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Abstract

Clinical Decision Support Systems (CDSS) provide aid in clinical decision making and therefore need to take

into consideration human, data interactions, and cognitive functions of clinical decision makers. The objective

of this paper is to introduce a high level reference model that is intended to be used as a foundation to

design successful and contextually relevant CDSS systems. The paper begins by introducing the information

flow, use, and sharing characteristics in a hospital setting, and then it outlines the referential context for the

model, which are clinical decisions in a hospital setting. Important characteristics of the Clinical decision making process

include: (i) Temporally ordered steps, each leading to new data, which in turn becomes useful for a new decision, (ii)

Feedback loops where acquisition of new data improves certainty and generates new questions to examine,

(iii) Combining different kinds of clinical data for decision making, (iv) Reusing the same data in two or more

different decisions, and (v) Clinical decisions requiring human cognitive skills and knowledge, to process the available

information. These characteristics form the foundation to delineate important considerations of Clinical Decision

Support Systems design. The model includes six interacting and interconnected elements, which formulate the

high-level reference model (CDSS-RM). These elements are introduced in the form of questions, as considerations,

and are examined with the use of illustrated scenario-based and data-driven examples. The six elements /considerations

of the reference model are: (i) Do CDSS mimic the cognitive process of clinical decision makers? (ii) Do CDSS provide

recommendations with longitudinal insight? (iii) Is the model performance contextually realistic? (iv) Is the

‘Historical Decision’ bias taken into consideration in CDSS design? (v) Do CDSS integrate established clinical

standards and protocols? (vi) Do CDSS utilize unstructured data? The CDSS-RM reference model can contribute to

optimized design of modeling methodologies, in order to improve response of health systems to clinical decision-making

challenges.
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Background

Proper use of clinical information is especially import-

ant in an effort to make sound clinical decisions and

provide quality health services [1]. A variety of informa-

tion is combined by healthcare professionals who arrive

at clinical conclusions [2]. These decisions rely on

information which once acquired, is further processed

by healthcare professionals’ cognitive skills, such as in

the differential diagnosis [3]. Combining clinical infor-

mation and the cognitive element is therefore critical to

clinical decision making.

One highly emerging focus area of medical informatics

is to improve care delivery of in-hospital patients with

the development of data-driven, patient-centered deci-

sion support systems. Development of such systems is a

highly demanding and multidisciplinary task that

requires the integration of knowledge from the clinical

domain, and decision science to adapt the CDSS to the

hospital practice and clinical work flows [4]. Clinical

Decision Support Systems (CDSS) provide clinicians

with knowledge, intelligently filtered or presented at ap-

propriate times, to enhance health and health care [5],

and can be seen as an effective pathway to improve

patient safety [6], providing, for instance, alerts for error

reduction [7]. Therefore, the information that CDSS

provide needs to reflect the decision-making process

and the intellectual effort of clinicians in a contextually

relevant way. CDSS cannot rely on static, prefabricated* Correspondence: zikos1d@cmich.edu
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‘in vitro’ methods. Instead, CDSS should make dynamic

predictions, allowing interactions with clinicians and

taking into consideration the longitudinal nature of

health and disease [8]. Designing successful CDSS re-

quires collaboration with domain experts who have

knowledge of clinical attributes that are required to be

used together, due to treatment or diagnostic criteria.

In recent approaches, such as CONFlexFlow [9], inte-

grating flexible clinical pathways into CDSS was recog-

nized as critical for system success and the means to

better understand the clinical context through ontol-

ogies, and decide the right rules for a certain activity.

During the eighties and early nineties, there was an open

debate on how “recent progress in computer-based diag-

nosis has been encouraging enough to consider the con-

cept of computer diagnosis” [10]. Nowadays, while this

is still an open debate, the impressive progress in ma-

chine learning and artificial intelligence provides new

opportunities for more targeted and accurate clinical

predictions and recommendations [11].

There is a wide recognition, in the literature, of the

importance of secondary use of health data, for decision

support and quality improvements. The American Med-

ical Informatics Association convened a summit that

resulted in a white paper laying the groundwork for

policy, future research, and a taxonomy of uses, recog-

nizing as a requirement, at a nation level, an infrastruc-

ture of policies, standards, and best practices, regarding

secondary health data analysis [12]. Other authors also

discuss the importance of improved utilization of sec-

ondary health data [13]. There is therefore an evident

consensus that harnessing secondary data provides to

health systems enormous opportunities to improve the

quality of care and practice.

Despite this, to the authors’ knowledge, there has not

been any effort, so far, to systematically illustrate consider-

ations and approaches specific to the conceptualization of

data-driven decision support systems for clinical decision

making. Although comprehensive efforts specific to CDSS

and clinical decision making have not been published,

there are available general purpose theoretical frameworks

such as the Google TITE (Time-Interactions-Trends-E-

vents) [14], outlining important components for decision

support systems, in general. Peripheral work includes an-

other general-purpose artificial intelligence framework to

address challenges in the modern healthcare system [15],

serving, as a “simulation environment for exploring

various healthcare policies, and payment methodologies,

forming the basis for clinical artificial intelligence”. Other

efforts include the work of Fox et al. [16] who developed

the PROforma method, for specifying clinical guidelines

and protocols via graphical notation and a formal know-

ledge representation language. In their paper, they discuss

the need for flexible and well understood knowledge

representations which are capable of capturing clinical

guidelines and protocols for decision support systems.

Another effort is the EON project [17] and focuses on the

retrieval and use of clinical guidelines using reasoning sys-

tems. Additionally, Greenes outlines aspects of CDS for

models and frameworks, summarizing the literature [18].

These aspects include the adaptation of CDSS to hospital

workflow, construction of its components, interoperability

and data sharing, reasoning considerations, health systems

priorities, quality improvement outcomes, and CDS effect-

iveness evaluation. We recognize that these aspects

address several different layers of data, analysis, and deci-

sions, including organizational, interoperability, and mod-

eling aspects.

These priorities, as summarized in the literature,

address different levels and concerns of data use and

modeling. In our work, the specific focus and contribu-

tion is the abstraction layer of the conceptual modeling

aspects of CDSS via the introduction of the CDSS-RM

(Clinical Decision Support System Reference Model) for

Computerized, data-driven CDSS design. The paper

starts by defining the context that the CDSS-RM refer-

ence model is constructed on. The paper continues by

outlining five health data use and exchange properties

which are required to be considered during the design of

CDSS. Then there are eventually introduced six interre-

lated elements, built around the data properties previ-

ously discussed. These six elements form an illustrative

reference model for CDSS. In this paper we define the

CDSS-RM context, and classify six elements that formu-

late the CDSS-RM reference model. The authors are

health administration researchers, with nursing back-

ground and with health analytics research experience.

The main author’s clinical practice exposure in both the

US and European Health Systems was foundational for

the translation of practical perspectives of decision

makers to the presented model.

Definition of the context for the CDSS-RM

The use context of this reference model is a hospital set-

ting where clinical decision makers make decisions

about the patient diagnosis, and treatment. Upon patient

admission, the clinical decision process begins at the

point shown in Fig. 1. Clinical decisions include the: (i)

selection of appropriate diagnostic tests, (ii) patient diag-

nosis, (iii) selection of optimal treatments and (iv)

prediction of the patient prognosis. This is the decision--

making context that the reference model is based upon.

These decisions are interdependent and are character-

ized from data use and data flow patterns. Below we

make an attempt to summarize some of these patterns,

as observed in the daily routine hospital practice and as

discussed in the literature. Regardless any structural hos-

pital characteristics, and variations found in different
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health systems, these patterns are inherent to any

clinical decision making process. Additionally, in our

work, tackling information fragmentation and data-

rquality-related challenges of health systems (later

presented in this article), belong to a different

abstraction layer and therefore not included to the

reference model, that intentionally focuses on concep-

tual modeling elements according to the natural clin-

ical information use and exchange.

1. Ordered steps, each leading to new data, useful

for a new decision: Patient history, symptoms, and

physical examination contribute to decisions for

diagnostic test ordering. Test results form the basis

for patient diagnosis. The diagnosis, in turn, is

decisive for the choice of an optimal treatment.

Examples found in the literature demonstrating this

workflow include the work of Combi [19].

Additionally, the numerous flowcharts of hospital

process analysis that can be found in hospital

settings, illustrate this property.

2. Feedback loops and temporal repetitions: The

result of a diagnostic test may direct physicians to

order additional tests, as a requirement for

successful differential diagnosis (Fig. 1, point 2). In

addition, a diagnostic test may be repeated, during

a periodic assessment, to confirm or alter the

therapeutic schema in response to the updated

diagnostic test results (Fig. 1, point 6). These

feedback loops and repeated measurements are

often mandated as requirements of hospital clinical

pathways and protocols of care. According to Shah

[20], evidence and experience in practice should

follow a positive feedback loop to construct the

decision-making paradigm in patient treatment.

Recently, Zikos has presented work of a feedback

loop [21] during symptom reporting, where the

computer system asks for additional patient

information based on their initial reporting, to

facilitate improved insights during the triage

process, and handle the physician uncertainty.

3. Combining data: Naturally, a variety of different

data need to be combined in decision making.

Examples include combining diagnostic test

results with patient history, physical examination

and symptoms, to form the diagnosis (Fig. 1,

point 4). Or the combination of lab test results,

the diagnosis, patient history, physical

Fig. 1 Contextual relevance of the CDSS-RM reference model: The clinical decision-making process
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examination and treatment, to predict the

patient prognosis (Fig. 1, point 7).

4. Decisions made by processing information with

cognitive skills and knowledge: In clinical

decisions, clinical data are assessed by health

professionals’ knowledge and decision-making skills.

5. Data reuse: Clearly, in clinical practice, data

facilitate more than one decision. Data generated to

support a specific decision-making process, can be

reused later on for another decision. For instance,

while lab and radiology results are primarily ordered

to set a diagnosis, they are later utilized for treatment

decisions, or for the patient prognosis.

The focus and attention of the CDSS-RM model is the

conceptual development of Computerized Clinical Deci-

sion Support Systems in hospital care. The model is

therefore primarily intended to be useful for Healthcare

IT Designers and Consultants, as well as by Healthcare

IT Project Managers, to communicate design consider-

ations with health data analysts and IT contractors. Its

scope is any in-hospital clinical decision making scenario

that requires combination and modeling of clinical data

for computer assisted decision support. These decision

making procedures include the medical diagnosis, treat-

ment selection, patient prognosis, discharge and patient

transfer information, and the selection of appropriate

medical procedures. It is therefore relevant as a tool to

encapsulate and communicate characteristics that a

CDSS may integrate, spanning from the proper selection

and modeling of feature-sets, and including high-level

approaches for the algorithmic portion of CDSS, instead

of the technical algorithmic implementation. The intro-

duction, to the reader, of the reference model is given in

a descriptive, rather than prescriptive manner.

Information use and flow characteristics in healthcare

Clearly, proper use of clinical information is especially

important, for high quality health services. Health data

properties are delineated extensively in the literature.

These include completeness, correctness, concordance,

plausibility and currency [22]. Additionally, Hersh et al.

also discusses data provenance, granularity, and chal-

lenges related to unstructured data. Another classifica-

tion of data properties, discuss the concept of complete

documentation, information breadth, density (no miss-

ing time-points), and the predictive strength of input

variables [23]. There is quantified evidence of the exist-

ence of the aforementioned data challenges, as reported

in research, such as in the work of Brotsis et al. [24]

who measured data quality issues from Electronic Med-

ical Record Data.

The aforementioned data challenges restrict the poten-

tial for successful data modeling. In this work we

acknowledge these challenges, however our focus is the

design and conceptual modeling considerations, ab-

stracted from data quality issues. Use of data and informa-

tion flow in healthcare, share fundamental characteristics,

which relate to the capacity of clinicians to make good de-

cisions. We classify these properties as: (1) Non-atomicity

(2) Cognition (3) Temporality (4) Sharing (5) Reuse.

Non-atomicity

Different segments of health care data should not be

assessed independently: Most of the clinically useful in-

formation comes by combining multiple data resources

and by evaluating combined information with the clin-

ical knowledge of a health professional [25]. Physicians

combine the physical examination, laboratory test results

and patient history data, for a clinical assessment. A

blood glucose measurement of 128 mmHg is evaluated

as normal when combined with the patient history of a

young Type I diabetes patient, but this would not be the

case for a non-diabetic person [26]. The aforementioned

inherent need drives a requirement for tools providing

to clinicians easy access to patient data and reports,

summarizing the available clinical information, at the

point of care. While Electronic Health Records automate

access to aspects of patient information, to streamline

the clinician’s workflow [27], there is oftentimes lack of

flexible, problem-specific representations of information

to facilitate decision needs.

Cognition

Health care data are assessed with cognitive skills of

health professionals. Differential diagnosis and other

cognitive procedures, are based on critical skill-sets.

These knowledge-driven and experiential skills, com-

bined with the clinical information they have at their

disposal, drive clinical decisions. This cognitive process

is systematic and varies across different healthcare pro-

fessionals. For example, physicians perform differential

diagnosis to differentiate between two or more condi-

tions that share similar signs or symptoms [28]. Medical

education and continuing professional development are

important success factors for this dimension [29].

Temporality

Healthcare data should be assessed with a longitudinal

insight [30]. Many clinical procedures are repeated dur-

ing a patient hospitalization (e.g. vital signs, blood tests)

[31]. When these data are reviewed, clinicians recognize

temporal patterns and assess the disease progression and

treatment effectiveness. Morning blood glucose levels of

135 mmHg would seem elevated for some patient, but

the clinician would not be alerted if this value had been

lower than previous measurements of that patient. Lon-

gitudinal data can form the foundation for predictive
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modeling of patient outcomes and effectiveness of med-

ical treatments [32].

Sharing

Healthcare data are shared across the healthcare system

and between health professionals, following medical

logic [33]. The importance of shared decision making in

health care has been increasingly recognized as import-

ant research topic [34]. Clinicians do not act in an intro-

verted manner within the healthcare system. An MRI

test cannot be solely assessed by the radiologist; a phys-

ician would review the MRI to make informed decisions

about the patient. An interoperable environment is re-

quired to seamlessly share data. In addition, interprofes-

sional collaboration is critical; health curricula and

continuous education programs contribute to developing

this competence [35].

Reuse

Healthcare data are used in a variety of different clinical

decisions. Obviously, a lab test result will drive a medical

diagnosis, but it can also be used for the treatment

effectiveness evaluation or disease progression. Most im-

portantly, since reuse of clinical data is recognized as

essential for improved healthcare management, reduced

healthcare costs, and effective clinical research [36],

researchers explore ways that clinical attributes of care

can contribute beyond driving decisions for individual

patients, for a better understanding of the system per-

formance for organizational and quality improvements.

Elements of the CDSS-RM reference model

In response to the challenges for successful clinical deci-

sion making, designers of CDSS and data scientists are

required to understand and consolidate the aforemen-

tioned data properties. This section introduces six

elements critical to the design of CDSS. These elements

are presented to the reader in the form of core consider-

ations to be made during design of CDSS. The elements

do not dictate the technical implementation details and

focus on conceptual development principles of CDSS to

construct the CDSS-RM reference model [37].

Expert systems and other machine learning methods

simulating clinicians’ decision making

Core consideration 1: Do CDSS mimic the cognitive process

of clinical decision makers?

There is a reasonable argument around the importance of

systems simulating the human decision-making process.

Researchers have identified, decades ago, the need to

move to a direction where the human reasoning and

judgement could be automated. In the work of Lusted, for

instance, back in 1968, it was discussed that greater under-

standing of human judgment processes involved in

diagnosis may enable the investigator to produce these

processes more exactly on a computer [38].

Consideration 1.1: Do the CDSS utilize feedback loops to

mimic clinical assessment?

In clinical decisions, successful combination of the clin-

ician cognition with the available clinical information

can be of great value. Clinical reasoning approaches and

methods have been discussed in the literature [39]. The

physician often requests additional information (e.g.

more examinations and radiology tests) to assign a diag-

nosis or decide a treatment; these data provide better in-

put for a complete and successful differential diagnosis

[40]. Human diagnostic problem solving has been dis-

cussed in the literature, in a domain independent man-

ner [41] as well as far as the disease diagnosis problem is

concerned [42]. During the clinical cognitive process,

the physician will try to ‘fill in reasoning gaps’ by reas-

sessing the existing information or by ordering more

clinical tests. This loop (…clinician’s assessment ➔ clin-

ical data ➔ clinician’s assessment…) is a foundational

element of clinical decisions. The feedback loop aims to

replicate this possible initial de facto clinician uncer-

tainty. CDSS design approaches can simulate the afore-

mentioned loop, by applying reinforcement learning

methods [43, 44]. Oftentimes, the probabilistic nature of

health and disease results in significant amounts of

inappropriate care [45]. The design therefore needs to

take this into account by recognizing, and thereafter

evaluating other probable factors, to reduce decision un-

certainty. The dynamic user feedback loop approaches

and reinforcement learning methods have been shown

to positively contribute to this direction. The clinical

scenario below illustrates how an informed feedback

from an algorithm can lead to updated user input, and

finally to improved clinician certainty.

Input of symptoms: {x1…xn} (initial clinical informa-

tion) ➔ Output (prediction): Probability for Condition

A: 80%, Condition B: 65% ➔ Initial model finds that an

unreported symptom xk is often present in Conditions A

and B ➔ Clinician now requests new information and

indeed validates the existence of xk ➔ Initial input is

updated as {x1…xn, xk} ➔ New Probabilities calculated:

Condition A = 95%, Condition B = 35% ➔ Minimized

clinical uncertainty.

Consideration 1.2: Do CDSS utilize in unison expert

systems and machine learning?

Expert systems in healthcare settings are knowledge

based systems that imitate the cognitive process of deci-

sion making, by using reasoning approaches. Expert

systems solve complex problems by reasoning about

knowledge, represented mainly in the form of condi-

tional (If-Then-Else) rules [46, 47]. In a clinical setting,
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there are too many considerations and small but

non-trivial clinical details. This is one reason why clin-

ical expert systems have a limited focus on a specific,

very well-defined decision-making domain, such as the

diagnosis of a given condition. The existence of the

more traditional knowledge-based systems (rule-based

mimicking of human reasoning) and the more current

data driven machine learning algorithms can be comple-

menting to each other. Both technologies are utilized in

healthcare settings the common goal to assist clinical

decision makers. In medical diagnostic reasoning, there

are sometimes patient cases where the compiled know-

ledge fails to recognize a condition: This is an evident

limitation when conditions appear in unexpected or

unusual manners and when some patients manifest rare

findings or disorders. The aforementioned limitation can

be handled with modeling of enormous historical clinical

datasets, sufficient in size to include patters of disease

for such rare and unique cases. By marrying expert sys-

tem approaches, which mimic reasoning in decision

making, with machine learning methods, this common

objective can be met with higher success [48].

The temporal nature of clinical decision making

Core consideration 2: Do CDSS provide recommendations

with longitudinal insight?

When healthcare professionals review patient informa-

tion, they typically compare physiological measurements

and laboratory results against physiological norms [49].

Physicians do not just review raw physiological measure-

ments, but they primarily want to know how the patient

responds to their therapy of choice, by anticipating

improved physiological measurements. Clinical decision

makers also consider, during patient assessment, what

physiological values they would expect, given the patient

response to the therapy. Physiological values, when com-

pared against recent measurements and baselines for the

patient under investigation, provide improved insights

about treatment effectiveness or disease progression.

This section explains three CDSS design considerations

related to this aspect: a) Inclusion, as predictors, trends

of repeated measurements (b) Modeling of the sequen-

tial order of clinical events (c) Modeling of the temporal

distance between clinical events.

Consideration 2.1. Do CDSS use trends of physiological

measurements instead of cross-sectional data?

Evidently, use of cross-sectional data does not allow

assessment of longitudinal care, which may be more

important than visit-based indicators [50]. For some

patient, blood glucose levels of 150 mg/dl, might not

raise concerns, provided that the glucose levels for that

patient were 180 mg/dl in the previous day, and

210 mg/dl two days before. Clearly, despite the increased

value of 150 mg/dl, the physician observed satisfactory

response to therapy and would not alter the therapeutic

schema. For a second patient, though, a blood glucose

measurement of 150 mg/dl, would lead to a different

clinical decision if this measurement was the only

known one for that second patient. This case, would re-

quire the physician’s attention. In those two different

scenarios, while the cross-sectional input value is the

same (blood glucose = 150 mg/dl), the model output

clearly depends on previous measurements. This ex-

ample aims to illustrate the longitudinal nature of clin-

ical decisions and this is why a longitudinal medical

record is key to clinical decision support [51]. Temporal

trends and fluctuating results of repeated physiological

measurements should be significant considerations when

designing CDSS.

To further elaborate, we generated a dataset 200 chronic

diabetes patients who were admitted with pneumonia

(J18.9 ICD-10-CM), and, as a result, uncontrolled diabetes

(E11.65 ICD-10-CM). While this is not a synthetic dataset,

we generated values based on the fundamental knowledge

that, during hospital admission, for patients with uncon-

trolled diabetes (i) the higher the blood glucose levels, the

longer the stay [52] and (ii) the faster the blood glucose

levels are controlled, the shorter the hospital stay. Using

an online realistic data generator (mockaroo.com) with

the aforementioned criteria as functions, we created the

following variables and 200 tuples of data: Consecutive

blood glucose measurements per patient, age, sex and

length of stay. Using this generated dataset, the variables

{Blood Glucose value, Gender, Age} were utilized to predict

the hospital Length of Stay (LOS), using the Weka data

mining software, version 3.8. At first, we estimated the

mean blood glucose (Mean BG) per patient and used it as

input variable, together with the demographics, for the

prediction of the LOS. Using the Weka implementation of

linear regression (Weka LinearRegression function) with

the “Enter” variable method, the R squared value was

found equal to 0.56, and the absolute error was 67.57%.

Then, we generated a new attribute, the Blood Glucose

Trend (BG Trend), for the three consecutive blood glucose

measurements. The BG Trend variable takes integer

values from − 2 to + 2, where 0 indicates stable blood glu-

cose levels, + 2 significant increase, and − 2, is a significant

drop. This attribute was added to the feature-set {Blood

Glucose Trend (increase/stability/decrease), Gender, Age}

and another linear regression equation was estimated.

This time, the R squared value was significantly higher

and equal to 0.84, and the relative absolute error went

down to 44.57% (Table 1). Prediction of the LOS was evi-

dently more accurate for the second model that consid-

ered the temporal progress of the condition [38]. In both

models we included the mean BG variable as input, serv-

ing as the patient baseline information. We acknowledge
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the limitation of this data experiment, though, that is the

use of simulated data based on researcher defined criteria

for data generation.

Consideration 2.2: Do CDSS consider the sequence of

clinical events?

Another consideration is the importance of the sequence

that clinical events appear. A case diagnosed with

bacteremia (ICD-10: R78.81) followed by severe sepsis

(ICD-10: A41.51), which is, in turn followed by septic

shock (ICD-10: R65.21) would probably have bad prog-

nosis. The ordered appearance of these three conditions

represent a clinical event of patient deterioration. A look

at the data series below shows Bacteremia and Severe

Sepsis diagnoses for 20 patients, their discharge status,

and days between diagnosis of Bacteremia and Sepsis,

where applicable.

{Bacteremia (0/1), Sepsis (0/1), Discharge Status (D =

dead, A = alive), Sepsis-Bacteremia Days Elapsed}.

{0,0, A,} {1,0, A,} {0,0, A,} {1,0, D,} {1,0, A,} {1,1, D,2}

{0,0, A,} {1,0, A,} {1,1, D,3} {0,1, A,} {0,0, A,} {0,1, A,}

{1,0, A,} {0,1, D,} {1,1 ,A,9} {1,1, D,2} {0,1, A,} {1,1, A,8}

{1,1, D,3} {1,1, D,2}.

For these data, we calculated the conditional prob-

ability of death given the existence of Bacteremia to be

50% ([P (D | Bacteremia)] = 6/12 = 50%). The condi-

tional probability of death given the existence of

Bacteremia and Severe Sepsis increased, as expected,

to 71.4% ([P (D | Severe Sepsis | Bacteremia)] = 5/7 =

71.4%). Next, we used the dichotomous variables

‘Bacteremia’ and ‘Severe Sepsis’ as the only two input

variables to predict the risk of death on discharge,

with Naïve Bayes, as a base model. The algorithm clas-

sified correctly 80% of the instances, with a relative

absolute error being equal to 71.95% and a ROC area

of 64.8%. After this experiment, we added the third in-

put variable ‘Sepsis from Bacteremia, Days Elapsed’. In

other words, this variable added to the predictive

model, inferred information about the patient re-

sponse to the antibiotic therapy, prolonging the ap-

pearance of Sepsis. Now Naïve Bayes classified

correctly 85% of the instances, with a significantly im-

proved absolute error (46.16%) and also an improved

ROC area of 75.8%.

Consideration 2.3: Do CDSS consider the temporal distance

of clinical events?

In the aforementioned scenario (2.2), it is also important to

consider the temporal distance between the three diagno-

ses, i.e. how many days after the diagnosis of bacteremia

did clinicians diagnose severe sepsis, and then septic shock?

Use of timestamps from EMR data in the analysis are im-

portant to construct clinically useful events and estimate

their severity. This is especially important to assess the per-

formance of health systems in terms of care delivery and

transition and eliminate delays and gaps in service.

Designing systems with contextual validity in mind

Core consideration 3: Is the model performance

contextually realistic?

When models for clinical predictions are developed, it is

essential for health IT designers and data analysts to col-

laborate closely in order to decide the exact hospital stay

phase that the clinical decision will be taking place. This

is a very important aspect of correct conceptual designs

of data driven clinical CDSS: It is not uncommon that

the reported model performance, in various works is

overoptimistic, and therefore contextually inaccurate,

since the model was trained and tested using input vari-

ables which are normally non-available at the point of

decision. It is not unusual that published work on clin-

ical predictive models, does not detail the intended use

scenario in its methods. When developing predictive

models, it is crucial to be aware that a model with high

precision and recall in the experimental setup, is not ne-

cessarily highly valid in a real context [53].The example

of predicting the hospital length of stay (LOS) has been

recently explored in many studies [54]. Predicting the

hospital LOS is an extremely difficult problem to solve

for a patient few hours after admission [55]. This is true

since the available patient information at that decision

point is only limited the admission information and the

patient demographics. The diagnosis, any clinical proce-

dures or medications are still unknown. Few days after

the admission, though, predicting the hospital LOS be-

comes an easier problem, since many more clinical vari-

ables became known, contributing to significantly

improved performance [56]. Our comparisons in recent

work [57] have validated this hypothesis.

Consideration 3.1: Does the CDSS model the care process

on the fly, per user inquiry?

In a real context, training and testing of a model should

be repeated dynamically according to the feature-set that

varies in different phases of a hospital stay. Each time

there is a new inquiry by the user, a new model can be

trained, by using only those features which are available

at that decision point. A necessary follow-up step would

be the testing phase, to establish the degree to which the

Table 1 Model performance improves when trends and

temporal changes are taken into account

Feature set (input) AGE, SEX, MEAN BG AGE, SEX, MEAN BG, BG TREND

R squared 0.56 0.84

Absolute error 67.57% 44.57%

Scheme: weka.classifiers.functions.LinearRegression -S 0 -R 1.0E-8 -num-

decimal-places 4, Instances: 200, Test mode: 10-fold cross-validation
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prediction is contextually valid and therefore clinically

useful. The most important limitation for this ‘on the fly

model training’ is the computational cost, resulting to

systems providing information with delay, after an

inquiry. Clearly, the computational complexity of many

advanced data analytics methods (e.g. Support Vector

Machines, Neural Networks) renders models virtually

impossible to be trained on the fly [58]. The clinical de-

cision maker wants to review the prediction output at

the point of care, to make decisions accordingly, and

cannot afford to wait for hours to see the output.

This is an oftentimes present a machine learning di-

lemma, which is the model accuracy vs efficiency, and is

especially important in healthcare because of the need for

very highly accurate predictions, when at the same time

decisions need to be made in a non-delayed manner. For

the aforementioned reason, low computational cost classi-

fication and regression methods such as Bayesian models

and linear regression models can be potentially useful.

Bayes models perform well in medical problems, due to

the highly probabilistic nature of health and disease, des-

pite their inherent variable independence assumption.

Researchers recognize the Bayesian approach to decision-

making as being the natural statistical framework for

evidence-based medicine, incorporating the degree of

associated uncertainty [59].

Evidently, with the above methods it is possible to train

and test models in a much more reasonable time-frame,

with a possible tradeoff being the lower model perform-

ance [60]. Options are limited to such computationally

efficient methods, to achieve both realistic predictions

(training) and assessment of their clinical value (testing),

on the fly, at the point of decision. For the problem of

predicting risk for hospital infections, Table 2 compares

the external validity between: (a) Retrospective models

developed in vitro, and (b) Prospective methods involving

training and testing of a new model, every time a request

is sent to the system.

Consideration 3.2: Are decision makers informed by the

system, on-the-fly, about the confidence of predictions,

according to the model performance?

The advertised performance of predictive models

should be cautiously assessed [61]. The CDSS should

inform decision makers about the positive predictive

value of a model, which differs in various phases of

medical care. Systems should also consider the func-

tionality to warn decision makers that a prediction may

not be possible because of critical variables of care

missing. Every time a predictive model is trained and

tested on-the-fly, prediction results can be presented to

the clinical decision maker if the prediction accuracy is

satisfactory, or when the standard error is low, without

any reservations. In any other case, clinical decision

makers would be presented with a system message such

as that ‘The outcome cannot be predicted successfully’.

Consideration 3.3: Are appropriate data dimensionality

reduction methods being utilized?

To make dynamic, on-the-fly predictions possible, an

important consideration for designers of CDSS, is data

dimensionality. In healthcare, some of the most import-

ant information which holds extremely useful predictive

value for a series of clinical outcomes of care, is the

patient diagnosis and the clinical procedures. The most

recent edition of the International Classification of Dis-

eases (ICD-10-CM) includes more than 69,000 different

disease codes, to capture specificity [62]. Models which

require numeric input variables, will therefore require

transformations of each code to a dummy variable. This

would generate enormous, sparse datasets, which

would make data mining slow. In these cases, the data

analyst can consider two different approaches. The first

one is dimensionality reduction with methods such as

Principal Component Analysis (PCA) [63]. This

approach, though, is not possible in explanatory

models, such as coefficient analysis in regression, where

the model estimates the actual effect of each predictor,

on the outcome of interest. A second approach can be

the replacement of the ICD codes with groupings (e.g

Clinical Classification Software) which are formed by

dividing all possible principal diagnoses. The Diagnosis

Related Groups (DRG) have also been used in recent

studies [64]. Researchers need to decide if the use of

grouping methods affects the model performance

significantly of not. In short, they need to weigh the

improved computational efficiency against a possibly

less accurate model.

Table 2 Prediction of risk for nosocomial infection

Day of Hospital Stay and Data availability Use of models built in vitro with “Day 2” variables Dynamic training & testing

Day 0: Demographics, admission diagnosis High reported precision & recall is not realistic: Risky
decisions, potential negative impact on patient safety

Precision and recall ~ 70% are realistic:
Use predictions with a lot of caution

Day 1: Demographics, admission diagnosis,
medications, lab results

High in vitro reported precision & recall is not realistic:
Risky clinical decisions, negative impact on patient safety

Precision and recall ~ 80% are realistic:
Use predictions with some caution

Day 2: Demographics, admission diagnosis,
medications, more lab results, primary diagnosis

High in vitro reported precision & recall is realistic Precision & recall ~ 85% are realistic
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The less obvious problem of historical decision bias

Core consideration 4: Is ‘historical decision’ bias taken into

consideration in CDSS design?

The concept of ‘historical decision’ bias applies to ma-

chine learning and statistical methods based on data

which encapsulate historical decisions. Historical deci-

sion bias occurs when large historical datasets are used

to train predictive models which carry over historical

human decision errors (such as a misdiagnosis) of the

past. This bias is independent of the model performance

(precision, recall, or standard error) and refers to the

external validity. In other words, testing of a model can

result to a high accuracy, which actually represents an

accurate method to replicate wrong human decisions of

the past. For the patient symptoms and their primary

diagnosis data ({symptom, diagnosis}):{cough, flu} *,

{dyspnea, COPD}, {cough, flu}, {dyspnea, COPD} *, {dys-

pnea, COPD}, {cough, flu}.

Based on this data, a rule-based model would be gen-

erated as follows:

IF Symptom = cough THEN Diagnosis = flu.

IF Symptom = dyspnea THEN Diagnosis = COPD.

Testing would evaluate the model as exceptional, with

a perfect ROC area equal to 1. Two of the historical

cases, though (the ones with the asterisk) were misdiag-

nosed patients, but naturally this information is not an-

notated into the data. If the above model was used for

decision support in a real context, it would be mimick-

ing the misdiagnosis decisions of the historical cases,

despite the notably impressive model performance.

Because of the ‘historical decision’ bias, it is not a good

practice to develop therapy recommender systems, solely

relying on the patient diagnosis. Considering that histor-

ical data include variations of practice, many clinical

decisions are not optimal. Similarly, by using past pre-

scriptions as an evidence to select therapies, systems

carry this practice variation and decision uncertainty

over their current patients [65].

Consideration 4.1: Are CDSS outcomes driven?

A useful strategy to eliminate the historical decision bias

is to develop methods for outcomes-based predictions.

Clearly health professionals such as clinical nursing

leaders need to master the skillsets such as the ability to

perform outcomes based decision making [66]. Clinical

outcomes do not include human subjectivity and can be

utilized to select treatments. Take, for instance, a pre-

dictive model to assist physicians choose therapy for a

patient. The therapy of choice would not be the one that

was prescribed to the majority of similar past patients.

Instead, it would be that therapy which improved the

condition of similar patients in the past (Fig. 2). Such

positive clinical outcomes of care can be a hospital

discharge without prolonged length of stay, patients not

experiencing hospital complications, no records of

30-day unneeded hospital readmissions, and other [67].

CDSS are designed around established clinical standards

and protocols

Core consideration 5: Are the de-facto interactions between

clinical variables of care modeled according to clinical

standards of care?

The established clinical knowledge, clinical guidelines

and standards of care direct physicians to specific con-

siderations and use of information during clinical

decisions. If portion of the required information is

missing, then it may be unsafe to make a decision. An

example can be the diagnosis of multiple sclerosis.

Diagnostic criteria for this condition include the exist-

ence of a combination of central nervous system

attacks, lesions, dissemination in space and/or symp-

tom flare ups [68]. These are essential and often

mandatory considerations for clinicians to diagnose the

condition. In addition, in order to diagnose a condition,

physicians review laboratory test results, physiological

examination information, the patient history and symp-

toms [69]. The combination of a symptom of weakness

with a low platelet count, are used together diagnose a

possible anemia [70]. Since clinically useful information

comes from the combination of a multitude of different

data, predictive methods can annotate such attributes

and their relationship to clinical outcomes. If one of

these variables is missing, data scientists should be

aware that the predictive value of that model would

probably be low. In the example of diagnosing

leukemia, both the variables ‘blood cell count’ and ‘bone

marrow test’ need to be available to correctly model

predictors of leukemia, according to established diag-

nostic criteria. A high blood cell count, and positive

marrow test need to be verified together to diagnose

leukemia. Designing CDSS requires this clinical know-

ledge, and therefore collaboration with health care sci-

entists, as domain experts.

On a side note, knowing the pieces of patient data that

need to be evaluated together, can be used as a means of

semi-automated feature selection. In typical machine

learning approaches, there are two feature selection

strategies: The manual feature selection, where the data

scientist works together with clinical experts to identify

relevant and clinically useful input variables, and the

auto feature selection, using exhaustive, best-first and

other machine learning approaches. By labelling compul-

sory feature dependencies, the algorithm ensures inclu-

sion of features that ‘need’ to be input variables, given

an outcome of interest, in a semi-automated feature se-

lection approach [71].
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Unstructured health data: An underutilized source of

invaluable information

Consideration 6: Does the CDSS utilize unstructured data?

Nearly 80% of the data in clinical care documents in the

U.S is unstructured [72]. These data include free-form

files, written physician’s notes, scanned documents, and

images. Human to human interactions that can be nurse

to physician reporting, patient to physician/nurse com-

plaints and requests, and more, often generate data that,

can be stored in an unstructured manner. Unlike struc-

tured data which is easy to use, this data is unorganized,

text-heavy and hard to process. Natural Language

Processing (NLP) methods have been utilized in health-

care research. For example, according to analysis of Elec-

tronic Medical Records from emergency departments

using text mining of prior expert treatment was shown

to provide physicians on call with an optimized

treatment plan [73]. Another study, conducted at the

University of Utah [74] demonstrated the potential of

using NLP systems to automate data extraction. Data

extraction, would therefore enrich predictive models

with variables and therefore increasing the sensitivity

and specificity of algorithms.

Discussion

The six elements of the CDSS-RM have been introduced

and analyzed, in the form of considerations and ques-

tions that CDSS designers need to take into account. In

an effort to summarize the key points, we provide to the

reader, on Table 3 below, the connection of each elem-

ent to the underlying driving force/decision-making

principle, and the consequent derivative design decisions

for each one of the elements.

This CDSS-RM framework is an effort to articulate in

a systematic manner the aforementioned considerations.

Its intended use therefore involves health IT researchers,

health systems improvement analysts, and IT project

leaders, considering the six elements as important prior-

ity areas in every CDSS implementation effort. The

paper is also anticipated to be useful to the new wave of

healthcare administrations who demonstrate a high-level

understanding of data analytics: They will learn about,

and communicate important design considerations with

sub-contracting companies and IT experts, thus bridging

an evident communication gap between healthcare and

technology. Fig. 3 illustrates an example scenario of a

Computerized CDSS implementation, and positions

CDSS-RM within multidisciplinary interactions of indi-

viduals who consult the reference model.

Figure 2 illustrates, on a diagram, the CDSS-RM

model. The six elements have been placed around the

typical functionality of a CDSS, during the healthcare

services provision, aligned with the temporal aspect of

hospital care. With this representation, we attempt a

composition of the six elements to give emphasis to the

fact that these should not be independently assessed, but

within the context of the continuum of care.

Data scientists want to have rich data at their disposal.

Utilizing historical data from Electronic Medical

Records, which typically store every detail of the clinical

care, is foundational for successful models [75].

Although not always feasible due to data privacy restric-

tions, these data sources are preferred over external

de-identified datasets. Such datasets, mainly available

from the Centers for Medicare and Medicaid Services

(CMS) in the United States, include limited number of

clinical variables and are de-identified. While useful in

Fig. 2 Illustration of the Clinical Decision Support System Reference Model (CDSS-RM)
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health quality research, these datasets should not be

used for an accurate modeling of the clinical care

process but are more oriented towards quality assess-

ment research.

Methods developing CDSS are founded upon the

unique nature of the use and flow of health information.

It is critical that CDSS simulate the cognition of clinical

decision makers; health data become useful when com-

bined with human knowledge and experience. Since

health data are assessed by health professionals who

process information with their cognitive skills, design ap-

proaches combining expert systems with the power of ma-

chine learning can increase the clinical value of CDSS.

Predictive models need to be dynamic and re-estimate

predictions according to new information and feedback

from clinicians, while providing recommendations with a

longitudinal insight. Any decision support method needs

to consider trends and changes of the physiological mea-

surements. Such trends of repeated measurements, rather

than raw values are more suitable predictors of health

outcomes. In addition, CDSS should be ‘self-aware’ of

their use-context: In different decision time points, a pre-

fabricated algorithm would output predictions often exter-

nally invalid, due to varying data availability.

With respect to the above, CDSS should also provide

dynamic predictions by interacting with decision makers,

re-estimating predictions according to new clinical infor-

mation or to reinforced feedback. Updated re-trained

and re-tested dynamic models, can provide up-to date

and therefore contextually relevant information. Deci-

sion makers should be cautious with overoptimistic in

vitro model performance reports.

The ‘historical decision’ bias that was discussed in this

paper, should be avoided, so far as possible. It is not a

good practice to perpetuate medical mistakes, such as

misdiagnoses, and non-optimal prescriptions, which are

evidently included in historical datasets. Decisions

should not just replicate historical patterns of care, but

should also be driven by those historical practices lead-

ing to desirable clinical outcomes. Using outcomes-

based approaches, when designing CDSS is recognized

as a good practice. CDSS should also model any a-priory

known interactions between clinical attributes and

recognize variables which are evidently used together in

decision-making. CDSS designers can therefore annotate

such groups of variables to co-exist as predictors.

Dimensionality reduction, finally, can improve model

efficiency and facilitate on-the-fly training of models. Di-

mensionality reduction can be statistical (e.g. Principal
Fig. 3 Use-case scenario of CDSS-RM during a CDSS Implementation

Table 3 Relevance of the six CDSS-RM elements and their related CDSS design considerations

Decision Making Principles CDSS-RM Elements CDSS Design Derivatives

Health data become useful when combined
with human knowledge and experience

1. CDSS mimic the cognitive process of
clinical decision makers

(a) Expert systems can be harmonically combined with
machine learning
(b) Predictive models need to be interactive and react
to new info & feedback from clinicians

Clinicians look for changes over time rather
than raw measurement values

2. CDSS providing recommendations
with longitudinal insight

(a) Models need to include, as predictors, trends of
repeated measurements
(b) The sequencial order of clinical events should be
modelled
(c) The temporal distance between clinical events need
to be modelled

Data availability varies in different decision
points. Data is used accordingly with varying
degrees of certainty

3. Contextually realistic model performance (a) Up-to-date, on the fly training and testing
(b) Appropriate dimensionality reduction methods

Copying wrong decisions of historical data is
not a good practice

4. ‘Historical decision’ bias is taken into
consideration in CDSS design

Design approaches that are built around health
outcomes

Data are used according to clinical standards
& protocols

5. CDSS integrating established clinical
standards & protocols

Models annotate a-priori known variables, in a semi-
automated feature selection approach

A significant portion of hospital data are in
non-structured formant

6. CDSS utilize unstructured data to enhance
feature-set with more input variables for
improved performance

Natural Language Processing methods, such as
text mining
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Component Analysis) or non-statistical (e.g. regrouping

ICD-10 diagnoses).

With the above considerations in mind, CDSS can be

optimized, become healthcare-decision-making relevant,

and therefore more useful in the real hospital context, to

address critical decision-making challenges. Such sys-

tems will provide evidence based recommendations to

clinicians to improve their capacity and their insights, in

an effort to achieve high quality and safe service, adding

value to health organizations.

Limitations

While this work provides a solid framework of import-

ant aspects for conceptual designs of CDSS systems, it

is not applicable to every health environment. The

framework defines the clinical decision making require-

ments in a clinical hospital environment. It therefore

does not address structural, and infrastructural aspects

of health organizations. For instance, it does not

account for aspects of continuum of care and infra-

structure limitations, such as lack of standards and

interoperability. The intended scope of this framework

precedes technical implementation approaches and

serves as an aid to understand aspects related to proper

selection of variables and data, and relevant designs of

algorithms. While the authors present the CDSS-RM

components in a structured way, and based on litera-

ture knowledge and their field experience, the acknow-

ledge that other considerations, not discussed in this

paper, could also add value to conceptual designs. The

authors, finally, believe that further work can focus on

connections between the framework components and

implementation aspects, such as the use of temporal

algorithms (e.g. temporal Bayesian networks) and

dynamic classification methods, and evaluation and val-

idation of the model with feedback from actual clinical

care providers and clinical decision makers.

Conclusion

This paper introduces a reference model for Clinical

Decision Support System design, with six elements

(CDSS-RM), and connections of each element to the

underlying driving force/decision-making principle. The

six elements are placed around the typical functionality

of a CDSS, during the healthcare service, aligned with

the temporal aspect of hospital care, and within the con-

text of the continuum of care. It is critical that CDSS

simulate the cognition of clinical decision makers, since

health data become useful when combined with human

knowledge and experience. Design approaches combin-

ing expert systems with the power of machine learning

can increase the clinical value of CDSS. Predictive

models need to be dynamic, re-estimating predictions

according to new information and feedback from

clinicians, while providing recommendations with a lon-

gitudinal insight. Any decision support method needs to

consider trends and changes of the physiological mea-

surements, as these are more suitable predictors of

health outcomes, than cross sectional values. In addition,

CDSS should be ‘self-aware’ of their use-context: In dif-

ferent decision time points, a pre-fabricated algorithm

would output predictions often externally invalid, due to

varying information availability and decision makers

should be cautious with overoptimistic in vitro model

performance reports. With respect to the above, CDSS

should provide dynamic predictions, and interact with

decision makers to re-estimate predictions according to

new clinical information. The ‘historical decision’ bias

should be avoided, so far as possible. It is not a good

practice to perpetuate medical mistakes, such as mis-

diagnoses, and non-optimal prescriptions, which are evi-

dently included in historical datasets. Decisions should

not just replicate historical patterns of care, but should

also be driven by those historical practices leading to de-

sirable clinical outcomes. Using outcome-based ap-

proaches, when designing CDSS is recognized as a good

practice. CDSS should also model any a-priory known

interactions between clinical attributes and recognize

variables which are evidently used together in decision-

making. CDSS designers can therefore annotate such

groups of variables to co-exist as predictors. With the

above considerations in mind, CDSS can be optimized,

become healthcare-decision-making relevant, and there-

fore more useful in the real hospital context, to address

critical decision-making challenges. Such systems will

provide evidence based recommendations to clinicians

to improve their capacity and their insights, in an effort

to achieve high quality and safe service, adding value to

health organizations.

Abbreviations

CDSS: Clinical Decision Support Systems; CMS: Centers for Medicare and

Medicaid Services; DRG: Diagnosis Related Groups; ICD: International

Classification of Diseases; LOS: Length of Stay; NLP: Natural Language

Processing; PCA: Principal Component Analysis; TITE: Time-Interactions-

Trends-Events

Acknowledgements

Not Applicable.

Funding

Not Applicable.

Availability of data and materials

We did not use any external data for this paper, except for the researcher

generated dataset that was used to demonstrate paper concepts.

Authors’ contributions

DZ: referential model was conceptualized and created, diagrams, literature

review, conclusions, analysis of datasets. ND: supported literature review,

manuscript editing. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Not Applicable.

Zikos and DeLellis BMC Medical Research Methodology          (2018) 18:137 Page 12 of 14



Consent for publication

Not Applicable.

Competing interests

Both authors declare that they have no competing interest.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published

maps and institutional affiliations.

Received: 27 June 2018 Accepted: 25 October 2018

References

1. Nicholson RE, Penney DR. Quality data critical to healthcare decision-making

[Internet]. AHIMA American Health Information Management Association.

2004 [cited 31 August 2017]. Available from: http://library.ahima.org/

doc?oid=106428#.WagoMlH_qM8

2. Greenes RA, Looking Ahead. The Road to Broad Adoption. In: Clinical

Decision Support: The Road to Broad Adoption. 2nd ed: Elsevier Inc;

2014. p. 851–64. Available from. https://doi.org/10.1016/B978-0-12-

398476-0.00030-0.

3. Meriam-Webster. Merriam Webster. 1st ed; 2014. [cited 31 August 2017].

Available from https://www.merriam-webster.com/dictionary/

differential%20diagnosis

4. Ruland C, Bakken S. Developing, implementing, and evaluating decision

support Systems for Shared Decision Making in patient care: a conceptual

model and case illustration. J Biomed Inform. 2002;35(5–6):313–21.

5. Clinical Decision Support (CDS). Office of the National Coordinator for

Health Information Technology. 2013 [cited 31 August 2017]. Available

from https://www.healthit.gov/policy-researchers-implementers/clinical-

decision-support-cds

6. Jao CS, Hier DB. Clinical decision support systems: An effective pathway to

reduce medical errors and improve patient safety. In: Jao CS, editor.

Decision Support Systems: INTECH Open Access Publisher under CC BY-NC-

SA 3.0 license; 2010. [cited 31 August 2017]. Chapter 8. Available from

https://www.intechopen.com/books/decision-support-systems/clinical-

decision-support-systems-an-effective-pathway-to-reduce-medical-errors-

and-improve-patient.

7. Smith DH, Perrin N, Feldstein A, Yang X, Kuang D, Simon SR, Sittig DF, Platt

R, Soumerai SB. The impact of prescribing safety alerts for elderly persons in

an electronic medical record: an interrupted time series evaluation. Arch

Intern Med. 2006;166(10):1098–104.

8. Carson ER, Cramp DG, Morgan AM, Roudsari AV. Clinical decision

support, systems methodology, and telemedicine: their role in the

Management of Chronic Disease. IEEE Trans Inf Technol Biomed. 1998;

2(2):80–8 http://ieeexplore.ieee.org.cmich.idm.oclc.org/stamp/stamp.

jsp?tp=&arnumber=720526.

9. Yao W, Kumar A. CONFlexFlow: integrating flexible clinical pathways into

clinical decision support systems using context and rules. Decis Support

Syst. 2013;55(2):499–515.

10. Miller RA. Why the standard view is standard: people, not machines,

understand patients’ problems. J Med Philos. 1990;15(6):581–91.

11. Bennett CC, Hauser K. Artificial intelligence framework for simulating clinical

decision-making: a Markov decision process approach. Artif Intell Med. 2013;

57(1):9–19.

12. Charles Safran C, MD Bloomrosen M, Hammond EW, Labkoff S, Markel-Fox S,

Tang PC, Detmer DE. Toward a National Framework for the secondary use

of health data: an American medical informatics association white paper. J

Am Med Inform Assoc. 2007;14(1):1–9.

13. Hersh W. Secondary Use of Clinical Data from Electronic Health Records

[Online]. Available from: https://dmice.ohsu.edu/hersh/secondary-use-

trec.pdf

14. Waisberg D. Data analytics: A Matrix for better decision making [Internet].

Google Analytic Solutions. [cited 31 August 2017]. Available from https://

services.google.com/fh/files/misc/data_analytics_matrix_for_better_

decision_making.pdf

15. Bennett C, Hauser K. Artificial intelligence framework for simulating clinical

decision-making: a Markov decision process approach. Artif Intell Med. 2013;

57(1):9–19 https://doi.org/10.1016/j.artmed.2012.12.003.

16. Fox J, Johns N, Lyons C, Rahmanzadeh A, Thomson R, Wilson P. PROforma:

a general technology for clinical decision support systems. Comput

Methods Prog Biomed. 1997;54:59–67.

17. Musen MA, Tu SW, Das AK, Shahar Y. EON: a component-based approach to

automation of protocol-directed therapy. J Am Med Inform Assoc. 1996;3(6):

367–88.

18. Greenes RA. Clinical decision support: the road ahead. Burlington: Academic

Press; 2009.

19. Combi C, Posenato R. Controllability in Temporal Conceptual Workflow

Schemata. In: Dayal U, Eder J, Koehler J, Reijers HA, editors. Business Process

Management. BPM 2009. Lecture notes in computer science, vol. 5701.

Berlin, Heidelberg: Springer; 2009.

20. Shah K. Case-study-an answer to analytical clinical decision making. J

Orthop Case Rep. 2014;4(2):3–4.

21. Zikos D, Vandeliwala I, Makedon Ph. A probabilistic algorithm with user feedback

loop for decision making during the hospital triage process. Published in:

Proceeding PETRA ‘s14 Proceedings of the 7th International Conference on

PErvasive Technologies Related to Assistive Environments Article No. 7.

22. Weiskopf N, Weng C. Methods and dimensions of electronic health record

data quality assessment: Enabling reuse for clinical research. J Am Med

Inform Assoc. 2012;20(1):144–51.

23. Weiskopf NG, Hripcsak G, Swaminathan S, Weng C. Defining and measuring

completeness of electronic health records. J Biomed Inform. 2013;46(5):830–6.

24. Botsis T, Hartvigsen G, Chen F, Weng C. Secondary use of EHR: data quality

issues and informatics opportunities. Summit on Translat Bioinforma. 2010;

2010:1–5.

25. Nkanginieme KE. Clinical diagnosis as a dynamic cognitive process:

application of Bloom’s taxonomy for educational objectives in the cognitive

domain. Medical Education Online. 1997;2(1):4288.

26. Blood Sugar Test. US National Library of Medicine [cited 31 August 2017].

Available from https://medlineplus.gov/ency/article/003482.htm

27. Electronic Health Records. Centers for Medicare and Medicaid Services

(CMS). [cited 31 August 2017]. Available from https://www.cms.gov/

Medicare/E-health/EHealthRecords/index.html

28. Richardson WS, Glasziou P, Polashenski WA, Wilson MC. A new arrival: evidence

about differential diagnosis. Evidence-Based Medicine. 2000;5(6):164–5.

29. Rajkomar A, Dhaliwal G. Improving diagnostic reasoning to improve patient

safety. Permanente J. 2011;15:68–73.

30. Hudson DL, Cohen ME. Temporal trend analysis in personal health records.

In: proceedings of 2008 IEEE engineering in medicine and biology society

30th annual conference; 2008 Aug 25-29, Vancouver, Canada. New York:

IEEE; 2008, p. 3811-3814. Available from: IEEE Xplore.

31. Procop GW, Yerian LM, Wyllie R, Harrison AM, Kottke-Marchant K. Duplicate

laboratory test reduction using a clinical decision support tool. Am J Clin

Pathol. 2014;141(5):718–23.

32. Rosenberg MA, Frees EW, Sun J, Johnson PH Jr, Robinson J. Predictive

modeling with longitudinal data: a case study of Wisconsin nursing homes.

North American Actuarial Journal. 2007;11(3):54–69.

33. Ali T, Hussain M, Khan WA, Afzal M, Kang BH, Lee S. Arden syntax studio:

creating medical logic module as shareable knowledge. In: Proceedings of

innovations in intelligent systems and applications (INISTA) international

symposium; 2014 June 23-25, Alberobello, Italy. New York: IEEE; 2014, p.

266-272. Available from: IEEE Xplore.

34. Fried TR. Shared decision making—finding the sweet spot. N Engl J Med.

2016;374(2):104–6.

35. Core competencies for interprofessional collaborative practice: Report of an

expert panel. Interprofessional Education Collaborative Initiative [cited 31

August 2017]. Available from https://www.aacom.org/docs/default-source/

insideome/ccrpt05-10-11.pdf?sfvrsn=77937f97_2

36. Meystrea SM, Lovisb C, Bürklec T, Tognolad G, Budrionise A, Lehmann CU.

Clinical data reuse or secondary use: current status and potential future

Progress. Yearb Med Inform. 2017;26(1):38–52.

37. University of Southern California Libraries. Definition of ‘Theoretical

Framework’. [cited 31 August 2017] Available from: http://libguides.usc.edu/

writingguide/theoreticalframework

38. Lusted L. Logical analysis in medical diagnosis. In: Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability. 1967

University of California Press; Biology and Problems of Health (4): 903–923.

39. Higgs J, Jones MA, Loftus S, Christensen N. Clinical reasoning in the health

professions. Amsterdam: Butterworth-Heinemann, Elsevier Health Sciences;

2008. 530 p.

Zikos and DeLellis BMC Medical Research Methodology          (2018) 18:137 Page 13 of 14

http://library.ahima.org/doc?oid=106428#.WagoMlH_qM8
http://library.ahima.org/doc?oid=106428#.WagoMlH_qM8
https://doi.org/10.1016/B978-0-12-398476-0.00030-0
https://doi.org/10.1016/B978-0-12-398476-0.00030-0
https://www.merriam-webster.com/dictionary/differential%20diagnosis
https://www.merriam-webster.com/dictionary/differential%20diagnosis
https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds
https://www.healthit.gov/policy-researchers-implementers/clinical-decision-support-cds
https://www.intechopen.com/books/decision-support-systems/clinical-decision-support-systems-an-effective-pathway-to-reduce-medical-errors-and-improve-patient
https://www.intechopen.com/books/decision-support-systems/clinical-decision-support-systems-an-effective-pathway-to-reduce-medical-errors-and-improve-patient
https://www.intechopen.com/books/decision-support-systems/clinical-decision-support-systems-an-effective-pathway-to-reduce-medical-errors-and-improve-patient
http://ieeexplore.ieee.org.cmich.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=720526
http://ieeexplore.ieee.org.cmich.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=720526
https://dmice.ohsu.edu/hersh/secondary-use-trec.pdf
https://dmice.ohsu.edu/hersh/secondary-use-trec.pdf
https://services.google.com/fh/files/misc/data_analytics_matrix_for_better_decision_making.pdf
https://services.google.com/fh/files/misc/data_analytics_matrix_for_better_decision_making.pdf
https://services.google.com/fh/files/misc/data_analytics_matrix_for_better_decision_making.pdf
https://doi.org/10.1016/j.artmed.2012.12.003
https://medlineplus.gov/ency/article/003482.htm
https://www.cms.gov/Medicare/E-health/EHealthRecords/index.html
https://www.cms.gov/Medicare/E-health/EHealthRecords/index.html
https://www.aacom.org/docs/default-source/insideome/ccrpt05-10-11.pdf?sfvrsn=77937f97_2
https://www.aacom.org/docs/default-source/insideome/ccrpt05-10-11.pdf?sfvrsn=77937f97_2
http://libguides.usc.edu/writingguide/theoreticalframework
http://libguides.usc.edu/writingguide/theoreticalframework


40. Barrows HS, Feltovich PJ. The clinical reasoning process. Med Educ. 1987;

21(2):86–91.

41. Wagner C. Problem solving and diagnosis. Omega. 1993;21(6):645–56.

42. Miller RA. Medical diagnostic decision support systems--past, present, and

future: a threaded bibliography and brief commentary. J Am Med Inform

Assoc. 1994;1(1):8–27.

43. Asoh H, Akaho MSS, Kamishima T, Hasida K, Aramaki E, Kohro T. An

application of inverse reinforcement learning to medical records of diabetes

treatment Semantic Scholars. 2013. [cited 31 August 2017]. Available from

https://www.semanticscholar.org/paper/An-Application-of-Inverse-

Reinforcement-Learning-t-Asoh-Shiro/

4c390cbf57a3c905080c12cee965a8a3b8ed5a92

44. Shortreed SM, Laber E, Lizotte DJ, Stroup TS, Pineau J, Murphy SA. Informing

sequential clinical decision-making through reinforcement learning: an

empirical study. Mach Learn. 2011;84(1–2):109–36.

45. Strite S, Stuart ME. What is an evidence-based, value-based health care

system? (part 1). Physician executive. 2005;31(1):50.

46. Conventional programming. Retrieved 2 February 2017 from Pcmag.com.

47. Leondes CT, editor. Expert systems, six-volume set: the Technology of

Knowledge Management and Decision Making for the 21st century. 1st ed.

San Diego: Academic Press; 2001.

48. Morik K, Brockhausen P, Joachims T. Combining statistical learning with a

knowledge-based approach: a case study in intensive care monitoring.

Technical Report, SFB 475: Komplexitätsreduktion in Multivariaten

Datenstrukturen, Universität Dortmund; 1999 (24).

49. Sikaris KA. Physiology and its importance for reference intervals. The Clinical

Biochemist Reviews. 2014;35(1):3.

50. Romano MJ, Stafford RS. Electronic health records and clinical decision

support systems: impact on national ambulatory care quality. Arch Intern

Med. 2011;171(10):897–903.

51. Stutman HA. Longitudinal Medical Record Is Key to Clinical Decision

Support. Clinical Innovation and Technology; 2010 (Nov). [cited 2 February

2017]. Available from: http://jamanetwork.com/journals/

jamainternalmedicine/fullarticle/227364

52. Levetan C. Controlling hyperglycemia in the hospital: a matter of life and

death. Clinical Diabetes. 2000;18(1):17.

53. Carlson MD, Morrison RS. Study design, precision, and validity in

observational studies. J Palliat Med. 2009;12(1):77–82.

54. Carter EM, Potts HW. Predicting length of stay from an electronic patient

record system: a primary total knee replacement example. BMC medical

informatics and decision making. 2014;14(1):26.

55. Mak G, Grant WD, McKenzie JC, McCabe JB. Physicians’ ability to predict

hospital length of stay for patients admitted to the hospital from the

emergency department. Emergency medicine international. Volume 2012

(2012); Article ID 824674, 4 pages.

56. Yang CS, Wei CP, Yuan CC, Schoung JY. Predicting the length of hospital

stay of burn patients: comparisons of prediction accuracy among different

clinical stages. Decis Support Syst. 2010;50(1):325–35.

57. Zikos D, Tsiakas K, Qudah F, Athitsos V, Makedon F. Evaluation of

classification methods for the prediction of hospital length of stay using

Medicare claims data. In: Proceedings of the 7th International Conference

on PErvasive Technologies Related to Assistive Environments. 2014 27-30;

Rhodes, Greece. ACM: 2014:54.

58. Abdiansah A, Wardoyo R. Time complexity analysis of support vector

machines (svm) in libsvm. Int J Comput Appl. 2015;128(3):28–34.

59. Ashby D, Smith AF. Evidence-based medicine as Bayesian decision-making.

Stat Med. 2000;19(23):3291–305.

60. Data Mining Concepts: Naïve Bayes. In: Oracle. Retrieved Oct. 2018 from

https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.

htm#DMCON018

61. Castaneda C, Nalley K, Mannion C, Bhattacharyya P, Blake P, Pecora A,

Suh KS. Clinical decision support systems for improving diagnostic

accuracy and achieving precision medicine. Journal of clinical

bioinformatics. 2015;5(1):4.

62. The ICD-10 classification of mental and behavioural disorders. clinical

descriptions and diagnostic guidelines. Geneva: World Health Organization;

1992. http://www.who.int/classifications/icd/en/bluebook.pdf; Accessed 4

February 2017)

63. Jolliffe IT. Graphical representation of data using principal components.

Principal Component Analysis. 2nd ed. New York: Springer-Verlag; 2002. p.

78–110.

64. Futoma J, Morris J, Lucas J. A comparison of models for predicting early

hospital readmissions. J Biomed Inform. 2015;56:229–3.

65. Bennett C, Doub T, Bragg A, Luellen J, Van Regenmorter C, Lockman J,

Reiserer R. Data mining session-based patient reported outcomes (PROs) in

a mental health setting: toward data-driven clinical decision support and

personalized treatment. In: Healthcare Informatics, Imaging and Systems

Biology (HISB), 2011 First IEEE international conference. San Jose; 2011(July):

pp. 229–236.

66. Hix C, McKeon L, Walters S. Clinical nurse leader impact on clinical

microsystems outcomes. J Nurs Adm. 2009;39(2):71–6.

67. Quality of Care and the Outcomes Management Movement. Available from:

https://www.acep.org/administration/quality/quality-of-care-and-the-

outcomes-management-movement/#sm.001wijxmc17uzfjxyyc1yzdjgnn75

68. 2010 Revised McDonald Diagnostic Criteria for MS. ESTRIMS [cited 31

August 2017]. Available from https://www.va.gov/MS/Professionals/

diagnosis/Diagnosing_MS_Using_the_McDonald_Criteria.asp.

69. Balogh EP, Miller BT, Ball JR. The diagnostic process. In: Improving

Diagnosis in Health Care. National Academies of Sciences, Engineering,

and Medicine. Washington, DC: The National Academies Press; 2015.

https://doi.org/10.17226/21794.

70. Your guide to anemia. US Department of Health and Human Services.

Technical Report NIH 11–7629. National Institutes of Health. Bethesda:

National Heart, Lung and Blood Institute; 2011.

71. Liu Y, Wang J, Yang Y, Sun J. A semi-automatic approach for workflow staff

assignment. Comput Ind. 2008;59(5):463–76.

72. Schneider J. More than meets the eye: Unstructured data's untapped

potential [Internet]. HealthcareDive [cited 31 August 2017]. Available from

http://www.healthcaredive.com/news/more-than-meets-the-eye-

unstructured-datas-untapped-potential/435352/

73. Cerrito P, Cerrito JC. Data and text mining the electronic medical record to

improve care and to lower costs. San Francisco: SUGI 31; 2005. [cited on 31

August 2017]. Available from https://pdfs.semanticscholar.org/a4e0/

0a006becd0df35163c1d8a4b612dcc7cea07.pdf

74. Penz JF, Wilcox AB, Hurdle JF. Automated identification of adverse events

related to central venous catheters. Journal of Biomed Inform. 2007;40:174–82.

75. Miller RH, Sim I. Physicians’ use of electronic medical records: barriers and

solutions. Health Aff. 2004;23(2):116–26.

Zikos and DeLellis BMC Medical Research Methodology          (2018) 18:137 Page 14 of 14

https://www.semanticscholar.org/paper/An-Application-of-Inverse-Reinforcement-Learning-t-Asoh-Shiro/4c390cbf57a3c905080c12cee965a8a3b8ed5a92
https://www.semanticscholar.org/paper/An-Application-of-Inverse-Reinforcement-Learning-t-Asoh-Shiro/4c390cbf57a3c905080c12cee965a8a3b8ed5a92
https://www.semanticscholar.org/paper/An-Application-of-Inverse-Reinforcement-Learning-t-Asoh-Shiro/4c390cbf57a3c905080c12cee965a8a3b8ed5a92
http://pcmag.com
http://jamanetwork.com/journals/jamainternalmedicine/fullarticle/227364
http://jamanetwork.com/journals/jamainternalmedicine/fullarticle/227364
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.htm#DMCON018
https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/algo_nb.htm#DMCON018
http://www.who.int/classifications/icd/en/bluebook.pdf
https://www.acep.org/Clinical%2D%2D-Practice-Management/Quality-of-Care-and-the-Outcomes-Management-Movement/
https://www.acep.org/Clinical%2D%2D-Practice-Management/Quality-of-Care-and-the-Outcomes-Management-Movement/
https://www.va.gov/MS/Professionals/diagnosis/Diagnosing_MS_Using_the_McDonald_Criteria.asp
https://www.va.gov/MS/Professionals/diagnosis/Diagnosing_MS_Using_the_McDonald_Criteria.asp
https://doi.org/10.17226/21794
http://www.healthcaredive.com/news/more-than-meets-the-eye-unstructured-datas-untapped-potential/435352/
http://www.healthcaredive.com/news/more-than-meets-the-eye-unstructured-datas-untapped-potential/435352/
https://pdfs.semanticscholar.org/a4e0/0a006becd0df35163c1d8a4b612dcc7cea07.pdf
https://pdfs.semanticscholar.org/a4e0/0a006becd0df35163c1d8a4b612dcc7cea07.pdf

	Abstract
	Background
	Definition of the context for the CDSS-RM
	Information use and flow characteristics in healthcare
	Non-atomicity
	Cognition
	Temporality
	Sharing
	Reuse

	Elements of the CDSS-RM reference model
	Expert systems and other machine learning methods simulating clinicians’ decision making
	Core consideration 1: Do CDSS mimic the cognitive process of clinical decision makers?

	Consideration 1.1: Do the CDSS utilize feedback loops to mimic clinical assessment?
	Consideration 1.2: Do CDSS utilize in unison expert systems and machine learning?
	The temporal nature of clinical decision making
	Core consideration 2: Do CDSS provide recommendations with longitudinal insight?

	Consideration 2.1. Do CDSS use trends of physiological measurements instead of cross-sectional data?
	Consideration 2.2: Do CDSS consider the sequence of clinical events?
	Consideration 2.3: Do CDSS consider the temporal distance of clinical events?
	Designing systems with contextual validity in mind
	Core consideration 3: Is the model performance contextually realistic?

	Consideration 3.1: Does the CDSS model the care process on the fly, per user inquiry?
	Consideration 3.2: Are decision makers informed by the system, on-the-fly, about the confidence of predictions, according to the model performance?
	Consideration 3.3: Are appropriate data dimensionality reduction methods being utilized?
	The less obvious problem of historical decision bias
	Core consideration 4: Is ‘historical decision’ bias taken into consideration in CDSS design?

	Consideration 4.1: Are CDSS outcomes driven?
	CDSS are designed around established clinical standards and protocols
	Core consideration 5: Are the de-facto interactions between clinical variables of care modeled according to clinical standards of care?

	Unstructured health data: An underutilized source of invaluable information
	Consideration 6: Does the CDSS utilize unstructured data?


	Discussion
	Limitations

	Conclusion
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

