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Abstract—Communities are adversely affected by heteroge-
neous social harm events (e.g., crime, traffic crashes, medical
emergencies, drug use) and police, fire, health and social service
departments are tasked with mitigating social harm through
various types of interventions. Smart cities of the future will
need to leverage IoT, data analytics, and government and
community human resources to most effectively reduce social
harm. Currently, methods for collection, analysis, and modeling
of heterogeneous social harm data to identify government
actions to improve quality of life are needed. In this paper
we propose a system, CDASH, for synthesizing heterogeneous
social harm data from multiples sources, identifying social
harm risks in space and time, and communicating the risk
to the relevant community resources best equipped to inter-
vene. We discuss the design, architecture, and performance
of CDASH. CDASH also allows users to report live social
harm events using mobile hand-held devices and web browsers
and flags high risk areas for law enforcement and first
responders. To validate the methodology, we run simulations
on historical social harm event data in Indianapolis illustrating
the advantages of CDASH over recently introduced social harm
indices and existing point process methods used for predictive
policing.

Keywords-social harm; service-oriented systems; CDASH;
Hawkes process; Web service.

I. INTRODUCTION

Crime is highly concentrated in urban communities and

hotspot or “predictive” policing efforts aim to apply lim-

ited resources to high intensity geographic areas and time

intervals to disrupt crime opportunities, leading to aggregate

crime rate reductions [1]–[4]. However, police serve other

roles in the community beyond crime response and pre-

vention, including traffic enforcement, Emergency Medical

Services (EMS) response, and more generally, dealing with

events related to social harm [5]. At the same time, the activ-

ities police departments employ to address social harm issues

in a community (directed patrol, speed traps, community

outreach, etc.) have both the potential to decrease the risk of

social harm, but may also increase the risk or perception of

social harm if the community costs of police activities such

as stop-and-frisk reduce trust and increase grievances among

disenfranchised groups [5]. Other community stakeholders

such as EMS responders, social services, the mayor’s office,

city prosecutor, and individual citizens also participate to

reduce social harm. While collaboration can take place, for

example a paramedic riding along on police patrols [6]

in high drug overdose hotspots, often data is distributed

among several agencies, data analyses are not shared across

agencies, and interventions are not coordinated.
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Figure 1. CDASH fuses heterogeneous data sources, estimates risk of
social harm, and allocates resources for targeted interventions.

Despite these multiple and disparate daily challenges,

existing hotspot and predictive policing algorithms and in-

tervention strategies focus on single or groups of related

sub-categories of social harm events and interventions are

performed primarily by police in isolation. Given the ex-

plosion of data that smart cities are generating, advances in

predictive modeling, and the real-time inter-connectedness

of citizens through the Internet of Things, smart cities of

the future will be able to integrate multiple data streams,

detect and predict social harm threats, communicate key

information to the general public and allocate resources

accordingly. To realize such a capability, new software and

analytics methods are needed to facilitate heterogenous data

sharing across the various agencies tasked with addressing

social harm and to support real-time data driven policing of

social harm in collaboration with community stakeholders.
In Figure 1, we illustrate an integrative policing sys-

tem, called Community Data Analytics for Social Harm

(CDASH). CDASH combines historical and real-time data

across heterogeneous types of social harm data pulled from

police, EMS, and social services databases, along with com-

munity feedback (tips and complaints), to prioritize daily

activities within each patrol beat in the city. For example, a

traffic accident hotspot may be flagged at 7 am for police
____________________________________________________
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intervention and the patrol unit is given a push notification

to monitor traffic there when not on a call to service. A

community watch group utilizing the application is tasked

with providing soft patrols [7] during 9 am - 4:30 pm

in their neighborhood that is flagged as a high residential

burglary risk. Later at night, a patrol officer is paired with a

paramedic [6] in a drug overdose hotspot and positioned to

shorten EMS response time. Over longer timescales, beats

that receive a higher volume of complaints against officers

or are estimated to have higher rates of under-reporting may

be flagged for a community meeting to be held in that

neighborhood.

In this paper, we provide an overview of CDASH and

descriptions of the key components. In Section II, we

describe the architecture of the CDASH system. In Section

III, we describe a point process-based model for estimating

the risk of social harm. In Section IV, we present results

from several experiments illustrating the scalability, fault

tolerance, and accuracy of CDASH. We run a simulation

study using historical social harm event data in Indianapolis

to illustrate the potential value of the CDASH system.

We conclude the paper by indicating insights learned and

possible future directions for research on this topic.

II. SERVICE ORIENTED ARCHITECTURE OF CDASH

A. System Architecture

As shown in Figure 2, CDASH has a layered architecture

and is a distributed Web-based system accessible through

Web browsers as well as through mobile hand-held devices.

CDASH consists of four layers:

• Presentation Layer

• Middleware Layer

• Application Layer

• Database Layer

Below we describe these layers.

• Presentation Layer

The presentation layer, consists of a C#-based Web

Server (CWS), handling multiple clients and their views

simultaneously. When a client connects, the CWS

presents the latest social harm information including

the predicted hot-spots and live user feeds (if any) to

the client. Also, clients are provided with an option for

entering a new incident if they wish to do so.

For each new feed, the client is required to input cer-

tain information including the type of incident and its

location. With this, CDASH also provides an option for

fetching the location information of the client through

the client’s device accessing its location service with

the client’s permission. There are 18 different types of

incidences currently supported by the available social

harm data in the city of Indianapolis [8] and hence,

these 18 options are available in CDASH. Once the

incident information is provided as an input, the CWS

Figure 2. CDASH System Architecture.

first updates all the connected clients dynamically.

Next, it pushes the data on a Kafka topic [9] as shown

in Figure 3. The request is in the JSON (JavaScript

Object Notation) format. JSON is desirable as it is fast

and light-weight.

• Middleware Layer

The middleware layer of CDASH consists of the Kafka

Queuing System (KQS). Apache Kafka R© is a dis-

tributed streaming platform [9]. Kafka helps in building

fast, scalable, and fault tolerant applications. Kafka has

its own server that is used in managing the messages

passing through it. In CDASH, a live incident fed in

by a client is passed on to a Java-based Web Service

(JWS). In this, the CWS pushes the data on to a topic

which is listened by the JWS. Here, the CWS acts as a

data publisher while the JWS acts as a data subscriber.

• Application Layer

The application layer interacts with the presentation

layer through the middleware layer. This layer is made

of four services and is responsible for handling the busi-

ness logic of the system. As depicted in Figure 3, on

retrieving a live incident from KQS, the JWS checks for
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Figure 3. Sequence of Interactions in CDASH System.

Figure 4. Sequence of events updating the hotspot.

duplication of the reported incident by executing a cor-

relation logic, which attempts to analyze the reported

incident on the basis of its location, time and incident-

code with the events already reported to the CDASH

system. If the event correlates with any pre-existing

event in the system, all the clients are accordingly

updated by JWS. However, if the event is new and not

correlated to any previously reported incidents, the JWS

interacts with the MySQL Database Service (DS) in the

database layer to fetch the demographic information

of the harm location. The database consists of a table

including the demographic details of various locations

in Indianapolis. Some of the demographic details used

are: total population, gender-ratio, income ranges along

with literacy, unemployment and poverty rate. The

demographic information together with the user input,

is staged for the Hawkes Point Process Service (HPPS).

The HPPS is a prediction service written in Matlab that

takes as input historical incident layer and returns hot-

spot predictions. We provide details of the HPPS in

Section III.

Periodically, currently every 8 hours, to coincide

with a new police shift, the CDASH system runs a

Scheduler Service (SS) that invokes the HPPS to read

the reported crimes and predict hot-spots. The HPPS

requires sufficient amount of new data to generate

new and meaningful hot-spots and thus, an interval

of 8 hours is chosen to run it. As new hot-spots are

generated by HPPS, the SS invokes an Output Service

(OS) responsible for pushing the hot-spot information

towards the CWS as can be seen in Figure 4. The

CWS, on receiving new hot-spots, updates the map

accordingly for the clients.

• Database Layer

The database layer of CDASH, as indicated above,

consists of a MySQL Database Service (DS). As de-

scribed in the application layer of the CDASH ar-

chitecture, the database holds information related to

the demography of various locations (on the basis of

zipcodes) of Indianapolis metro. Apart from this, the

database layer also contains all the live events reported

by the users of the system. This helps CDASH in

correlating various reported incidents on the basis of the

type of incident reported, its time and location, thereby

avoiding duplications.
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B. Architectural Patterns

The CDASH system employs an implementation of the

Model-View-Controller (MVC) pattern. The CWS in the

presentation layer is the view part of the pattern. It helps in

interacting with the clients and updating them dynamically

as needed. The JWS has an Incident Controller component

that handles all the incoming feeds from the CWS through

the KQS. The HPPS, SS and DS form the model part of

the MVC pattern, holding the application logic for various

functionalities within the system. The results returned, after

the model executes, are pushed towards the CWS through

OS. Having an MVC architecture, makes the design flexible

and enhances extensibility of CDASH.

In order to make CDASH interactive, its response needs

to be in near real-time and thus, any new updates obtained

from the users of CDASH should be pushed on to all

connected users dynamically. Hence, the Observer pattern

is a perfect fit for the CDASH, where information is being

pushed towards the observers instead of a pull model that

requires a lot of polling, creating a large network traffic and

ultimately slowing down the entire application. In CDASH,

we achieve this by using the SignalR technology of C#. The

CWS includes a SignalR hub to which all the clients connect

automatically when they connect with the application. As

soon as any new update is available to the system, SignalR

recognizes it, an updated map is generated by the CWS and

pushed towards all the connected clients.

III. HAWKES PROCESS MODEL OF SOCIAL HARM

A number of algorithmic methods have been proposed for

estimating crime hotspot risk including multivariate models

[10]–[12], kernel density estimation [13]–[17] and spatio-

temporal point processes [18], [19]. While each approach

has tradeoffs, marked point processes have the advantage

that long-term intrinsic risk [19], short-term dynamic risk

[18], and periodic/seasonal trends [20] in the intensity can

be handled systematically with only event data as input. In

[4], a randomized controlled trial of point process based

predictive policing was conducted and this model will form

a starting point for our dynamic model of social harm.

A. Property Crime Hawkes Process

We first review the property crime Hawkes process (also

referred to as Epidemic Type Aftershock Sequence or ETAS)

defined in [4]. Let a spatial domain be discretized into

square cells or “boxes” in which we will estimate the rate

of crime incidents. The conditional intensity, or probabilistic

rate λn(t) of events in box n at time t is determined by,

λn(t) = µn +
∑

tin<t

θωe−ω(t−tin), (1)

where tin are the times of events in box n in the history of the

process. The ETAS model has two components, one model-

ing place-based environmental conditions that are constant

in time and the other modeling dynamic changes in risk.

Rather than modeling fixed environmental characteristics

of a hotspot explicitly using census data or locations of

crime attractors, long term hotspots are estimated from the

events themselves. In particular, the background rate µ is

a nonparametric histogram estimate of a stationary Poisson

process [21]. If over the past 365 days a grid cell has a high

crime volume, the estimate of µ will be large in that grid

cell. The size of the grid cells on which µ is defined can

be estimated by Maximum Likelihood and in general the

optimum size of the grid cell will decrease with increasing

data. However, for a fixed area flagged for patrol, a greater

number of small hotspots are more difficult to patrol than a

small number of large hotspots.

The second component of the ETAS model is the trigger-

ing kernel θωe−ωt that models “near-repeat” or “contagion”

effects in crime data. The exponential decay causes grid cells

containing recent crime events to have a higher intensity than

grid cells with fewer recent events and the same background

rate. The ETAS model estimates both long term and short

term hotspots and systematically estimates the relative con-

tribution to risk of each via Expectation-Maximization [18],

[19]. Given an initial guess for the parameters θ, µ, and ω,

the EM algorithm is applied iteratively until convergence by

alternating between the following two steps:

E-step

pijn =
θωe−ω(tjn−tin)

λn(t
j
n)

, (2)

pjn =
µn

λn(t
j
n)

, (3)

M-step

ω =

∑
n

∑
i<j p

ij
n∑

n

∑
i<j p

ij
n (t

j
n − tin)

, (4)

θ =

∑
n

∑
i<j p

ij
n∑

n

∑
j 1

, (5)

µ =

∑
n

∑
j p

j
n

T
, (6)

where T is the length of the time window of observation.

The EM algorithm can be intuitively understood by view-

ing the ETAS model as a branching process [18]. First

generation events occur according to a Poisson process with

constant rate µ. Events (from all generations) each give

birth to N direct offspring events, where N is a Poisson

random variable with parameter θ. As events occur, the rate

of crime increases locally in space, leading to a contagious

sequence of “aftershock” crimes [18] that eventually dies

out on its own, or is interrupted by police intervention; the

former occurs naturally so long as θ < 1, while the latter is

unaccounted for by the model. In the E-step, the probability

that event j is a direct offspring of event i is estimated,

along with the probability that the event was generated by
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the Poisson process µ. Given the probabilistic estimate of

the branching structure, the complete data log-likelihood is

then maximized in the M-step, providing an estimate of the

model parameters.

B. A Marked Point Process Model of Social Harm

Now suppose we have m = 1, ...,M social harm event

categories. For each event type m, we have a secondary mark

c(m) representing the average societal cost of an event of

type m. Given this cost mark, we can then define a dynamic

social harm index SIn(t) in each grid cell n as the expected

cost per unit time,

SIn(t) =
M∑

m=1

c(m)λm
n (t), (7)

where λm(t) is a point process estimated independently on

event data of type m. The dynamic social harm index can

then be used to rank hotspots over a given time interval,

where the top k hotspots are flagged for intervention. Be-

cause this type of ranking is common in hotspot analysis

and policing, a popular accuracy metric is the Predictive

Accuracy Index (PAI). The PAI is the percentage of events

captured in the top k hotspots divided by the percentage of

city area that the k hotspots comprise. In the case of social

harm, we use a modified PAI capturing the proportion of

total cost captured in the top hotspots relative to random

chance:

PAI@k =
% societal cost captured in top k hotspots

% city area covered by k hotspots
. (8)

The above mentioned model is encapsulated in CDASH

as the HPPS. In the next section, we detail how the cost

per event can be estimated and present simulation results on

applying our point process methodology to social harm data

in Indianapolis. We also describe several experiments with

the CDASH system. We focus on heterogeneity, scalability,

fault tolerance, and predictive accuracy.

IV. EXPERIMENTS AND ANALYSES

A. Heterogeneity

Heterogeneity is one of the major challenges faced by any

distributed system. We have implemented CDASH in such a

way that it can handle heterogeneity in terms of different

hardware components and network protocols. To reach a

large spectrum of proposed users of CDASH, it is made

accessible through all browsers on desktop devices and also

from mobile hand-held devices through mobile-based apps.
CDASH ensures that regardless of the device used, the

user will always be presented with the most recent view of

the global state at any time. It achieves this by updating

the views on all the connected devices dynamically as

often as needed. This, in turn, ensures that all the users

have a consistent view of the global state of current social

harm events thereby avoiding any potential confusion and

associated chaos.

Figure 5. Response Time of CWS.

Figure 6. Response Time of JWS.

B. Scalability

In our experiments, scalability is measured by observing

the relation between the number of requests and their

average execution time. We have experimented with the

scalability-related behavior of the CDASH system by im-

plementing a test module for firing multiple requests. Since

the presentation and application layers are decoupled and

work as independent units, we analyzed the execution time

for the CWS and JWS separately. The performance of the

CDASH system is shown in Figures 5 and 6. It is less

likely that there would be more than 1000 user requests

simultaneously in a real-world scenario. Hence, we have

experimented with 1000 as the upper limit on the user

requests. The average round-trip time was observed to be

in the range of 0.86 milliseconds to 1 millisecond for the

CWS while 29 milliseconds to 56 milliseconds for the JWS,

which is near real-time and acceptable with respect to the

nature of typical social harm events.

We analyzed the above response times for the CWS and

JWS separately. Firstly, with the CWS, it was observed that

the time taken was shared equally by modules that: i) fetch

the geolocation (based on user’s location). ii) update the

map’s markers and legends data to be displayed to the clients

and iii) dynamically update all the clients. Next, with the

JWS, it was observed that the overall time taken by the

JWS was divided almost equally between the JWS, DS and

other auxiliary activities (staging data for HPPS). However,

as stated above, since the presentation and application layers

are decoupled, the overall response time for a user would be

equal to that of the time taken by the CWS as the Application

layer works asynchronously in the back-end.
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C. Fault Tolerance

Failures can occur in any system. However, distributed

systems, having various distributed components working

together, are more prone to failures. In CDASH, we dealt

with the following failures:

• CWS Failure

• JWS or DS Failure

• Client Failure

Below we describe these failures.

• CWS Failure

If the CWS fails, the point of contact of the users

with CDASH is lost. Thus, any user attempting to

connect with application will be presented with an error

message displaying page not available. The only way

of dealing with these failures is restarting the CWS.

• JWS or DS Failure

CDASH is made fault tolerant towards the JWS and/or

DS failures by the KQS. Kafka helps in retaining inci-

dent details in its server while the JWS or DS is down.

The messages are retained in the Kafka server until they

are consumed and committed by the consumer. In case

of failures, the messages are not committed and hence

they are not lost. Once the failed components are up and

running, Kafka automatically redelivers the messages

thus making these components fault tolerant. Addi-

tionally, we have enhanced the fault tolerance of the

JWS by running two instances of it at any given time.

These instances are configured to operate in active-

passive mode running on two different servers. All

the requests are directed towards the primary instance

(active component). If the primary service instance is

down due to any failures, the requests are redirected

towards a secondary service instance (passive compo-

nent). The synchronization between the two instances

is configured to be handled automatically in Kafka.

• Client Failure

In the event of a client failure, any of its requests that

may have reached the CDASH system will be processed

and its effect will be seen in the generated global

state of the social harm picture. Later, if the client

reconnects, the client can see his input being reflected

on the map generated by the CDASH system.

D. CDASH Accuracy Analysis

In order to assess the accuracy of the CDASH system, we

run a historical simulation of the system in Indianapolis. The

data we use includes all crime, drug overdose, and vehicle

crash data for years 2012-2013 that were provided electron-

ically from the appropriate government agency and included

time and data stamp as well as state-plane coordinates for

each incident that were converted to WGS84 coordinates.

Social harm weights are derived from established crime,

drug, and vehicle crash cost estimation studies. Costs for

homicide, rape, robbery, aggravated assault, arson, motor

vehicle theft, residential burglary, larceny, embezzlement,

forgery, fraud, and vandalism were gleaned from estimates

of crime costs to society [22]. Vehicle crashes resulting

from drugs or alcohol, simple assault, and driving while

impaired costs were derived from monetary estimates of

crime prevention [23]. Lastly, cost estimates based on per-

incident occurrences in the United States were utilized for

suicide attempts [24], vehicle crashes not related to drugs or

alcohol [25], and drug overdoses [26]. Each of these latter

three estimates were calculated by dividing the total annual

costs for each incident type by the total number of each

incident in a given year. In Table I, we provide summary

statistics for Indianapolis social harm including the volume

of incidents over 2012 and 2013, the estimated cost per

event to society, and the total cost over the two year period

attributed to each event category.

We first train the model on a 100x100 grid using Indi-

anapolis social harm data from 2012. We assume that police

have fixed resources and can patrol k hotspots each day

(see Figure 7). We also assume that if a hotspot is patrolled,

then all events are prevented from occurring on that day

(an alternative choice would be to allow for a percentage

reduction that varies with event category).

Then for each day t in 2013, the simulation proceeds as

follows:

• Estimate the expected cost SIn(t) as in Equation 7 for

each grid cell.

• Rank the grid cells in decreasing order according to

expected cost SIn(t).
• Flag the top k grid cells for directed patrol on the next

day t+ 1.

• On day t + 1 record the number of events prevented

and the cost associated with those events.

Figure 7. Example CDASH hotspots in Indianapolis.
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Table I
SUMMARY STATISTICS FOR INDIANAPOLIS SOCIAL HARM 2012 & 2013

Type Count Cost/Event Total

Suicide Attempt 134 $5,251 $703,634
DWI Arrest 3546 $500 $1,773,000
Forgery 481 $5,265 $2,532,465
Embezzlement 876 $5,480 $4,800,480
Arson 723 $16,428 $11,877,444
Drug Overdose 4112 $3,922 $16,127,264
Rape 1160 $41,247 $47,846,520
Vehicle Crash Drug/Alcohol 1610 $30,000 $48,300,000
Fraud 11371 $5,032 $57,218,872
Vandalism 13641 $4,860 $66,295,260
Motor Vehicle Theft 9081 $10,534 $95,659,254
Residential Burglary 21468 $6,170 $132,457,560
Robbery 6386 $21,398 $136,647,628
Larceny 53241 $3,523 $187,568,043
Aggravated Assault 11797 $19,537 $230,477,989
Homicide 220 $1,278,424 $281,253,280
Vehicle Crash No Influence 40718 $7,864 $320,206,352
Simple Assault 30802 $11,000 $338,822,000
Total 211367 $1,980,567,045

• Repeat for each day in 2013.

We compare our proposed social harm Hawkes process,

equation 7, with a property crime Hawkes process [4]

and a static harm index [5] using the outlined simulation

methodology. In Figure 8, we show the PAI of each method

as a function of the fraction of the city flagged for patrol each

day in the simulation. Note that a PAI of 1 corresponds to

random patrol and all methods perform better than random.

Also, PAI values tend to decrease as a larger portion of

the city is patrolled, because lower risk cells contain less

crime and police interventions have a lesser impact in these

areas. The social harm Hawkes process performs the best

out of all methods, achieving a PAI of 15 when 50 hotspots

are selected each day (comprising 0.5% of the city). In the

lower figure we plot the fraction of social harm captured as a

function of the fraction of the city patrolled in the simulation.

We note that almost $ 200 million (20%) of the social harm

cost to Indianapolis in 2013 is captured in 2% of space-time.

The top 10% of space-time contains over half of all social

harm cost.

V. DISCUSSION

We introduced CDASH, a system for i) collecting het-

erogeneous social harm data, ii) modeling space-time social

harm risk, and iii) communicating risk to community stake-

holders for the allocation of resources. We ran a simulation

study using historical data from Indianapolis illustrating the

potential impact such a system could have on social harm

prevention. Our method captures 20% of social harm cost in

2% of space-time, compared to current social harm indices

and predictive policing models of property crime that capture

5-15%.

Future work will focus on several directions. We envision

implementing the principles of role-based access control (to
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Figure 8. PAI vs. fraction of city selected for patrol (top) and fraction
of cost captured in top k hotspots vs. fraction of city selected for patrol
(bottom).

provide different privileges and different views to different

participants in this effort), and incorporating different trust

models associated with different interactions between the

users of the system. In addition, while conducting the

experiments, we realized that to solve or prevent social

harm, civic bodies must create a temporary network and

collaborate quickly. This fits in the structure of Virtual

Organizations. We will be focusing on building over the con-

cept of Information Technology-based virtual organizations

which help decentralized working units in collaborating and

coordinating activities.

In terms of predictive modeling of social harm, machine

learning and multivariate statistical models may improve

upon the predictive accuracy of CDASH and will allow for

the incorporation of more data streams (weather data, city

sensor data, GIS data, etc). Ultimately these systems need to

be tested in field trials to determine what types of tasks are

feasible, how can information best be communicated through

the application, and what is the impact of interventions on

reducing social harm.
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