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ABSTRACT

Over the period of 1987-1991, a series of theoretical and ex-
perimental results have suggested that MultiLayer Percep-
trons (MLP) are an effective family of algorithms for the
smooth estimate of highly-dimensioned probability density
functions that are useful in continuous speech recognition
[1]-[4). Al of these systems have exclusively used context-
independent phonetic models, in the sense that the proba-
bilities or costs are estimated for simple speech units such
as phonemes or words, rather than biphones or triphones.
Numerous conventional systems based on Hidden Markov
Models (HMM) have been reported that use triphone or
triphone-like context-dependent models [6]-[9]. In one re-
cently reported case [10], the outputs of many context-
dependent MLPs (one per context class) were used to help
choose the best sentence from the N best sentences as de-
termined by a context-dependent HMM system. In this
paper, we show how, without any simplifying assumptions,
we can estimate likelihoods for context-dependent phonetic
models with nets that are not substantially larger than our
context-independent MLPs.

1. INTRODUCTION

Earlier work has shown the ability of Multilayer Percep-
trons (MLPs) to estimate emission probabilities for Hid-
den Markov Models (HMM) [1}-[4). In these reports, we
have shown that these estimates led to improved perfor-
mance over standard estimation techniques when a fairly
simple HMM was used. Current results on the speaker-
independent DARPA Resource Management database for
MLP monophone estimators continue to support this con-
tention [5], and are roughly at the 90% accuracy level for a
wordpair grammar. However, current state-of-the-art con-
tinuous speech recognizers (that have roughly half this error
rate for the same task) require HMMs with greater com-
plexity, e.g. multiple densities per phone and/or context-
dependent phone models. Will the consistent improvement
we have seen in these tests be washed out in systems with
more detailed models?

One difficulty with more complex models is that many
more parameters must be estimated with the same limited
amount of data. Brute-force application of our earlier tech-
niques would result in an output layer with many thousands
of units, and a network with many millions of connections.

This network would be impractical to train, both in terms
of computation and learnability, using current-sized public
data bases. In each of our earlier studies, a simple context-
independent trained network used a single output unit for
each phone. For our most recent Resource Management
tests, we use 69 of these units. Were one to consider the
coarticulatory effects from the right only, this number would
expand out to 697, or over 4000. Considering both right and
left context, we would require 69° units, or about 328,000.
With a typical hidden layer of 500 units, we would have
over 10® connections, which is far too many for a practical
system.

Of course, HMM researchers have had a similar consider-
ation in reducing the number of parameters in their VQ-
based or tied-mixture-based systems. The solution has
been, in one form or another, to use a reduced number of
context-dependent models (typically a few thousand). How-
ever, this is still a large number. For instance, with 4000
outputs and 500 hidden units, a network would still have
over 2 million connections, which makes good generalization
difficult for training sets of a few hundred thousand frames.
Even if enough training data were available, networks with
millions of parameters can be expected to take impracti-
cal amounts of time to train using back-propagation ap-
proaches, even with fast special-purpose machines such as
our Ring Array Processor (RAP) [11].

In the approach reported here, we are able to esti-
mate, without any simplifying assumptions, likelihoods for
context-dependent phonetic models with nets that are not
substantially larger than our context-independent MLPs,
and that require only a small increase in computation.

2. CDNN: A CONTEXT-DEPENDENT
NEURAL NETWORK

As described in [1]-[4], with a few assumptions an MLP may
be viewed as estimating the probability p(gx|z.) where gx
is a speech class or an HMM state € @ = {q1,...,9x}, the
set of all possible HMM states from which phoneme models
are built up, and z, is the input data (speech features) for
frame n. If there are K such classes, then K outputs are
required in the MLP. This probability may be considered
»context-independent” in the sense that the left-hand side
of the conditional probability contains no term involving
the neighboring phones.

For a context-dependent model, we may wish to estimate
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the joint probability of a current HMM state with a particu-
lar neighboring phonetic category. Using C to represent the
set of possible contexts, we wish to estimate p(gx, cjlza),
where ¢; € C = {c1,...,cL}. If there are L context classes,
this will require K x L output units for an MLP estimator.
However, if we use the definition of conditional probability,
the desired expression can be broken down as follows:

P(ax,¢5lzn) = plarlzn) x p(cslgr, 2n) (1)

Thus, the desired probability is the product of the mono-
phone posterior probability and a new conditional. The
former can be realized with the usual monophone network.
Viewing an MLP as an estimator of the left side of a condi-
tional given the right side as input, the second term can be
estimated by an MLP trained to generate the correct con-
text class given inputs of the current class and the speech
input frame. The latter network only has as many outputs
as there are context classes.

This procedure reduces the training of a single network with
K x C outputs to the training of two smaller networks with
K and C outputs respectively, and represents a generic way
of splitting large MLPs used in classification mode into sev-
eral smaller ones. It has the potential, however, of requir-
ing much greater computation during the recognition phase.
Indeed, if one implements this method naively, the second
network must be computed K times for each frame during
recognition, since the output probabilities depend on an
assumption of the current class (corresponding to a mono-
phone model in a hypothesized word sequence at that point
in the dynamic programming). The next section will de-
scribe how this expense can largely be circumvented.

As a particular application of this general rule, the problem
of hybrid HMM/MLP approaches for triphone modelling
will be considered. In this case, the main problem lies in
the estimation of probabilities like p(z¢|g, ¢!, c}) where c?
and c; respectively represent the left and right phonemic
contexts of state gx. If one wants to model triphones with
neural networks, a straightforward approach could consist
in having K x L x L output units to model the K x I x L
possible contextual state probabilities. This would require
an excessive number of parameters.

Expanding the joint triphone likelihood as in (1), we get:
plax, 5, celze) = p(cSlan, ¢k, ze).p(cklax, ¢).p(gxlzs) , (2)

and
plar,c5,ct) = p(cilgr, cb).p(ctlar)plar) . (3)

During recognition and (Viterbi) training, the context-
dependent likelihoods p(z:|ct, g, c}) can then be estimated
from (2) and (3) as:

P51 gk, cglze).p(ze)

£ r
P{Ze|Cs, qk, C =
(=eles, an,c2) p(ct, ar, cf)

4

in which p(z) can be ignored during dynamic time warping.

In fact, relations (1), (2) and (3) are examples of a general
approach for splitting a huge MLP used in classification
mode into smaller ones without requiring any simplifying
assumptions. Now, exploiting the conclusions we derived
from the theory of our hybrid HMM/MLP approach for
phoneme models (i.e., in classification mode, the output
values of the MLP are estimates of the a posteriori proba-
bilities of the output classes conditioned on the input), it
can be shown that all the right hand factors appearing in
(2) and (3) can be estimated separately by different MLPs:

e p(ctlgr,c}, z:) can be estimated by an MLP in which
the output units are associated with the left phonemes
of the triphones and in which the input field consists of
the current acoustic vector z, (possibly extended to its
left and right contexts), the current state and the right
phonetic contexts in the triphones (which are known
during training).

® p(celgx,z:) can be estimated by a neural network in
which the output units are associated with the right
phonemes and in which the input field is constituted
by the current acoustic vector z; (possibly extended
to its left and right contexts) and the current state
(associated with z.).

P(gx|ze) is estimated by the same neural network as
the one used for modeling phonemes where the input
field contains the current acoustic vector only and the
output units are associated with the current labels.

p(ctlgx,c) can be estimated by a neural network in
which the output units are associated with the left
phonemes of the triphones and where the input field
represents the current state and the right phonemes.
This provides us with the a priori probability of ob-
serving a particular phoneme in the left part of a tri-
phone given particular current state and right phonetic
context.

¢ p(czlgx) can be estimated by a neural network in
which the output units are associated with the right
phonemes of the triphones and where the input field
represents the current state. This provides us with the
a priori probability of observing a particular phoneme
on the right side of a particular state. Given the lim-
ited number of parameters in this model (i.e., K x L),
this probability can also be estimated by counting (i.e.,
this does not require a network).

P(gx) is the a priori probability of a phoneme as also
used in the standard hybrid HMM/MLP phonetic ap-
proach, and is simply estimated by counting on the
training set (i.e., this also does not require a network).

By training these different MLPs and using their output ac-
tivation values in (4), it is possible to estimate, without any
particular assumptions, the probability p(z,lqk,cf,cs) that
is required for modelling triphone probabilities to be used
in HMMs. This generalizes to triphones the approach de-
veloped in [1]-[4] and which was restricted to phoneme mod-
els. Of course, for limited training sets, as done with stan-
dard HMMs, smoothing of context-dependent and context-
independent probabilities [9] still may be important even
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with MLPs. Also, training improvements presented in [2],
[3] (such as the use of cross-validation technique to improve
generalization performance) remain valid in this new ap-
proach. Additionally, if ¢‘ and ¢" represent broad phonetic
classes or clusters rather than phonemes, the above results
apply to the estimation of “generalized triphones”, such as
are defined in [9]. As done previously [1]-[4], the input field
containing the acoustic data (e.g., z:) may also be supplied
with contextual information. In this case, the z. appear-
ing in all the above (and subsequent) probabilities have to
be replaced by XS = {z¢—c,...,Z¢,..., Tesc}, in which ¢
represents the width of the contextual window. This leads
to the estimation of triphone probabilities given acoustic
contextual information, which is even more important in
the case of triphone models.

3. IMPLEMENTATION ISSUE

While the previous section appears to have solved the prob-
lem of triphone modelling by neural network, an important
implementation issue still has to be taken into account.

We have shown theoretically how to transform, without any
particular assumptions or simplifications, the huge neural
network which would result from the brute force applica-
tion of our earlier hybrid HMM/MLP approach for phoneme
modelling to triphones. Indeed, instead of having a single
MLP estimating p(gx|z¢), we need to estimate

plar, &, cilze) (5)

which requires an MLP with K x L x L output units. In
the previous Section, we have shown that it was possible
to estimate the same probability with three smaller MLPs
respectively estimating

p(cﬂqk7c;yzt) » (6)
p(ctlax, ) )]

and
p(gk|ze) . (8)

However, while this strongly reduces the memory require-
ment and the number of parameters, a naive implementa-
tion of these smaller networks would require much more
computation.

In the case of phonetic modelling, a single MLP provided
with the current acoustic vector z. as input can estimate
p(gxlz:) for all possible classes gx on the associated out-
put units. This remains valid for triphone modelling if we
use the huge network with z, at its input and K x L x L
output units, each output unit being associated with a par-
ticular triphone. However, when this huge network is de-
composed into smaller networks computing (6), (7) and (8),
the first two networks must have input values depending on
the phonetic contexts constituting the triphones. For exam-
ple, the input field of the neural network estimating (8) on
its output units is constituted by the concatenation of the
current acoustic vector z. and the middle and right pho-
netic contexts in the triphones. Since the MLP training is
supervised, i.e. we know exactly which triphone is associ-
ated with a particular acoustic vector, this is not a problem

during training. However, this is no longer the case dur-
ing recognition where we do not know in advance which
triphone is associated with z..

Therefore, in principle one would have to compute network
activations at each frame for each possible phonetic con-
text. This would amount to L x L times the monophone
network computation, and would generally be prohibitive.
Fortunately, a simple restriction on the network topology
permits the pre-calculation of contextual phonetic contri-
butions to the output; this computation can be done at the
end of the training phase, prior to the recognition of any
speech. By simply partitioning the net so that no hidden
unit receives input from both phonetic context units and
data input units, we can pre-calculate the contribution to
the output units (prior to the output nonlinearity) for all
possible combinations of left and right contexts, and form
a table of these contributions. During recognition, the pre-
sigmoid output values resulting from data vectors can be
computed by a forward pass on the net for each frame. For
each hypothetical triphone model, these contributions from
the data inputs can be added to the corresponding context
contributions from the table. The major new computation
(in comparison with the monophone case) then is simply the
cost of some lookups, both for the contextual contributions,
and for the final sigmoidal nonlinearity, which must now be
re-computed for each hypothesized triphone (as opposed to
once per frame, as in the monophone case). In practice this
only doubles or triples the computation time, a reasonable
cost for triphone models.

As an example, let us consider the case of p(cflqk,c;,zg).
More formally, letting Y;(gx,c?) be the contribution to the
pre-sigmoid output for state g; for the phonetic context-
dependent partition of the net, and letting Z;(z:) be the
contribution to the pre-sigmoid output for state g; for the
data vector input. Then

p(cslax, by ze) = f(Y + Z5) ©)

where f is the standard sigmoid function. A (K x L x L)-
dimensional table Y is computed after network training
by runming the phonetic-context-dependent partition of
the network (which has no inputs from the data vector)
K x L x L times, i.e. for all possible output units and for
all possible combinations of phonetic contexts, with no out-
put sigmoid computation. This table loading is a negligible
amount of computation compared to the training of the net-
work. During recognition, for each acoustic vector z, it is
then enough to run each MLP only once to get the contri-
bution Z; of the data inputs for each output unit g;. For
each hypothetical triphone model, this contribution Z; just
has to be added to the corresponding context contribution
Y; obtained by a simple lookup in table Y. In fact, this
is equivalent to considering Y; as an added bias (of output
unit ¢;) that depends on the phonetic context. Of course,
the same method can be applied to the MLP computing
p(ctlgr, :). Also, for p(cilgx, cz) and p(cflgs) it is sufficient
to compute look-up tables at the end of the training phase
for use in (3).
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4. DISCUSSION AND RESULTS

4.1. The unrestricted split net

In equation (1), when splitting the original MLP with K'x L
output units into two smaller networks with K and L out-
puts respectively, the number of parameters is drastically
reduced, which could affect the quality of the conditional
distributions’ estimation. However, parameter reduction is
exactly the aim of the proposed approach, both to reduce
computation and to improve generalization. As it was done
for p{gx]zn) [1}-[4], it will be necessary to find (e.g. by us-
ing cross-validation techniques) the number of hidden units
(and hence the number of parameters) leading to the best
estimate of p(cjlgr, zn). The desired probabilities can in
principle be estimated without any statistical assumptions
(e.g., independence). Of course, this is only guaranteed if
the training does not get stuck in a local minimum and if
there are enough parameters.

4.2. The topologically restricted net

As shown above, while reducing the number of parame-
ters, the splitting of the network into two smaller net-
works results in much greater computation in the contex-
tual network. To avoid this problem it is proposed to re-
strict the topology of the second network so that no hidden
unit shares input from both gx and z,. Consequently, the
gx input only changes the output thresholds. However, a
recent experiment with frame classification for continuous
speech (trained using 160,000 patterns from 500 sentences
uttered by a speaker in the Resource Management continu-
ous speech recognition corpus) suggested that this did not
affect the correct estimation of p(c;|gxk,zn). In this exam-
ple, the network with a split hidden layer predicted (for a
test set of 32,000 patterns from 100 sentences) the correct
right context 63.6% of the time, while a network with a uni-
fied hidden layer predicted the context 63.5% of the time,
an equivalent figure.

4.3. Preliminary results and conclusion

Prior to experimenting with the CDNN for continuous
speech recognition using biphone and triphone models (to
be reported at a later date), we wanted to check experimen-
tally that the split MLP was equivalent to the original one.
We compared biphone probabilities generated by the orig-
inal and split MLP for the speaker independent Resource
Management database. The number of hidden units in each
MLP was chosen such that the number of parameters was
approximately the same in both cases. After having trained
both cases on 4,000 sentences, biphone probabilities were
computed on a test set of 100 sentences pronounced by 4
different speakers, yielding a total of 17,012,088 probabil-
ities. To compare both sets of probabilities we computed
the correlation coefficient to be 0.65, and the mean absolute
difference that was equal to 0.0017. Thus, the two sets of
probabilities are significantly correlated. This suggests that
CDNN may be a good way to compute context-dependent
probabilities with nets that have a limited number of pa-
rameters and that require an acceptably small increase in
computation over the context-independent case.
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