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Abstract— Several algorithms have been proposed to uplink is fundamentally different because it only involves
construct optimal signature sequences that maximize the individual signatures. Conventionally, the PAR on the
sum capacity of the uplink in a direct-spread synchronous yplink has not received attention because uplink typically
codg division multiple access _(CDMA) system. These a"employs binary spreading sequences, which have unit
gorithms produce signatures with real-valued or complex- PAR. If sum-capacity optimal sequences are to be used

valued entries that generally have a large peak-to-average . . .
power ratio (PAR). This paper presents an alternating in real systems, however, PAR side constraints should be

projection algorithm that can design optimal signature included in the Qesign problem.
sequences that satisfy PAR side constraints. This algorithm Several glgorlthms have been developed for construc-
converges to a fixed point, and these fixed points aretion of optimal sequences. Viswanath and Anantharam

partially characterized. [2] offer a finite-step algorithm that can construct a lim-
ited selection of optimal CDMA sequences. A number
l. INTRODUCTION of iterative algorithms, including [5], [6], [7], have been

Signature sequences that maximize the sum capégveloped that can construct many more sequences than
|ty in the up||nk of direct-spread synchronous Codg'le finite-step algorithm. Unfortunately, these methods
division multiple access (CDMA) systems have beefnnot accept additional constraints on the signatures,
characterized in [1], [2], [3]. Except in special case&@nd thus are not suitable in general for finding sequences
these signatures are generally real- or complex-valudgth low PAR.

Consequently, these signatures can possess practicall? this paper, we give a new algorithm for finding
undesirable properties such as a large peak-to-avera@limal signature sequences with constraints on the PAR.
power ratio (PAR). Our algorithm is enabled by the observation that the class

The PAR of a signal measures how the largest value@f optimal signatures is so large that we can impose
the Signal compares with the average power. Signa|s Wﬂﬁdltlonal constraints without IOSing the Optlmallty We
large PAR require higher dynamic range on the analoguild on our recently proposed iterative algorithm for
to-digital converters and the digital-to-analog convertergonstructing CDMA signature sequences [8]. These al-
They may also require more linear (and thus higher co§grithms are related to a method used by Chu for solving
power amplifiers. In DS-CDMA systems, the PAR i@n inverse eigenvalue problem [9]. We argue that our
normally of concern only in the downlink (see e.g. [4])@lgorithm converges to a fixed point, and we claim that
where linear combinations of signatures can conspiretftg class of fixed points contains the desired sequences.
have very large PAR values. The problem of PAR on tH&0ofs of these results will appear elsewhere [10].
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that no user ioversized[2], since the extension to this
case is straightforward. A mathematical statement of this
hypothesis is

\o

1 N
ngd;wj for n=1,...,N.

A signature sequence a collection{s,,} of N unit-
norm vectors inC?. Define the weighted signatures
T, = VWn Sp, and form ad x N matrix X whosen-th  Fig. 1. Intuition behind the alternating projection between .get
column isx,,. For purposes of design, we consider thend 2.
discrete-time peak-to-average ratio based on the sampled
discrete-time system, which approximates the PAR of the
continuous-time system. The PAR of cadimensional
signaturewv is defined as

2) Find X;, the matrix nearest t&;_; in Frobenius
norm that has Property (i).

3) Find S;, the nearest matrix toX; in Frobenius

et TNAXY |vg\2 norm that has Properties (ii) and (iii).

gt 3, |W‘2‘ 4) Incrementj. Repeat Steps 2—4 until> J.

We usep to denote the desired upper bound on the PARThe intuition behind the operation of the alternating
of the sipgnatures Note that< PAR (v) < d. The lower projection method is illustrated in Figure 1. Notice in
extreme corresp'onds to a_signature v;holse entries hg%ticular that the constraint sets are both closed but both

identical modulus, while the upper bound is attained oni’i/re not nece_ssarlly convex. . .
by (scaled) canonical basis vectors. The machinery of point-to-set maps is required to

Viswanath and Anantharam have shown that a sign%{]OIerSt"Jlnd the convergence of this algorithm, so we

ture sequence achieves the sum capacity of the pres%ﬁ?thrﬁ{ertt?etLea(ieL\tor[le(ﬂcforr:etﬁ”i fF%& gﬁ;ﬁ?cne’
system model if and only if thé positive singular values e Tleie:se;e LZfﬁobe ethge coﬁect?oun -of meatrices thgt S
of X are identical. A matrix with this property is called® Y-

atight frame Our goal, then, is to construct a Weighteizt';z ::gelieiirgﬁu:);a'lf phrtC) ?r‘aameess (I%;Sgeg”t)ﬁalgegt's
signature matrixX with the following properties. ! '9 - : sty

_ o _ property (i). Recall that the distance between a pdiht
i. The matrix is a tight frameXX* = a/l,.

.. and a set?” is
ii. Each column has the correct norfhey, |3 = w,.
iii. Each column has low PARPAR (x,) < p. dist(M, %) = )}n{;” Y = M.
S
In this paper we present an algorithm that calculates such

sequences. In the sequel, we summarize the method an‘aheorem 2 (TDHS [10]):Suppose that alternating

its theoretical behavior projection generates a sequence of itergtes;, X;)}.
' This sequence has at least one accumulation point, i.e.

I1l. STATEMENT OF ALGORITHM limit of a convergent subsequence.

Our technique is based on an alternating projections Every accumulation point lies i x 2.
between Property (i) and Properties (ii)—(iii). The algo- « Every accumulation pointS, X) satisfies

PAR (v)

rithm attempts to compute a nearby matrix (in terms of IS =X, = 1im [|S; — X;]|
the Frobenius norm) that satisfies Properties (i)—(iii). L L

Algorithm 1 (Alternating Projection): « Every accumulation point is @eneralized fixed
INPUT: point, viz.

« An arbitrary matrixSy
o The number of iterationd

OuUTPUT:
« A pair of matrices(S;, X;)

1S — X||p = dist(S, 2) = dist(X,.7).

We have been able to provide a partial characterization
of the fixed points of this algorithm. It turns out the set
of fixed points includes every collection @f vectors
PROCEDURE that can be partitioned into tight frames for mutually

1) Letj=1. orthogonal subspaces @f. In particular, every matrix



PROCEDURE

1) Scalez to have unit norm; definé = \/cp/d,
and initializek = 0.

2) Let.# index (d — k) components ok with least
magnitude. If this set is not uniquely determined,
incrementk and repeat Step 2.

3) If z,, =0 for eachm in .#, a solution vector is

Constraint set
for one column

S:{,/Cg’f;f for m € .#, and

: : , , § el a8 Zm form ¢ 4.
Fig. 2. The shaded region contains the vectors with squared norm
c that have PAR less than It equals the intersection of the sphere 4) Otherwise, let
of radius y/c and the cube with sideg/cp/d. The input vector to

the nearness problem is c— ko2
Y=< 2
Emeu/// Zm|

that satisfies Properties (i)(iii) is a fixed point. The other gy |t ~ .~ 5 for any m in .#, incrementk and
fixed points are spurious solutions that rarely arise in  retyrn to Step 2.

practice. o 6) The unique solution vector is

Proposition 3 (TDHS [10]): Suppose thatS lies in
< and thatSS*S = SA, where A is positive and s :{ v Zm for m € .4, and
diagonal. Ther$ is a (classical) fixed point of Algorithm o el A Em form ¢ .4 .
1. More precisely, invoking Algorithm 1 with the initial \When p = 1, the output of the algorithm is a
matrix S will yield S; = S for every ;. unimodular vector whose entries have the same phase

The proof of this proposition appears in [10]. as the corresponding entries of On the other hand,

IV. | MPLEMENTATION when p = d, the output vector equals. Let us prove

that the algorithm is correct.

To implement this algorithm, we must solve two T
. . Proof. We must solve the optimization problem
matrix nearness problems. Step 2 is a standard problem

from linear algebra, whose solution can be expressgﬂnus — z”% subject to PAR(s) < p and Hng =c.
in terms of a singular value decomposition [11]. If we ° o S _
factor S;_; = UZV*, thenX; = (Tr £/d) UV* is a Let us begin with some major simplifications. First,
nearest tight frame t&; ;. Here, Tr (-) indicates the rewrite the PAR constraint by enforcing the norm re-

trace operator. quirement and rearranging to obtain the equivalent con-
The nearest matrix toX; that satisfies the normdition
and peak-to-average-power criteria cannot be written in max [sm| < Vep/d.

closed form. Fortunately, we can apply the followin
simple algorithm to each column, of the input matrix
to obtain s,,, the corresponding column of the outpu
matrix S;. See Figure 2 for a diagram of the constrai
on each column.

Algorithm 4 (Nearest Vector with Low PAR):
INPUT. min [c — 2Re (s, 2) + |12[3] -

« An input vectorz from C? y

« A positive numbere, the squared norm of theObserve that it is necessary and sufficient to minimize

gn the rest of the argument, the symholwill abbrevi-
te the quantity\/cp/d. The PAR constraint becomes
tem\ <¢ foreachm=1,...,d.
Now expand the objective function and enforce the
norm constraint again to obtain

solution vector the second term. It follows that the optimizer does not
« A numberp from [1, ], which equals the maximumdepend on the scale of the input vectoSo take|z||, =
permissible PAR 1 without loss of generality.
OUTPUT: Next observe that the PAR constraint and the norm
« A vector s from C? that solves constraint do not depend on the phases of the compo-

. ) nents ins. Therefore, the components of an optinzal
msmHS —z|, st PAR(s)<pand|s|;=c must have the same phases as the components of the



input vectorz. In consequence, we may assume that batie optimization problem. From the many solutions, we
s and z are non-negative real vectors. choose one such that

We have reached a much more straightforward opti- kg2
mization problem. Given a vectar with unit norm and sy =1/ T for m wherez,, = 0.
non-negative entries, we must solve
This formula ensures that* has the correct norm and
max (s,z) subjectto (s,s)=cand0 <s, <J. that none of its entries exceeds

, _ _ When A* > 0, the solution has the form
Observe that every point of the feasible set is a regular

point. Therefore, Karush-Kuhn-Tucker theory will fur- s* = [y z]s,
nish necessary conditions on an optimizer [12].
We form the Lagrangian function

where~y is positive and the operatdt]s truncates to)
components of its argument that exceedt is clear that
L(s,\ p,v) = — (8,2) + %)\ ((s,8) — ¢) the largest components afare_ all _truncated at the same

time. We only need to determimehichcomponents these
—(s,pu)+(s—01,v). are.

The Lagrange multipliersy and v are non-negative 10 that end, observe that — |[[y z;||, is a strictly

because they correspond to the lower and upper bouf@easing function on0, 5/ zmin], Where zy, is the
on s. Meanwhile, the multiplien is unrestricted because/€ast positive component of. For at most one value
it is associated with the equality constraint. of v, therefore, does the vectfy z|; have normy/c. If

The first-order KKT necessary condition on a reguldiS norm value were not attained, thah would equal
local maximums* is that zero. Letk be the number of entries of* that equal

N J, and suppose tha¥/ indexes the remainingd — k)
0= (Vs L)(s", A%, p", %) (1) Ccomponents. Then

:—Z+)\*3*—H*+V*,
. _ c=s*5 =K+ > |zl
wherey;, > 0 only if s7 =0 andy}), > 0only if s;, = et
1 * *
fﬁeNoégﬁetga;n%n?ooﬂﬁtuZI|VmeglL:J S;[ivt;eczoir;rgﬁﬁguﬁ_e%ecall thaty is positive. Therefore, is impossible that
y P y ' 2 > ¢. Whenk 62 = ¢, it follows thatz,, = 0 for each

second-order KKT necessary condition on a regular IocaiS .
. ! m in .4 . Otherwise,z,, must be non-zero for some
maximum is that

in .# . Then the value ofy must be

0 <yT (V2L)(5" 3 ')y ——
— \* T v = I ——
vy ZmE/// ‘Zm‘2

for every vectory in the subspace of first-order feasible 0
variations. This subspace is non-trivial, 56 > 0.
Solve Equation (1) to obtain V. NUMERICAL EXPERIMENTS

Let us demonstrate that alternating projection can in-
deed produce tight frames whose columns have specified
Whenevery’, > 0, both s, = 0 and v}, = 0. This PAR and specified norm. The experiments all begin with
combination is impossible becausg > 0. Therefore, the initial 3 x 6 matrix
we may eliminateu* to reach

N8 =z+pu —v*.

I * .0748 + .3609i .0392 + .4558i .5648 + .3635i
Ns =z—v

: 5861 — .0570i —.2029 4 .80241 —.5240 + .4759i

—.7112 4+ .10761 —.2622 — .19211 —.1662 + .14161

ation — 2567+ 44631 7064 + .6193i  .1586 + .6825i
- o _ —.1806 — .1015i —.1946 — .1889i 5080 + .0226i
If \* =0, itis clear thatv* = z. Sincev;;, > 0 only 0202 + .83161  .0393 — .2060i  .2819 + .4135i

if s5, = 0, we must haves), = 6 wheneverz,, > 0.
Suppose that components ok* equald. The remaining The respective PAR values of its columns are 1.5521,
(d — k) components are not uniquely determined b8.0551, 1.5034, 2.0760, 2.6475 and 1.4730.

The cases\* = 0 and A* > 0 require separate consider-



Unimodular tight frames are probably the most inter- VI. CONCLUSIONS ANDFURTHER WORK

esting example of frames with low PAR. Every entry \e have proposed a method for constructing optimal
of a unimodular frame has an identical modulus, anebmA signature sequences that satisfy a constraint on
so the PAR of each column equals one. Let us apRye peak-to-average power ratio. The algorithm is based
the algorithm to calculate a unit-norm, unimodular tigh§n an alternating projection between a spectral constraint

frame. and the PAR constraint.
The flexibility of the alternating projection approach
1345 + 56151 .1672 4 .55261  .4439 + .3692i suggests that it may be able to address other constraints.
5410 — 20171 —.0303 +.57661 —.5115 + .2679i This is indeed the case. For example, a straightforward
*'52285;401236. *'2177;;45222010. 7'352::’: '56252.1 modification of this algorithm can construct sequences
_:5432_:1956; _:3689_:4442; :5747+:0554; . yvhose Fourier transfo_rm is nearly unimodular, which
1258 4+ .5635i —.0088 — .5773i .4132 + .4033i is the frequency'doma|n analog of low peak-to-average

power ratio. For some other applications, see the paper
Indeed, each of the columns has unit PAR, and tht0].
singular values of the matrix are identical to eight In further work, it would be interesting to develop a
decimal places. The calculation required 78 iteratiomsethod for finding signatures for synchronous CDMA
lasting 0.1902 seconds. systems operating in the presence of colored noise.
Alternating projection can also compute tight framesxtensions to asynchronous systems, and systems with
whose columns have unit PAR but do not have unit normmultipath interference, also merit further investigation.
For example, if we request the column norms 0.75, 0.75,
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