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Abstract
We call a continuous self-map that reveals itself through a discrete set of point-value
pairs a sampled dynamical system. Capturing the available information with chain
maps on Delaunay complexes, we use persistent homology to quantify the evidence of
recurrent behavior. We establish a sampling theorem to recover the eigenspaces of the
endomorphism on homology induced by the self-map. Using a combinatorial gradient
flow arising from the discrete Morse theory for Čech and Delaunay complexes, we
construct a chain map to transform the problem from the natural but expensive Čech
complexes to the computationally efficient Delaunay triangulations. The fast chain
map algorithm has applications beyond dynamical systems.
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1 Introduction

Suppose M is a compact subset of R
n and f : M → M is a continuous self-map with

finite Lipschitz constant. We study the thus defined dynamical system in the setting in
which f reveals itself through a sample, by which we mean a finite set X ⊆ M, a self-
map g : X → X , and a real number ρ such that ‖g(x) − f (x)‖ ≤ ρ for every x ∈ X .
We call ρ the approximation constant of the sample. Calling this setting a sampled
dynamical system, we formalize a concept that appears already in Edelsbrunner et al.
(2015). It is less demanding than the classical discrete dynamical system, in which
time is discrete but space is not (Kaczynski et al. 2004). We believe that this relaxation
is essential to make inroads into experimental studies, in which pairs (x, f (x)) can
be observed individually, while the self-map remains in the dark. The approximation
constant models the experimental uncertainty, but it is also needed to accommodate a
finite sample. Consider for example the map f : [0, 1] → [0, 1] defined by f (x) = x

2 .
Letting u be the smallest positive value in a finite set X ⊆ [0, 1], its image does not
belong to X : f (u) /∈ X . We call

λ = max
x,y∈X ,x �=y

‖g(x) − g(y)‖
‖x − y‖ (1)

the Lipschitz constant of g. It is not necessarily close to the Lipschitz constant of f ,
even in the case in which the ρ-neighborhoods of the points in X cover M. However,
Kirszbraun proved that for every g : X → X there is a continuous extension f0 : M →
M that has the same Lipschitz constant. Specifically, this is a consequence of the more
general Kirszbraun Extension Property (Kirszbraun 1934; Wells and Williams 1975).
Let F be a fixed field and let H(M; F) denote the homology of M with coefficients
in F. Hence, H(M; F) is a vector space. Throughout the paper we only use homology
with coefficients in the field F, so we abbreviate the notation to H(M). The map f0
induces a linear map H( f0) : H(M) → H(M). A natural characterization of this linear
map are the t-eigenvectors. They capture homology classes invariant under the self-
map up to a multiplicative factor t , called an eigenvalue. The t-eigenvectors span the
t-eigenspace of the map. Starting with a finite filtration of the domain of the map, we
get t-eigenspaces at every step, connected by linear maps, and therefore a finite path
in the category of vector spaces, called an eigenspace module. The Stability Theorem
in Edelsbrunner et al. (2015) implies a connection between the dynamics of g and f0,
namely that for every eigenvalue t the interleaving distance between the eigenspace
modules induced by g and by f0 is at most the Hausdorff distance between the graph
of g and that of f0. Furthermore, the Inference Theorem in the same paper implies
that for small enough ρ and any eigenvalue, the eigenspace module for g gives the
correct dimension of the corresponding eigenspace of the endomorphism between the
homology groups of M induced by f0.
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Čech–Delaunay gradient flow and homology inference for self-maps 457

1.1 Prior work and results

We employ the discrete Morse theory for Čech and Delaunay complexes developed in
Bauer and Edelsbrunner (2017) to address the computational problem of estimating
the homology of a self-map from a finite sample. Our results continue the program
started in Edelsbrunner et al. (2015), with the declared goal to embed the concept of
persistent homology in the computational approach to dynamical systems. Specifi-
cally, we contribute by improving the computation of persistent recurrent dynamics.
This improvement is based on several interacting innovations, which lead to better
theoretical guarantees as well as better computational efficiency than in Edelsbrunner
et al. (2015):

1. We use the parallel filtrations of Čech and Delaunay complexes and the existence
of a collapse from the former to the latter established in Bauer and Edelsbrunner
(2017) to define chain maps between Delaunay complexes.

2. We construct the chain maps by implementing the collapse implicitly, avoiding
the prohibitive construction of the Čech complex.

3. We establish inference results with a less stringent sampling condition than given
in Edelsbrunner et al. (2015), depending only on the self-map and the domain.

The improved computational efficiency derives primarily from the use of Delaunay
rather than Čech or Vietoris–Rips complexes. Indeed, in the targeted 2-dimensional
case, the size of the Delaunay triangulation is at most six times the number of data
points, while the Čech and Vietoris–Rips complexes reach exponential size for large
radii. The improved theoretical guarantees rely on the use of chain maps that avoid
the information loss caused by the interaction of local expansion and partial maps
observed in Edelsbrunner et al. (2015). The improvements are obtained using refined
mathematical and computational methods as mentioned above.

We first explain how we use Čech complexes, namely as an intermediate step to
construct the chainmaps fromoneDelaunay complex to another. Recall theKirszbraun
intersection property for balls established by Gromov (1987): letting Q be a finite set
of points in R

n , and g : Q → R
n a map that satisfies ‖g(x) − g(y)‖ ≤ ‖x − y‖ for

all x, y ∈ Q, then

⋂

x∈Q
Br (x) �= ∅ 
⇒

⋂

x∈Q
Br (g(x)) �= ∅, (2)

in which Br (x) is the closed ball with radius r and center x . Similarly, if we weaken
the condition to ‖g(x) − g(y)‖ ≤ λ‖x − y‖, for some λ > 1, then the common
intersection of the balls Bλr (g(x)) is non-empty. This implies that the image of the
Delaunay complex for radius r includes in the Čech complex for radius λr . To return
to the Delaunay triangulation, we exploit the collapsibility of the Čech complex for
radius λr to the Delaunay complex of radius λr recently established in Bauer and
Edelsbrunner (2017).We second explain howwecollapsewithout explicit construction
of the Čech complex. Startingwith a simplex,we use amodification ofWelzl’sminiball
algorithm (Welzl 1991) to follow the flow induced by the collapse step by step until we
arrive at the Delaunay complex, where the image of the simplex is now a chain. The
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458 U. Bauer et al.

Fig. 1 In each column, we get the eigenspace by comparing the inclusion between Delaunay–Čech com-
plexes with the chain map obtained with the Čech complex as intermediary. The map DČechr (X) →
Čechλr (X) is induced by g, while the map Čechλr (X) → DČechλr (X) is a simplicial collapse, and
similarly for s instead of r

expected running time for a single step is linear in the number of points, so we have
a fast algorithm provided the number of steps in the collapse is not large. While we
do not have a bound on this number, our computational experiments provide evidence
that it is typically small.

We give a global picture of our algorithm in Fig. 1. In the top row, we see a filtration
of Delaunay–Čech complexes, which are convenient substitutes for the better known
Delaunay complexes (also called alpha complexes) with the same homotopy type. The
left map down from the top row is inclusion, and the right map down is the chain map
induced by g. As indicated, the right map is composed of the inclusion into the Čech
complex and the discrete flow induced by the collapse. In the bottom row, we see the
eigenspace module computed by comparing the left and right vertical maps.

1.2 Outline

Section 2 describes the background in discrete Morse theory, its application to Čech
andDelaunay complexes, and its extension to persistent homology. Section 3 addresses
the algorithmic aspects of ourmethod, which include the proof of collapsibility and the
generalization of the miniball algorithm. Section 4 explains the circumstances under
which the eigenspace of the self-map can be obtained from the eigenspace module of
the discrete sample. Section 5 presents the results of our computational experiments,
comparing them with the algorithm in Edelsbrunner et al. (2015). Section 6 concludes
this paper.

2 Background

In this section, we introduce concepts from discrete Morse Theory (Forman 1998)
and apply them to Čech as well as to Delaunay complexes of finite point sets (Bauer
and Edelsbrunner 2017). We begin with the definition of the complexes and finish by
complementing the picture with the theory of persistent homology.
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Čech–Delaunay gradient flow and homology inference for self-maps 459

Fig. 2 Anexample illustrating the difference betweenDelaunay andDelaunay–Čech complexes. TheDelau-
nay complex for the given radius has three vertices and two edges. In contrast, the Delaunay–Čech complex
is the full simplex on the three vertices (not shown), as all simplices are Delaunay and enclosed by a sphere
of radius r

2.1 Geometric complexes

Our approach to dynamical systems is based on Čech complexes and Delau-
nay complexes—two common ingredients in topological data analysis—and the
Delaunay–Čech complexes, which offer a convenient computational short-cut.

Čech complexes

Let X ⊆ R
n be finite, r ≥ 0, and Br (x) be the closed ball of points at distance r or

less from x ∈ X . The Čech complex of X for radius r consists of all subsets of X for
which the balls of radius r have a non-empty common intersection:

Čechr (X) = {Q ⊆ X |
⋂

x∈Q
Br (x) �= ∅}; (3)

it is isomorphic to the nerve of the balls of radius r centered at the points in X .
Equivalently, Čechr (X) consist of all subsets Q ⊆ X having an enclosing sphere of
radius at most r . For r smaller than half the distance between the two closest points,
Čechr (X) = X , and for r larger than

√
2/2 times the distance between the two farthest

points, Čechr (X) is the full simplex on the vertices X , denoted by �(X). The size of
�(X) is exponential in the size of X , which motivates the following construction.

Delaunay triangulations

The Voronoi domain of a point x ∈ X consists of all points u ∈ R
n for which x mini-

mizes the distance from u: dom(x, X) = {u ∈ R
n | ‖x − u‖ ≤ ‖y − u‖, for all y ∈

X}. The Voronoi tessellation of X is the set of Voronoi domains dom(x, X) with
x ∈ X . Assuming general position of the points in X , any p + 1 Voronoi domains are
either disjoint or they intersect in a common (n− p)-dimensional face. TheDelaunay
triangulation of X consists of all subsets of X for which the Voronoi domains have a
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non-empty common intersection:

Del(X) = {Q ⊆ X |
⋂

x∈Q
dom(x, X) �= ∅}; (4)

it is isomorphic to the nerve of the Voronoi tessellation. Equivalently, Delr (X) consist
of all subsets Q ⊆ X having an empty circumsphere (containing no points of X in
its interior). Again assuming general position, the Delaunay triangulation is an n-
dimensional simplicial complex with natural geometric realization in R

n . The Upper
Bound Theorem for convex polytopes implies that the number of simplices in Del(X)

is at most some constant times card X to the power �n/2�. In n = 2 dimensions, this
is linear in card X , which compares favorably to the exponentially many simplices in
the Čech complexes.

Delaunay–Čech complexes

To combine the small size of the Delaunay triangulation with the scale-dependence
of the Čech complex, we define the Delaunay–Čech complex of X for radius r as the
intersection of the two:

DČechr (X) = Čechr (X) ∩ Del(X). (5)

Observe that the Delaunay triangulation effectively curbs the explosive growth of
simplex numbers, but does so only if the points are in general position. We will
therefore assume that the points in X are in general position, justifying the assumption
with computational simulation that enforce this assumption (Edelsbrunner andMücke
1990).

Delaunay complexes

There is a more direct way to select subcomplexes of the Delaunay triangulation using
r as a parameter. Specifically, the Delaunay complex of X for radius r consists of all
subsets of X for which the restriction of the Voronoi domains to the balls of radius r
have a non-empty common intersection:

Delr (X) = {Q ⊆ X |
⋂

x∈Q
[dom(x, X) ∩ Br (x)] �= ∅}; (6)

it is isomorphic to the nerve of the restricted Voronoi domains. Equivalently, Delr (X)

consist of all subsets Q ⊆ X having an empty circumsphere of radius at most r . The
Delaunay complexes, also known as alpha complexes, are the better known relatives
of the Delaunay–Čech complexes. We use the They satisfy Delr (X) ⊆ DČechr (X),
and it is easy to exhibit sets X and radii r for which the two complexes are different.
See Fig. 2 for an illustrating example. As proved in Bauer and Edelsbrunner (2017),
the Delaunay complex has the same homotopy type as the Delaunay–Čech complex
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Čech–Delaunay gradient flow and homology inference for self-maps 461

for the same radius. This is indeed the reason we can freely use the latter as a substitute
of the former.

2.2 Radius functions

Structural properties of the geometric complexes are conveniently expressed in terms
of their radius functions. In each case, the function maps a simplex to the smallest
radius, r , for which the simplex belongs to the complex:

RC(Q) = min{r | Q ∈ Čechr (X)}, (7)

RDC(Q) = min{r | Q ∈ DČechr (X)}, (8)

RD(Q) = min{r | Q ∈ Delr (X)}. (9)

All three functions are monotonic, by which we mean that the radius assigned to any
simplex is greater than or equal to the radii assigned to its faces. This property is
sufficient to define their persistence diagrams, as we will see shortly. However, we
will need more, namely compatible discrete gradients of the radius functions. After
introducing the discrete Morse theory of Forman (1998) as a framework within which
discrete gradients can be defined, we will return to the question of compatibility.

Discrete Morse theory

In a nutshell, a monotonic function on a simplicial complex, F : K → R, is a discrete
Morse function if any two contiguous sublevel sets differ by a single elementary col-
lapse or a critical simplex. We are nowmore precise. A pair consists of two simplices,
P ⊆ Q, with dimensions dim Q = 1 + dim P . A discrete vector field is a parti-
tion, V , of K into pairs and singletons. It is acyclic if there is a monotonic function,
F : K → R, with F(P) = F(Q) iff P and Q belong to a pair in V . Such a function F
is called a discrete Morse function, and V is its discrete gradient. A simplex is critical
if it is in a singleton of V , and it is non-critical if it belongs to a pair of V .

The reason for our interest in this formalism is its connection to the homotopy
type of complexes. To explain suppose Q ∈ K maximizes F . If Q belongs to a
pair (P, R) ∈ V , then we can remove both and obtain a smaller simplicial complex,
K\{P, R}. We refer to this operation as an elementary collapse, we say K collapses
to the smaller complex, denoted K ↘ K\{P, R}, and we note that both complexes
have the same homotopy type. If on the other hand Q is a critical simplex, its removal
changes the homotopy type of the complex.

Collapsing the geometric complexes

The radius functions are not necessarily discrete Morse functions, but they are
amenable to discrete gradients. To explain what we mean, consider a monotonic func-
tion, F : K → R, and call Q ∈ K critical if F(Q) is different from the values of
all proper faces and cofaces of Q. We say that an acyclic partition of K into pairs
and singletons is compatible with F if every sublevel set of F is a union of pairs and
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singletons in this partition, and Q is in a singleton of the partition iff Q is a critical
simplex of F . The proof of collapsibility in Bauer and Edelsbrunner (2017) hinges on
the fact that there is an acyclic partition, V , of�(X) that is simultaneously compatible
withRC,RD, andRDC. Indeed, the existence of this acyclic partition is at the core of
the proof of Theorem 5.10 in Bauer and Edelsbrunner (2017), which asserts that

Čechr (X) ↘ DČechr (X) ↘ Delr (X) (10)

for every finite set X ⊆ R
n in general position, and every r ≥ 0. Observe that this

implies that the three radius functions have the same set of critical simplices. Indeed,
these are the sets Q ⊆ X for which the smallest enclosing sphere passes through all
points of Q and no point of X lies inside this sphere.

2.3 Persistent homology

In its original conception, persistent homology starts with a filtration of a topological
space, it applies the homology functor for coefficients in a field F, and it decomposes
the resulting sequence of vector spaces into indecomposable summands (Edelsbrunner
et al. 2002; Zomorodian and Carlsson 2005). This decomposition is unique and has
an intuitive interpretation in terms of births and deaths of homology classes. We flesh
out the idea using the filtration of Delaunay–Čech complexes as an example.

Let X ⊆ R
n be finite and in general position, and recall that RDC : Del(X) → R

is the radius function whose sublevel sets are the Delaunay–Čech complexes.RDC is
monotonic but not necessarily discrete Morse. The Delaunay triangulation is finite,
which implies thatRDC has only finitely many sublevel sets. To index them consecu-
tively, we write r1 < r2 < · · · < rN for the values and Ki = R−1

DC[0, ri ] for the i-th
Delaunay–Čech complex of X . Applying the homology functor, we get

0 = H(K1) → H(K2) → · · · → H(KN ), (11)

in which we write H(Ki ) for the direct sum of the homology groups of all dimensions.
Together with the maps hi, j : H(Ki ) → H(K j ) induced by the inclusions Ki ⊆ K j ,
which are linear, we call this diagram the persistent homology of the filtration. More
generally, a diagram of vector spaces with this shape is called a persistence module.
Such a module is indecomposable if all vector spaces are trivial, except for an interval
of 1-dimensional vector spaces, F → F → · · · → F, that are connected by isomor-
phisms. Indeed, (11), andmore generally, any persistencemodule of finite-dimensional
vector spaces, can be written as the direct sum of indecomposable modules, and this
decomposition is essentially unique. See Edelsbrunner et al. (2015, Basis Lemma) for
a constructive proof. If an interval starts at position i and ends at position j − 1, then
we say there is a homology class born at Ki that dies entering K j . To allow for the
case j −1 = N , we introduce rN+1 = ∞ and represent the interval by the birth-death
pair (ri , r j ). Its dimension is the homological degree in which the class arises, and its
persistence is r j − ri .
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By construction, the rank of H(Ki ) is the number of indecomposable modules
whose intervals cover ri . It is readily computed from the multiset of birth-death pairs,
which we call the persistence diagram of the radius function, denoted Dgm(RDC).
More generally, we can use this diagram to compute the rank of the image of hi, j for
i ≤ j ; see e.g. Edelsbrunner and Harer (2010, p. 152).

3 Computing the Čech–Delaunay gradient flow

The main algorithmic challenge we face in this paper is the local computation of
the gradient that induces the collapse of the Čech to the Delaunay–Čech complex.
Specifically, we trace chains through the collapse, using their images to construct the
chain map that is central to our analysis. We explain the algorithm in three stages: first
sketching the relevant steps of the existence proof, second describing howwe compute
minimum separating spheres, and third explaining the discrete flow that constructs the
chain map. Once we arrive at the eigenspaces, we compute their persistent homology
with the software implementing the algorithms in Edelsbrunner et al. (2015).

3.1 Computing separating spheres

At the core of the discrete gradient flow is the construction of smallest separating
spheres, which are defined as follows. Let X ⊆ R

n be a finite set of points in general
position, and let A ⊆ X be a subset. An (n−1)-dimensional sphere separates another
subset Q ⊆ X from A if

• all points of Q lie inside or on the sphere, and
• all points of A lie outside or on the sphere.

If a point belongs to both A and Q, then it must lie on the separating sphere. Given Q
and A, a separating sphere may or may not exist, and if it exists, then there is a unique
smallest separating sphere, which we denote S(Q, A).

The smallest separating sphere can be characterized in geometric terms as follwos.
For a sphere S, write Incl S,Excl S ⊆ X for the subsets of enclosed and excluded
points, with On S = Incl S ∩ Excl S. Now assume that S is the smallest circumsphere
of the points On S, i.e., the center z of S lies in their affine hull:

z =
∑

x∈On S
ρx x with 1 =

∑

x∈On S
ρx .

By general position, the affine combination is unique, and ρx �= 0 for all x ∈ On S.
We call

Front S = {x ∈ On S | ρx > 0},
Back S = {x ∈ On S | ρx < 0}

the front face and the back face of On S, respectively. The following lemma states
necessary and sufficient conditions for a sphere to be a smallest separating sphere. It is
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a special case of the general Karush–Kuhn–Tucker conditions, expressed in geometric
and combinatorial terms.

Lemma 1 (Combinatorial KKT Conditions Bauer and Edelsbrunner 2017) Let X be a
finite set of points in general spherical position, and let Q, A ⊆ X. A sphere S satisfies
S = S(Q, A) iff

(i) S is the smallest circumsphere of the points On S,
(ii) Front S ⊆ Q ⊆ Incl S, and
(iii) Back S ⊆ A ⊆ Excl S.

Based on these optimality conditions, we can state a recursive formula for the
smallest separating sphere.

Lemma 2 Assume that S(Q, A) exists. If x ∈ Q, then

S(Q, A) =
{
S(Q\{x}, A) if that sphere encloses x,

S(Q, A ∪ {x}) otherwise.

Similarly, if x ∈ A, then

S(Q, A) =
{
S(Q, A\{x}) if that sphere excludesx,

S(Q ∪ {x}, A) otherwise.

Proof We only show the first part, with x ∈ Q, the other part being analogous.
First, assume that S := S(Q\{x}, A) encloses x . Then we have Q ⊆ Incl S, and

thus S(Q, A) = S by Lemma 1.
On the other hand, if S(Q\{x}, A) does not enclose x , then we must have S :=

S(Q, A) �= S(Q\{x}, A), and thus Lemma 1 gives Front S � Q\{x}. But Lemma 1
also gives Front S ⊆ Q, and so we must have x ∈ Front S. Since Front S ⊆ On S ⊆
Excl S, it follows that A∪ {x} ⊆ Excl S, and thus S(Q, A ∪ {x}) = S by Lemma 1. ��

We now turn these results into an algorithm for computing the smallest separating
sphere of sets Q, A ⊆ X , or deciding that no separating sphere exists. We pattern the
algorithm after the randomized algorithm for the smallest enclosing sphere described
in Welzl (1991), which we recall first.

Welzl’s randomized miniball algorithm

The smallest enclosing sphere of a set Q ⊆ R
n is determined by at most n + 1 of

the points. In other words, there is a subset R ⊆ Q of at most n + 1 points such
that the smallest enclosing sphere of R is also the smallest enclosing sphere of Q.
The algorithm below makes essential use of this observation. It partitions Q into two
disjoint subsets: R containing the points we know lie on the smallest enclosing sphere,
and P = Q\R. Initially, R = ∅ and P = Q. In a general step, the algorithm removes
a random point from P and tests whether it lies on or inside the recursively computed
smallest enclosing sphere of the remaining points. If yes, the point is discarded, and
if no, the point is added to R.
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1 sphere Enclose(P, R):
2 if P = ∅ then let S be the smallest circumsphere of R
3 else choose a random point x ∈ P;
4 S = Enclose(P \ {x}, R);
5 if x outside S then S = Enclose(P \ {x}, R ∪ {x});
6 return S.

Since the algorithm makes random choices, its running time is a random variable.
Remarkably, the expected running time is linear in the number of points in Q, and
the reason is the high probability that the randomly chosen point, x , lies inside the
recursively computed smallest enclosing sphere and can therefore be discarded.

Generalization to smallest separating spheres

Rather than enclosing spheres, we need separating spheres to compute the collapse.
Here we get an additional case, when the sphere does not exist, which we indicate by
returning null. As before, we work with two sets of points: R containing the points
we know lie on the smallest separating sphere, and P containing the rest. Initially,
R = Q ∩ A and P = (Q ∪ A)\R. Each point has enough memory to remember
whether it belongs to Q and thus needs to lie on or inside the sphere, or to A and thus
needs to lie on our outside the sphere. We say the point contradicts S if it lies on the
wrong side.

1 sphere Separate(P, R):
2 if card R > n + 1 then return null;
3 if P = ∅ then let S be the smallest circumsphere of R
4 else choose a random point x ∈ P;
5 S = Separate(P \ {x}, R);
6 if x contradicts S then S = Separate(P \ {x}, R ∪ {x});
7 return S.

Since the smallest separating sphere is again determined by at most n + 1 of the
points, the expected running time of the algorithm is linear in the number of points,
as before. The correctness of the algorithm is warranted by Lemma 2.

Iterative version with move-to-front heuristic

Because finding separating spheres is at the core of our algorithm, we are motivated to
improve its running time, even if it is only by a constant factor. Following the advise
in Gärtner (1999), we turn the tail-recursion into an iteration and combine this with a
move-to-front heuristic. Indeed, if a point contradicts the current sphere, it is likely that
it does the same to a later computed sphere. The earlier the point is tested, the faster
this new sphere can be rejected. Storing the points in a linear list, early testing of this
point can be enforced by moving it to the front of the list. Write L for the list, which
contains all points of Q∪ A, and writeL(i) for the point stored at the i-th location. As
before, each point remembers whether it belongs to Q, to A, or to both. In addition,
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we mark the points we know lie on the smallest separating sphere as members of R,
initializing this set to R = Q ∩ A. Furthermore, we initialize m = card (Q ∪ A).

1 sphere MoveToFront(L,m, R):
2 if card R > n + 1 then return null;
3 let S be smallest circumsphere of R;
4 for i = 1 to m do
5 if x = L(i) contradicts S then S = MoveToFront(L, i − 1, R ∪ {x});
6 if S = null then return null;
7 move x to front of L;
8 return S.

Section 5 will present experimental evidence that the move-to-front heuristic accel-
erates the computations.

3.2 Collapsing non-Delaunay simplices

Recall that the collapsing sequence in (10) is facilitated by a discrete gradient, W ,
that is compatible with all three radius functions. To collapse a Čech complex to the
Delaunay–Čech complex, we only need the pairs in W that partition the difference:
Čechr (X)\DČechr (X) ⊆ �(X)\Del(X). This difference is indeed partitioned solely
by pairs because all singletons contain critical simplices, which belong to Del(X).
The discrete gradient on the full simplex �(X) determined by those non-Delaunay
pairs will be denoted by V .

Following Bauer and Edelsbrunner (2017, Lemma 5.8), we note that every pair of
the discrete gradient V is of the form (P, R) with P ⊆ R ⊆ X and R\P = {x} for
a unique vertex v ∈ R. In other words, (P, R) ∈ V uniquely determines the vertex
in which the two simplices differ, and given Q ∈ {P, R} together with this vertex,
we can recover the pair as (P, R) = (Q\{x}, Q ∪ {x}). We therefore introduce the
map ψ : �(X)\Del(X) → X defined by mapping the non-Delaunay simplex Q to
the corresponding vertex, ψ(Q) = x , and we use this map to represent the discrete
gradient V .

We now describe the construction of the map ψ from Bauer and Edelsbrunner
(2017) that defines the discrete gradient V , whose pairs partition the non-Delaunay
simplices. To this end, we choose an arbitrary but fixed total ordering x1, x2, . . . , xN of
the points in X . For each 0 ≤ j ≤ N , we write X j = {xi | i ≤ j} for the prefix. Given
a non-Delaunay simplex Q ∈ �(X)\Del(X), let EQ ⊆ X be the subset of points that
lie on or outside of the smallest enclosing sphere of Q, and for each 0 ≤ j ≤ N ,
define A j = EQ ∪ X j . The sequence A0, A1, . . . , AN starts with just the exterior
points, A0 = EQ , and ends with all points, AN = X . Since Q /∈ Del(X), there is a
minimal index j ≤ N such that Q and A j do not permit a separating sphere. We use
the corresponding vertex x j to define ψ(Q) = x j . To compute ψ(Q), it thus suffices
to iterate through the sequence A0, A1, . . . , AN and find the first index j such that
there is no sphere separating Q from A j . This can be determined using the algorithm
described in Sect. 3.1.
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3.3 Constructing the chainmap

We now have the necessary prerequisites for constructing the chain map. Specifically,
given a cycle in DČechr (X), we are interested in computing its image, which is a
cycle in DČechs(X), with r ≤ s ≤ ρ + λr . The construction of the chain map is an
application of the discrete Morse theoretic formalism of a discrete gradient flow and
the corresponding stabilization map, which we now review.

We follow the notation in Forman (1998), in which the discrete gradient flow is
formulated as amap on chains. Let K be a simplicial complex and V a discrete gradient
on K . In our sitation, K = Čechr (X), and V contains the pairs defined by the map
ψ introduced in Sect. 3.2, which partition Čechr (X)\DČechr (X). It is convenient to
consider the discrete gradient as a chain map. Fixing an orientation on each simplex,
this chain map is defined by linear extension of the map on the oriented simplices
given by

V (P) =
{±R if (P, R) ∈ V ,

0 otherwise,
(12)

where the sign is chosen so that P appears with coefficient −1 in the boundary of R.
In terms of the map ψ defining the gradient V as discussed in Sect. 3.2, this definition
can be rewritten as

V (P) =
{±(P ∪ {ψ(P)}) if ψ(P) /∈ P,

0 otherwise,
(13)

This map sends every oriented p-simplex to 0 or to an oriented (p + 1)-simplex.
The linear extension yields a homomorphism V : C(K ) → C(K ), which maps every
p-chain to a possibly trivial (p+1)-chain. Recall that the boundary map, ∂ : C(K ) →
C(K ), sends every p-chain to a possibly trivial (p−1)-chain.We use both to introduce
� : C(K ) → C(K ) defined by

�(c) = c + ∂(V (c)) + V (∂(c)), (14)

in which c is a p-chain and its image,�(c), is a possibly trivial p-chain. We call� the
discrete gradient flow induced by V . Importantly, it commutes with the boundarymap:
∂� = �∂ , which makes it a chain map; see Forman (Forman 1998, Theorem 6.4).
Moreover, the iteration of � stabilizes in the sense that �M = �N for large enough
M and N (Forman 1998, Theorem 7.2). We call this chain map the stabilization map
of � and denote it by �∞.

In this paper, we apply the discrete flow exclusively to cycles. In other words,
c ∈ C(K ) satisfies ∂c = 0, which simplifies the above formula (14) to

�(c) = c + ∂(V (c)). (15)

In order to evaluate the stabilization map �∞, we simply iterate � until it stabilizes.
The most demanding step in each iteration is the computation of smallest separating
spheres, as discussed in Sect. 3.1.
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4 Eigenspace Inference

We use the chain maps connecting the Delaunay–Čech complexes to construct a per-
sistence module of eigenspaces from the sample g : X → X , and specify properties
of the sampled dynamical system under which the eigenspaces of the underlying self-
map can be inferred from this module. Because of this specific goal, we typically
work with coefficients in a finite field of larger order, in contrast to the typical setup
in applied topology, where homology is often taken with coefficients in the field Z2.

4.1 Eigenspaces

Given a finite set X ⊆ M ⊆ R
n , we recall that RDC : Del(X) → R is the radius

function whose sublevel sets are the Delaunay–Čech complexes of X . Let r1 < r2 <

· · · < rN be the values ofRDC, and write DČechr (X) = R−1
DC[0, r ] for the Delaunay–

Čech complex at radius r . We construct the persistence diagram of this filtration,
denoted Dgm(RDC), which is a multi-set of intervals of the form [ri , r j ). For each
such interval, there is a unique homology class born at DČechri (X) that maps to 0
when it dies entering DČechri (X), and the collection of such classes gives a basis for
the homology group of every complex in the filtration.

To define the eigenspace, for each r we consider two maps between homology
groups, ιr , κr : H(DČechr (X)) → H(DČechr+q(X)), in which ιr is induced by the
inclusion DČechr (X) ⊆ DČechr+q(X), κr is induced by the chain map composed of
g followed by the stabilization map �∞, and q ≥ 0 is chosen such that all genera-
tors of H(DČechr (X)) have images under the chain map κ in H(DČechr+q(X)). It is
convenient to represent ιr and κr by matrices that write the images of the generators
of H(DČechr (X)) in terms of the generators of H(DČechr+q(X)). Following Edels-
brunner et al. (2015), we consider the generalized eigenspace of the two maps for an
eigenvalue t :

Et (κr , ιr ) = ker(κr − t · ιr )/(ker κr ∩ ker ιr ). (16)

In words, Et (κr , ιr ) is generated by the cycles in DČechr (X) whose images under κr
are homologous to t times their images under ιr . Note that this is a slight modification
of the classic eigenvalue problem in which the image and the range are identical. This
is not the case for κr , so we compare it to ιr to get the eigenspace. The maps between
the eigenspaces,

etr ,s = Et (κr , ιr ) → Et (κs, ιs) (17)

are obtained as restrictions of the maps hr ,s : H(DČechr (X)) → H(DČechs(X))

induced by inclusion. For fixed t ∈ F, we have a sequence of eigenspaces,

0 → Et (κr1, ιr1) → Et (κr2 , ιr2) → · · · → Et (κrN , ιrN ), (18)
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which together with the maps etri ,r j form a persistence module. Recall from Sect. 2.3
that this persistence module has an essentially unique interval decomposition. We
can therefore compute the persistence diagram, which we refer to as the eigenspace
diagram of g for eigenvalue t , denoted Egm(g, t).

4.2 Maps between nerves

We will relate the eigenspace of f for t with the eigenspace module in two steps. The
second step will use results about nerves of covers, which we now review.

Let X be a topological space and U = (Ui )i∈I a cover of X. U is closed or open
if every Ui is closed or open, respectively, and U is good if the common intersection
of any subset of cover elements is empty or contractible. Recall that the nerve of U is
the collection of subsets with non-empty common intersection:

N (U) = {B ⊆ U |
⋂

B �= ∅}. (19)

Calling B a simplex, the nerve is an abstract simplicial complex. A partition of unity
subordinate to U is a collection of continuous nonnegative functions φi : X → R≥0
such that

∑
i∈I φi (x) = 1 for every x ∈ X, and the support of φi is contained in Ui

for every i ∈ I . Assuming a geometric realization of the nerve in which vi denotes
the vertex that represents the subset Ui ∈ U , we introduce the map

r : X → |N (U)| defined by r(x) =
∑

i∈I
φi (x) · vi . (20)

TheNerveTheoremas stated inHatcher (2002) asserts that r is a homotopy equivalence
provided U is a good cover that has a subordinate partition of unity. Such a partition
exists for example if U is open and X is paracompact, which includes X ⊆ R

n . We
expand on the Nerve Theorem, using the map r from (20) to relate a continuous map
with a corresponding simplicial map between nerves.

Lemma 3 Let U = (Ui )i∈I and V = (Vj ) j∈J be open covers of spaces X and Y

with corresponding subordinate partitions of unity. Let f : X → Y be continuous, let
g : I → J be such that f (Ui ) ⊆ Vg(i) for every i ∈ I , and write h : |N (U)| → |N (V)|
for the linear simplicial map induced by g. Then the diagram

X Y

|N (U)| |N (V)|

f

r s

h

(21)

commutes up to homotopy, in which r and s are constructed as in (20).

Proof Let x ∈ X, and let τ(x) = conv{w j ∈ J | f (x) ∈ Vj }, where w j denotes
the vertex corresponding to the subset Vj ∈ V . Note that we have s( f (x)) ∈ τ(x)
by construction of s. Similarly let σ(x) = conv{vi ∈ I | x ∈ Ui } and note that
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r(x) ∈ σ(x) by construction of r . By assumption on the map g, x ∈ Ui implies
f (x) ∈ Vg(i). Equivalently, if vi is a vertex of σ(x), then h(vi ) = wg(i) is a vertex
of τ(x). This implies that h(r(x)) ∈ τ(x). Hence, s ◦ f � h ◦ r by a straight-line
homotopy between s( f (x)) and h(r(x)) within τ(x). ��

We note that the commutativity up to homotopy of the diagram (21) does not require
the covers of X and Y to be good. See also Chazal and Oudot (2008, Lemma 3.4) and
Ferry et al. (2014, Proposition 4.2) for related statements about the functoriality of the
nerve of a cover.

4.3 Inference

We now relate the eigenspace Et ( f ) of the self-map f with a generalized eigenspace
obtained from the sample g. The value of this comparison derives from the assumption
that f remains unknown, beyond g, so its eigenspace canbe approachedonly indirectly,
through the properties of g. We begin by recalling the assumptions:

• f : M → M is a continuous self-map with Lipschitz constant λ;
• g : X → X is a finite sample of f with approximation constant ρ;
• the Hausdorff distance between X and M is δ = dM (X , M).

Note that this implies ‖g(x) − f (y)‖ ≤ ρ + λ‖x − y‖ since the left-hand side is at
most ‖g(x) − f (x)‖ + ‖ f (x) − f (y)‖. Setting η = ρ + λδ, we note that

f (Bδ(x)) ⊆ Bη(g(x)) (22)

for all x ∈ X . Hence g defines a simplicial map from Čechδ(X) to Čechη(X), and we
get two maps in homology,

γ, j : H(Čechδ(X)) → H(Čechη(X)), (23)

in which γ is induced by g and j is induced by inclusion.
We now consider the generalized eigenspace of the two maps for an eigenvalue t :

Et (γ, j) = ker(γ − t · j)/(ker γ ∩ ker j), (24)

noting that this is a special case of the setting considered in Sect. 4.1. We show that
under appropriate conditions this generalized eigenspace is isomorphic to Et ( f ). We
need some definitions to prepare the first step. Recall that Bδ(x) is the closed ball
with radius δ centered at x ∈ R

n . For M ⊆ R
n , we call Mδ = ⋃

x∈M Bδ(x) the δ-
neighborhood of M. By the Kirszbraun Extension Property (Kirszbraun 1934; Wells
and Williams 1975), f : M → M extends to a map fδ : Mδ → Mδ with the same
Lipschitz constant. Similarly, f extends to a map fθ : Mθ → Mθ , again with the same
Lipschitz constant, inwhich θ = max(2δ, η), withη = ρ+λδ as before. The following
diagram organizes the homology groups of the spaces relevant to our argument. Apart
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from f∗, fδ∗, and fθ ∗, any map in the diagram is induced by inclusion.

H(Xδ) H(Xθ )

H(M) H(Mδ) H(Mθ )

H(M) H(Mδ) H(Mθ )

H(Xδ) H(Xθ )

a

ι

f∗

b

fδ∗ fθ ∗

ba

ι

(25)

Consider ι : H(Xδ) → H(Xθ ), let ι = b ◦ a with a : H(Xδ) → H(Mδ) and
b : H(Mδ) → H(Xθ ), and define φ = b ◦ fδ∗ ◦ a : H(Xδ) → H(Xθ ). To compare
φ with ι, we consider their eigenspace,

Et (φ, ι) = ker(φ − t · ι)/(ker φ ∩ ker ι). (26)

We claim that this eigenspace is isomorphic to the one considered in (24).

Lemma 4 Et (φ, ι) ∼= Et (γ, j).

Proof By finiteness of X , there is ε > 0 such that the inclusion of Xδ in the interior of
Xδ+ε is a homotopy equivalence and Čechδ(X) is isomorphic to the nerve of the cover
of Xδ+ε by open balls of radius δ+ε. We can thus apply (20) and get two commutative
diagrams via Lemma 3:

H(Xδ) H(Xθ )

H(Čechδ(X)) H(Čechθ (X))

φ

∼= ∼=
γ

H(Xδ) H(Xθ )

H(Čechδ(X)) H(Čechθ (X))

ι

∼= ∼=
j

(27)

The diagrams imply φ ∼= γ and ι ∼= j , so the eigenspaces are also isomorphic, as
claimed. ��

For the second step, we add two assumptions: that the map H(M) → H(Mδ)

induced by inclusion is an isomorphism, and that the induced map H(Mδ) → H(Mθ )

is a monomorphism. This implies that a is surjective and that b is injective; see (25).
We claim that under the combined assumptions, the eigenspace of f : M → M for
t ∈ F is isomorphic to the eigenspace considered in Lemma 4.

Lemma 5 Et ( f ) ∼= Et (φ, ι).

123



472 U. Bauer et al.

Proof Wehave ker a ⊆ ker φ simply becauseφ = b◦ fδ∗◦a, andwe have ker a = ker ι
because ι = b ◦ a with b injective. This implies ker φ ∩ ker ι = ker a. Hence,

Et (φ, ι) = ker(φ − t · ι)/(ker φ ∩ ker ι) (28)

= ker(b ◦ fδ∗ ◦ a − t · b ◦ a)/ ker a (29)
∼= ker(b ◦ fδ∗ − t · b). (30)

Since b is injective, the kernel in (30) is isomorphic to Et ( fδ∗). This concludes the
proof since H(M) ∼= H(Mδ), by assumption, and therefore Et ( fδ∗) ∼= Et ( f ). ��

Summarizing Lemmas 4 and 5 , we obtain a sampling theorem for inferring the
eigenspace of the given self-map from the sampled eigenspace module (18).

Theorem 1 Let f : M → M be a self-map with Lipschitz constant λ, and let
g : X → X be a finite sample of f with approximation error ρ and Hausdorff dis-
tance δ = dH (X , M). Suppose that the inclusion M ↪→ Mδ induces an isomorphism
in homology, while the inclusion Mδ ↪→ Mθ for θ = max(2δ, ρ + λδ) induces a
monomorphism. Then the dimension of the eigenspace Et ( f ) equals the dimension of
the generalized eigenspace Et (γ, j).

5 Computational experiments

In this section, we analyze the performance of our algorithm experimentally and com-
pare the results with those reported in Edelsbrunner et al. (2015). For ease of reference,
we call the algorithm in Edelsbrunner et al. (2015) the Vietoris–Rips or VR-method
and the algorithm in this paper the Delaunay–Čech or DČ-method. We begin with the
introduction of the case-studies — self-maps on a circle and a torus — and end with
statistics collected during our experiments.

5.1 Expanding circle map

The first case-study is an expanding map from the circle to itself. To add noise, we
extend it to a self-map on the plane, f : C → C defined by f (z) = z2.While traversing
the circle once, the image under f travels around the circle twice. To generate the data,
we randomly chose N points on the unit circle, and letting zi be the i-th such point,
we pick a point xi from an isotropic Gaussian distribution with center zi and width
σ = 0.1. Note that while the noise from a Gaussian distribution is unbounded, for
large enough N and sufficiently small σ (in dependence on N ), a random sample noisy
still has a high probability of satisfying the sampling conditions from Sect. 4. Write
X for the set of points xi , and let the image of xi be the point g(xi ) ∈ X that is closest
to x2i . As explained earlier, we construct the filtration of Delaunay–Čech complexes
of X and compute eigenspace diagrams for all eigenvalues in a sufficiently large finite
field to avoid aliasing effects. Our choice is F = Z1009. Recall that the definition of
the eigenspace module in Sect. 4.1 required a choice of q ≥ 0. For our computations,
we always chose the smallest admissible value.
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Fig. 3 Left: The most persistent cycle in the Delaunay–Čech complex for points sampled near the unit
circle. Right: The image of the cycle after following the discrete flow from the Čech complex back to a
Delaunay–Čech complex. As expected, the map doubles the winding number

Drawing N = 100 points, we compare the DČ-method of this paper with the VR-
method in Edelsbrunner et al. (2015). For eigenvalue t = 2, both methods give a
non-empty eigenspace diagram consisting of a single point. Figure 3 illustrates the
results by showing the generating cycle computed with the DČ-method on the left and
its image on the right.

5.2 Torus maps

The second case-study consists of three self-maps on the torus, which we construct as
a quotient of the Cartesian plane; see Fig. 4. For i = 1, 2, 3, the map fi : [0, 1)2 →
[0, 1)2 sends a point x = (x1, x2)T to fi (x) = Ai x , in which

A1 =
[
2 0
0 2

]
, A2 =

[
0 1
1 0

]
, A3 =

[
1 1
0 1

]
.

The1-dimensional homologygroupof the torus has only twogenerating cycles. Letting
one wrap around the torus in meridian direction and the other in longitudinal direction,
we see that f1 doubles both generators, f2 exchanges the generators, and f3 adds them
but also preserves the first generator.

Correspondingly, f1 has two eigenvectors for the eigenvalue t = 2, f2 has two
distinct eigenvalues t = 1 and t = −1, and f3 has only one eigenvector for t = 1. The
input data for our algorithm, X , consists of 100 points uniformly chosen in [0, 1)2.

To define the image of a point x ∈ X , we compute the point Ai x and let the image
be the nearest point gi (x) ∈ X . The eigenspace diagrams of f1, f2, f3 for selected
eigenvalues are shown in the last three panels of Fig. 5.
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Fig. 4 The periodic Delaunay triangulation on the left and its embedding in R
3 on the right. The blue cycle

wraps around the torus once in meridian and once in longitudinal direction. It represents an eigenvector
of f1 for eigenvalue t = 2. Its image wraps around the torus twice in meridian and twice in longitudinal
direction (not shown)

5.3 Accuracy

To study how accurate the two methods are, we look at false positives and false
negatives, and the persistence of the recurrent features of the underlying smooth maps.

Circle map

Repeating the circle map experiment with N = 100 points ten times, we show the
superimposed twenty eigenspace diagrams (ten each for the twomethods) in the upper
left panel of Fig. 5. Points of the VR-method are marked blue while points of the DČ-
method are marked red. The eigenvector for t = 2 is detected each time. However,
the DČ-method detects the recurrence consistently earlier than the VR-method, with
smaller birth and death values but also with smaller average persistence. The shift
of the birth values is easy to rationalize: a cycle arises for the same radius in both
filtrations, but remainswithout image in theVR-method until the radius is large enough
to capture the image of every edge in the cycle. The shift of the death value is more
difficult to explain and perhaps related to the fact that the DČ-method maps a cycle
in one complex, Kr , to a later complex, Ks with r ≤ s ≤ ρ + λr in the filtration of
Delaunay–Čech complexes. Monitoring r and s in 100 runs for a range of number of
points, we show the average Lipschitz constant and the average ratio s

r in Table 1.
There are no false negatives in this experiment, but we see a small number of false

positives reported by the VR-method (the points in the upper right corner of the first
panel in Fig. 5, all for eigenvalues t �= 2). This indicates that the VR-method is
more susceptible to noise than the DČ-method. To support our claim, we compute the
eigenspace diagrams using the DČ-method with increased noise, and indeed find no
false positives; see Fig. 6.
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Fig. 5 Top left panel: the superimposed eigenspace diagrams of the expanding circle map for ten randomly
chosen sets of 100 points each. The intervals are plotted as points whose coordinates are the birth and
death values of the corresponding homology classes. Points for the VR-method are blue and points of the
DČ-method are red. The only points with non-negligible persistence belong to eigenvalue t = 2, and we
get exactly one such point for each eigenspace diagram. Top right panel: the eigenspace diagrams of f1 for
a few eigenvalues. The most persistent classes are represented by points on the upper edge of the panel,
indicating that their intervals last all theway to the last complex in the filtration. Herewe see two such points,
which correspond to the intrinsic 1-dimensional homology of the torus. Bottom left panel: the eigenspace
diagrams of f2 for a few eigenvalues. There are two intervals that exists during most of the filtration, one
for eigenvalue t = 1 and the other for eigenvalue t = −1. They have the same birth and death and are
therefore visible as two identical points on the upper edge of the panel. Bottom right panel: the eigenspace
diagrams of f3 for a few eigenvalues. There is only one significant eigenvector for t = 1

Table 1 The average Lipschitz
constant, λ, and the average
shift, s

r , for points sampling the
circle map

N = 100 200 300 400 500

Average λ 1.99 2.00 2.05 2.03 2.04

Average s/r 1.13 1.14 1.12 1.14 1.16

Average λ 2.65 3.54 3.98 4.22 5.42

Average s/r 1.33 1.57 1.71 1.64 1.91

Top two rows: no noise. Bottom two rows: 2-dimensional Gaussian
noise with standard deviation σ = 0.1 in both directions
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Fig. 6 The superimposed eigenspace diagrams computed with the DČ-method of the expanding circle map
for randomly chosen sets of 200 points each with isotropic Gaussian noise with increasing width σ . In each
run, the only non-empty eigenspace diagram is for t = 2, and this diagram contains exactly one point

Torus maps

The situation is similar for the three torusmaps, whose eigenspace diagrams are shown
in the next three panels of Fig. 5. The eigenvectors of f1, f2, f3 are represented by
points on the upper edges of the panels, indicating that their corresponding homology
classes last until the last complex in the filtration. This is different in the VR-method
because theVietoris–Rips complex for large radii is less predictable than theDelaunay–
Čech complex. In contrast to the circle map, we observe false positives also in the
DČ-method. They show up as points with small to moderate persistence in the three
diagrams. We also have false positives in the VR-method, but the results are difficult
to compare because for complexity reasons we could not run the algorithm beyond
N = 200 points. As another indication of improved accuracy of the DČ-method, we
note that the eigenspace diagrams we observe in our experiments do not suffer the
problem of abundant eigenvalues discussed in Edelsbrunner et al. (2015, Section 6.4).

5.4 Runtime analysis

We analyze the running time of the DČ-method for sets of N points, with N varying
from 100 to 10000. For the persistent homology computation, we use coefficients in
the field Z1009. The time is measured on a notebook class computer with 2.6GHz Intel
Core i7-6600U processor and 16GB RAM.

Overall running time

We begin with a brief comparison of the two methods, first of the overall running
time for computing eigenspace diagrams; see Table 2. As mentioned earlier, the VR-
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Table 2 Time needed to compute the eigenspace diagram of the expanding circle map for N points sampled
near the unit circle

Time (s) N = 100 150 200 500 1000 1500 2000 2500

VR-method 157.41 986.60 – – – – – –

DČ-method 0.07 0.12 0.21 0.92 3.66 8.36 14.53 22.35

For N ≥ 200, the VR-method needs more than half an hour, at which time we terminated the process

Fig. 7 The time needed to compute the eigenspace diagram of the expanding circle map with the DČ-
method as a function of the number of sampled points. We also show the amount of time spent to compute
separating spheres, which is more than half the overall running time. The time for computing the Delaunay–
Čech complexes and the persistence diagrams is less than 0.5s in all cases and therefore not shown. To
estimate the asymptotic behavior, we use the least squares technique to fit lines to the log-log data points;
see the right panel. Excluding the results for data with less than N = 5000 points we get slopes 2.66 and
2.71, which suggests that the experimental running time of our algorithm is between quadratic and cubic
in the input size

method uses Vietoris–Rips complexes, which grow fast with the number of points and
the radius. We could therefore run this method for N = 100 and 150 points only,
terminating the run for N = 200 points after half an hour.

To get a better feeling for the running time of the DČ-method, we plot the results
in Fig. 7, adding curves to indicate the asymptotic experimental performance. The
outcome suggests that the computational complexity of the DČ-method is between
quadratic and cubic in the number of points. We note that more than half of the time
is used to compute smallest separating spheres.

Flowing an edge

To gain further insight into the time needed to flow a cycle from the Čech to the
Delaunay–Čech complex, we present statistics for collapsing a random edges in a
variety of settings. The edges are constructed from 100, 1000, 10000 points chosen
along the unit circle with added Gaussian noise, and from 100, 1000, 10000 points
chosen uniformly in [0, 1)2.

For each data set, we pick two points at random and monitor the effort it takes to
flow this edge from the Čech complex to the Delaunay–Čech complex. Specifically,
we iterate � on each edge individually until the result stabilizes. The statistics in
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Table 3 Statistics for flowing 1000 randomly chosen edges from the Čech to the Delaunay–Čech complex

Circle Square

N = 100 1000 10000 100 1000 10,000

#iterations: avg 5.27 9.09 14.70 5.47 11.98 14.60

max 9.00 13.00 19.00 9.00 16.00 17.00

#tests: avg 1.23 1.17 1.21 1.60 1.32 1.20

max 8.00 5.00 4.00 15.00 16.00 5.00

Top two rows: the average and maximum number of iterations of � to flow an edge from the Čech to the
Delaunay–Čech complex. Bottom two rows: the average and maximum number of points tested to find a
set for which the separating sphere does not exists

Table 3 shows how many times � is iterated and how many points are tested inside
each call to compute the discrete gradient. The statistics for the circle and the square
are similar, with consistently larger numbers when we pick the edges in the square.

Smallest separating spheres

Our analysis shows that the DČ-method spends most of the time computing smallest
separating spheres. For this reason, we compare the straightforward implementation
(function Separate), with the heuristic improvement (functionMoveToFront). We
generate the points in [0, 1)2 as described above. For both functions, we randomly pick
10000 edges from the Čech complex and another 10000 edges from the Delaunay–
Čech complex, and we test for each edge whether or not there exists a sphere that
separates the edge from the rest of the points. Figure 8 shows that the running time of
both functions depends linearly on the number of points, which is to be expected. The
best-fit linear functions suggest that the move-to-front heuristic is faster than the more
naive extension of the miniball algorithm to finding smallest separating spheres. The
difference is more pronounced for edges of the Čech complex (left panel) for which
we expect more points inside the circumscribed spheres and an early contradiction
to the existence of a separating sphere. In contrast, the difference in performance is
negligible for edges sampled from the Delaunay–Čech complex, for which separating
spheres exist by construction.

6 Discussion

The main contributions of this paper are the construction of a filtration-preserving
chain map from a Čech filtration to the corresponding Čech–Delaunay filtration, the
construction of a geometrically meaningful chain self-map map on a Delaunay trian-
gulation from a self map on a point set, and its application to computing eigenspaces
of sampled dynamical systems. Following the proof of collapsibility in Bauer and
Edelsbrunner (2017), we get an efficient algorithm for the chain map though implicit
treatment of the Čech complex. The reported research raises a number of questions:
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Fig. 8 Left: the time needed to compute 10,000 smallest separating spheres for randomly chosen edges
from the Čech complex constructed on points sampled uniformly from [0, 1)2. Right: the time needed to
compute 10000 smallest separating spheres for edges of the Delaunay–Čech complex constructed on points
sampled uniformly from [0, 1)2

• Canwe give theoretical upper bounds on the number of individual collapses needed
to flow a cycle to its image under the stabilization map of the Čech–Delaunay
gradient flow?

• Can the computation of smallest separating spheres be further improved by cus-
tomizing the procedure to small sets inside the sphere, or by taking advantage of
the coherence between successive calls?

We expect that the fast chainmap algorithm has applications beyond this paper, includ-
ing to the transport of structural information between meshes, and to the visualization
of topological information shared by related high-dimensional dataset.
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