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Abstract—Data collection is a crucial operation of wireless
sensor networks. The design of data collection schemes is
challenging due to the limited energy supply and the hot
spot problem. Leveraging empirical observations that sensory
data possesses strong spatiotemporal compressibility, this paper
introduces a novel compressive data collection scheme for wireless
sensor networks. We adopt a power-law decaying data model
verified by real data sets and propose a random projection-
based estimation algorithm for this data model. Our scheme
requires fewer measurements, even fewer number of sensor
readings in each measurement, thus greatly reduces the energy
consumption without introducing much computation and control
overheads. Analytically, we prove that it provides the same order
of estimation error with the optimal approximation. Evaluations
on real data sets (from the GreenOrbs, IntelLab and NBDC-CTD
projects) shows that compared with existing approaches, this new
scheme almost doubles the network lifetime for estimation error
within 20%.

I. INTRODUCTION

A crucial operation of wireless sensor networks (WSNs)
[1] is to perform data collection [2], where sensor readings
are collected from sensor nodes. Various applications rely on
efficient data collection, such as battlefield surveillance [3],
habitat monitoring [4], infrastructure monitoring [5] [6], and
environmental monitoring [7][8].

A primary challenge faced by the design of data collection
is in prolonging the network lifetime. First of all, each sensor
node, being a micro-electronic device, can only be equipped
with a limited power source while in many applications
recharging is impractical. Thus, a WSN can only support lim-
ited traffic load. Even worse, the data information that a WSN
can effectively transport might be even less since the network
capacity decreases as the number of nodes increases [9]. More-
over, the many-to-one traffic pattern called convergecast [10],
of data collection induces load unbalancing. It leads to the hot
spot problem, i.e., the sensor nodes closer to the sink node will
soon run out of energy and the network lifetime of WSNs will
be significantly shortened. Furthermore, the unreliability of
low-power wireless communication and the limited computa-
tional ability of sensor nodes make the design of effective and
efficient data collection schemes even more challenging. As
WSNs adopt low-power wireless communication, packet loss
is a common problem [11][12]. Thus, transporting the sensor
readings from sensor nodes to the sink requires significant
efforts. On the other hand, sensor nodes can only support

simple computing tasks, therefore the preprocessing or in-
network processing of data collection schemes should take this
hardware constraint into consideration.

Existing solutions have limitations and thus are unsatis-
factory. Generally, data collection in WSNs follows two ap-
proaches: raw-data collection and aggregated-data collection.
As WSNs are typically composed of hundreds to thousands of
sensor nodes, generating tremendous amount of sensory data,
raw-data collection is usually rather inefficient. Aggregated-
data collection takes advantage of the correlations (or com-
pressibility) within sensory data to reduce the communication
cost. More specifically, in-network data compression [13] is
adopted to reduce global traffic, such as distributed source
coding [14][15] or transform coding [16][17]. However, they
may incur significant computation and control overheads that
are not suitable for WSNs.

The compressive data gathering (CDG) [18] exploits com-
pressive sensing to reduce global scale communication cost
without introducing intensive computation or complicated
transmission control overheads while also achieving load bal-
ancing. However, it assumes that the routing tree is fixed and
perfectly reliable. Although in simulation it behaves well, the
practical performance is unsatisfactory.

Main Contributions: In this paper, we propose a novel com-
pressive data collection scheme for wireless sensor networks.
Firstly, based on three data sets, i.e., GreenOrbs [19] (mountain
data), IntelLab [20] (indoor data) and NBDC-CTD [21] (ocean
data), we reveal that there exists strong compressibility in
these data sets and identify that the “power-law decaying”
data model fits well for sensor network data. Secondly, an
opportunistic routing is adapted to compress the sensory data
“on the fly”, i.e., compressing the sensor reading of a newly
encountered node while the packets are forwarded back to the
sink. Thirdly, we model the opportunistic routing as a Markov
chain and calculate the compression probability of each sensor
node. Fourthly, by regarding the random linear compression
as nonuniform sparse random projections (NSRP) [22][23],
we prove that NSRP-based estimator guarantees optimal error
bound for the power-law decaying data model. Finally, based
on real sensor data sets, we evaluate our scheme which
prolongs the network lifetime by 1.5× to 2× for estimation
error within 20%, compared with the baseline scheme and the
CDG [18] scheme.
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The reminder of the paper is organized as follows. In Sec-
tion II, we present our empirical observation on real sensory
data sets. In Section III, network models, a compressible data
model with “fitness” verification and the design overview are
described. We introduce the major design of our scheme in
Section IV. Evaluation results are presented in Section V.
Related work is discussed in Section VI, while we conclude
in Section VII.

II. OBSERVATIONS

The spatiotemporal correlation among the sensory data is
a significant and unique characteristic of WSNs which can
be exploited to dramatically enhance the overall network
performance. To the best of our knowledge, we are the first
to quantitatively investigate this kind of “compressibility”
using the concepts of spatiotemporal marginal and conditional
entropy.

Entropy measures the information contained in the data
sets. The difference between spatial marginal entropy and
conditional entropy measures the compression space one can
exploit by jointly compressing data across nearby sensors,
while the temporal counterpart measures the compression
space by jointly compressing data across sequential slots.

A. Data Sets

We extract three matrix subsets from the GreenOrbs [19],
IntelLab [20] and NBDC-CTD [21] projects which are de-
ployed in mountain, indoor and ocean environment, respec-
tively. Their properties are summarized in Table I.

The monitoring period is evenly divided into T time slots,
denoted as {0, 1, ..., t, ..., T − 1}. A record at the sensor
node includes the reading, node ID, position (longitude and
latitude), and time stamp. The format of a record is:

Record: reading ID position time stamp

Let Ui,t denote the reading of the i-th node at slot t, it may
be temperature, humidity, illumination, etc. Then, a physical
condition (e.g., temperature) can be represented by a data
matrix:

U =

 U0,0 ... U0,t ... U0,T−1

U1,0 ... U1,t ... U1,T−1

... ... ... ...
Un−1,0 ... Un−1,t ... Un−1,T−1

 (1)

where the i-th row is the i-th node’s reading sequence, and
the t-th column is the whole network’s readings at slot t.

B. Marginal Entropy and Conditional Entropy

Discretization: Since the sensory readings have real values,
we discretize them in the following way:

• Get the range [Umin, Umax] of U;
• Divide this range into Q equal sections {s1, ..., sk, ..., sQ}

with each being called a sensing state, where Q is set by
the user.

• Construct a state matrix Sn×T for U.
Temporal Marginal Entropy: The temporal marginal en-

tropy is the entropy of a node’s state sequence. Let σk denote

the occurrence frequency of state sk in the i-th row Si, we
have the probability P (sk) of each state and then the marginal
entropy H(Si) as:

P (sk) = lim
T→∞

σk

T

H(Si) = −
Q−1∑
k=0

P (sk) · log2P (sk)
(2)

Temporal Conditional Entropy: The temporal conditional
entropy is defined as the entropy of Si,t when its immediately
previous state Si,t−1 is known, as:

H(Si,t|Si,t−1) = H(Si,t, Si,t−1)−H(Si,t−1). (3)

where H(Si,t, Si,t−1) is the joint entropy of two consecutive
sensing states (Si,t, Si,t−1). Therefore, we have n temporal
marginal and conditional entropy. Similarly, one can compute
the k-th order temporal conditional entropy of Si,t given its
previous k states Si,t−k, ..., Si,t−2, Si,t−1.

Spatial Marginal and Conditional Entropy: The spatial
marginal entropy is the entropy of n nodes’ sensing states at
time slot t. Let σk denote the occurrence frequency of state sk
in the t-th column St, then P (sk) and H(St) can be computed
similarly as in Eqn.(2).

Let the j-th node be the i-th node’s nearest neighbor. The
spatial conditional entropy is defined as the entropy of Si,t

when the jth node’s sensing state Sj,t is known, computed as:

H(Si,t|Sj,t) = H(Si,t, Sj,t)−H(Sj,t). (4)

where H(Si,t, Sj,t) is the joint entropy of two nearby nodes’
sensing states (Si,t, Sj,t). Therefore, we can have n spatial
marginal and conditional entropy. Similarly, one can compute
the k-th order spatial conditional entropy of Si,t given its k
nearest neighbors’ states.

C. Spatiotemporal Compressibility

Here, we present the observations for temperature as a
representative since all three data sets contain this physical
condition. Similar results also hold for other conditions.

The cumulative distribution functions (CDFs) of tempo-
ral/spatial marginal entropy and conditional entropy are pre-
sented in Fig.1(a) and Fig.1(b). The marginal entropy of both
cases is quite small, namely 5 ∼ 8 bits, indicating that it is
not an efficient way to use the double type variable (64 bits)
to store sensor readings as ≈ 90% of them are wasted.

We use 1st order conditional entropy. For large order
conditional entropy, the compression space will enlarge. For
Fig.1(a), temporal conditional entropy is significantly smaller
than the corresponding marginal entropy. Therefore the storage
length can be greatly reduced by compressing a sensor’s
readings together with its previous readings. The temporal
compressibility for GreenOrbs is weaker than that of the
other two, possible reasons are: (1) the mountain region is
much more variant; (2) the temperature in mountain region
is more sensitive due to shielding effects caused by trees.
From Fig.1(b), we know that the needed length can be greatly
reduced by compressing a sensor’s readings with its nearest
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TABLE I
DATA SETS FOR THE COMPRESSIBILITY CHARACTERIZATION.

Name Environment Time period Physical conditions Matrix subset size Time interval
GreenOrbs [19] Forest Aug.03 ∼ 05, 2011 Temperature, light, humidity 326 nodes × 750 intervals 5 minutes
IntelLab [20] Indoor Feb.28 ∼ Apr.5, 2004 Temperature, light, humidity 54 nodes × 500 intervals 30 seconds

NBDC CTD [21] Pacific Ocean Oct.26 ∼ 28, 2012 Temperature, salt, conductivity 216 nodes × 300 intervals 10 minutes
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(a) Temporal compressibility
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(b) Spatial compressibility

Fig. 1. The spatiotemporal compressibility of temperature. G, I,N stands for the GreenOrbs,
IntelLab and NBDC-CTD data sets, K = 0 stands for marginal entropy while K = 1 for 1st-order
conditional entropy.
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Fig. 2. The log-log scaled graph for temperature in
the GreenOrbs, IntelLab, NBDC-CTD data sets. |θ|(i)
denotes the i-th Fourier coefficient’s magnitude, ordered
in the decreasing manner.

neighbors’ readings. Note that, the spatial regularity between
nearby nodes is similar in indoor and mountain regions, while
in ocean environment it is much stronger.

III. SYSTEM MODEL AND DESIGN OVERVIEW

A. Network Model

Consider a wireless sensor network consisted of n sensor
nodes and one sink. Sensor nodes are distributed in the target
field to sense the physical conditions and report sensory
data back to the sink through multi-hop transmissions. At
the beginning, each sensor node generates a TOKEN with
probability p. In expectation, there are L = np TOKENs
distributed across the WSN.

Notations: U refers to either the data matrix or vector
depending on the context, throughput the paper, N = n× T ,
UT is the transpose of matrix/vector U , |θ| denotes the
magnitude of coefficient θ, ∥U∥2 is the normal of vector U ,
Ψ denotes the transform basis. A packet at the sink is called
a measurement throughout the paper.

B. Data Model

We consider a data vector U ∈ RN×1 (with N = n × T ),
and fix an orthonormal transform Ψ = [Ψ1,Ψ2, ...,ΨN ] ∈
RN×N . Ψ can be a wavelet or a Fourier transform basis. The
coefficient vector θ = [UT Ψ1, U

T Ψ2, ..., U
T ΨN ]T can be

ordered decreasingly in terms of magnitude, such that |θ|(1) ≥
|θ|(2) ≥ ... ≥ |θ|(N).

Power-law Decaying Data Model: The coefficients’ magni-
tude decays according to the power law [23][24][25], i.e., the
i-th largest coefficient satisfies

|θ|(i) ≤ Ci−1/ϖ, i = 1, 2, ..., n (5)

where C is a constant and −1/ϖ controls the compressibility
of the data, i.e., larger −1/ϖ implies faster decaying.

TABLE II
COMPRESSIBILITY PARAMETER −1/ϖ OF OUR DATA SETS.

Data name −1/ϖ 95% confidence bound
IntelLab temperature −0.3609 [−0.3624,−0.3595]
IntelLab light −0.7717 [−0.7757,−0.7677]
IntelLab humidity. −0.2326 [−0.2342,−0.2310]
GreenOrbs temperature −0.8218 [−0.8265,−0.8171]
GreenOrbs light −0.5545 [−0.5565,−0.5525]
GreenOrbs humidity. −0.6622 [−0.6641,−0.6604]
NBDC-CTD temperature −0.9797 [−0.9830,−0.9763]
NBDC-CTD salt −0.8363 [−0.8380,−0.8346]
NBDC-CTD conductivity. −0.8393 [−0.8411,−0.8376]

Optimal Approximation: The best K-term approximation
is the optimal approximation for the power-law decaying
data [23][24][25], i.e., keeping the largest K coefficients and
setting the others to be zero. The optimal estimation error
bound is:

∥U − Ûopt∥22 = ∥θ − θ̂opt∥22 = ηϖ∥U∥22 (6)

where ηϖ is a constant that only depends on −1/ϖ.
We verify this data model by investigating the Fourier

coefficients of these three data sets drawn in a log-log scaled
graph, as shown in Fig.2. For coefficients decaying as in
Eqn.(5), the magnitude and the rank is line with slop −1/ϖ.
From Fig.2, we can see that the linear relation holds. Using
the maximum likelihood estimation method [34], we measure
the “compressibility” of each physical condition, as listed in
Table II.

C. Design Overview

The framework of our scheme is presented in Fig.3. It
has two major components: an opportunistic routing and an
estimator. The opportunistic routing is responsible for data
compression and packet relaying. By modeling it as a Markov
chain, the compression probability of each node can be esti-
mated. A maximum likelihood estimation problem is set up
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Fig. 3. The framework of the compressive data collection scheme.

for estimating the compression probability. Then, we prove
that nonuniform sparse random projection (NSRP) preserves
the inner product of two vectors and apply this property to
design a simple but quite accurate estimator which guarantees
the optimal error bound.

The compressive data collection scheme works in the fol-
lowing way:

• Data U is stored in sensor nodes, with θ = UT V .
• Each node with a TOKEN transmits one packet back to

the sink.
• The packets are relayed according to the opportunistic

routing. Compresion is performed at each new encoun-
tered node.

• At the sink, the compression process is modelled as
YL×1 = WL×NUN×1, projecting the basis V by M to
get V ′. Then, θ̂ = Y T V ′ is an estimation of θ.

• Finally, Û = (θ̂V −1)T , where V −1 is the inverse of V .
Key Issue: The equation θ̂ = Y T V ′ is possible only when

L ≥ N , which is not energy efficient as it equals to transmit
N packets with each packet containing one reading. In the
following we will show how to exploit the compressibility of
the data vector U by designing an estimation algorithm for the
case L ≪ N .

IV. DESIGN

A. Opportunistic Routing with Compression

The opportunistic routing has two parts: packet forwarding
and data compression. We first define a data collection path
Pl, and then the compression process of the l-th packet along
this path.

Packet Forwarding: For node si, we define a nearer neigh-
bor set N (i) = {j|d(j, sink) ≤ d(i, sink) & d(i, j) ≤ Rc}
where Rc is the communication range. When a packet arrives
at node si, si compresses its sensory reading into the packet
and then sends it out according to the opportunistic routing
[26][27][28], i.e., passing on the packet to one of its nearer
neighbors sj ∈ N (i).

Data Collection Path: The trajectory of the l-th packet from
a source node to the sink is called a data collection path,
denoted as:

Pl = ⟨p0, p1, ..., pρl⟩ (7)

with pρl
= sink, i.e., the packet travels across ρl sensor nodes

before it reaches the sink node.
Since opportunistic routing is adopted, the data collection

paths are dynamic. It will bring about good features: energy

Fig. 4. (a) Along Pl, the packet adds or subtracts the sensor reading of
a newly encountered node. (b) The left process is modelled as: a sampling
process f(·) randomly selects a subset of sensor readings, and a compression
process sums them up with random coefficients chosen from the set {−1,+1}
to get one measurement.

balancing and security, as this non-deterministic data collec-
tion path will mitigate the attacks on the routing path and
balance the energy consumption.

Data Compression: As the packet travels towards the sink,
the compression scheme linearly compresses the sensor read-
ing of a newly encountered node with a random coefficient ri,
as shown in Fig.4(a). The format of the data packet is:

Packet: value ID list coefficient list time stamp list

Let ui (i = 0, 1, ..., ρl − 1) be the reading of the i-th
node along path Pl. The data compression is performed as
following:
Step 1: A node with the l-th TOKEN becomes node p0 of Pl. It
generates a packet containing data y0 = ±u0, then transmits
the packet to one of its nearer neighbors according to the
opportunistic routing.
Step 2: The packet arrives at sensor si, sensor si
adds/substracts the data with probability 1/2 as:

yi = yi−1 + riui (8)

Sensor ID, the coefficient and the current time slot is added to
the packet’s header. Then si transmits it to one of its neighbors
closer to the sink according to the opportunistic routing.
Step 3: The encoding process continues along path Pl until
the packet reaches the sink.

From the proof of Lemma. 1 (in Section IV. B), we know
that the random coefficients ri can be real values in [−1, 1]
or chosen from {−1,+1}. We use the set {−1,+1} because
the nodes will only perform addition or substraction.

In the end of the data compression process, L = np packets
are collected by the sink. Next, we consider the sink’s strategy
to estimate the sensor readings using the collected packets.

B. Problem Formulation for Estimation

Traditional Compressive Sensing Approach: In traditional
compressive sensing approach [18][29][30], the sink establish-
es the following equations:

YL×1 = AL×NUN×1 (9)

where A is an matrix with elements corresponding to ri in
Eqn.(8). The sink can extract A from the collected packets’
headers.
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Assuming that data U is sparse. To be exact, there exists a
transform basis VN×N under which UN×1 can be represented
using K ≪ n nonzero coefficients. Compressive sensing (CS)
[31][32] claims that, with probability at least 1 − N−γ (γ is
set to be large), U can be reconstructed exactly as the solution
to the following ℓ1-minimization problem, i.e., U = (θ̂V −1)T

where

θ̂ = min
θ

N∑
i=1

|θi|, s.t. YL×1 = AL×NUN×1

with L = O(Kµ2
(A,V )log

N

K
), µ(A,V ) = max

1≤i,j≤N
|AT

i Vj |
(10)

Compressive sensing suggests to compress WSNs’ data
as in [17][18]. Compressive sensing allows to use convex
optimization to estimate sensory readings under the condition
of the RIP property [31][32], i.e., to decouple the matrix A
and the basis V in order to have small value of µ. However,
the RIP property does not hold for the above opportunistic
routing, which postponed its utilization [30][33].

Problem Formulation: We take another approach by regard-
ing the compression process as nonuniform sparse random
projections (shown in Fig.4(b)), modeled as two mutually
independent processes nonuniform sampling process f(·) and
linear encoding A as:

f(Uj) =

{
Uj , prob. πj

0, prob. 1− πj
, Aij =

{
1, prob. 1

2
,

−1, prob. 1
2
.

(11)

where πj ̸= 0, j ∈ 1, 2, ..., N corresponds to the chance of
Uj being compressed in the collected packets. Thus, we model
the compression scheme as:

YL×1 = AL×Nf(UN×1) (12)

Our problem becomes:

θ̂ = min
θ

∥U − Û∥22
s.t. YL×1 = AL×Nf(UN×1)

where Û = (θ̂V −1)T .

(13)

The above opportunistic routing provides load balancing in
the cost of nonuniform compression probability of each node.
This leads to the failure of the traditional compressive sensing
approach. We will introduce a new estimation algorithm in
Section IV.E with the information of compression probability
of each node. In the next subsection, we show how to estimate
the compression probability.

C. Compression Probability Estimation

Modeling the Opportunistic Routing as a Markov Chain:
The packet forwarding according to the opportunistic routing
can be modeled as a Markov Chain: the states are the nodes,
the forwarding probability constitutes the transition probability
matrix whose entry specifies the probability that a packet is
transmitted from one node to one of its neighbors. First, we
estimate the transition matrix P based on the “incomplete
observation” version of maximum likelihood estimation. Once
the transition matrix P is known, the compression probability
π can be derived.

The Incomplete Observation Problem: For every pair of
nodes, assume that there is a transition link and this link has
two states: ON and OFF. If we can obtain the complete obser-
vation of all links’ state in every time slot, then the estimation
of the transition matrix is to maximize the log-likelihood of
the posterior probability, i.e., log P ((P1, P2, ...PL)|P ) with
(P1, P2, ...PL) denotes the data collection paths of the L
collected packets. Maximum likelihood estimation (MLE) is
the most used routine to solve this problem [34].

However, the observation of a transition link’s state is to
try a “packet-transmitting test”, which is not practical. Fur-
thermore, as our data collection aims to minimize the number
of packets transmitted, the data collection paths recorded in
headers of the collected packets are “incomplete” or under-
sampled. Therefore, the traditional MLE scheme can not be
used here.

MLE with Incomplete Observation: Here, we adopt an
“incomplete observation” version of MLE proposed in [35].
Let Oijt denote the number of observed transition from node
si to node sj occurring over t time slots and (P t)ij the ij-
th element of the matrix P t (the probability of a packet in
node si arrives at node sj after t time slots), this new MLE
is defined as:

P̂ = max
P

log P ((P1, P2, ...PL)|P )

= max
P

∑
i

∑
j

∑
t

Oijtlog(P
t)ij .

(14)

A Expectation Maximization Algorithm is proposed to solve
the above maximization problem. Refer to [35] for details and
[36] for MATLAB codes.

Estimation of the Compression Probability π: The com-
pression probability closely relates with the Markov chain-like
occurrence, except that we should only count one time if the
packet stay at a node waiting for transmission. The estimation
algorithm is described as following:
Step 1: Set the initial probability π0 = {L/n,L/n, ...., L/n};
Step 2: Obtain P̄ by setting the diagonal element of P to zero;
Step 3: Calculate the expected occurrence frequency of nodes
in data collection paths after T time slots as:

Oi(T ) =
T−1∑
i=0

π0P̄
i; (15)

Step 4: Average the occurrence frequency among the expected
number of packets

∑
π0, (this can be regarded as a normal-

ization), therefore we get the probability distribution

πi =
Oi(T )∑

π0
=

T−1∑
i=0

π0P̄
i∑

π0
, (16)

where the summation and division above are a element-wise
operation on row vectors.

D. Nonuniform Sparse Random Projection

Eqn.(12) equals to the following linear equations:

YL×1 = WL×NUN×1 (17)
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Wij =

+1, prob. 1
2
πj

0, prob. 1− πj

−1, prob. 1
2
πj

(18)

Sparse and nonuniform raise from the fact that the op-
portunistic routing will neither pass all sensor nodes nor
with equal probability, which is the case for most existing
routings. Sparse allows the collected packets to compress
sensor readings from a random selected subset, while tradi-
tional compressive sensing approaches require to compress all
sensory readings together or the subset are randomly selected
with equal probability [17][18].

Correspondingly, we construct a projection matrix M ∈
RL×N (where L ≪ N ) containing entries

Mij =
1

πj


+1, if Wij = +1

0, if Wij = 0

−1, if Wij = −1

(19)

The entries within each row are mutual-independent, while
the entries across different rows are fully independent. In
expectation, each row contains

∑n
j=1 πj nonzero elements,

i.e., there are on average
∑n

j=1 πj sensor readings compressed
in one collected packet.

Next, we prove that with high probability, nonuniform
sparse random projections preserve inner products with pre-
dictable error in Lemma 1. Therefore, using only their random
projections, we are able to estimate the inner product of two
vectors. Please refer to the appendix for the detailed proof.

Lemma 1 For any vectors U, V ∈ RN×1, and W,M ∈
RL×N in Eqn.(18)(19). The random projections Y =
1√
L
WU, V ′ = 1√

L
MV , with the expectation and variance

satisfying:
E[Y T V ′] = UT V (20)

V ar(Y T V ′) ≤ 1

L
((UT V )2 + ξ∥U∥22 · ∥V ∥22

+ (κ− 2− ξ)

N∑
j=1

U2
j V

2
j )

(21)

where ξ = max( πl

πm
), κ = 1

min(π) denote the degree of
nonuniform and the expected times to sample the “rarest”
node, respectively.

E. NSRP-based Estimator

The intuition for our estimator design is that nonuniform
sparse random projections preserve inner products within a
small error. Hence we can use random linear measurements
Y = WU of the original data, and random linear projections
V ′ = MV of the orthonormal basis, to estimate the coeffi-
cients vector θ.

The estimator works in the following way:
Step 1: Extract from the collected packets’ headers to get
WL×N and YL×1, then construct the projection matrix M .
Step 2: Set L1 = C1

1+ξ+κH2

ϵ2 and L2 = C2(1 + γ) logN
such that L = L1L2;
Step 3: Partition YL×1 into L2 column vectors

{Y1, Y2, ..., YL2} with each of size L1 × 1, partition M into
{M1,M2, ...,ML2} with each of size L1 × N , then project
the basis V to get {V ′

1 = 1√
L1

M1V, · · · , V ′
L2

= 1√
L1

ML2V };
Step 4: Compute ζl = Y T

l V ′
l , l = 1, 2, · · · , L2. Set each

element of θ̂ as the median value of each column vector
ζ1, ..., ζL2 ;
Step 5: Keep the K largest coefficient in θ̂ and set the
remaining to zero;
Step 6: Return Û = (θ̂V −1)T .

The following two theorems holds for the above estimator,
please refer to the appendix for the detailed proof.

Theorem 1 For data vector U ∈ RN×1 satisfying

∥U∥∞
∥U∥2

≤ H. (22)

Let V = {V1, ..., VN} be the transform basis with each
vector RN×1, W,M ∈ RL×N as in Eqn.(18)(19) with the
compression probability π, L ={

O( 1+γ
ϵ2

(ξ + κH2)logn), if (ξ + κH2) > Ω(1)

O( 1+γ
ϵ2

logn), if (ξ + κH2) ≤ O(1)
(23)

Then, with probability at least 1−N−γ , the random projection-
s Y = 1√

L
WU and V ′

i = 1√
L
MVi can produce an estimate

θ̂i for UT Vi (Step 4 in the above estimator), satisfying

|θ̂i − UT Vi| ≤ ϵ∥U∥22 · ∥Vi∥22 (24)

for all i = 1, 2, ..., N .

Theorem 2 Suppose data U ∈ RN×1 satisfies condition (22),
W,M ∈ RL×N in Eqn.(18)(19) with probability distribution
π, and L ={
O
(

1+γ
ϵ2η2 (ξ + κH2)K2logn

)
, if (ξ + κH2) ≥ Ω(1)

O( 1+γ
ϵ2η2K

2logn), if (ξ + κH2) ≤ O(1).
(25)

Let Y = 1√
L
WU , consider an orthonormal transform Ψ ∈

RL×N and the corresponding transform coefficients θ = ΨU .
If the K largest transform coefficients in magnitude gives an
approximation with error ∥U − Ûopt∥ ≤ η∥U∥22, then given
only Y,W,M and Ψ, one can produce an estimate Û with
error

∥U − Û∥ ≤ (1 + ϵ)η∥U∥22 (26)

with probability at lest 1−N−γ .

For the above estimator, Theorem. 1 states that with high
probability, the nonuniform sparse random projections of data
vector and any projected basis vector can produce estimates of
their inner products within a small error. Thus we can use the
random projections of the data and the set of orthonormal basis
to estimate the corresponding transform coefficients of the
data. Theorem. 2 shows that with high probability, nonuniform
sparse random projections can approximate compressible data
with error comparable to the optimal approximation. Thus,
with high probability, the above estimator produces an estimate
of the original data within a small error.
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Fig. 5. The estimation error for Basline, CDG, and CDC in the GreenOrbs, IntelLab and NBDC-CTD projects.
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Fig. 6. The delay for Basline, CDG, and CDC in the GreenOrbs, IntelLab and NBDC-CTD projects.
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Fig. 7. The network lifetime for Basline, CDG, and CDC in the GreenOrbs, IntelLab and NBDC-CTD projects.

V. EVALUATION

A. Experiment Settings

Sensory Data: The GreenOrbs [19], IntelLab [20] and
NBDC-CTD [21] projects provide us the sensory data sets
as described in Table. I. The WSNs continuously generate
sensory readings from these data matrices in each slot.

Network Topology: Nodes’ positions in these three WSNs
are also provided. For GreenOrbs, the actual network topology
can be reconstructed based on the neighbor set of each node.
For IntelLab and NBDC-CTD, since such information is
absent, we set the communication range to be 6.5m (indoor)
and 180m (ocean) respectively, which ensures the network
connectivity.

B. Compared Algorithms

Baseline: Packets are transmitted back to the sink along the
shortest path. Then the sink applies the k-Nearest Neighbors

(KNN) [38] method to estimate the readings, i.e., by aver-
aging the k-nearest neighbors’ values. Both the routing and
estimation are the most basic ones, therefore we use it as the
baseline algorithm.

CDG (MobiCom’09): The CDG scheme compresses all
sensor readings together in each collected packet. It uses the
following tree-based routing: a node waits for all its children’s
packets, performs random liner compression, and then sends
the packet to its parent node. The estimation uses the convex
optimization method of traditional compressive sensing theory.
It is a bit different from [18] as the link quality is not
perfectly reliable, because we allow the transmission to fail
and introduce the retransmission mechanism.

CDC: The CDC scheme is described in Section IV. More
accurate link quality model will lead to more realistic sim-
ulation results. The RSSI value is the best indicator for link
quality. However, this information may not be always known to
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the network protocol designer, then the distance will serve an
acceptable choice. We adopt the following link quality models
of the opportunistic routing for simulation:

• The RSSI value between two neighbor nodes is given for
the GreenOrbs project, we use a RSSI-LinkQuality model
[26] to control the successful probability of transmitting
a packet.

• For the IntelLab and NBDC-CTD projects such informa-
tion is absent, we use a Distance-LinkQuality model [27]
instead based the Euclidean distance to the sink.

C. Metrics

Based on the network topology and sensory data sets of
these three wireless sensor networks, we run the above three
schemes 10 times. For the baseline algorithm and the CDC
scheme, we vary the probability p of generating TOKENs to
get different number of random measurements. For equality,
the CDG scheme will collect accordingly the same number of
random measurements.

Estimation Error: Each algorithm estimates a Û for the
original data U . The estimation error is defined as:

e =
∥U − Û∥2

∥Û∥2
(27)

Delay: The data collection delay is defined as the time when
the last packet arrives at the sink, which is measured in terms
of the number of slots.

Network Lifetime: The energy consumption is set according
to the energy consumption model [39]. At the beginning, each
node have initial energy of 1, 000, 000 units which can support
the sensor node to run about a month. The network lifetime
is defined as the time when the first node runs out of energy,
which is also measured in terms of the number of slots.

D. Results

From Fig. 5(a)(b)(c), CDG and CDC perform much better
than the baseline algorithm and can reach error as low as 5%.
This is because they both exploit the compressibility nature of
the sensor readings and use random compression techniques.
However, CDG behaves better in situations where less num-
ber of packets are collected. Possibly, less collected packets
means: (1) stronger nonuniform nature of the compression
probability, or (2) less observations of the routing process,
then less accurate of probability estimation in Section IV.C.

From Fig. 6(a)(b)(c), it is quite unexpected that the delay of
the CDG scheme is several or even hundreds of times longer
than the other two. We analyze the possible reasons behind
this case: CDG tries to encode every node’s packets, and a
parent node has to wait for all its children’s packets before
transmitting the compressed packet to its own parent node.
Because the network size of the IntelLab project is smaller,
the delay performance is closer for these three schemes.
The baseline algorithm exhibits a good, stable, and moderate
growth in delay since it used the shortest path routing. The
CDC’s routing strategy is quite similar with the baseline
scheme, therefore it experiences quite similar performance.

From Fig. 7(a)(b)(c), we find that our scheme has the best
performance. For estimation error within 20%, CDC prolongs
the network lifetime by 1.5× ∼ 2×. This is because that CDC
requires fewer measurements, even fewer number of sensory
readings in each measurement, thus greatly reduces the energy
consumption.

VI. RELATED WORK

Energy conservation [40] is an import issue in wireless
sensor networks. In data collection, in-network compression
is a promising approach to reduce the amount of information
to be transmitted by exploiting sensory data’s redundancy. For
detailed information of in-network compression techniques,
please refer to [13].

According to how the sensory data is compressed, we
classified existing data collection schemes into three cate-
gories: conventional compression, distributed source coding,
and compressive sensing.

Conventional compression: Conventional compression
techniques assume specific data structures and thus quire
explicit data communication among sensor [5][40]. In joint
entropy coding approach, nodes may use relayed data as side
information to encode their readings. If the data are allowed
to be communicated back and forth during encoding, sensor
nodes may cooperatively perform perform transform to better
utilize the correlation, such as the gossip-based technique use
in [17]. There are two main problems with this approach. First,
the route heavily influences the compression performance
[13]. To achieve high compression ratio, data compression
and packet routing are required to optimized jointly, which
is proved to be NP-hard [41][42]. Second, structure-aware
data compression induces computational and communication
overheads [13] [29][30], rendering this kind of data collection
schemes to be inefficient.

Distributed source coding: Distributed source coding in-
tends to reduce complexity at sensor nodes and utilized
correlation at the sink [14][15]. After encoding sensor readings
independently, each node simply sends the compressed mes-
sage along the shortest path to the sink [7]. Distributed source
coding performs well for static correlation patterns. However,
when correlation pattern changes or abnormal readings show
up, the estimation accuracy will be greatly affected.

Compressive sensing: Recently, compressive sensing gains
increasing attention in wireless sensor networks [16][17][18].
In both static and mobile sensor networks [29], the interplay of
routing with compressive sensing is a key issue [33]. Some of
them conclude that although sparsity exists in the environment,
but the strict property is required by traditional compressive
sensing decoder, hardly good approximation can be achieved
as claimed by the theory. Then some proposed network-layer
compression [23] to avoid this kind of problem. Our scheme
adopt opportunistic routing with quite simple compression,
therefore the data collection process is dynamic. This dynamic
feature lead to energy balancing and finally benefits energy
consumption.
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VII. CONCLUSION AND FUTURE WORK

We have proposed a novel compressive data collection
scheme for wireless sensor networks. This scheme leverages
the fact that raw sensory data have strong spatiotemporal
compressibility. Our scheme consists of two parts: the oppor-
tunistic routing with compression, and the nonuniform random
projection based estimation. The proposed scheme agrees
with Braniuk’s [2] suggestion that sensor data acquisition
should be more efficient and new techniques that combine
sensing and network communication together is a promising
approach. We prove that this scheme can achieve optimal
approximation error, and trace based evaluation show that
its error is comparable with the existing method [18]. More
important, our scheme exhibits good performance for energy-
conservation.

The degree of nonuniform compression has direct relation
with the approximation error. But we do not know its exact
influence since in the formulas there are unknown constants
governing the error bound. We would characterize this in the
future.
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APPENDIX A
PROOFS

A. Lemma 1

Proof: The pair of nonuniform sparse random projections
W,M ∈ RL×N satisfies:

E[Wij ] = 0, E[Mij ] = 0;E[WijMij ] = 1,

E[WilMim] = E[Wil]E[Mim] = 0 if l ̸= m,

E[WilMilWimMim] = E[WilMil]E[WimMim] = 1 if l ̸= m,

E[W 2
ij ] = πj , E[M2

ij ] =
1

πj
, E[W 2

ijM
2
ij ] =

1

πj
,

E[W 2
ilM

2
im] = E[W 2

il]E[M2
im] =

πl

πm
if l ̸= m.

The above results will be used in the following process without
explicit mention.

Define the random variables

ωi =

(
N∑

j=1

UjWij

)(
N∑

j=1

VjMij

)

ζ = Y T V ′ =
1

L

L∑
i=1

ωi

(28)

so that ω1, ω2, ..., ωM are independent.

E(ωi) = E

 N∑
j=1

UjVjWijMij +
∑
l̸=m

UlVmWilMim


=

n∑
j=1

UjVjE[WijMij ] +
∑
l̸=m

UlVmE[WilMim]

= UT V

E[ζ] = UT V

(29)

Similarly, we can compute the second moments and vari-

ance as following:

E[ω2
i ] = E

( n∑
j=1

UjVjWijMij

)2

+

∑
l̸=m

UlVmWilMim

2

+2

(
N∑

j=1

UjVjWijMij

)∑
l̸=m

UlVmWilMim


=

N∑
j=1

U2
j V

2
j E[W 2

ijM
2
ij ] + 2

∑
l<m

UlVlUmVmE[WilMilWimMim]

+
∑
l̸=m

U2
l V

2
mE[W 2

ilM
2
im] + 2

∑
l<m

UlVmUmVlE[WilMilWimMim]

=
N∑

j=1

U2
j V

2
j

1

πj
+ 2

∑
l̸=m

UlVlUmVm +
∑
l̸=m

U2
l V

2
m

πl

πm

(Let ξ = max(
πl

πm
), κ =

1

min(π)
)

≤ 2

 N∑
j=1

U2
j V

2
j + 2

∑
l̸=m

UlVlUmVm


+ ξ

 N∑
j=1

UjVj +
∑
l̸=m

U2
l V

2
m

+ (κ− 2− ξ)

N∑
j=1

UjVj

= 2(U ′V )2 + ξ∥U∥22∥V ∥22 + (κ− 2− ξ)

N∑
j=1

U2
j V

2
j

V ar(ωi) = E[ω2
i ]− E[ωi]

2

≤ (UT V )2 + ξ∥V ∥22∥V ∥22 + (κ− 2− ξ)

N∑
j=1

U2
j V

2
j

(30)

V ar(ζ) =
1

L2

L∑
i=1

V ar(ωi)

≤ 1

L

(
(UT V )2 + ξ∥U∥22∥V ∥22 + (κ− 2− ξ)

N∑
j=1

U2
j V

2
j

) (31)

B. Theorem 1

Proof: Fix any two vectors U, V ∈ RN×1, with
∥U∥∞/∥U∥2 ≤ H . Set L = L1L2, with L1, L2 are
positive integers. Partition the L × N matrix W and M
into L2 matrices {W1,W2, ...,WL2

} and {M1,M2, ...,ML2
},

each of size L1 × N . The corresponding random projections
are {Y1 = 1√

L1
W1U, ..., YL2 = 1√

L1
WL2U}, and {V ′

1 =
1√
L1

W1V, ..., V
′
L2

= 1√
L1

WL2V }.
Define the independent random variables ζl = Y T

l V ′
l , l =

1, 2, ..., L2. Applying Lemma 1 to each ζl, we derive that
E[ζl] = UT V and

V ar(ζ) ≤ 1

L1

(
(U ′V )2 + ξ∥U∥22∥V ∥22 + (κ− 2− ξ)

N∑
j=1

U2
j V

2
j

)
(32)
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By the Chebyshev inequality and

P (|ζl − UT V | ≥ ϵ∥U∥2∥V ∥2) ≤
V ar(ζl)

ϵ2∥U∥22∥V ∥22

≤ 1

ϵ2L1

(
(UT V )2

∥U∥22∥V ∥22
+

ξ∥U∥22∥V ∥22
∥U∥22∥V ∥22

+ (κ− 2− ξ)

∑N
j=1 U

2
j V

2
j

∥U∥22∥V ∥22

)
(By the Cauchy − Schwarz inequality and Equ.(22))

≤ 1

ϵ2L1

(
1 + ξ + κ

H2∥U∥22
∑N

j=1 V
2
j

∥U∥22∥V ∥22

)
≤ 1

ϵ2L1

(
1 + ξ + κH2) , p

(33)

Thus, we can obtain a constant probability p by setting L1 =

O( 1+ξ+κH2

ϵ2 ).
We define the estimate â as the median of the independent

random variables ζ1, ..., ζL2
, each of which lies outside of the

tolerable approximation interval with probability p. Formally,
let Il be the indicator random variable of the event that {|ζl−
UT V | ≥ ϵ∥U∥2∥V ∥2}, which occurs with probability p.

Let I =
∑

l=1 L2Il be the number of ζl’s that lie outside of
the tolerable interval, where E[I] = L2p. When the event that
at least half of the ζl’s are outside the tolerable interval occurs
with arbitrarily small probability, then the median â is within
the tolerable interval. So, if we set p < 1/2, say p = 1/4, and
apply the Chernoff bound, we get:

P

(
I > (1 + c)

L2

4

)
< e−c2L2/12 (34)

where 0 < c < 1 is some constant.
Thus, for U and Vi ∈ V1, ..., VN ⊂ RN×1, and the corre-

sponding random projections α and β produce an estimate â
for UT V that lies outside the tolerable approximation interval
with probability at most e−c2L2/12. For the N estimates
âi, i = 1, 2, ..., N , the probability that at least one lies outside
the tolerable interval is upper bounded by Pe ≤ Ne−c2L2/12.

Setting L1 = O( 1+ξ+κH2

ϵ2 ) obtains p = 1/4, and setting
L2 = O((1 + γ)logN) obtains Pe ≤ N−γ for some constant
γ > 0. Therefore, with L = L1L2 = O( 1+γ

ϵ2 (1 + ξ +
κH2)logN), the nonuniform random projection pair W,M
can produce inner products of vectors with probability at least
1 − N−γ . If (ξ + κH2) > Ω(1), then L = O( 1+γ

ϵ2 (1 + ξ +
κH2)logN). If (ξ + κH2) ≤ O(1), then L = O( 1+γ

ϵ2 logN).

C. Theorem 2

For an orthonormal transform Ψ = {Ψ1, ...,ΨN} ⊂
RN×1. Denote the transform coefficients by
θ = [uT Ψ1, ..., U

T ΨN ]T , we order them in decreasing
magnitude as |θ|(1) ≥ |θ|(2) ≥ ... ≥ |θ|(N), then the
approximation error by taking the largest K coefficients
and setting the remaining coefficients as zero, is
∥θ − θ̂opt∥22 =

∑N
i=K+1 |θ|(i) ≤ η∥θ∥22.

Then by Theorem 1, the random projections 1√
L
WU

and { 1√
L
MΨ1,

1√
L
MΨ2, ....,

1√
L
MΨN} produces, with high

probability, estimates {θ̂1, ..., θ̂N}, each satisfying

|θ̂i − θi| ≤ δ∥θ∥2 (35)

where we plugged in ∥Ψi∥2 = 1 and ∥U∥2 = ∥θ∥2 by
orthonormality of Ψ. We get

|θi| − δ∥θ∥2 ≤ |θ̂i| ≤ |θi|+ δ∥θ∥2, ∀i. (36)

Order the estimates θ̆ in decreasing magnitude |θ̆|(1) ≥
|θ̆|(2) ≥ ... ≥ |θ̆|(N). We define our appromimation θ̂ as
keeping the K largest components of θ̆ in magnitude, and
setting the remaining components to zero. Let £̆ be the index
set of the K largest estimates θ̆i’s which we keep (thus £̆C

is the index set of the estimates we set to zero). Let £ be the
index set of the K largest transform coefficients θi’s

∥θ − θ̆∥22 =
∑
i∈£̆

|θi − θ̆i|2 +
∑
i∈£̆C

|θi|2

≤ Kδ2∥θ∥2 +
∑
i∈£̆C

|θi|2
(37)

In the ideal case, £̆ = £, then
∑

i∈£̆C

|θi|2 =
∑

i∈£C

|θi|2. If

£̆ ̸= £, then we have chosen to keep the estimates which did
not belong to the K largest, and consequently we have set to
zero some coefficients which did belong to the K largest.

Assume that there exists some i ∈ £̆, i /∈ £, j /∈ £̆, j ∈ £,
that |θ̂i| > |θ̂j | but |θi| < |θj |. Since the estimates are within a
small interval ±δ∥θ∥2 around the transform coefficients. Thus,
this kind of confusion can only happen if |θj | − |θi| ≤ 2δ∥θ∥.
Furthermore, |θi|2 + |θj |2 ≤ ∥θ∥22 implies that |θj | + |θi| ≤√
3∥θ∥2. Thus, |θj |2 − |θi|2 = (|θj | − |θi|)(|θj | + |θi| ≤

2
√
3∥θ∥22.

For each time the above confusion happens, we get an
additional error +|θj |2 − |θi|2, and this confusion can happen
at most K times. Therefore, we have:∑

i∈£̆C

|θi|2 ≤
C∑

i∈£

|θi|2 +K(2
√
3δ∥θ∥22) (38)

∥θ − θ̆∥22 ≤ Kδ2∥θ∥22 + 2
√
3Kδ∥θ∥22 +

∑
i∈£C

|θi|2

= Kδ2∥θ∥2 + 2
√
3Kδ∥θ∥22 + ∥θ − θ̂opt∥22

≤ Kδ2∥θ∥2 + 2
√
3Kδ∥θ∥22 + η∥θ∥22

(39)

Setting Kδ2∥θ∥2 +2
√
3Kδ∥θ∥22 = ϱ∥θ∥22 and solving for the

positive root, we find that δ = −
√
3+

√
3 + ϱ/K = O(ϱ/K).

∥θ − θ̆∥22 ≤ ϱ∥θ∥22 + η∥θ∥22

=

(
1 +

ϱ

η

)
η∥θ∥22

(40)

Let ϵ = ϱ
η , so that δ = O( ϵηK ). Therefore, the number of

random projections we need is L = O
(
1+γ
δ2 κH2logN

)
=

O
(

1+γ
ϵ2η2κH

2K2logN
)

if κH2 > Ω(1), and L =

O
(

1+γ
ϵ2η2K

2logN
)

if κH2 ≤ O(1).
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