
1016 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 50, NO. 6, JUNE 2002
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Abstract—The optimum receiver to detect the bits of multiple
code-divison multiple access (CDMA) users has exponential com-
plexity in the number of active users in the system. Consequently,
many suboptimum receivers have been developed to achieve good
performance with less complexity. In this paper, we take the ap-
proach of approximating the solution of the optimum multiuser
detection problem (OMUD) using nonlinear programming relax-
ations. First, we observe that some popular suboptimum receivers
indeed correspond to relaxations of the optimal detection problem.
In particular, one proposed approximation method yields to itera-
tive solutions which correspond to previously proposed heuristic
nonlinear detectors. Using a nonlinear programming approach,
we identify the convergence properties of these iterative detectors.
Secondly, we propose a relaxation that yields a receiver which we
call the generalizedminimum mean squared error detector. We
give a simple iterative implementation of the detector. Its perfor-
mance is evaluated and comparisons to other suboptimum detec-
tion schemes are given.

Index Terms—Approximation algorithms, code division multiple
access (CDMA), interference cancellation, multiuser detection,
nonlinear programming.

I. INTRODUCTION

I T HAS been long known that thenear–farproblem of mul-
tiuser code-divison multiple access (CDMA) systems is not

inherent to the code-division access method but to the fact that
the matched filter receiver designed for a single-user Gaussian
channel is not optimum for the multiple-user CDMA channel
[1]. Further, optimum detection of multiple users’ bits has been
shown to be an NP hard problem [2]. This observation resulted
in the development of many suboptimum receivers that have
reasonable complexity with near-optimum performance [3]–[6].
These suboptimum receivers have been motivated by several cri-
teria. Among the most popular linear detectors are the decorre-
lator [3] and the minimum mean squared error (MMSE) receiver
[4]. The decorrelator suppresses the multiple access interference
(MAI) totally while enhancing the Gaussian noise and is the op-
timum detector if the received powers of the users are unknown
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at the receiver [1]. The MMSE receiver [4] gives the minimum
mean squared error between the filter output and the transmitted
bit and also maximizes the output signal-to-interference ratio.
Both detectors are optimum when no noise is present. Deci-
sion-directed nonlinear detectors that generally result in lower
bit error rates (BERs) have been proposed in [5] and [6]. The
decorrelating decision feedback detector [6] cancels the inter-
ference from the users that have already been decoded, and sup-
presses interference from users that have not yet been decoded,
to obtain the decision statistic for the current user. The multi-
stage detector [7] uses the previous stage bit estimates of all in-
terferers to reconstruct and cancel the interference to the current
user in the current stage. The interference canceler in [8] sub-
tracts the interference estimate of the previously decoded users
from the matched filter output for the current user and uses this
decision statistic to decode the bit of the current user.

Our aim in this study is to approach the optimum multiuser
detection problem from a nonlinear programming point of view.
The original optimum multiuser detection problem (OMUD) is
a 0–1 quadratic program for which there exists no efficient al-
gorithm. The general approach in the presence of such hardship
is to approximate the solution by working on aneasierproblem
that can be solved efficiently. The easier problem to be solved
is a relaxationof the original problem. The relaxed solution is
then mapped to the solution set of the original problem, ideally
arriving at a near-optimum solution. For the multiuser detection
problem, a relaxation corresponds to a near-optimum multiuser
detector.

Using a nonlinear programming approach, we observe that
some popular suboptimum detectors are relaxed solutions,
i.e., approximations to the optimum detection problem. This
approach helps us understand the previously unidentified
convergence properties of some known iterative nonlinear
detectors. Furthermore, a new relaxation method is proposed
that results in a simple iterative detector whose performance is
then evaluated.

II. OMUD AND ITS RELAXATIONS

We consider a synchronous CDMA system employing BPSK
modulation. The received signal is given by

(1)

where is the number of users, and are received power
and the transmitted bit (1 equiprobably), and is the unit
energy signature, i.e., , of user , and is
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the additive white Gaussian noise (AWGN) process with power
spectral density . The matched filter output of theth user is
given by . The received signal vector at the
output of the matched filters,, is a sufficient statistic for the
multiuser detection problem and is given by

(2)

where is the nonnegative definite cross-correlation matrix
with , is a diagonal matrix containing
the users’ received amplitudes , is the vector con-
taining the information bits of the users, andis a zero mean
Gaussian random vector with auto covariance matrix

.
The aim of multiuser detection is to recover the information

bits, . The solution of the OMUD problem [1], [3], [9] em-
ploys maximum-likelihood estimation. The optimum estimate
for the bit vector is , if minimizes the cost function which
is quadratic in . Specifically,

(3)

where with . Although it has
been shown recently that certain specialstructures allow con-
struction of polynomial time algorithms to find the optimum so-
lution [10], [11], the problem for general correlation matrices
remains NP hard and one can find the optimumonly by an
exhaustive search of candidate vectors [2].

It is interesting to note that this model can also be applied to
detection on a multiple bit window in an asynchronous CDMA
system with multipath fading [12]. If the arrival times of the
propagation paths are known, it is sufficient to observe the out-
puts of the matched filters for all paths of all users over
the length of the window. Recently, it has also been shown that
when antenna arrays are employed at the receiver, the sufficient
statistics are obtained by passing the received signal through
beamformers directed to each path of each user and finally com-
bining them with a bank of RAKE combiners [13]. For each
of these models, with careful definition of cross correlations be-
tween the signatures of all users over the multiple bit windows,
one can construct the correspondingmatrix and the optimum
detection problem can be shown to be of the form of (3); see,
for example, [13, eq. (19)]. Thus, the methodology and the re-
sulting algorithms we use in this work remain valid for the most
general model.

In this work, we will concentrate on cases where the signa-
tures of the users are linearly independent andand hence
are positive definite. In this case, the objective function in (3)
is strictly convex in and has a well-defined unique minimizer
over a convex set [14]. Thus, we can find solutions by relaxing
the constraint set—which in the original problem contains only
the corners of the unit hypercube—such that the resulting “re-
laxed” constraint set is convex. Fig. 1 shows the different re-
laxed constraint sets for the two-user case. Three basic relax-
ations that we will consider in the sequel are: relaxation of the
constraint set to the whole unit hypercube (region I), relaxation
of the constraint set to the sphere which covers the unit hyper-
cube (regions I II), and relaxation to the whole space (regions
I II III). Note that we require the constraint set for each re-

Fig. 1. Relaxed constraint sets for the two-user system which yield the follow-
ing detectors: I—soft interference canceler (Section IV), I+II—generalized
MMSE (Section V), I+II+III—decorrelator (Section III).

laxation to contain the feasible set of the original problem. The
solution can then be mapped to the feasible set of the original
problem by taking the sign of each component of the relaxed
solution vector (since bits are equiprobably1).

III. D ECORRELATOR

We first consider the simplest relaxation, where the feasible
set is relaxed to contain the dimensional space

(4)

This relaxation effectively removes the constraints and converts
the discrete optimization problem into a continuous one. Since
the cost function is convex in its variable, this problem has a
unique minimum

(5)

Taking the sign of the solution vector yields the well-known
decorrelating detector[3]. Note that, due to the sign operation,
the detector is insensitive to signal amplitudes, i.e., the bit esti-
mate resulting from is the same as that of .

IV. SOFT INTERFERENCECANCELLATION

The constraint set of the optimum multiuser detection
problem (3) consists of the corner points of the unit hypercube.
An effective approximation method is to relax the constraint set
to cover the whole hypercube and use nonlinear programming
algorithms to find the solution of the new convex programming
problem [15]. The relaxed problem is

(6)

Both the cost function and the constraint set in (6) are convex.
Thus, (6) has a unique minimum. However, the optimum
point does not have a closed form and one should use iterative
methods to find the solution. One class of iterative methods that
can be used is the class of constrained gradient methods. Fur-
ther, the simplicity of the constraint set, i.e., the fact that it has
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Fig. 2. Successive soft interference canceler; see (9) and (11).

a Cartesian product form, enables us to define special iterative
projection algorithms [14]. In particular, the following two al-
gorithms, thenonlinear Gauss–Seideland thenonlinear Jacobi
algorithms, respectively, converge to the minimum of (6) under
certain conditions. Let
denote the function to be minimized. In the Gauss–Seidel
iteration, is found by

(7)

while in the Jacobi iteration is found by

(8)

respectively, where is the stage (iteration) index. Both algo-
rithms optimize one variable at a time to get to the optimum
point of (6); however, (7) uses the current stage estimates of
some of the users while (8) allows a parallel implementation.
Through a straightforward derivation, it can be shown that the
above iterations yield the following two-step algorithms. For
each user, the first step for the Gauss–Seidel iteration is

(9)

and the first step for the Jacobi iteration is

(10)

The second step for both algorithms is

.

(11)

At each stage, to get the estimate of each user’s bit, both re-
ceivers use soft estimates of the bits to reconstruct the interfer-
ence and subtract this estimate from the user’s matched filter
output, scale the result by the amplitude of the user, and project

Fig. 3. Parallel soft interference canceler; see (10) and (11).

onto . The difference between the two is that while the
Gauss–Seidel algorithm uses the available current stage esti-
mates of the users, i.e., feedback from a group of users whose
bit estimates are already computed, the Jacobi algorithm uses
only bit estimates from the previous stage. In multiuser detec-
tion terms, the nonlinear Gauss–Seidel algorithm corresponds
to thesuccessive soft interference canceler(Fig. 2), whereas the
nonlinear Jacobi algorithm corresponds to theparallel soft in-
terference canceler(Fig. 3).

In the following, we establish the convergence of these two al-
gorithms. For that, we use results from [14] and omit the proofs
here. First, we state the following theorem for the convergence
of the nonlinear Gauss–Seidel algorithm.

Theorem 1 [14, Proposition 3.9 of Sect. 3.3]:Suppose that
is continuously differentiable and convex on the

set where is a Cartesian product of sets and each
is a closed convex subset of . Furthermore, suppose that,
for each , is a strictly convex function of , when the values
of the other components ofare held constant. Let be the
sequence generated by the nonlinear Gauss–Seidel algorithm,
assumed to be well defined. Then every limit point of min-
imizes over .

In our case, , and for a positive defi-
nite , the function is convex in and is strictly convex in
each variable when the values of the other components of
are held constant. The convex set is in Cartesian
product form. The convexity of ensures the uniqueness of
the convergence point which is the global minimum. The fol-
lowing corollary states the convergence condition for the suc-
cessive soft interference canceler.
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Corollary 1: For a CDMA system with linearly independent
signature sequences, the nonlinear Gauss–Seidel algorithm (the
successive soft interference canceler) always converges to the
minimizer of (6).

Theorem 1 shows that the nature of the problem at hand gives
us the convergence of the Gauss–Seidel algorithm without any
further restrictions. Unfortunately, this is not the case for the
Jacobi algorithm. Convergence of the parallel soft interference
canceler can be guaranteed under certain contraction assump-
tions as indicated by the following theorem. We first state the
theorem and then derive the conditions for it to hold.

Theorem 2 [14, Proposition 3.10, Sect. 3.3]:Let
be continuously differentiable, letbe a positive scalar, and

suppose that the mapping , defined by
, is a contraction with respect to the block max-

imum norm , where each is the Eu-
clidean norm on and each is a positive scalar. Then, there
exists a unique vector which minimizes over . Further-
more, the sequence generated by either the Gauss–Seidel
or the Jacobi algorithms converges togeometrically.

For our problem, and is given
by

(12)

In order to guarantee the convergence of the Jacobi algorithm
(parallel soft interference canceler), we need to be a
contraction mapping with respect to a block maximum norm.
For any matrix , the block maximum norm is defined
[14] as . A mapping is
called a contraction mapping with respect to a block maximum
norm , if and only if (iff) satisfies

(13)

for any and , for some . For the mapping in (12),
this condition is equivalent to

(14)

If (14) holds, then the nonlinear Jacobi algorithm converges by
Theorem 2. However, for a given CDMA system, it may be dif-
ficult to verify whether (14) holds. Our aim is to derive an easier
condition to check for the convergence of the nonlinear Jacobi
algorithm. It is desirable for this condition to be independent of
the received powers of the usersand a particular block max-
imum norm . The following Lemma states the condition
for the convergence of the nonlinear Jacobi algorithm (parallel
soft interference canceler) in terms of only the cross-correlation
matrix.

Lemma 1: For a CDMA system with linearly independent
signature sequences, the nonlinear Jacobi algorithm (parallel
soft interference canceler) converges to the minimizer of (6) if

(15)

where is constructed from as if , and
, and denotes the maximum eigenvalue of a matrix.

Proof—Lemma 1:Using the definition of the block max-
imum norm, it can be shown that, for a sufficiently small, (14)
is equivalent to

(16)

which is satisfied iff

for all (17)

Substituting into (17) and noting ,
we arrive at

for all (18)

Let . Using the definition of , (18) is equivalent
to

(19)

Finally, [14, Sect. 2.6, Corollary 6.2] states that (19) is satisfied
iff , completing the proof.

To summarize, for a given cross-correlation matrix, one can
check if (15) holds by constructing and finding its maximum
eigenvalue. If it does, then by Theorem 2, the parallel soft inter-
ference canceler is guaranteed to converge to the minimizer of
(6).

In the proof of Lemma 1, we arrived at (15) from its equiva-
lent condition given in (19). An interesting observation is that,
choosing for all , (19) reduces to a diagonal dom-
inance condition, , for all . This is clearly
much easier to verify, however it is a more lenient condition for
convergence since a particular set ofvalues are used. It is pos-
sible for the parallel soft interference canceler to converge for a
system with its cross-correlation matrix satisfying (15) even if
is not diagonally dominant (see Section VI).

It is also interesting to note that both the diagonal dominance
condition mentioned above and the maximum eigenvalue con-
dition in (15) are satisfied for a system where users’ signa-
tures are shifted versions of a basic-sequence. In this case,

, , and , and
as long as which by definition is the case. Diagonal
dominance condition is also equivalent to for

-sequences. Thus, if these sequences are used, both Jacobi and
Gauss–Seidel algorithms, i.e., parallel and successive soft inter-
ference cancelers, converge to the minimizer of (6).

In general, it takes more than one iteration for either algo-
rithm to converge and thus the resulting receivers aremulti-stage
receivers. Multi-stage receivers are familiar in multiuser detec-
tion. In [5], hard decision bit estimates are used to reconstruct
and subtract the interference for each user. The receiver is im-
plemented in a parallel fashion as in (10) and is not convergent.
In [16], the authors proposed a class of receivers based on the
SAGE algorithm, one of which is the successive multistage re-
ceiver (9) and argues that the SAGE-based hard decision mul-
tistage receiver is convergent even when its parallel counterpart
is not. The soft decision versions of these multistage receivers,
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i.e., (9) and (10), are proposed in [16] and [17]. They are termed
as receivers with linear clippers. By representing these receivers
in the form of iterative nonlinear programming algorithms, we
have shown thatboth of these soft decision receivers, i.e., the
parallel and the successive soft multi-stage interference can-
celers, if they converge, converge to the same point which is
the minimizer of (6). We have observed that the Gauss–Seidel
algorithm has a more lenient requirement in order to converge,
i.e., linear independence of the signature sequences is sufficient,
while the condition that guarantees the Jacobi algorithm to con-
verge is more strict and is given in (15). Typically, Gauss–Seidel
type iterations have faster convergence since they use the newest
estimates. On the other hand, Jacobi type iterations can be exe-
cuted in a completely parallel fashion since they do not require
feedback from the current stage estimate of any user. Note that,
if Theorem 2 is valid, any combination of the two algorithms
also converges to the minimum of (6), i.e., some users can use
the successive soft multi-stage receivers and others can use the
parallel soft multi-stage receivers.

It is worthwhile to note that one can implement the decor-
relator given by (5) iteratively. Gauss–Seidel and Jacobi algo-
rithms that converge to (5) can be found to be the algorithms
derived in this section without the second stage clippers.
It is also possible to derive Gauss–Seidel and Jacobi iterations
that converge to the MMSE detector [4] which estimates the bits
by taking the sign of

(20)

It can be shown that the resulting algorithms differ from (9) and
(10) only in the scaling factor. Specifically, we have

(21)

(22)

for the Gauss–Seidel and the Jacobi iterations, respectively. Fur-
ther, these iterations can be followed by the clippers.
The resulting receivers converge to the minimizer of the fol-
lowing quadratic program which is similar to (6) where the ma-
trix is replaced by

(23)

Note that this minimization problem when defined on the cor-
ners of the unit hypercube, i.e., , is exactly the
same as the original OMUD problem in (3), since on the cor-
ners of the unit hypercube the additional term in the cost
function is independent of the choice of. An equivalent of the
convergence condition (15) can be easily derived for the MMSE
type receivers with clippers using the same steps we followed in

this section. The algorithms without the clippers, i.e., the algo-
rithms that converge to the decorrelating or the MMSE detec-
tors, correspond to linear Gauss–Seidel and Jacobi iterations.
For these iterations, Theorem 2 still gives the sufficient condi-
tion for convergence. However, less stringent conditions which
are necessary and sufficient are available for this case. For the
decorrelator, for example, using [18, Theorem 3.3 of Sect. 4.3],
one can show that the necessary and sufficient condition for con-
vergence of the Jacobi algorithm without the clippers is

(24)

where is the matrix consisting of the off-diagonal elements of
, i.e., , if , and . For the MMSE detector,

the necessary and sufficient condition is found by replacing
with . To see why (24) is less stringent than (15),
first observe that , and by definition of the norm
of a matrix, . We can then use [14, Proposition
6.2(e) of Sect. 2.6] which states that for any
matrix . Thus, the following relationship holds:

(25)

This means that if (19) [or equivalently (15)] holds then (24) is
guaranteed to hold, which makes it less stringent.

Finally, we should emphasize that the implementations dis-
cussed here are not the unique way of solving for the mini-
mizer of (6). There are other nonlinear programming methods
that yield iterative algorithms whose BER performance matches
that of the soft interference cancelers.

V. GENERALIZED MMSE DETECTOR

The constraint on each is equivalent to
which implies at any feasible point for OMUD. Re-
laxing this set to , i.e., to the smallest sphere that con-
tains the corners of the unit hypercube, results in the following
optimization problem:

(26)

Since (26) minimizes a convex function over a convex set, it has
a unique minimum and iterative algorithms such as gradient de-
scent can be employed to find this minimum [19]. Further, the
convex duality theorem[19, Theorem 14.6] ensures that no du-
ality gap exists and one can solve for the dual problem instead.
Since (26) has a single constraint, there is only one dual variable.
Thus, a simpler iterative algorithm can be found by solving the
dual problem as outlined below.

The Lagrangian dual function can be expressed as

(27)

which is to be minimized over and maximized over .
Solving for in terms of and substituting back, we obtain

(28)

which is a one-dimensional optimization problem. The opti-
mization problem (28) entails the optimization of a rational
function of the variable and can be solved with a variety
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of iterative algorithms [19]. A simple unconstrained gradient
descent algorithm is guaranteed to converge for a sufficiently
small step size which can then be projected onto the positive
axis. The algorithm is

(29)

which converges to for a reasonable choice of. The maxi-
mizer of (28) is given by

(30)

Then, the unique minimizer of (26) can be found to be

(31)

The form of this solution whose sign is the estimate of the bit
vector is also familiar because of its similarity to theMMSE
detector[4]. Thus, we term the relaxation (26) thegeneralized
MMSE (GMMSE) solution. When , (31) reduces to
the MMSE detector. Note that, since is a function of , the
GMMSE solution results in a nonlinear multiuser detector in
contrast to the MMSE detector. On the other hand, the knowl-
edge of the noise power value () is not necessary for the
GMMSE detector whereas the MMSE detector requires this
knowledge if training or blind adaptation is not desired [4], [20].

The GMMSE detector is also an iterative detector since
has to be found iteratively. However, since the iterations are
in one dimension, they are expected to converge more quickly
compared to multidimensional algorithms.

VI. RESULTS

Since the probability of bit error expressions are not analyt-
ically tractable for an arbitrary number of users and iterations,
we have simulated the bit error performance of the detectors in-
vestigated in this work. All iterative detectors (multistage soft
cancelers and the GMMSE) are evaluated at their convergence
points. The simulation scenarios are representative examples of
highly loaded systems where implementation of multiuser de-
tectors is well justified for improved system performance. The
system size is kept modest for the sake of computational feasi-
bility of the simulations.

The first system simulated is an user synchronous
system with processing gain that uses Gold sequences
with the cross-correlation matrix

(32)

Note that, for this cross-correlation matrix, the diagonal domi-
nance condition is not satisfied. However, the parallel soft inter-
ference canceler is still guaranteed to converge because

. Fig. 4 shows the probability of bit error for the
third user when that user has a 6-dB SNR and all the interferers
have a common SNR (in dB) that is varied. We observe that
the soft interference cancelers [(9)–(11)] have almost invariable
performance versus interference strength. We note that the per-

Fig. 4. Comparison of error probabilities of near-optimum multiuser detectors,
near–far scenario, desired user at a 6-dB SNR.G = 7,N = 4, Gold sequences.

formance of the GMMSE detector is similar to that of the linear
MMSE detector. In particular, we observe that the GMMSE de-
tector has the same trend of approaching the decorrelator per-
formance as the MMSE detector when the interference domi-
nates the noise. Although the performance of the GMMSE de-
tector is not amenable to analysis due to its nonlinear nature, its
asymptotic behavior in the severe near–far regime is identical
to that of the MMSE detector due to the structural similarity
of the two detectors. Both the noise level in the MMSE de-
tector expression and the optimum Lagrange multiplierin
the GMMSE detector expression become insignificant as the
interference level goes to infinity. This causes both detectors’
performance to approach the decorrelator performance in this
asymptotic regime.

Next, we simulated the bit error performance of a user in an
user synchronous system with processing gain

that uses -sequences, i.e., , and have
observed similar trends (Fig. 5). As mentioned in Section IV,

-sequences satisfy the diagonal dominance condition and thus
the parallel interference canceler is guaranteed to converge.

Our last simulation set up is of an user system with
processing gain that uses the set of Gold sequences which
constitute the rows of the following matrix:

(33)

First, we simulated the synchronous system performance where
the cross-correlation matrix is

(34)

Once again, the diagonal dominance condition is not satisfied,
however, and the parallel soft interference
canceler is guaranteed to be convergent. The resulting BER of
the first user is given in Fig. 6.
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Fig. 5. Comparison of error probabilities of near-optimum multiuser detectors,
near–far scenario, desired user at a 6-dB SNR.G = 7,N = 7,M -sequences.

Fig. 6. Comparison of error probabilities of near-optimum multiuser detectors,
near–far scenario, desired user at a 6-dB SNR.G = 7,N = 3, Gold sequences.

For this synchronous system, we also investigated the per-
formance of the nonadaptive MMSE detector and the GMMSE
detector when the Gaussian noise variance is estimated. A
likely scenario for this situation is a multicell system where the
intra-cell multiuser detection is performed and the out-of-cell
interference can be accurately described by additive Gaussian
noise. As mentioned in Section V, the GMMSE detector does
not require the value of the noise variance. The MMSE detector
on the other hand requires this value, see (20), and thus is
potentially vulnerable to imperfect estimates. Fig. 7 shows the
bit error rate of the desired user versus the estimation error
of the noise variance in dB, when the desired user has 6 dB
and the interferers have 10 dB SNR values. Note that, the
MMSE performance with 0 dB estimation error corresponds
to the performance of the MMSE detector with the perfect
noise variance estimate. As expected, the nonadaptive MMSE
detector is sensitive to noise variance estimation errors. In
particular, when the noise variance is severely underestimated,

Fig. 7. Comparison of error probabilities of GMMSE and MMSE detectors
under imperfect estimates of aggregate Gaussian noise variance; plotted is the
desired user bit error rate versus the estimation error in dB. Desired user at 6 dB,
interferers at 10 dB SNR. Same system as in Fig. 6.

the performance of the MMSE detector approaches that of
the decorrelator which is 0.0408; when the noise variance is
overestimated the performance gradually gets worse and closer
to that of a single user receiver (matched filter) which for this
system is 0.1412. These two observations are easily justified
by inspecting the structure of the MMSE detector in (20).
When a small noise variance is used, the detector resembles
a decorrelator, whereas when a very large noise variance is
used, the second term in the inverse transformation becomes
dominant, i.e., the detector is similar to a matched filter. Since
the GMMSE performance is unaffected by these estimation
errors, it is of value to be used under such a scenario.

Lastly, we considered the performance of the same system
where users transmit -bit packets in an asynchronous fashion.
The relative delays of the users are assumed to be less than the
bit duration. Note that in this case the receiver should decode
all bits of all the users jointly by observing the received signal
for the entire packet transmission duration of all the users. The
sufficient statistics to decode the bits are obtained by passing the
received signal through the matched filter of each user in each
of its bit transmission intervals. This way, in effect, each user
becomes equivalent to effective independent users for the
OMUD problem. To explain this point further, consider that the
transmission delays of the users are sorted in increasing order,
the th user has a transmission delay ofchips and . The
observation interval then becomes chips, or

seconds where is the chip duration; that is, an interval
large enough to capture the entire packet of the latest arriving
user. Bit of user is received in the interval

. The corresponding matched filter for this
bit is the signature of theth user in this interval padded with
zeros from left and right for the rest of the observation interval.
The resulting cross-correlation matrix,is and the
OMUD is formally stated as

(35)
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Fig. 8. Comparison of error probabilities of near-optimum multiuser detectors
for an asynchronous system withM -bit packet transmission, near–far scenario,
desired user at 6 dB SNR.G = 7,N = 4,M = 3, same set of Gold sequences
as in Fig. 6. The error probability of the desired user’s middle bit is plotted.

where again is given by and appears as
for . The th bit of user is denoted
by . Fig. 8 shows the error rate for the middle bit
of the first user when bits. In this particular example,
the delays of the users are 0, 2, 5 chips respectively and the
resulting 9 9 cross correlation matrix satisfies the diagonal
dominance condition. Figs. 6 and 8 confirm our observations
from the previous experiments regarding the close performance
of MMSE and GMMSE and the near–far resistant performance
of the soft interference cancelers.

VII. CONCLUSION

In this paper, we have shown that many popular suboptimum
detectors are devices that attempt to approximate the solution
of the joint minimum BER detector (OMUD). Although it
is analytically hard to characterize exactly how closely they
approximate the OMUD cost function, we have observed
that they achieve near-optimum cost values. Consequently,
the near-optimum BER performances of these detectors are
not surprising. The nonlinear programming approach helped
us to identify the convergence conditions of multistage soft
interference cancelers. We have also proposed and devised a
simple iterative nonlinear detector with similar performance
to the MMSE detector. The generalized MMSE detector, in
contrast to the nonadaptive version of the MMSE detector,
does not require the knowledge of the ambient noise power
level. Thus, it can be used in scenarios where adaptive or blind
adaptive detection is not suitable, for instance when the channel
is changing rapidly, and the ambient noise power is unknown. A
likely scenario is a multicell setting where only in-cell system
information is available, and thus in-cell multiuser detection
is feasible. In this case, the out-of-cell interference manifests
itself by amplifying the Gaussian noise and the GMMSE
detector results in MMSE-like performance without the need
to estimate this level.

Finally, we note that the nonlinear programming approach
can be used to derive other types of detectors under different

channel fading conditions as well. For instance, it is easy to
show that the hypercube type relaxation is the optimum de-
tector when the uplink gains of the users are assumed com-
pletely random in and unknown [21]. For real channels,
the uplink gains are likely to have much smaller values than 1,
and have different distributions depending on the channel fading
conditions. Using this fact, detectors for channels with uncer-
tainties can be designed with smaller box boundaries. Thus,
this approach can be useful in designing joint bit detectors and
channel estimators under different conditions.
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