals showed marked dissociation between 

perforin and both T-bet and Eomes resulting in significantly lower proportions of T-

bet
+
Eomes

+
 and T-bet

+
Eomes

-
 perforin

+
 cells (Fig. 9A and 9B), and an expansion of 

perforin
+
 cells expressing neither T-bet nor Eomes. By the chronic stage these subsets 

had largely, though incompletely, returned to their normal distributions. When we 

analyzed T-bet and Eomes expression longitudinally for perforin
+
 CD8

+
 T cells within 

the HIV-infected cohort we found the proportion of T-bet
+
Eomes

+
 cells decreased over 

the first 30 days of infection and T-bet
-
Eomes

-
 cells increased over the first 60 days 

before gradually returning to pre-infection levels (Fig. 9C and 9D). We have previously 

shown that the level of T-bet expression within peripheral CD8
+
 T cells is directly 

associated with perforin expression, where perforin was found predominantly within T-

bet
Hi

 cells (Hersperger et al., 2011). Consistent with those findings, perforin was most  
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Figure 9. T-bet and Eomes expression by total perforin
+
 CD8

+
 T cells for healthy 

donors and following HIV infection. (A) Representative flow cytometric plots of T-bet 

and Eomes expression for total memory (top and middle rows) and perforin
+
 (bottom 

row) CD8
+
 T cells from the pre- (day -159), acute (day 28), and chronic (day 434) 

infection time points for one donor. Percentages on top and middle plots are of perforin
+
 

cells within the total memory pool. (B) T-bet and Eomes expression by perforin
+
 CD8

+
 T 

cells for all healthy donors (circles), acute HIV time points (squares), and chronic HIV 

time points (triangles). Frequency of perforin
+
 cells that are T-bet

+
Eomes

+
 (C) or T-bet

-

Eomes
-
 (D) over time. All data represent direct ex vivo assessment with no in vitro 

stimulation. ** denotes a P value < 0.01 and *** denotes a P value < 0.001. Statistics 

based on a GEE population-averaged model with Holm adjusted P value. Bars represent 

approximations of the means generated by the models. Lowess smoothers were used to 

represent the mean over time for longitudinal data. 
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highly associated with a T-bet
Hi

Eomes
+
 expression pattern in HIV negative donors and 

this subset experienced the largest drop during acute HIV (data not shown). Despite these 

shifts in expression patterns that appeared to coincide with the rise and fall plasma 

viremia, there was no association between the acute frequencies of T-bet or Eomes 

subsets and acute or set point viral loads (data not shown). However, frequencies of T-

bet
+
 and T-bet

-
Eomes

-
 CD8

+
 T cells at set point time points were inversely or directly 

associated with set point viral load, respectively (data not shown). 

To determine if the dissociation between perforin, T-bet, and Eomes was unique 

to HIV, we examined T-bet and Eomes expression within total perforin
+
 cells following 

YFV and VV vaccination. While we found almost no dissociation for YFV, there was a 

transient dissociation following vaccination with vaccinia, although not to the same 

extent as observed during acute HIV (Fig. 10A and 10B). We next examined expression 

of T-bet and Eomes within HLA-DR
+
 cells throughout the different vaccine courses. As 

noted above, during acute HIV infection the vast majority of HLA-DR
+
 cells are also 

perforin
+ 

(Fig 4E); thus, it was unsurprising to find that perforin
+ 

and HLA-DR
+
 cells 

showed almost identical dynamics in the loss of T-bet and Eomes expression for HIV 

(Fig. 10C). Similarly, for both YFV and VV, activated cells showed a transient increase 

in the frequency of T-bet
-
Eomes

-
 cells at day 14 post-vaccination. Together these data 

suggest that the transient expansion of highly activated bulk effector CD8
+
 T cells during 

acute viral infection in humans may not require expression and/or maintenance of T-bet 

and Eomes.  
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Figure 10. Loss of T-bet and Eomes expression by perforin
+
 or HLA-DR

+
 cells over the 

course of infection with yellow fever, vaccinia, or HIV. (A) T-bet and Eomes expression over 

the course of yellow fever vaccination for perforin
+
 (top) or HLA-DR

+
 (bottom) memory CD8

+
 T 

cells. Representative flow cytometric plots for one donor; T-bet
+
Eomes

+
 and T-bet

-
Eomes

-
 

subsets shown for all five donors. (B) T-bet and Eomes expression over the course of vaccinia 

vaccination for perforin
+
 (top) or HLA-DR

+
 (bottom) memory CD8

+
 T cells. Representative flow 

cytometric plots for one donor; T-bet
+
Eomes

+
 and T-bet

-
Eomes

-
 subsets shown for all eight 

donors. (C) T-bet
+
Eomes

+
 and T-bet

-
Eomes

-
 subsets for perforin

+
 (top) or HLA-DR

+
 (bottom) 

memory CD8
+
 T cells from four RV217 donors. All data represent direct ex vivo assessment with 

no in vitro stimulation.  
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HIV-specific cells retain T-bet and Eomes expression, but maintenance of cytotoxic 

potential over time is associated with higher per-cell T-bet levels 

To determine if the transient loss of T-bet and Eomes within the bulk activated CD8
+
 T 

cell memory pool during acute HIV infection extended to HIV-specific CD8
+
 T cells, we 

assessed expression of these transcription factors in Gag-specific CD8
+
 T cells. In 

marked contrast to the highly activated bulk CD8
+
 T cell effector population during acute  

HIV infection, HIV-specific CD8
+
 T cells expressed T-bet and/or Eomes at the earliest 

detectable time point and throughout the course of infection (Fig. 11A-11C). This 

indicates that despite their phenotypic similarities total and HIV-specific CD8
+
 T cells 

may be primed quite differently during acute infection and raises the possibility that the 

majority of expanded effector CD8
+
 T cells in early HIV infection may not be specific for 

HIV. 

We next examined whether loss of perforin expression was related to changes in 

the level of T-bet expression during early HIV infection. Interestingly, the distribution of 

T-bet within Gag-specific CD8
+
 T cells changed over time from acute to chronic 

infection (Fig. 11D). In the acute phase, responding cells were equally distributed 

between T-bet
Hi

Eomes
+
 and T-bet

Lo
Eomes

+ 
expression patterns, which during the chronic 

phase began to be dominated by T-bet
Lo

Eomes
+ 

cells (Fig. 11D). Furthermore, T-

bet
Hi

Eomes
+ 

HIV-specific CD8
+
 T cells continued to express perforin as infection 

progressed, whereas T-bet
Lo

Eomes
+
 cells gradually lost perforin expression over time 

(Fig. 11E and 11F).  

Finally, in contrast to the recent findings by Ndholuvu, et al. (Ndhlovu et al., 

2015), we did not find the magnitude, proportion perforin
+
, or any T-bet- or Eomes- 
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Figure 11. T-bet and Eomes expression by responding HIV-specific CD8
+
 T cells 

over time. (A) Gag-specific CD8
+
 T cells (red) overlaid on perforin

+
 CD8

+
 T cells 

(black) from the acute (day 28) and chronic (day 434) infection time points of one donor. 

Percentages of responding Gag-specific cells within each T-bet and Eomes subset are 

provided. Frequencies of T-bet
+
Eomes

+
 (B) and T-bet

-
Eomes

-
 (C) responding Gag-

specific CD8
+
 T cells over time. (D) Frequencies of T-bet

Hi
Eomes

+
 (blue circles) and T-

bet
Lo

Eomes
+
 (red circles) responding Gag-specific CD8

+
 T cells at acute (23-100 days) 

and chronic (>365 days) time points. Proportion of T-bet
Hi

Eomes
+
 (E) and T-

bet
Lo

Eomes
+
 (F) responding Gag-specific CD8

+
 T cell subsets that express perforin over 

time. * denotes a P value < 0.05. Statistics based on a GEE population-averaged model 

with Holm adjusted P value or random-effects tobit regression. Bars represent 

approximations of the means generated by the models. Lowess smoothers were used to 

represent the mean over time for longitudinal data. 
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expressing subset of responding HIV-1 Gag-specific CD8
+
 T cells to be predictive of 

peak or set point viral load (data not shown). Despite this, our data suggest that in the 

earliest phase of infection, HIV-specific CD8
+
 T cells have both the transcriptional and 

functional properties associated with long-term control of HIV replication (Hersperger et 

al., 2011; Hersperger et al., 2010), and that the inability to durably maintain high-level T-

bet expression contributes to a qualitatively inferior response as infection progresses. 

 

Discussion 

Mechanisms underlying the inability of CD8
+
 T cells to fully control HIV 

replication have remained unclear. Failure of antiviral immunity has been attributed in 

part to qualitative defects in total and HIV-specific CD8
+
 T cells (Appay et al., 2000; 

Betts et al., 2006; Hersperger et al., 2010; Jansen et al., 2004; Trimble and Lieberman, 

1998). However, the dysfunction observed within the CD8
+
 T cell pool has largely been 

defined in the context of chronic infection when the success or failure of the presumed 

response has already been determined. The question of whether CD8
+
 T cells in 

progressive infection were intrinsically less functional from the outset or if dysfunction 

arose over time has remained unanswered. To address this issue, we assessed the 

longitudinal CD8
+
 T cell responses of a diverse cohort of individuals experiencing 

acute/early HIV infection. We show that acute HIV infection elicits a robust cytotoxic 

CD8
+
 T cell response characterized by cells that express the cytolytic effector molecule 

perforin and the effector-associated transcription factors T-bet and Eomes. Importantly, 

the quality of the response quickly waned following the resolution of acute viremia, with 

a significant decrease in perforin expression by HIV-specific CD8
+
 T cells that was at 
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least partially accounted for by a shift from T-bet
Hi

Eomes
+
 cells to T-bet

Lo
Eomes

+
 cells. 

The attenuation of the cytolytic response may help explain the failure of CD8
+
 T cells to 

control HIV replication in the long-term. 

It is well documented that CD8
+
 T cell responses are elicited early in HIV 

infection and are associated with control of viral replication (Borrow et al., 1994; Koup et 

al., 1994; McMichael et al., 2010; Ndhlovu et al., 2015). Some of the strongest evidence 

of the CD8
+
 T cell-mediated immunologic pressure exerted during this period is the rapid 

emergence of viral escape mutations within known CD8
+
 T cell epitopes (Borrow et al., 

1997; Fischer et al., 2010; Goonetilleke et al., 2009a). We found that HIV-specific cells 

had high cytotoxic potential at the earliest time points following HIV infection, but 

rapidly lost this function as disease progressed. This suggests a mechanism through 

which CD8
+
 T cells may exert a strong direct selective pressure on the virus resulting in 

the rapid selection of escape variants early in infection that ultimately have a reduced 

capacity to stimulate cytolytic CD8
+
 T cell responses (Fischer et al., 2010; Goonetilleke 

et al., 2009a; Liu et al., 2013; Sunshine et al., 2015). It should be noted that whereas 

perforin expression was lost over time almost all HIV-specific responding cells continued 

to produce MIP-1α. Thus, while cytotoxic CD8
+
 T cells play an important role in the 

resolution of acute viremia, as they lose their ability to express perforin they may be able 

to keep the virus partially in check through a combination of the remaining cytotoxic 

response and non-cytotoxic inhibitory effects exerted via the continued expression of β-

chemokines or other non-cytolytic mechanisms (Levy, 2003). This would be consistent 

with models suggesting CD8+ T cell cytotoxic mechanisms do not account for the 

entirety of CD8
+
 T cell-mediated viral suppression during chronic progressive SIV 
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infection (Klatt et al., 2010; Wong et al., 2010). It remains unclear if maintenance of 

perforin expression following acute infection would further enhance the level of control 

over viral replication CD8
+
 T cells provide as we would predict it should based on studies 

of CD8
+
 T cell responses in the chronic phase of infection (Hersperger et al., 2010; 

Migueles et al., 2008; Saez-Cirion et al., 2007). Unfortunately, we were unable to find 

any direct associations between HIV-1 Gag-specific perforin, T-bet, or Eomes expression 

and the level of plasma viremia or CD4
+
 T cell numbers. 

T-bet and Eomes are important regulators of effector CD8
+
 T cell differentiation 

and function for both mice and humans (Blom et al., 2015; Cruz-Guilloty et al., 2009; 

Hersperger et al., 2011; Joshi et al., 2007; Makedonas et al., 2010; McLane et al., 2013; 

Paley et al., 2012; Pearce et al., 2003; Sullivan et al., 2003; van Aalderen et al., 2015). 

Expression patterns of these transcription factors have been described for CD8
+
 T cells in 

the context of various human viral infections, including CMV, EBV, HBV, HCV, HIV, 

and TBEV (Blom et al., 2015; Buggert et al., 2014; Greenough et al., 2015; Hersperger et 

al., 2011; Hertoghs et al., 2010; Kurktschiev et al., 2014; Makedonas et al., 2010; Paley 

et al., 2012; Popescu et al., 2014). These studies demonstrated a high degree of variability 

in the relative levels of T-bet and Eomes expressed by virus-specific CD8
+
 T cells 

depending on time from infection, whether the infection was controlled, and tissue 

localization. CMV-specific cells express T-bet and Eomes during both acute and chronic 

phases of infection, but control of viral replication in the acute phase is associated with a 

higher ratio of T-bet
+
 versus Eomes

+
 cells (Hertoghs et al., 2010; Popescu et al., 2014). 

EBV- and TBEV-specific cells also express T-bet and Eomes during the earliest phase of 

their respective infections, but EBV-specific cells lose expression of both during 
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convalescence whereas TBEV-specific cells retain T-bet expression and show a gradual 

reduction in Eomes (Blom et al., 2015; Greenough et al., 2015). HCV-specific cells are 

T-bet
+
 in acute/resolving HCV infection and T-bet

-
Eomes

-
 during acute/non-resolving 

infection. Post-acute phase, HCV-specific cells in the peripheral blood are T-bet
-
Eomes

-
 

for both resolved and non-resolved HCV infection, but T-bet
+
 within the livers of 

subjects with resolved infection and Eomes
+
 in livers of chronically infected subjects 

(Kurktschiev et al., 2014; Paley et al., 2012). Together, these results suggest expression 

of T-bet during the acute phase is a critical determinant of viral infection outcome. The 

differential outcomes associated with Eomes were also reflective of the relative 

expression level of T-bet, suggesting Eomes may not be as important for the resolution of 

acute viremia. Rather, Eomes expression may determine whether antigen-specific cells 

are fated to form a stable memory pool or become exhausted subsequent to the acute 

phase, dependent on whether or not the infection is ultimately cleared (Doering et al., 

2012; Paley et al., 2012).  

Similar associations between T-bet, Eomes, and outcome have been demonstrated 

in chronic HIV infection. In this context, a high level of T-bet expression was associated 

with greater overall functionality of HIV-specific CD8
+
 T cells, including cytotoxic 

potential, and relative control of viral replication, whereas low T-bet levels and continued 

Eomes expression has been associated with lower overall functionality and persistent 

viremia (Buggert et al., 2014; Hersperger et al., 2011). Our data show that HIV-specific 

cells have high cytotoxic potential during acute infection, but lose the ability to express 

or rapidly upregulate perforin in chronic infection. This loss of cytotoxic potential over 

time can at least partially be explained by a change in the relative expression levels of T-
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bet and Eomes: HIV-specific cells were equally T-bet
Hi

Eomes
+
 and T-bet

Lo
Eomes

+
 

during acute infection and both subsets efficiently upregulated perforin initially but the 

proportion of T-bet
Lo

Eomes
+
 cells increased significantly as infection progressed and 

cells with this phenotype had an inferior capacity to express perforin compared to T-

bet
Hi

Eomes
+
 cells. The expression of perforin by either phenotype during acute infection 

may be reflective of the high degree of inflammation and activation during this phase, a 

differential role for Eomes at different stages of infection, and/or the result of additional 

transcription factors not assessed here. Whatever the case may be, T-bet
Hi

Eomes
+
 HIV-

specific CD8
+
 T cells retain the ability to upregulate perforin following resolution of 

acute viremia and this subset declines during chronic progressive infection. 

Recent data from Ndhlovu et al. suggests HIV infection elicits a massive antigen-

specific CD8
+
 T cell response with limited bystander activation (Ndhlovu et al., 2015). 

Similar observations have been reported after vaccination with vaccinia and yellow fever 

virus (Miller et al., 2008). The similarities in differentiation state, activation, and 

immediate cytotoxic potential between total peripheral memory and Gag-specific cells 

reported here support the idea of a robust and specific response to HIV infection. 

However, we found a significant discrepancy between transcriptional control of HIV-

specific CD8
+
 T cells versus the bulk activated perforin

+
 memory CD8

+
 T cell 

population. The degree to which these differences reflect a true lack of specificity, 

dysfunction on the part of the bulk activated cells, an inability to identify an appropriate 

functional marker, or an attempt by the host to mitigate immune-mediated pathology 

remains unclear. It is likely there area many more circulating HIV-specific CD8
+
 T cells 

than indicated by our findings using in vitro stimulation with only two HIV-1 proteins 
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and a limited number of functional parameters to identify responding cells. However, it 

should be noted that CD8
+
 T cell bystander activation has been reported during acute 

HIV and EBV infection in humans and it is possible at least a subset of CD8
+
 T cells are 

activated non-specifically in our cohort (Doisne et al., 2004; Odumade et al., 2012). T 

cell receptor stimulation is required for upregulation of T-bet (Szabo et al., 2000), but a 

large proportion of bulk activated perforin
+
 cells during acute HIV infection appear to 

express neither T-bet nor Eomes whereas all Gag-specific cells expressed one or the 

other. In addition, perforin can be upregulated in the absence of direct antigenic 

stimulation via exposure to IFN-α (Kohlmeier et al., 2010), levels of which are highly 

elevated during acute HIV infection (Stacey et al., 2009). Thus, the difference in T-bet 

and Eomes expression we observed between bulk perforin
+
 and responding HIV-specific 

CD8
+
 T cells raises the possibility that a significant number of bystander-activated cells 

are being induced in response to HIV infection. Alternatively, given the association 

between activation and the size of the T-bet
-
Eomes

-
 pool across infections with vaccinia, 

yellow fever, and HIV, the absence of T-bet and Eomes expression in the bulk perforin
+
 

CD8
+
 T cell pool may be a characteristic of the contraction phase that typically follows 

the initial CD8
+
 T cell response. This would be consistent with the pro-apoptotic 

phenotype of the majority of cells following peak HIV viremia and the timing of our 

samples (Ndhlovu et al., 2015). Whether HIV-specific or bystander, the lack of T-bet and 

Eomes expression by these cells suggests they would be unable to sustain perforin 

expression upon encountering infected target cells. This may in part explain the inability 

of bulk peripheral CD8
+
 T cells from acutely HIV infected individuals to efficiently 

inhibit viral replication in vitro and further suggests they would not make a meaningful 



	   69	  

contribution to long-term control of viral replication in vivo (Eller et al., 2016; Lecuroux 

et al., 2013).  

These data show how the peripheral CD8
+
 T cell response to HIV evolves over 

the course of progressive infection. HIV-specific CD8
+
 T cells are able to upregulate 

perforin and T-bet initially but begin to lose this capacity soon after peak viremia, 

demonstrating for the first time that there is not an initial intrinsic inability of HIV-

specific CD8
+
 T cells to upregulate these molecules. It remains unclear how or if these 

responses differ from those of CD8
+
 T cells from subjects who go on to spontaneously 

control viral replication to very low levels in the chronic phase. While we did find 

frequencies of T-bet
+
 and T-bet

-
Eomes

-
 total memory CD8

+
 T cells at set point time 

points were inversely or directly associated with set point viral load, respectively, we did 

not find any associations between viral load and the size of the total peripheral perforin
+
 

pool or the magnitude or cytotoxic potential of HIV-1 Gag-specific cells at any time 

point. Nor did we find any subset of total memory or Gag-specific cells to be predictive 

of set point viral load for this group of subjects, possibly due to the limited number of 

very early time points and relatively narrow range of viral loads at set point. However, 

the fact that the initial phenotype of HIV-specific cells is similar to that associated with 

control during the chronic phase of infection suggests induction and maintenance of cells 

capable of upregulating high levels of T-bet and perforin could lead to subsequent 

control. Eliciting HIV-specific cells with these characteristics might serve as an important 

target for vaccination or therapeutic modalities seeking to fully control early viral 

replication or eradicate the chronic viral reservoir. 
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CHAPTER 3 

CD8
+
 T CELL PERFORIN EXPRESSION INDEPENDENT OF T-BET OR 

EOMES DURING CHRONIC PROGRESSIVE HIV INFECTION 

 

Summary 

 Recent data suggest that CD8
+ 

T cell effector activity is an important component to 

the control of HIV replication in elite controllers (EC). Two critical regulators of CD8
+ 

T 

cell effector differentiation and function are the T-box transcription factors T-bet and 

Eomes. Here, we assessed T-bet and Eomes expression, together with the cytolytic 

protein perforin in CD8
+ 

T cells from EC, chronic progressors (CP), and antiretroviral 

therapy-suppressed individuals (HAART). We found increased frequencies of perforin-

expressing cells in both the total memory and HIV-specific CD8
+
 T cell pools from CP 

when compared to the other groups. We did not observer significant differences in the 

expression patterns of T-bet or Eomes for CD8
+
 T cells from any of the groups. However, 

whereas perforin expression was strongly associated with T-bet and Eomes in EC, CP 

CD8
+
 T cells expressed perforin even in the absence of either transcription factor. 

Notably, CP in whom the associations were relatively intact demonstrated greater in vivo 

control of viral replication. Collectively, these results suggest that maintenance of the 

relationships between perforin, T-bet, and Eomes may be more important for control than 

the absolute expression of any one factor on its own. 
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Introduction 

The majority of HIV-infected individuals experience high viral loads and a 

progressive loss of CD4
+
 T cells that in the absence of antiretroviral therapy (ART) 

results in severe immunodeficiency and death due to AIDS-related complications. While 

access to ART is increasing globally it remains unavailable to many (UNAIDS, 2016), is 

associated with increased non-AIDS-related morbidity and mortality (Choi et al., 2009; 

Phillips et al., 2008), and treatment interruption results in rapid rebound of viral 

replication (Davey et al., 1999; Rothenberger et al., 2015). As such, a functional cure that 

can provide long-term control of viral replication in the absence of therapy remains an 

area of intense research interest (Deeks et al., 2016). A rare subset of HIV-infected 

individuals known as “elite controllers” (ECs) spontaneously control viral replication and 

may serve as a natural model for cure strategies (Lambotte et al., 2005; Pereyra et al., 

2008). Understanding the mechanisms by which ECs control HIV may provide insight 

for the development of vaccine modalities and novel immunotherapeutics. 

 Several lines of evidence suggest that CD8
+
 T cells play an important role in 

controlling HIV replication. These include the temporal association between the 

resolution of acute viremia and expansion of HIV-specific CD8
+
 T cells (Borrow et al., 

1994; Koup et al., 1994), the emergence of viral escape mutations in CD8
+
 T cell 

epitopes (Borrow et al., 1997; Goonetilleke et al., 2009b; Goulder et al., 1997; Liu et al., 

2013; Price et al., 1997), and strong correlations between certain HLA class I alleles and 

disease progression (Carrington and O'Brien, 2003; Migueles et al., 2000; Scherer et al., 

2004). Notably, studies comparing CD8
+
 T cells from ECs and individuals with chronic 

progressive infection (CPs) have shown that the differential ability to control viral 
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replication cannot be explained by differences in frequencies of HIV-specific cells or in 

their capacities to recognize CD4
+
 T cells infected with autologous virus (Draenert et al., 

2004; Migueles et al., 2003; Migueles et al., 2004). On the other hand, several differences 

in the qualitative features of HIV-specific CD8
+
 T cell responses have been associated 

with control. Cells from ECs have a greater capacity to proliferate (Migueles et al., 2002; 

Migueles et al., 2009; Zimmerli et al., 2005), are more polyfunctional (Almeida et al., 

2007; Betts et al., 2006), and have greater cytotoxic capacity (Appay et al., 2000; Chen et 

al., 2009; Hersperger et al., 2010; Migueles et al., 2009; Saez-Cirion et al., 2007). The 

primary mechanism by which CD8
+
 T cells kill virally infected cells is via the exocytosis 

of granules containing the cytolytic proteins perforin and granzyme B (Barry and 

Bleackley, 2002; Podack, 1989). Control of HIV replication has been linked to a greater 

capacity of HIV-specific CD8
+
 T cells to upregulate these effector molecules during in 

vitro culture or following brief stimulation directly ex vivo (Hersperger et al., 2010; 

Migueles et al., 2008). 

 Murine models identified the T-box transcription factors T-bet and 

Eomesodermin (Eomes) as key regulators of effector CD8
+
 T cell differentiation and 

function (Cruz-Guilloty et al., 2009; Kaech and Cui, 2012; Pearce et al., 2003; Sullivan et 

al., 2003). T-bet drives terminal differentiation of CD8
+
 T cells and is associated with the 

expression of IFN-γ, granzyme B, and perforin (Buggert et al., 2014; Hersperger et al., 

2011; Intlekofer et al., 2007; Jenner et al., 2009; Joshi et al., 2007; Makedonas et al., 

2010). Eomes is associated with granzyme B and perforin but also with the expression of 

proteins involved in the maintenance of memory CD8
+
 T cells (Banerjee et al., 2010; 

Cruz-Guilloty et al., 2009; Joshi et al., 2007; Pearce et al., 2003). Thus although there is a 
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level of redundancy with respects to their roles in driving some effector molecules, T-bet 

and Eomes have reciprocal roles in regulating effector and memory differentiation 

pathways. In the context of chronic HIV infection, perforin expression was shown to 

correlate directly with T-bet content, and HIV-specific CD8
+
 T cells from ECs 

preferentially maintained higher levels of T-bet compared to CPs (Buggert et al., 2014; 

Hersperger et al., 2011). Eomes was recently reported to have an inverse association with 

perforin expression in CPs but their relationship has not been examined in controllers 

(Buggert et al., 2014). Thus it remains unclear if Eomes expression either alone or in 

combination with T-bet further differentiates the effector CD8
+
 T cell response during 

controlled and uncontrolled HIV infection. 

To address this issue, we examined the relationship between effector CD8
+
 T cell 

responses and T-bet and Eomes expression in a cross-sectional cohort of individuals who 

differentially control HIV replication naturally or fully suppress viremia by means of 

antiretroviral therapy. We found T-bet and Eomes expression patterns to be largely 

similar between controllers and noncontrollers for both total resting memory and HIV-

specific CD8
+
 T cells. However, whereas there were strong direct associations between 

CD8
+
 T cell perforin expression and both T-bet and Eomes in controllers, these 

relationships were dysregulated during chronic progressive infection. Importantly, 

amongst individuals with progressive infection, maintenance of perforin
+
 CD8

+
 T cells 

with T-bet and Eomes expression patterns similar to those found in ECs correlated with 

lower viral loads. 
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Material and Methods 

Study participants: We examined HIV-specific CD8
+
 T cells responses from a cross-

sectional cohort of 20 elite controllers, 33 chronic progressors, and 20 HAART-

suppressed individuals. The majority of peripheral blood mononuclear cell (PBMC) 

samples were obtained through clinics associated with Harvard University. Thirteen CP 

PBMC samples were obtained from the Center for Research on Infectious Disease 

(CIENI), National Institute of Respiratory Disease, Mexico DF, Mexico. All PBMC 

samples were obtained in compliance with the guidelines established by the institutional 

review board for each site. EC were defined as therapy-naïve individuals who had 

consistent plasma HIV RNA levels below the limit of detection (< 50 copies/ml) for a 

minimum of three measurements during at least a 12-month period. CP were defined as 

untreated individuals with plasma HIV RNA levels consistently above 10,000 copies/ml. 

HAART-suppressed individuals maintained plasma HIV RNA levels below the limit of 

detection (< 50 copies/ml) for a minimum of two years. CD4
+
 T cells counts were not 

considered as inclusion criteria for any of the groups.  

 

Peptides: Potential T cell epitope (PTE) peptides corresponding to the HIV-1 Gag and 

Nef proteins were obtained from the NIH AIDS Reagent Program (NIH, Bethesda, 

Maryland). PTE peptides are 15 amino acids in length and contain naturally occurring 9 

amino acid sequences that are potential T cell determinants embedded in the sequences of 

circulating HIV-1 strains worldwide. Human cytomegalovirus (CMV) IE1 and pp65 

proteins were synthesized by New England Peptide (Gardner, MA). Lyophilized peptides 

were dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, St Louis/Missouri, USA), 
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combined into pools at 400 µg/ml, and stored at -20°C prior to use. 

 

PBMC stimulation: Cryopreserved PBMCs were thawed and rested overnight at 2x10
6
 

cells/ml in RPMI medium supplemented with 10% fetal bovine serum, 2 mM L-

glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin. Cell viability was checked 

both immediately after thawing and after overnight rest by trypan blue exclusion. 

Costimulatory antibodies (anti-CD28 and anti-CD49d, 1 µg/mL each; BD Biosciences) 

and pre-titrated fluorophore conjugated anti-CD107a were included at the start of all 

stimulations. PBMCs were incubated for 1 hour at 37°C and 5% CO2 prior to the addition 

of monensin (1 µg/mL; BD Biosciences) and brefeldin A (10 µg/mL; Sigma-Aldrich) 

followed by an additional 5 hour incubation at 37°C and 5% CO2. For peptide 

stimulations, peptides from the Gag, Nef, or CMV pools were added to separate tubes of 

cells such that each individual peptide was at a final concentration of 1 µg/ml. As a 

negative control, DMSO was added to the cells at an equivalent concentration to the one 

used for peptide stimulation. 

 

Antibody reagents: Antibodies for surface staining included CCR7 APC-eFluor780 

(clone 3D12; eBioscience), CD4 PE-Cy5.5 (clone S3.5; Invitrogen), CD8 BV711 (clone 

RPA-T8; Biolegend), CD14 PE-Cy5 (clone 61D3; Abcam), CD16 PE-Cy5 (clone 3G8; 

Biolegend), CD19 PE-Cy5 (clone HIB19; Biolegend), CD27 BV785 (clone O323; 

Biolegend), CD45RO ECD (clone UCHL1; Beckman Coulter), and CD107a PE-Cy7 

(clone H4A3; Biolegend). Antibodies for intracellular staining included: CD3 BV650 
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(clone UCHT1; Biolegend), Eomes eFluor 660 (WD1928; eBioscience), IFN-γ Alexa 700 

(clone B27; Invitrogen), MIP-1α FITC (clone 93342; R&D Systems), Perforin BV421 

(clone B-D48, Biolegend), and T-bet PE (clone 4B10; eBioscience). 

 

Flow cytometric analysis: At the end of the stimulations, cells were washed once with 

PBS prior to be being stained for CCR7 expression for 15 min at 37°C in the dark. Cells 

were then stained for viability with aqua amine-reactive viability dye (Invitrogen) for 10 

min at room temperature in the dark followed by addition of a cocktail of antibodies to 

stain for surface markers for an additional 20 min. The cells were washed with PBS 

containing 0.1% sodium azide and 1% BSA, fixed and permeabilized using a 

Cytofix/Cytoperm kit (BD Biosciences), and stained with a cocktail of antibodies against 

intracellular markers for 1 h at room temperature in the dark. The cells were washed once 

with Perm Wash buffer (BD Biosciences) and fixed with PBS containing 1% 

paraformaldehyde. Fixed cells were stored at 4°C in the dark until acquisition. Antibody 

capture beads (BD Biosciences) were used to prepare individual compensation controls 

for each antibody used in the experiment. ArC Amine Reactive beads (ThermoFisher 

Scientific) were used to generate a singly stained compensation control for the aqua 

amine-reactive viability dye. 

 A minimum of 250,000 total events were acquired for each stimulation 

conditionusing a modified LSRII (BD Immunocytometry Systems). Data analysis was 

performed using FlowJo (TreeStar) software. Reported antigen-specific data have been 

corrected for background based on the negative (no peptide) control, and only responses 

with a total frequency twice the negative control and above 0.01% of total memory CD8
+
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T cells (after background subtraction) were considered to be positive responses. By 

analyzing the data in this way, we examined cytolytic protein production resulting from 

antigen-specific stimulation and ensured that its expression was considered only within 

responding CD8 ︎ T cells expressing at least one other functional parameter. IFN-γ, 

CD107a, and MIP-1α were used to identify antigen-specific CD8
+
 T cells and figures 

depicting antigen-specific data were derived from analysis of cells expressing any one of 

these three markers. 

 

Statistical analysis: All statistical analyses were performed and graphs were generated 

using GraphPad Prism (version 5.0a). Nonparametric tests were used for all comparisons 

between study groups (Mann-Whitney test for two groups; Kruskal-Wallis test followed 

by Dunns post test for multiple comparisons when comparing three or more groups). 

Correlations were determined using Spearman’s rank correlation test (non-parametric; 

two-tailed). Differences were considered significant if the P value was below 0.05. For 

all figures, * denotes a P value < 0.05, ** denotes a P value < 0.01, and *** denotes a P 

value < 0.001. 
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Results 

A greater proportion of total memory peripheral CD8
+
 T cells from CP expressed 

perforin directly ex vivo compared to EC or HAART 

Initially we assessed the differentiation state of total resting peripheral CD8
+
 T cells from 

20 elite controllers (EC), 33 chronic progressors (CP), and 20 individuals suppressing 

HIV replication through antiretroviral therapy [HAART] (Table 2). Using  

multiparameter flow cytometry we were able to identify six populations within the 

circulating CD8
+
 T cell pool using combinations of the markers CCR7, CD27, and 

CD45RO: naïve (CCR7
+
CD27

+
CD45RO

-
), central memory (CM; 

CCR7
+
CD27

+
CD45RO

+
), transitional memory (TM; CCR7

-
CD27

+
CD45RO

+
), 

intermediate memory (Int; CCR7
-
CD27

+
CD45RO

-
), effector memory (EM; CCR7

-
CD27

-

CD45RO
+
), and effector (Eff; CCR7

-
CD27

-
CD45RO

-
) cells (Fig. 12A). There were no 

significant differences in the proportion of cells with a naïve phenotype between the three 

groups but there were differences in the distributions of memory subsets (Fig. 12B). 

Notably, progressors had a greater proportion of cells with an effector memory phenotype 

compared to controllers and ART-suppressed individuals, whereas progressors and 

controllers had similar proportions of cells with the more fully differentiated CCR7
-

CD27
-
CD45RO

-
 phenotype. These data suggested that CD8

+
 T cells from progressors 

were in general more differentiated than cells from controllers.  

 We next examined the perforin content of the total resting memory CD8
+
 T cell 

pool for each group. We found a greater frequency of perforin
+
 CD8

+
 T cells in 

progressors (Fig. 12 C and D), in agreement with the larger proportion of cells with a 

more differentiated status in these individuals and reported perforin expression patterns  
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Table 2. Clinical parameters of the HIV chronic infection study cohort 

 Elite 

Controllers 

Chronic 

Progressors 

HAART- 

suppressed 

Number of subjects 20 33 20 

Plasma HIV RNA, 

median (IQR), 

copies/ml 

Not detectable 
45300 

(20526-132927) 
Not detectable 

CD4+ T cell count, 

median (IQR), 

cells/mm
3 

732 

(536-1136) 

480 

(385-636) 

941 

(735-1236) 

Infection duration, 

median (IQR), 

years 

18 

(11-23) 
N.D. 

16 

(12-21) 

Duration of HAART, 

median (IQR), 

years 

N/A N/A 
7 

(3-12) 
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Figure 12. Memory distributions and proportions of perforin
+
 peripheral CD8

+
 T 

cells directly ex vivo. (A) Representative flow cytometric plots of CD45RO, CCR7, and 

CD27 profiles for total CD8
+
 T cells and the gating strategy to identify naïve 

(CCR7
+
CD27

+
CD45RO

-
), central memory (CM; CCR7

+
CD27

+
CD45RO

+
), transitional 

memory (TM; CCR7
-
CD27

+
CD45RO

+
), intermediate memory (Int; CCR7

-

CD27
+
CD45RO

-
), effector memory (EM; CCR7

-
CD27

-
CD45RO

+
), and effector (Eff; 

CCR7
-
CD27

-
CD45RO

-
) cells. (B) Memory subset distributions for EC (yellow), CP 

(green), and HAART (blue). (C) Representative flow cytometric plots showing perforin 

expression by memory CD8
+
 T cells for one EC and one CP. (D) Proportion of memory 

CD8
+
 T cells that express perforin for all EC, CP, and HAART. (E) Viral load plotted 

against the proportion of memory CD8
+
 T cells that express perforin for CP. * denotes a 

P value < 0.05, ** denotes a P value < 0.01, and *** denotes a P values < 0.001. 

Statistics based on a Kruskal-Wallis test followed by Dunns post test for multiple 

comparisons. Correlation was determined using Spearman’s rank correlation test (non-

parametric; two-tailed). 
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(Chattopadhyay et al., 2009; Takata and Takiguchi, 2006).  Upon further investigation of 

the progressors group, we also found a strong direct correlation between the frequency of 

perforin
+
 CD8

+
 T cells and plasma viral load (Fig. 12 E). Together these data suggested 

CD8
+
 T cells from CPs are potentially more cytolytic than cells from controllers and this 

may be driven in part by HIV replication. 

 

Larger frequency of perforin
+
 CD8

+
 T cells in CP was not associated with enhanced 

expression of T-bet or Eomes 

We and others recently reported that CD8
+
 T cell differentiation in humans is related to 

the expression levels of T-bet and Eomes within in a cell (Hersperger et al., 2011; 

McLane et al., 2013; van Aalderen et al., 2015). Cells with more T-bet have an effector 

memory or effector phenotype whereas cells with low levels of T-bet and more Eomes 

have a central memory or transitional memory phenotype. In addition, perforin 

expression has previously been shown to be directly associated with T-bet expression 

(Buggert et al., 2014; Hersperger et al., 2011; Makedonas et al., 2010). Given the more 

mature memory phenotype and greater proportion of perforin
+
 CD8

+
 T cells we observed 

in the progressors, we expected to find a greater frequency of T-bet
Hi

 CD8
+
 T cells in 

these individuals compared to controllers. However, upon examination we did not find 

any significant differences in any of the T-bet subsets between the groups (Fig. 13 A and 

B). When we assessed the relationship between perforin and T-bet expression we found 

strong direct correlations for controllers and HAART-suppressed individuals but not for 

progressors (Fig. 13C). CD8
+
 T cells from noncontrollers instead appeared to express 

more perforin than would have been predicted based on their T-bet content.  
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Figure 13. T-bet and Eomes expression by total peripheral memory CD8
+
 T cells. 

(A) Representative flow cytometric plot of T-bet expression by CD3
+
CD8

+
 T cells from 

one EC showing three populations typically observed in human cells. (B) T-bet subset 

distributions for memory CD8
+
 T cells from all EC (yellow), CP (green), and HAART 

(blue). (C) Proportion of perforin
+
 memory CD8

+
 T cells plotted against the proportion of 

T-bet
Hi

 memory CD8
+
 T cells for EC, CP, and HAART. (D) Representative flow 

cytometric plot of Eomes expression by CD3
+
CD8

+
 T cells from one EC showing the 

bimodal expression pattern typically observed in human cells. (E) Proportion of Eomes
+
 

memory CD8
+
 T cells from all EC, CP, and HAART. (F) Proportion of perforin

+
 memory 

CD8
+
 T cells plotted against the proportion of Eomes

+
 memory CD8

+
 T cells for EC, CP, 

and HAART. There were no statistically significant differences for proportions of T-bet 

subset or Eomes
+
 cells between groups. Statistics based on a Kruskal-Wallis test followed 

by Dunns post test for multiple comparisons. Correlations were determined using 

Spearman’s rank correlation test (non-parametric; two-tailed). 
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Despite a recent report that perforin and Eomes expression share an inverse 

relationship in CD8
+
 T cells during chronic progressive HIV infection (Buggert et al., 

2014), murine models indicate Eomes can play a role in driving the development of 

cytolytic CD8
+
 T cells and Eomes expression was associated with perforin

+
 CD8

+
 T cell 

responses during the early phase of tick-borne encephalitis virus infection in humans 

(Blom et al., 2015; Cruz-Guilloty et al., 2009; Pearce et al., 2003). As such, it was  

possible Eomes was responsible for the increased perforin expression observed in our 

group of progressors. However, as with T-bet, we did not find any differences in the 

frequencies of Eomes
+
 memory CD8

+
 T cells between the groups (Fig 13 D and E). We 

did find positive correlations between perforin and Eomes expression for controllers and 

HAART-suppressed individuals but, also similar to T-bet, this relationship was lost in 

progressors (Fig. 13F). 

We next sought to determine if coexpression patterns of T-bet and Eomes, rather 

than either transcription factor on its own, would differentiate the total memory CD8
+
 T 

cell pools between each group. Only the proportions of cells with a T-bet
Hi

Eomes
-
 

expression profile were significantly different between progressors and controllers, and 

this population represented less than 10% of the total memory CD8
+
 T cell pool (Fig. 14 

A and B). This difference alone could not explain the much larger frequency of perforin
+
 

cells found in progressors. Also, while perforin expression positively correlated with cells 

with a T-bet
Hi

Eomes
+ 

phenotype and negatively correlated with T-bet
-
Eomes

-
 cells in 

both EC and HAART-suppressed, there were no such correlations for progressors (Fig 14 

C and D). 
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Figure 14. T-bet and Eomes coexpression patterns for total peripheral memory 

CD8
+
 T cells. (A) Representative flow cytometric plot of T-bet and Eomes expression for 

total memory CD8
+
 T cells from one EC. (B) T-bet and Eomes expression by total 

memory CD8
+
 T cells for all EC (yellow), CP (green), and HAART (blue). (C) 

Proportion of perforin
+
 memory CD8

+
 T cells plotted against the proportion of T-

bet
Hi

Eomes
+
 memory CD8

+
 T cells for EC, CP, and HAART. (D) Proportion of perforin

+
 

memory CD8
+
 T cells plotted against the proportion of T-bet

-
Eomes

-
 memory CD8

+
 T 

cells for EC, CP, and HAART. * denotes a P value < 0.05, ** denotes a P value < 0.01, 

and *** denotes a P values < 0.001. Statistics based on a Kruskal-Wallis test followed by 

Dunns post test for multiple comparisons. Correlations were determined using 

Spearman’s rank correlation test (non-parametric; two-tailed). 
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Frequencies of perforin
+
 CD8

+
 T cells are increased across multiple T-bet and Eomes 

subsets in CP compared to EC 

The greater frequency of perforin
+
 CD8

+
 T cells and lack of association between perforin 

and T-bet or Eomes expression observed in progressors suggested that there was aberrant 

regulation of perforin expression within the peripheral CD8
+
 T cell pool during 

uncontrolled HIV infection.  To examine the relationships between perforin, T-bet, and  

Eomes more directly, we assessed the relative frequencies of perforin
+
 CD8

+
 T cells for 

each T-bet and Eomes coexpression subset. For individuals with controlled viral 

replication, frequencies of perforin
+
 cells declined with lower levels of T-bet and/or 

absence of Eomes expression (Fig. 15 A and B). While progressors exhibited a similar 

pattern of decline, they also had greater frequencies of perforin
+
 cells across all subsets, 

including cells that expressed neither T-bet nor Eomes (Fig. 15 A and B). 

We next examined the relationship between perforin
+
 CD8

+
 T cell T-bet and 

Eomes subsets and viral load. Amongst progressors, viral load inversely correlated with 

the frequencies of perforin
+
 cells that were T-bet

Hi
, Eomes

+
, and T-bet

Hi
Eomes

+
 and 

directly correlated with T-bet
-
Eomes

-
 perforin

+
 cells (Fig. 15C). These correlations were 

even stronger when controllers were included in the analysis (not shown). Together, these 

data indicate that maintenance of specific associations between the expression of 

perforin, T-bet, and Eomes within the total circulating memory CD8
+
 T cell pool is 

predictive of control of viral load, irrespective of progression status. 
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Figure 15. Perforin expression by total peripheral CD8
+
 T cell T-bet and Eomes 

subsets. (A) Representative flow cytometric plot of T-bet and Eomes expression for total 

perforin
+
 CD8

+
 T cells from one EC. (B) T-bet and Eomes expression by total perforin

+
 

CD8
+
 T cells for all EC (yellow), CP (green), and HAART (blue). (C) HIV viral load 

plotted against the proportion of perforin
+
 CD8

+
 T cells that were T-bet

Hi
, Eomes

+
, T-

bet
Hi

Eomes
+
, or T-bet

-
Eomes

-
 for CP. * denotes a P value < 0.05, ** denotes a P value < 

0.01, and *** denotes a P values < 0.001. Statistics based on a Kruskal-Wallis test 

followed by Dunns post test for multiple comparisons. Correlations were determined 

using Spearman’s rank correlation test (non-parametric; two-tailed). 
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HIV-specific CD8
+
 T cells from CP demonstrated a greater ability to express perforin 

than EC or HAART 

We next sought to determine if differences identified between groups in the bulk memory 

CD8
+
 T cell pool were consistent across HIV- and other virus-specific cells in general. 

We therefore stimulated PBMCs with peptide pools representing potential T cell epitopes 

from HIV Gag (p17 and p24) and Nef, or overlapping peptides from CMV representative 

of IE1 and pp65. Virus-specific responding cells were identified based on their ability to 

degranulate (express CD107a) or produce IFNγ or MIP-1α (Fig. 16A). The 

magnitudes of HIV- and CMV-responding CD8
+
 T cells did not differ substantially 

across the groups, with the exception of a slightly larger Gag-specific response in CP 

compared to HAART-suppressed (Fig. 16A). This was in agreement with previous 

studies that compared magnitudes of HIV-specific cells in controlled and progressive 

infection (Betts et al., 2006; Hersperger et al., 2010; Migueles et al., 2002). The 

differentiation states of Gag-, Nef-, or CMV-specific cells between groups also were not 

significantly different (Fig. 16 B and C; Nef- and CMV-specific data not shown). This 

was in contrast to previous reports indicating HIV-specific cells from CP have a less 

differentiated phenotype compared to EC (Betts et al., 2006; Migueles et al., 2002; 

Precopio et al., 2007). 

 When we determined the relative contributions of CD107a, IFNγ, and MIP-1α to 

the total virus-specific CD8
+
 T cell responses we found no differences between the 

groups (Fig. 16 D and E). Similar to previous reports, the responses were dominated by 

degranulating cells and/or cells that produced MIP-1α (Betts et al., 2006; Hersperger et 

al., 2010). This was true for Gag-, Nef-, and CMV-specific CD8
+
 T cells (Nef- and  
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Figure 16. Magnitude and functionality of HIV-specific CD8
+
 T cell responses. (A) 

(A) Frequency of Gag-, Nef-, and CMV-specific CD8
+
 T cells within the memory CD8

+
 

T cell pools of EC (yellow), CP (green), and HAART (blue) as determined by 

measurement of degranulation (CD107a), IFN-γ expression, or MIP-1α expression in 

response to peptide stimulation. (B) Representative flow cytometric plots of CD45RO, 

CCR7, and CD27 profiles for Gag-specific CD8
+
 T cells (red) overlaid on total CD8

+
 T 

cells (black) for one EC. (C) Memory distributions for responding Gag-specific CD8
+
 T 

cells as determined by CD45RO, CCR7, and CD27 staining for all EC, CP, and HAART. 

(D) Representative flow cytometric plots of perforin for Gag-specific CD8
+
 T cells (red) 

overlaid on total memory CD8
+
 T cells (black) for one EC and one CP. Percentages 

represent proportions of responding Gag-specific cells that express perforin for each 

donor. (E) Proportions of total responding Gag-specific CD8
+
 T cells that degranulated 

(CD107a) or expressed IFNγ, MIP-1α, or perforin. Cells had to express at least one other 

function in addition to perforin to be considered Gag-specific. ** denotes a P value < 

0.01. Statistics based on a Kruskal-Wallis test followed by Dunns post test for multiple 

comparisons.  
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CMV-specific data not shown). We did, however, find differences in the capacities of 

responding virus-specific cells to express perforin (Fig. 16 D and E). Similar to total 

memory CD8
+
 T cells, there were greater frequencies of perforin

+
 Gag-specific CD8

+
 T 

cells for progressors compared to controllers. This difference was also observed for Nef-

specific CD8
+
 T cells, while CMV-specific cells from progressors trended toward being 

more perforin
+
 but did not reach significance (data not shown). These data demonstrate 

that whereas the magnitudes and differentiation states of virus-specific CD8
+
 T cells are 

similar between groups the functional quality of the responses is different, with greater 

potential cytolytic capacity in progressors. 

 

Perforin is expressed by HIV-specific CD8
+
 T cells from CP independent of T-bet and 

Eomes expression pattern 

We recently demonstrated that responding HIV-specific CD8
+
 T cells are predominantly 

T-bet
Hi

Eomes
+
 or T-bet

Lo
Eomes

+
 during acute HIV infection (Demers et al., 2016). Cells 

are evenly divided between these two expression patterns during the earliest phase of 

infection but the proportion of T-bet
Lo

Eomes
+
 cells increases significantly over time. As 

expected based on these previous findings, upon examination of T-bet and Eomes 

expression patterns for chronically infected individuals we found the majority of 

responding HIV-specific CD8
+
 T cells were either T-bet

Hi
Eomes

+
 or T-bet

Lo
Eomes

+
, with 

cells skewing more towards the T-bet
Lo

Eomes
+ 

phenotype (Fig. 17 A and B, Nef-specific 

data not shown). There was also a larger frequency of T-bet
-
Eomes

+ 
cells than we 

previously observed during acute infection. CMV-specific cells were also mostly T-

bet
Hi

Eomes
+
 or T-bet

Lo
Eomes

+
, but unlike HIV-specific cells, were skewed more towards 
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the T-bet
Hi

Eomes
+
 phenotype and had few T-bet

-
Eomes

+ 
cells (data not shown). Notably, 

there were no major differences in any of the virus-specific CD8
+
 T cell T-bet and Eomes 

subset distributions between groups. 

During acute HIV-infection, both T-bet
Hi

Eomes
+
 and T-bet

Lo
Eomes

+
 HIV-specific 

CD8
+
 T cells were capable of expressing perforin after short-term in vitro stimulation 

(Demers et al., 2016). As disease progressed, the capacity to express perforin was 

retained by T-bet
Hi

Eomes
+
 cells and lost by T-bet

Lo
Eomes

+
 cells. This along with other 

recent studies that examined T-bet and/or Eomes expression in HIV chronically infected 

individuals suggested high levels of T-bet expression were necessary for the maintenance 

of a high quality CD8
+
 T cell responses to HIV infection (Buggert et al., 2014; 

Hersperger et al., 2011). However, as noted above, we did not see any differences in the 

distributions of virus-specific CD8
+
 T cells across T-bet and Eomes subsets for CPs 

versus ECs, despite CD8
+
 T cells from CPs having more perforin expression. We 

therefore compared the functional capacities of HIV-specific CD8
+
 T cell T-bet and 

Eomes coexpression subsets across the groups. When we assessed CD107a, IFNγ, or 

MIP-1α we did not find any major differences between groups, i.e. cells with the same T-

bet and Eomes coexpression profile from each group had similar proportions of cells 

expressing each of the three functions (Fig. 17C). Perforin expression, on the other hand, 

was significantly different between groups (Fig. 17D). Similar to total memory CD8
+
 T 

cells, for all groups the capacity of HIV-specific CD8
+
 T cells to express perforin 

decreased with lower levels of T-bet and absence of Eomes. However, progressors had 

greater frequencies of perforin
+
 CD8

+
 T cells across almost all T-bet and Eomes subsets, 

including cells without detectable levels of either transcription factor. Collectively, these  
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Figure 17. Proportion positive and functionality of HIV-specific CD8
+
 T-bet and 

Eomes subsets. (A) Representative flow cytometric plot of T-bet and Eomes expression 

for Gag-specific CD8
+
 T cells (red) overlaid on total memory CD8

+
 T cells (black) from 

one EC and one CP. (B) T-bet and Eomes coexpression subsets for Gag-specific memory 

CD8
+
 T cells for all EC (yellow), CP (green), and HAART (blue). (C) The average Gag-

specific CD8
+
 T cell T-bet and Eomes coexpression profile is shown for EC, CP, and 

HAART with the proportions of each subset that degranulated (CD107a) or expressed 

IFNγ, MIP-1α depicted by gray arcs. There were no statistically significant differences in 

the expression of these three functions by the respective T-bet and Eomes subsets from 

each group. (D) Proportions of Gag-specific CD8
+
 T cell T-bet and Eomes subsets that 

express perforin. Cells had to express at least one other function in addition to perforin to 

be considered Gag-specific. * denotes a P value < 0.05, ** denotes a P value < 0.01, and 

*** denotes a P values < 0.001. Statistics based on a Kruskal-Wallis test followed by 

Dunns post test for multiple comparisons. 
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data provide evidence of a global dysregulation of perforin expression by CD8
+
 T cells 

during uncontrolled chronic HIV infection. 

 

Discussion 

There is strong evidence to suggest effector CD8
+
 T cell responses are important 

for the control of HIV infection. In this study, we examined the relationships between 

perforin, T-bet, and Eomes expression in CD8
+
 T cells from individuals who 

differentially controlled HIV replication. We found both total memory and HIV-specific 

CD8
+
 T cells from CP had greater capacities to express perforin compared to EC or 

HAART-suppressed individuals. Conversely, T-bet and Eomes, both transcriptional 

regulators of effector CD8
+
 T cell differentiation and function (Cruz-Guilloty et al., 2009; 

Hersperger et al., 2011; Intlekofer et al., 2005; Makedonas et al., 2010; Pearce et al., 

2003; Sullivan et al., 2003), were not differentially expressed between groups. Rather, 

perforin expression was directly associated with both T-bet and Eomes during controlled 

infection while its expression by CD8
+
 T cells from CP appeared to be partially 

dysregulated such that cells with low or no expression of T-bet or Eomes were also able 

to express this effector molecule. 

 CD8
+
 T cells kill virally infected targets primarily through the release of granules 

containing granzyme B and perforin (Barry and Bleackley, 2002; Podack, 1989). In vivo 

control of HIV viremia has previously been associated with the ability of CD8
+
 T cells 

from chronically HIV-infected donors to upregulate these cytotoxic molecules after in 

vitro culture or following brief stimulation directly ex vivo (Hersperger et al., 2010; 

Migueles et al., 2008). Enhanced in vitro cytolytic capacity has also been linked to higher 
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levels of perforin expression by CD8
+
 T cells (Migueles et al., 2008). In the current 

cohort, we observed greater frequencies of perforin
+
 CD8

+
 cells in CPs compared to ECs. 

This would suggest CD8
+
 T cells from the group of CPs studied here should provide 

superior control over HIV replication. Although we did not conduct in vitro killing 

assays, the fact that we observed a direct correlation between the frequency of perforin
+
 

CD8
+
 T cells and viral loads in CPs suggests a different relationship exists in these 

donors. It is possible we are measuring pre-formed perforin that, in the case of HIV-

specific CD8
+
 T cells from CPs, is not released upon activation. This would be consistent 

with one study that suggested CD8
+
 T cells from CP have the capacity to express perforin 

but are unable to degranulate efficiently (Sakhdari et al., 2012). However, we found no 

difference in the ability of HIV-specific CD8
+
 T cells from EC or CP to degranulate here. 

Alternatively, this discrepancy might arise from the use of Gag and Nef potential T cell 

epitopes rather than autologous virus for ex vivo stimulation. Potential T cell epitopes 

may not be representative of the protein sequences found in autologous HIV from each 

donor and therefore responses elicited in our in vitro assays could be qualitatively 

different from those taking place in vivo. Why this difference would be specific to CP 

donors is unclear. In vitro killing assays using autologous HIV-infected target cells would 

be necessary to determine the true cytolytic capacity of the CD8
+
 T cell populations from 

each of the groups. Whatever the case, these data suggest that while perforin is a 

necessary component of an effective antiviral CD8
+
 T cell-mediated immune response, 

CD8
+
 T cell perforin content alone is not sufficient to predict in vivo control (Norstrom et 

al., 2012). 
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 There has been increasing interest in the determinants of CD8
+
 T cell 

differentiation and function (Glimcher et al., 2004; Kaech and Cui, 2012). T-bet and 

Eomes have been shown to be important regulators of the development of effector CD8
+
 

T cells in both mice and humans (Cruz-Guilloty et al., 2009; Hersperger et al., 2011; 

Joshi et al., 2007; Makedonas et al., 2010; McLane et al., 2013; Pearce et al., 2003; 

Pipkin et al., 2010; Sullivan et al., 2003; van Aalderen et al., 2015). Analysis of T-bet and 

Eomes in the context of several different viral infections in humans has demonstrated a 

variety T-bet and Eomes expression patterns associated with the CD8
+
 T cell responses. 

EBV-specific CD8
+
 T cells express T-bet and Eomes during the acute phase of infection 

but lose expression of both during convalescence (Greenough et al., 2015). Ticke-borne 

encephalitis virus-specific CD8
+
 T cells also express both transcription factors during 

acute infection, but Eomes expression is gradually lost and T-bet maintained as the virus 

is cleared. During CMV or HCV infections CD8
+
 T cells expressing T-bet are associated 

with control whereas expression of Eomes or expression of neither transcription factor is 

associated uncontrolled infection (Hertoghs et al., 2010; Kurktschiev et al., 2014; Paley et 

al., 2012; Popescu et al., 2014). Collectively, these studies suggest a link between 

controlled infection and the expression of T-bet, whereas Eomes is differentially 

associated with outcome. The disparate associations of Eomes with outcome may indicate 

Eomes plays a larger role in determining the fates of cells following the acute phase of 

resolved and unresolved infections than it does in driving the effector responses early 

after infection (Doering et al., 2012). 

 Expression of T-bet and Eomes has recently been described during acute and 

chronic HIV infection. Higher levels of T-bet expression by CD8
+
 T cells were associated 
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with increased functionality, including a greater capacity to upregulate perforin, and 

control of viral replication in EC (Buggert et al., 2014; Demers et al., 2016; Hersperger et 

al., 2011). Low levels of T-bet and high levels of Eomes expression were associated with 

lower overall functionality and exhaustion of CD8
+
 T cells in CP. Given the increased 

frequency of perforin
+
 CD8

+
 T cells we observed for CP in the current cohort we 

anticipated that these individuals would also have increased levels of T-bet. This was not 

the case, however, as T-bet levels were not different between the groups for either total 

memory or HIV-specific CD8
+
 T cells. Nor did Eomes appear to be acting in a 

compensatory fashion to drive perforin expression as might have been predicted from 

murine models (Cruz-Guilloty et al., 2009; Pearce et al., 2003). Instead we found 

increased frequencies of perforin
+
 cells across all T-bet and Eomes coexpression patterns 

in CP relative to controllers, suggesting perforin expression is dysregulated during 

chronic progressive infection. 

What is driving perforin expression if not T-bet or Eomes? Perforin expression 

was directly associated with plasma antigen levels here, and others have shown HIV viral 

load directly correlates with generalized activation of the T cell compartment (Mellors et 

al., 2007). The aberrant expression of perforin by cells expressing low or no T-bet or 

Eomes therefore might reflective of a state of heightened activation and inflammation. To 

this end, IL-15 has been shown to increase the activation of CD8
+
 T cells during chronic 

HIV infection and is known to increase perforin expression in vitro (Bastidas et al., 2014; 

White et al., 2007; Younes et al., 2016). IL-15 likely induces perforin through a STAT-5 

mediated mechanism (Grange et al., 2013; Johnston et al., 1995; Lin et al., 2012; Pipkin 

et al., 2010; Verdeil et al., 2006), but whether it can do so in the absence of T-bet and 
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Eomes remains unclear. IFNα, another cytokine associated with inflammation, has also 

been show to increase perforin expression, but at the translational level independent of 

new transcription (Kohlmeier et al., 2010). Lastly, metabolic cues from the 

microenvironment may lead to heightened perforin expression by CD8
+
 T cells in the 

absence of T-bet and Eomes as perforin is positively regulated and T-bet and Eomes are 

negatively regulated under hypoxic conditions such as those found in inflamed tissues 

(Doedens et al., 2013). Whichever of these is taking place, a non-specific mechanism of 

perforin upregulation would fit with its dissociation from T-bet as T cell receptor 

stimulation should induce T-bet expression (Szabo et al., 2000). It may also explain why 

cells that express perforin directly ex vivo are not able to control viral replication in vivo: 

lack of the transcription factors necessary to drive efficient perforin expression in an 

antigen-specific response are ill-equipped to mount a durable effector response to 

infection. 

Whether perforin expression is increased as a result of specific or non-specific 

activation, one notable observation to emerge from these results is that maintenance of 

bulk perforin
+
 CD8

+
 T cell subsets with T-bet and Eomes expression profiles similar to 

EC (i.e. high levels of T-bet and Eomes expression) correlated with better in vivo control 

of HIV replication. It is important to acknowledge that the associations between these 

subsets and lower viral load may be a cause or an effect. However, a recent CD8
+
 T cell 

depletion study in the nonhuman primate model of SIV infection demonstrated a positive 

correlation between the frequency of T-bet
+
 CD8

+
 T cells prior to depletion and the fold-

increase in plasma viral load post-depletion (Chowdhury et al., 2015). While this study 

did not differentiate T-bet levels or its association with perforin expression, it does 
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support the idea of a causal relationship between T-bet and viral control. Further work is 

needed to determine the extent to which perforin is regulated by T-bet and Eomes in 

human CD8
+
 T cells and to find other regulatory factors that might be involved in its 

expression. Collectively, these results suggest that perforin expression, while important 

for antiviral CD8
+
 T cell responses in general, on its own may not be sufficient to define 

a robust effector CD8
+
 T cell response in the context of chronic HIV infection. Perforin 

expression in combination with high levels of T-bet and Eomes provides a better 

definition of effective CD8
+
 T cells. Vaccine or cure strategies that can induce all three 

may be necessary in order to drive HIV-specific CD8
+
 T cell responses capable of 

clearing virus-infected cells. 
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CHAPTER 4 

EPILOGUE 

 

 

Implications and considerations 

Despite three decades of research, the HIV/AIDS pandemic remains a significant 

global health challenge. Optimized antiretroviral therapy (ART) has made it possible to 

achieve durable control of HIV replication, thereby preventing onset of AIDS and 

reducing overall mortality. However, there are significant challenges to the sustainability 

of lifelong treatment including the economic burden, drug availability, and potential drug 

toxicities. In addition, ART does not eradicate the latent HIV reservoir so that treatment 

interruption in most cases leads to viral rebound. This combination of factors points to 

the continued need to identify an effective means of controlling HIV in the absence of 

therapy. Several lines of evidence indicate CD8
+
 T cells are critical for both the initial 

and long-term control of HIV replication, with HIV-specific CD8
+
 T cell cytotoxic 

capacity, and the cytolytic molecule perforin in particular, being associated with 

enhanced viral suppression (Borrow et al., 1994; Hersperger et al., 2010; Koup et al., 

1994; Migueles et al., 2008; Saez-Cirion et al., 2007). Recent efforts to elucidate the 

regulatory elements involved in driving cytotoxic CD8
+
 T cell differentiation and 

function identified the T-box transcription factors T-bet and eomesodermin (Eomes) as 

potential targets for manipulation that might induce more robust cytotoxic CD8
+
 T cell 

responses to HIV infection. With the work described in Chapters 2 and 3 here, we sought 

to expand on these earlier findings by examining CD8
+
 T cell perforin expression and its 

interplay with T-bet and Eomes at various stages of HIV infection in the hope of gaining 
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insights into the molecular regulation of cytotoxic CD8
+
 T cell responses that might 

inform strategies for sterilizing and/or functional cures. 

 Although there is clear evidence from humans and nonhuman primates that CD8
+
 

T cells contribute to the initial resolution of peak viremia during acute HIV and SIV 

infections, respectively, relatively little was known about the functional status of the 

responding cells until recently. Reports from Ferrari et al. and Ndhlovu et al. 

demonstrated that HIV-specific CD8
+
 T cells have limited functionality during the 

earliest phase of infection with the majority of cells degranulating (expressing CD107a) 

or upregulating the β-chemokine MIP-1β (Ferrari et al., 2011; Ndhlovu et al., 2015). 

While the high degree of degranulating cells observed by both groups was suggestive of 

cytolytic responses, there are instances in which CD107a may overestimate or 

underestimate the true cytolytic potential of CD8
+
 T cells (Makedonas et al., 2009; 

Wolint et al., 2004). As such, we sought to determine if HIV-specific CD8
+
 T cells were 

capable of upregulating perforin during acute HIV-infection and how its initial 

expression and maintenance was related to T-bet and/or Eomes expression. To this end, 

we assemble of a cohort of untreated individuals experiencing acute/early primary HIV 

infection and examined the global and HIV-specific responses longitudinally. 

 We made three profound observations regarding CD8
+
 T cell responses to acute 

HIV infection. First, both total and HIV-specific CD8
+
 T cells were indeed capable of 

upregulating perforin at the outset of infection, but HIV-specific CD8
+
 T cells rapidly lost 

this capacity following the resolution of peak viremia. Second, during the earliest 

responses, perforin expression by CD8
+
 T cells was not restricted to any one T-bet and 

Eomes coexpression subset and even total memory CD8
+
 T cells with no discernible T-
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bet or Eomes expressed perforin. However, maintenance of perforin expression by HIV-

specific CD8
+
 T cells was largely restricted to cells that were T-bet

Hi
Eomes

+
. Lastly, 

HIV-specific CD8
+
 T cells were equally distributed between T-bet

Hi
Eomes

+
- and T-

bet
Lo

Eomes
+
-expressing subsets initially but became progressively more T-bet

Lo
Eomes

+
 

over time. Together these data suggest a robust effector CD8
+
 T cell response takes place 

following HIV infection with maintenance of this response dependent upon that ratio of 

T-bet and Eomes expression on a per-cell basis. High levels of T-bet relative to Eomes 

are necessary for the expression of perforin whereas cells with lower levels of T-bet 

remain functional but are have reduced cytotoxic capacity. Unfortunately, the relatively 

narrow range of set point viral loads within the cohort as well as the lack of any donors 

who spontaneously controlled HIV replication to undetectable levels limited our ability to 

determine if any specific functional or T-bet and Eomes expressing subset was associated 

with greater in vivo control. 

 Future studies comparing CD8
+
 T cell responses from HIV acutely infected 

progressors and elite controllers, either in humans or using a nonhuman primate model, 

may provide insight into differences that render controller CD8
+
 T cell responses 

protective. What these differences might be during the earliest phase of infection is 

uncertain since the initial HIV-specific CD8
+
 T cell responses of progressors have a 

phenotype (T-bet
Hi

) and function (perforin
+
) we would predict to be protective. The 

difference may be a matter of quantity of HIV-specific cells, in which case controllers 

would be predicted to have a greater overall magnitude of cells expressing high levels of 

T-bet and perforin. Alternatively, it may be that controller CD8
+
 T cells are restricted to 

more conserved epitopes which prevents viral escape and allows controllers to maintain a 
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strong and effective response. Control of viral replication could, in turn, prevent over- 

stimulation of the CD8
+
 T cells and thereby decrease the chance of driving the exhaustion 

of the response. These are not necessarily mutually exclusive and it could be a 

combination of theses factors that permit EC CD8
+
 T cells to continue to express T-bet 

and perforin and ultimately control HIV replication into chronic infection.  

 We next sought to determine the association between perforin expression and T-

bet and Eomes for CD8
+
 T cells from individuals with differential abilities to control HIV 

replication in vivo during chronic infection. Previous work has shown that HIV-specific 

CD8
+
 T cells from individuals who spontaneously control HIV to undetectable levels in 

the absence of ART (elite controllers or EC) generally have a greater capacity to 

upregulate perforin in vitro than cells from individuals with chronic progress HIV 

infection [chronic progressors or CP](Hersperger et al., 2010; Migueles et al., 2008). 

Work from our lab demonstrated that HIV-specific CD8
+
 T cells from EC also tended to 

express higher levels of T-bet compared to cells from CP and T-bet expression level 

directly correlated with the ability of cells to upregulate perforin (Hersperger et al., 

2011). Another more recent report by Buggert et al. demonstrated an inverse relationship 

between perforin and Eomes expression in CD8
+
 T cells from CP (Buggert et al., 2014). 

This study did not include EC, however, and so could not determine if Eomes expression 

further differentiated CD8
+
 T cell responses from individuals with disparate clinical 

outcomes. However, based on these previous studies, we hypothesized that expression of 

high levels of T-bet relative to Eomes expression would be associated with a more 

cytotoxic CD8
+
 T cell response marked by a greater capacity to express perforin whereas  
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low T-bet levels relative to Eomes would result in inferior CD8
+
 T cell responses with 

little or no cytotoxic function (Figure 18). 

 In contrast to previous chronic cohorts, for the cohort examined in Chapter 3 we 

found that CP had greater frequencies of both total memory and HIV-specific perforin
+
 

CD8
+
 T cells than EC or ART-suppressed individuals (HAART). In addition, whereas 

perforin expression in EC and ART donors strongly correlated with T-bet and Eomes 

expression, CD8
+
 T cells from CP expressed perforin irrespective of their T-bet or Eomes 

content. We did, however, observe that CP with greater frequencies of the perforin
+
 CD8

+
 

T cell T-bet and/or Eomes expressing subsets found in EC (i.e. T-bet
Hi

, Eomes
+
, or T-

bet
Hi

Eomes
+
) tended to have lower viral loads while the frequency of T-bet

-
Eomes

-
 

perforin
+
 CD8

+
 T cells correlated directly with viremia. These data, in combination with 

data from the acute cohort and previous reports, imply better control of in vivo HIV 

replication can be achieved when perforin
+
 CD8

+
 T cells with high levels of T-bet are 

maintained. 

It is important to acknowledge that these observations are correlational and as 

such the relationship between T-bet and viral loads as well as the maintenance of the 

relationship between T-bet and perforin may be either the cause or the effect of control of 

HIV replication. However, data from other human infections including CMV and HCV 

found similar positive associations between T-bet expression and favorable clinical 

outcomes (Kurktschiev et al., 2014; Paley et al., 2013; Popescu et al., 2014). In addition, 

a recent CD8
+
 T cell depletion study in SIV-infected rhesus macaques demonstrated that 

macaques with higher frequencies of T-bet
+
 CD8

+
 T cells pre-depletion experienced 

greater increases in plasma viremia post-depletion (Chowdhury et al., 2015). Although it  
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Figure 18. Model of CD8
+ 

T cell responses in the context of acute/controlled and 

chronic HIV infection. During acute/controlled HIV infection, CD4
+
 T cells are present 

to drive CD8
+
 T cell differentiation both directly and indirectly through the production of 

cytokines and licensing of dendritic cells. Viral escape within CD8
+
 T cell-restricted 

epitopes has not occurred and infected cells provide a strong stimulation via the 

peptide/MHC-T cell receptor interaction. There is also little or no exhaustion within the 

CD8
+
 T cell compartment to dampen the ability of cells to receive and propagate 

stimulatory signals. Together, these factors allow strong stimulation of HIV-specific 

CD8
+
 T cells resulting in high levels of T-bet expression and thereby the ability to 

upregulate perforin to kill infected target cells. During chronic progressive infection, HIV 

depletes the CD4
+
 T cell pool diminishing the support necessary for driving effector 

CD8
+
 T cell responses; viral escape occurs resulting in poor or complete loss of 

recognition of infected target cells; increased exhaustion dampens stimulatory signals. 

The overall effect of these factors, either alone or in concert, is that responding CD8
+
 T 

cells are unable to express high levels of T-bet resulting in the inability of these cells to 

express perforin. Responding cells instead realize noncytolytic mechanisms with inferior 

capacity to control viral replication. 
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does not rule out the possibility that T-bet and perforin are themselves correlates of some 

other CD8
+
 T cell functional or regulatory capacity not assessed here, collectively these 

data strongly indicate T-bet plays an important role in driving effective CD8
+
 T cells 

responses. 

This work also raises several important questions. For one, the initial wave of 

HIV-specific CD8
+
 T cells appear to be highly cytotoxic but subsequent responding cells, 

be they progeny of the first wave or de novo, lose the ability to express perforin in 

association with a concomitant loss of the ability to express high levels of T-bet. Why do 

cells lose the ability to express these effector and regulatory molecules and how can they 

be sustained? Additionally, even if they could be sustained would the cells be any more 

effective at suppressing viral replication? There may be several factors at play that 

ultimately result in the decline of cytotoxic CD8
+
 T cells responses. IL-2 helps drive 

effector CD8
+
 T cell differentiation and loss of IL-2-producing CD4

+
 T cells during acute 

infection may result in impaired development of cytotoxic CD8
+
 T cells response. 

Expression of the inhibitory receptor PD-1 was recently shown to be increased on total 

CD8
+
 T cells during the acute phase of HIV infection and expression likely increases on 

HIV-specific cells as infection progresses. PD-1 attenuates signaling through the T cell 

receptor (TCR) in a dose-dependent manner with intermediate levels sufficient to prevent 

cytotoxicity and high levels required to inhibit β-chemokine production (Wei et al., 

2013). Increased expression of PD-1 on responding CD8
+
 T cells would therefore be 

consistent with the functional changes observed with time from infection for our cohort. 

It would also be consistent with the reduced levels of T-bet expression given that T-bet is 

induced by TCR stimulation (Szabo et al., 2000). This suggests PD-1 blockade during 
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acute infection may allow for continued cytotoxic responses. This, however, is not taking 

into consideration the effects of viral escape mutations. The dynamics of loss of perforin 

expression by HIV-specific CD8
+
 T cells during acute HIV infection shown in Chapter 2 

coincides with the emergence of CD8
+
 T cell escape variants (Goonetilleke et al., 2009b; 

Liu et al., 2013). As such the decline in cytotoxic responses might reflect reduced or 

complete loss of recognition of epitopes by CD8
+
 T cells with high functional avidity. In 

this instance neither the maintenance of CD4
+
 T cell help nor PD-1 blockade would likely 

be sufficient to drive continuous cytotoxic responses without also generating new CD8
+
 T 

cell responses to alternate and more conserved targets. This problem was recently 

highlighted in a report from Deng et al. showing that HIV-specific CD8
+
 T cells from 

ART-suppressed chronically infected individuals are largely incapable of recognizing 

autologous virus following treatment of primary cells with a latency reversing agent 

(Deng et al., 2015). 

Another issue is the dissociation of perforin expression from T-bet and Eomes 

expression we observed for total memory CD8
+
 T cells in acute infection and both total 

memory and HIV-specific CD8
+
 T cells during chronic progressive infection. For total 

CD8
+
 T cells, the simplest explanation for the increased perforin expression in the 

absence of T-bet and Eomes is that it is reflective of a population of HIV-specific cells 

that once did express T-bet and/or Eomes, but subsequent lose of antigen stimulation 

resulted in downregulation of T-bet and Eomes while granules already loaded with 

perforin were retained. However, this explanation does not fit for HIV-specific CD8
+
 T 

cells given the similar propensities of CD8
+
 T cell from both EC and CP to degranulate 

and thereby presumably release any preformed perforin. Another possibility is that 
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perforin is being induced in a non-specific manner whereby regulatory elements other 

than T-bet or Eomes drive its expression or its expression is controlled at the translational 

level rather than the transcriptional level. Several different signal transducer and activator 

of transcription (STAT) molecules have been linked to perforin expression and some of 

them are activated by cytokines (e.g. INF-α and IL-15) that are elevated during HIV 

infection (Demers et al., 2013; Stacey et al., 2009). IFN-α may also stabilize perforin 

mRNA thereby increasing perforin protein expression by enhancing translation 

(Kohlmeier et al., 2010). Non-specific activation would explain the dissociation observed 

for both total memory and HIV-specific CD8
+
 T cells. It would also be consistent with 

the larger increases of T-bet
-
Eomes

-
 cells we observed for total HLA-DR

+
 CD8

+
 T cells 

compared to perforin
+
 CD8

+
 T cells following vaccination with vaccinia virus or live 

attenuated yellow fever virus in Chapter 2. This suggests increased perforin expression in 

the absence of T-bet or Eomes is a result of generalized immune activation. To determine 

if T-bet and/or Eomes expression is required for perforin expression by human CD8
+
 T 

cells it will be necessary to perform in vitro experiments in which T-bet, Eomes, or both 

are knocked down or out in primary cells prior to stimulation via the T cell receptor or 

non-specific stimulation via exposure to cytokines. Such studies could help determine at 

which stage of cytotoxic CD8
+
 T cell development these transcription factors are most 

important and if there are alternative routes to driving cytotoxic responses by non-

antigen-specific means. 

 The work presented here in combination with previous reports suggest a robust 

effector CD8
+
 T cell response that is durable, rapid, and targets highly conserved viral 

epitopes is required to achieve control over HIV replication. The question then becomes 
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how such a response can be induced in vivo. Several cytokines have shown promise in 

their capacities to enhance effector CD8
+
 T cell responses and may prove important for 

vaccine or therapeutic strategies (Reuter et al., 2012). However, these would likely need 

to be used alongside other modalities necessary for the expansion of cells with 

appropriate specificity. To this end, a number of HIV vaccines have been tested, 

including DNA vectors, recombinant proteins or viruses, DNA vectors, and dendritic 

cells presenting autologous antigens (Autran et al., 2008; Buchbinder et al., 2008; Fauci 

et al., 2014; Fauci and Marston, 2015; Garcia et al., 2012; Robb and Kim, 2014). While 

vaccines generated or improved HIV-specific responses, almost all of these platforms are 

not persistent, producing antigens for a limited amount of time. As a result, when antigen 

disappears the vaccine-elicited T cells gain a central memory phenotype. While cells with 

this phenotype have high proliferative potential they lack appreciable levels of T-bet or 

perforin and are therefore incapable of rapid effector responses (Makedonas et al., 2010; 

McLane et al., 2013; van Aalderen et al., 2015). To date, the most efficacious vaccine 

model has been an attenuated Rhesus CMV-based vector that has been shown to be 

capable of completely clearing virus from SIV-infected macaques (Hansen et al., 2011; 

Hansen et al., 2013a). CD8
+
 T cells were critical for control in this model and while the 

exact qualitative nature of the vaccine-elicited response has yet to be fully elucidated, the 

effector memory phenotype and capacity responding cells to degranulate is highly 

suggestive of a strong cytotoxic response (Hansen et al., 2011; Hansen et al., 2009). This 

combined with the broad specificity and non-classical restriction of the CD8
+
 T cell 

response as well as the persistent nature of the CMV vector fulfills almost all of the 

requirements for a highly effective prophylactic or therapeutic vaccine strategy (Hansen 
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et al., 2013b; Hansen et al., 2016). It remains to be seen if regulatory issues surrounding 

the use of a CMV-based platform in humans can be overcome or if it will have similar 

efficacy outside of the rhesus model. 

 A final hurdle to achieving a fully protective response is the issue of 

compartmentalization of HIV and the antiviral CD8
+
 T cells required to fight infection. T 

follicular helper cells serve as the primary reservoir for HIV and these cells are found in 

large numbers in specialized follicles within lymph nodes (Banga et al., 2016; Folkvord 

et al., 2005; Perreau et al., 2013). Several studies have now shown that these follicles 

constitute immune privileged sites from which CD8
+
 T cells with cytolytic potential are 

largely excluded (Andersson et al., 1999; Connick et al., 2007; Folkvord et al., 2005; 

Shacklett et al., 2004). This issue was further highlighted by a recent report from 

Fukazawa et al. that demonstrated the viral reservoir is limited exclusively to follicles in 

rhesus macaques with elite controller status (Fukazawa et al., 2015). With the viral 

reservoir seeded in as little as three days after infection (Whitney et al., 2014), 

compartmentalization represents a significant barrier to any prophylactic or curative 

strategy. Thus, while we and others have begun to define some of the qualitative and 

regulatory properties of CD8
+
 T cells from peripheral blood that correlate with in vivo 

protection it will be important to next determine if these same properties are reflective of 

protective responses within gut and lymphoid tissues.
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