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1 INTRODUCTION

Heterogeneous computing systems, while offering a large potential for performance gains relative
to homogeneous counterparts, traditionally pair efficiency gains with reductions in ease of use and
programmer productivity. Platforms such as Domain-specific System on Chip (DSSoC) devices
have been proposed as one such solution for addressing this divergence with the hope that the fo-
cus on a smaller domain of applications will enable more productive software and programming ab-
stractions. However, despite the advantages gained through reducing the problem size, many of the
core challenges of utilizing and programming heterogeneous systems still apply. In traditional het-
erogeneous programming paradigms, massive amounts of effort are put into offline performance
analysis by domain experts to determine the portions of an application that must be accelerated,
the type of accelerators needed, and effective implementation strategy for the target hardware con-
figuration. Low-performance serial implementations are then replaced with their optimized het-
erogeneous implementations, and a static binary that represents a single, expertly-tuned instance
of that application is produced. Such static and offline resource allocation decisions result in a
greedily optimized implementation that assumes it does not share the heterogeneous accelerators
with any other applications. However, in a computing environment where heterogeneity is wide-
spread, this assumption has the potential to lead to drastic mismanagement or under-utilization
of the target hardware. In homogeneous computing, this kind of dilemma has been thoroughly
addressed through the integration of intermediate layers of resource-management software—like
operating systems—that work to ensure that all applications can share the underlying hardware
effectively despite being unaware the others exist. We find that these same requirements apply to
heterogeneous computing, and in particular DSSoCs, as well. Hence, to meet these requirements,
there is a need for an intelligent runtime system and programming framework to enable effective
utilization of DSSoC platforms and take full advantage of their underlying hardware without re-
quiring users to become hardware experts in the process. Furthermore, we envision that the DSSoC
system should also enable a productive programming and deployment experience in such a way
that multiple users can coexist and share the hardware as a service by supporting execution of any
combination of dynamically arriving applications.

This goal, while providing an ambitious target to aim for, tends to hide some of the complex-
ity that becomes apparent when working in the design and study of DSSoCs. In the process of
constructing such a system, there are a number of research questions and avenues that become
readily apparent, and foundational across all of these questions is the underlying definition of a
DSSoC itself. While it may seem that this definition is broadly apparent—a DSSoC is an SoC that is
tailored for a particular domain of computation—there are challenges and subtleties in how exactly
to define the scope of a domain. Trivially, we know that a DSSoC needs to support more than one
application, as otherwise it is an application-specific integrated circuit, but at the same time, we
know that a DSSoC cannot be suitable for all applications, as otherwise it loses the specialization of
being domain specific. With this in mind, one of the biggest questions in the area of domain specific
architecture research is how precisely to determine which heterogeneous processing elements

(PEs) to use for which domain as well as how both power and data need to be managed between
all of these PEs. We believe that one of the most promising avenues for exploring these questions
is through direct empirical experimentation with frameworks that enable users to rapidly sweep
and explore the design space itself. However, while in the literature, various frameworks have been
proposed that enable exploration of certain aspects of this design space—such as SoC and applica-
tion design without a focus on scheduling [10, 32, 38, 44] or stand-alone application programming
interfaces that are independent of hardware [22, 45]—to the best of our knowledge, no frameworks
thus far have been presented that bring together application development, resource management,
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and accelerator design capabilities into a single unified compilation and runtime toolchain that
targets DSSoC hardware. Toward this end, in this work, we introduce a Compiler-integrated,

Extensible, DSSoC Runtime (CEDR).
As the name implies, CEDR is a novel open source1 ecosystem that integrates compile-time

application analysis with a Linux-based runtime system and holistically targets the aforemen-
tioned requirements and capabilities. By coupling these components, it enables compilation and
development of user applications, evaluation of resource management strategies, and validation of
hardware configurations in one unified framework. Importantly, this framework is itself portable
across a wide number of Linux-based systems, ensuring that effort to migrate across systems is
minimal for all developers involved. Using the CEDR compilation environment, application devel-
opers can develop and validate large, non-trivial applications to serve as workloads for scheduling
heuristic developers and hardware architects; scheduling heuristic developers can easily imple-
ment their policies in a common environment for cross-validation and evaluation; and hardware
architects can design new DSSoC architectures with the knowledge that they will be able to build
on an existing library of validated applications and schedulers rather than rely on simple micro-
benchmarks executed in unrealistic simulation environments. While there are a large number
of existing works that provide software and runtime environments for heterogeneous architec-
tures [3, 7, 8, 11, 21, 35, 46], CEDR is unique in the way it brings together all of these aspects of
DSSoC development and couples them with unique features like task-level measurement of per-
formance counters or support for software-based pipelining (“streaming”) of application tasks. We
believe that the CEDR ecosystem, with its integrated compile-time and runtime workflows, will
empower researchers to conduct design space explorations, and consequently, it will help the re-
search community move toward answering the aforementioned questions and establishing a more
general understanding of DSSoCs and their broader role in an era of increasingly heterogeneous
computing systems.

A preliminary version of this work appeared in the Heterogeneity in Computing Workshop [30],
where we presented a baseline FPGA-based emulation framework. In this article, we expand the
preliminary work with the following contributions:

• We rearchitect the runtime to allow for launching a workloads with a user-friendly, daemon-
based job submission process akin to those used in high-performance computing (HPC)

systems. Through this interface, users can easily construct arbitrarily complex, highly inter-
leaved application scenarios.
• Enabled by this new runtime architecture, we scale our analysis to 3,480 experimental con-

figurations that collectively result in scheduling and analysis of over 10 million total tasks.
• We expand and further validate CEDR’s ability to schedule and dispatch to arbitrary het-

erogeneous hardware through integration of new FPGA accelerators (matrix multiplication)
and new hardware platforms (CUDA-based accelerators on Nvidia Jetson AGX Xavier).
• We expand the list of built-in schedulers by incorporating a variant of Heterogeneous

Earliest Finish Time (HEFTRT) [29] and Earliest Task First (ETF).
• We add support for PE-level work queues that optimize runtime overhead, enable integration

of more complex resource management heuristics that rely on reservation-based policies,
and help lower the inter-task overhead on heavily utilized PEs.
• We enable management and scheduling of concurrent, pipelined execution of tasks in an

application to vastly improve performance of highly recurring, stream-based application
graphs.

1Available at: https://github.com/UA-RCL/CEDR.
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• We implement the ability to access performance counters and dynamically collect a rich,
configurable set of fine-grained execution characteristics that allow us to extract insights
about our application domain, enable rich workload characterization and support future
scheduler design.
• We incorporate the ability to cache scheduling decisions to reduce overhead associated with

scheduling via complex heuristics.

The rest of the article is organized as follows: Section 2 presents an overview of the CEDR frame-
work. Section 3 presents the experimental setup and discusses the applications, workloads, and
hardware configurations studied in the experiments. Section 4 presents validation-based sweeping
experiments that demonstrate the utility of CEDR for extracting insights from large-scale workload
scenarios. Section 5 presents series of case studies to demonstrate the utility of CEDR in design
space exploration from application engineer, hardware designer and scheduling heuristic devel-
oper perspectives. Section 6 discusses other work in this area and contextualizes CEDR within it.
Finally, Section 7 concludes by summarizing this work and discussing avenues for future work.

2 CEDR OVERVIEW

CEDR is composed of two components: a compilation workflow and a runtime workflow. The
compilation workflow is used to convert C/C++ applications into CEDR-compatible binaries, and
the runtime workflow is leveraged to then parse, schedule, dispatch, and execute those applica-
tions across a heterogeneous pool of resources on a given compute platform. CEDR provides these
capabilities while remaining independent of any one scheduling heuristic or hardware platform,
ensuring that it can be ported across any number of execution environments without requiring
major development effort to port any given scheduler to a new SoC platform or vice versa. To
achieve this, CEDR is built to schedule and execute applications that can be expressed as Directed

Acyclic Graphs (DAGs), where each node in the graph represents a given task that requires
scheduling to a given resource, and edges between the nodes represent temporal dependencies. In
this abstraction, the structure of the user application itself is captured by the graph, and the actual
implementation of each node can be decoupled from this graph through the use of shared libraries
and function pointers. With applications structured in this fashion, the role of the CEDR runtime
is then to dynamically bind function implementations to their corresponding DAG nodes and ex-
ecute them on the system’s compute resources. For instance, a single DAG node may represent
a 256-point Fast Fourier Transform (FFT), and such a node is represented with a flexible bi-
nary structure that may have both a CPU and accelerator implementations associated with it. The
goal of the runtime is to then ask the user-selected scheduling heuristic to choose an implementa-
tion based on the current state of the compute resources and dynamically dispatch to the chosen
implementation. In the following subsections, we will explore each of these aspects of CEDR (com-
pilation and runtime) in detail. As understanding the mechanics of the runtime helps to motivate
the goals of the compiler, we begin by discussing the runtime in Section 2.1 before discussing the
compilation approaches in Section 2.2.

2.1 Runtime Workflow

The architecture of the CEDR runtime is presented in Figure 1. The runtime itself operates as a
background Daemon Process, shown in the right half of the figure, and the user submits jobs for
execution via inter-process communication (IPC) using the Job Submission Process. Then, the
daemon process consists of two key components: the Worker Threads and the CEDR Management

Thread. For each resource in the system—whether it is a CPU core or an accelerator—we spawn
one worker thread that is tasked with receiving, executing, and reporting back on work assigned
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Fig. 1. Overview of the components present in the CEDR runtime.

to that particular resource. As an example, suppose we are running on a system with one CPU core
(CPU 1) and one FFT accelerator (FFT 1). In this case, the worker thread for CPU 1 is, itself, assigned
via its processor affinity to run on CPU 1, and as it receives tasks that are scheduled to CPU 1, it
executes them and reports back to the management thread on their completion. Meanwhile, the
worker thread for FFT 1 is tasked with running on one of the CPU cores and facilitating data
transfers to and from the underlying accelerator. While it is configurable, by default, each of these
worker threads utilize Linux’s real-time SCHED_RR policy with a static priority of 99 to minimize the
amount of time spent executing non-CEDR-related tasks on their managed resources. One of the
advantages of this architecture is that we can easily scale to systems with any number of resources
simply by changing the number of worker threads spawned to manage them. These worker threads
are managed using the widely utilized POSIX thread library [36] by the main CEDR management
thread, and when coupled with the fact that all of the components shown here operate in Linux
userspace, we can see that CEDR is trivially portable across a wide range of Linux-based SoC
platforms.

Switching focus to the management thread, we can see that it operates in a continuous loop
of application parsing, application and PE tracking, and task scheduling. The application parser
forms the entry-point by which applications are received by the runtime. Each CEDR application
is submitted in the form of a JSON-based DAG file and a flexible binary format (also known as a
“Fat Binary”) that contains the various invocations needed by each node for each heterogeneous
PE. As applications are received, the application parser reads the provided JSON and binary
objects and initializes CEDR’s internal application representation. These parsed applications are
themselves cached and stored as “application prototypes” such that, if they are to be submitted
again in the future, then the runtime does not need to re-parse, instead just instantiating another
copy. An example of a CEDR application JSON is provided in Listing 1. We can see that this JSON
has four main top-level keys: AppName, SharedObject, Variables, and DAG. The AppName string
captures the name of the application to be used internally for logging related to this application
as well as the key used to identify if an application has been parsed and cached previously, the
SharedObject string defines the binary that contains the functions utilized by each DAG node,
the Variables object gives CEDR insight into the memory requirements of this application, and
the DAG object captures the application DAG’s structure. Each variable defined in the Variables
object is allocated and managed by CEDR upon every instantiation of a given application with
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�
1 "AppName": "sample_application ",
2 "SharedObject": "sample_application .so",
3 "Variables": {
4 "var_0": {
5 "bytes": 4,
6 "is_ptr": false,
7 "ptr_alloc_bytes": 0,
8 "val": []
9 },

10 "var_1": {
11 "bytes": 4,
12 "is_ptr": false,
13 "ptr_alloc_bytes": 0,
14 "val": [0, 1, 0, 0]
15 },
16 "var_2": {
17 "bytes": 8,
18 "is_ptr": true,
19 "ptr_alloc_bytes": 2048,
20 "val": []
21 }
22 },
23 "DAG": {
24 "Node 0": {
25 "arguments": ["var_0", "var_1"]
26 "predecessors": [],
27 "successors ": [{"name": "Node 1", "edgecost": 1.0}],
28 "platforms":
29 [{"name": "cpu", "runfunc": "Node_0_CPU", "nodecost": 1.0}]},
30 "Node 1": {
31 "arguments": ["var_1", "var_2"]
32 "predecessors": [{"name": "Node 0", "edgecost": 1.0}],
33 "successors ": [{"name": "Node 2", "edgecost": 1.0}],
34 "platforms":
35 [{"name":"cpu", "runfunc": "Node_1_CPU", "nodecost": 1.0},
36 {"name":"fft", "runfunc": "FFT_Accel_Dispatch ", "shared_object": "fft_accel.so"

,
37 "nodecost": 1.0}]},
38 "Node 2": {
39 "arguments": ["var_0", "var_1", "var_2"]
40 "predecessors": [{"name": "Node 1", "edgecost": 1.0}],
41 "successors ": [],
42 "platforms":
43 [{"name":"cpu", "runfunc": "Node_2_CPU", "nodecost": 1.0}]}
44 }

�� �
Listing 1. Sample Application JSON

the understanding that the application can use this memory to share data between DAG nodes. A
given variable is identified throughout the JSON by its key, and the fields inside (bytes, is_ptr,
ptr_alloc_bytes, and val) respectively refer to the bytes required for that variable’s type;
whether that variable is itself a pointer; if it is a pointer, then how many bytes of storage it
requires; and a list of bytes that can serve as a variable’s initial value. Finally, each key in the
DAG object represents one node in the application’s DAG, with each node specified via four fields:
arguments, predecessors, successors, and platforms. The predecessors and successors
lists capture the set of predecessor and successor tasks for a given node, respectively, along
with their communication costs as edgecost. With this, we can infer the structure of a given
DAG. Meanwhile, the arguments list captures the set of variables (defined in the Variables
object) that this node requires when it is invoked, and the platforms list captures the set of
heterogeneous-resource specific implementations that can be used to execute a given task on the
desired resources. Each platform entry specifies a runfunc that, by default, is searched for in the
top level SharedObject, and a nodecost that specifies the expected execution time of the runfunc
on the desired resource in microseconds. The user can also optionally override this behavior by
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specifying a different, platform-specific shared_object key within the entry itself. For instance,
as shown on line 29 of the listing, Node 0 can only be invoked on the CPU. Meanwhile, on lines
35 and 36, we can see that Node 1 can be invoked on both CPU and FFT resource types, with
the FFT resource type overriding the top-level SharedObject binary. Later, we will discuss how
“accelerator supported” nodes are specified during the compilation process in Section 2.2.

As parsing completes, applications are handed off to the application and PE tracker, which
begins by pushing the head nodes from each application—the nodes with empty predecessors
lists—into the runtime’s ready queue for scheduling and dispatch. From there, tasks are allocated
by the user’s specified scheduling heuristic to run on particular PEs by passing them to their
corresponding worker threads and choosing the appropriate function that was previously parsed
from their platforms list. By default, CEDR provides five scheduling policies: round robin (RR),
minimum execution time (MET), a custom HEFT [29] inspired scheduler, earliest finish time

(EFT), and ETF schedulers. Together, these policies provide a useful foundation for scheduler ex-
perimentation, covering a broad range of heuristics whose characteristics range from low complex-
ity and low runtime overhead up through those with high complexity and high runtime overhead.
For users interested in integrating their own scheduling heuristic, any policy can be integrated
trivially so long as it can receive and schedule tasks from the runtime’s ready queue as shown in
the Scheduler block in Figure 1. As tasks are received and executed by the various worker threads,
they signal their completion back to the application and PE tracker, which responds by checking
the dependency resolution of their successor nodes and pushing them into the ready queue as nec-
essary, after which the process repeats. If an application runs out of successors to enqueue, then
it is marked as completed by the runtime, timing logs are generated representing its execution,
and the memory associated with the application instance is released. These timing logs capture
all of the relevant scheduling and timing information about when each task in a given application
ran, on which PE it ran, and so on. This cycle of application parsing, application dispatch, and log
generation repeats indefinitely until an IPC command is received that signals for the runtime to
terminate.

2.2 Compilation Workflow

To prepare applications for CEDR, there are two methodologies available as shown in Figure 2. The
first path, shown in the top half of the figure, involves passing an off-the-shelf user application
through an automated toolchain that can produce functionally correct DAG-based applications for
CEDR. Meanwhile, the second path, shown in the bottom half of the figure, involves transforming
a user application through a hand-crafted process that, despite being more time-consuming, can
produce binaries that better exploit the available opportunities for parallelism and heterogeneous
execution. In the following paragraphs, each of these two workflows will be explored in detail,
starting with the automated compilation workflow.

2.2.1 Automated Compilation Process. In converting an off-the-shelf application for use in
CEDR, the broad goal is to take an arbitrary C/C++ application and pass it through analysis tool-
ing to (i) determine the optimal boundaries to use in segmenting the baseline code into a sequence
of DAG nodes and (ii) determine where heterogeneous execution opportunities are present and
ensure that those opportunities can be maximally exploited by the scheduling heuristic in CEDR.
To do this, we begin by converting the user’s application into the LLVM [28] intermediate rep-

resentation (IR). The user’s LLVM IR is then passed through TraceAtlas [49], an open source2

toolchain for collecting and analyzing dynamic application traces from arbitrary application code.

2Source available at https://github.com/ruhrie/TraceAtlas.
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Fig. 2. Two distinct methodologies for preparing applications for execution in CEDR.

Using TraceAtlas, we modify the user’s LLVM IR to include tracing instrumentation, compile a
tracing executable, and execute it. As the tracing executable runs, it dumps a runtime trace to disk
that captures temporal aspects of the code’s execution such as the full sequence of basic block
transitions that occurred during execution. Next, we analyze this trace using TraceAtlas, and it
suggests the regions in the code that should be labeled as “kernels” (roughly analogous to “hot”
sections of the original program) and “non-kernels” (analogous to the “cold” sections of the pro-
gram). With this information extracted, we proceed to the LLVM Node Partitioning phase. Using
the provided information about suggested kernel regions, we launch a second phase of analysis
to determine whether those regions can, themselves, be easily outlined from their original source
code into stand-alone functions that can serve as nodes in the application’s DAG. Adjustments to
these node boundaries are necessary if extracting a kernel would cause issues with the program’s
control flow structures. For example, the two branches of an if/else statement must lie within the
same function after outlining as otherwise, directing execution down at least one of the two paths
would require unconditionally jumping from one function body to the other without respecting
function call semantics. We resolve these issues by expanding the provided kernel boundaries until
they contain only a single entry and single exit point for their respective sets of basic blocks. After
this stage, all of the user’s application code is partitioned into stand-alone functions that, when
called in sequence, recreate the behavior of the original user application. With that, we proceed to
the Architecture Specific Optimizations phase. In this phase, we determine whether any DAG nodes
that have been outlined are supported with acceleration via heterogeneous execution on our target
architecture. To do this, we apply a combination of (i) pattern matching of the outlined DAG nodes
against a known library of kernels for the target architecture and (ii) optional “hints” from the user
in the form of kernel labels added to the original source code. Based on the results of this analysis,
each DAG node is annotated with the set of supported execution platforms, and we proceed onto
the final phase: DAG Generation and Fat Binary Compilation. In the final phase, we perform a high
level memory analysis to identify const variable allocations as well as variables that are assigned
const-inferable allocations of heap memory (such as those that utilize const arguments to malloc).
These variables along with their memory allocation sizes are all populated into a variables dictio-
nary for use in the remaining DAG Generation steps. With those memory allocations in place, we
proceed to generating the JSON that represents our DAG. We iterate through each of the nodes
extracted in the LLVM Node Partitioning phase, and we create a serial chain of DAG nodes that pre-
serves the linear execution flow of the original program. As a result of the outlining process, each
DAG node’s function receives, as arguments, pointers to all of the externally defined variables that
it requires. These variables are linked with their corresponding entries in the variables dictionary
defined earlier, and with this, we have a DAG structure that captures the linear execution flow of
the program as well as most of the const-inferable memory behaviors. Additionally, for each DAG
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node that supports heterogeneous execution, we append entries to their implementation function
lists that correspond to the given pre-defined heterogeneous kernel. Finally, to generate the Fat

Binary, we simply compile the modified LLVM IR into a shared object, and by combining this with
a library of other shared objects that handle the heterogeneous kernels in CEDR, the effective out-
put is akin to a fat binary format, with each node having multiple implementations depending on
the hardware platform to be used.

2.2.2 Hand-crafted Compilation Process. Compared to the automated compilation workflow,
the process of hand-crafting an arbitrary C/C++ application to a CEDR-compatible form has a
larger degree of flexibility, providing more freedom to utilize accelerators and exploit parallelism
within an application. This is due to the fact that, to a certain extent, CEDR is capable of executing
anything that can be compiled to a shared object and coupled with an appropriate JSON file. Given
this large degree of flexibility, the path for hand-crafting an application consists less of a fixed set of
procedures and more of a general set of guidelines. Toward this end, in the bottom half of Figure 2,
we present a workflow that captures these guidelines. Starting with a baseline serial C/C++ appli-
cation, the first stage, Node Identification, involves identifying the boundaries that should be used
to delineate the node boundaries for the application’s underlying DAG. These boundaries should
be informed by (i) the desired level of task granularity (fine/coarse grain), (ii) desired accelerator
support, and (iii) the degree of parallelism. For instance, any code that will be accelerated needs
to be placed in a node by itself with no other extraneous logic or side effects as the DAG structure
of CEDR itself relies on the ability to swap out one function-level implementation for another to
implement its model of heterogeneity: All implementations of a given DAG node should accept
the same set of arguments, and they should have the same functional behavior and side effects
with the only difference being their method of computation. Similarly, applications that exhibit a
higher degree of inter-task parallelism or a finer-grained level of task granularity have the poten-
tial to outperform coarser, less-parallel options, but this parallelism needs to be balanced against
the extra stress it creates on the scheduling heuristic to avoid large increases in scheduling over-
head. Regardless, with these steps in mind, by the end of this phase, the developer has determined
how to segment their code into stand-alone DAG nodes, and they can proceed to the next phase:
Inter-node Variable Identification. In this phase, the goal is to identify the variables from the original
source program that are shared among tasks in the task flow graph. These variables will need to
either be (i) extracted to global variables in the original source code such that all of the functions
involved have access to them or (ii) passed in to each of the DAG nodes as arguments and added
to the Variables dictionary of the application’s JSON. If the variables are extracted to a global
scope in the original source code rather than moved to the application’s JSON, then it remains the
responsibility of the user application to manage them and ensure that they can be passed to the
heterogeneous accelerator. This is due to the fact that, as the memory holding data to be processed
is within the user application’s control, the code to send it elsewhere must remain in their control
as well. However, there are certain cases where this enables a higher degree of flexibility than
what CEDR’s memory initialization methods can accommodate. Meanwhile, if the variables are
re-defined using the JSON, then they will be managed by CEDR, and less work is required on the
application’s side to pass them to an accelerator. With these characteristics in mind, in the next
phase, Code Restructuring, the code is rewritten to have the new DAG-based structure and memory
layout that was determined in the preceding stages. Finally, we end with the DAG Generation and
Fat Binary Compilation phases, in which the user constructs the DAG that corresponds to their
restructured application and compiles their application binary, where this last phase is typically
done by compiling and linking the restructured application code into a shared object.
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2.3 Research Questions

Establishing an understanding of the DSSoC in general will require addressing a number of
smaller questions across the spectrum of compilation and runtime characteristics. First, on the
compilation front: How do we compile applications that take full advantage of the heterogeneous
nature of the underlying DSSoC, and when porting from serial application code, how do we
leverage memory analysis results to enable parallel execution of nodes in the resulting DAG? On
the runtime front: What kind of runtime management practices enable integration of advanced
resource management techniques while minimizing overhead of the runtime itself? One investi-
gation into this is done via schedule caching in Section 5.1, and another will be done via PE-level
work queues in Section 5.2. Additionally, for applications that are highly throughput-oriented,
how can a runtime such as CEDR be optimized for these “stream-based” applications while still
allowing for full flexibility on the part of the scheduler? We shall investigate optimizations that
can be enabled for stream-based applications in Section 5.3. Perhaps the most important role of
CEDR is to enable application developers and hardware architects to interrogate design decisions
in the trade space of scheduler heuristics, hardware configuration and workload characteristics. In
Section 4, we will demonstrate this multi-dimensional search space analysis capability with a case
study on identifying the most suitable scheduler while sweeping through dynamically arriving
workload scenarios and hardware compositions with execution time, scheduling overhead, and
resource utilization metrics. Section 4 will allow us to answer research questions such as “Is
accelerator always the best choice?” and “Is the scheduler with best cumulative execution time
performance always the best choice?” Answering these questions will lead to better under-
standing of why task to PE mapping decisions should be made dynamically by the runtime
system rather than statically by the application developers and why a complex and sophisticated
scheduler is not always the best choice for dynamically arriving applications with high degree of
concurrency.

Taken together, we believe that, in the context of the broader research efforts on domain-specific
architectures, CEDR provides a unique set of features that are particularly tailored for investigat-
ing some of the open questions in this area. Toward this end, CEDR has been designed with the
following users in mind:

• Application programmers: Application programmers are domain experts who have the
knowledge of the underlying domain, and they are willing to write their applications sub-
ject to any number of constraints or requirements as determined by the compiler, runtime,
and hardware developers. They serve the critical role of enabling each of the three other
roles to meaningfully test their work with workloads that extend beyond otherwise trivial
benchmarks.
• Compiler developers: For compiler developers who wish to compile applications to DAG-

based representations, CEDR provides a flexible runtime for which they can evaluate the
output of their compiler across heterogeneous platforms.
• Hardware architects: For hardware architects who wish to determine the optimal acceler-

ators to include in their DSSoC, CEDR’s ability to assist in rapidly porting applications to
novel architectures allows them to quantitatively evaluate their pre-silicon hardware designs
across workloads that extend beyond simple micro-benchmarks.
• Scheduling heuristic developer: For scheduling heuristic developers, CEDR provides a

means by which policies can be easily implemented, integrated and compared across appli-
cations and architectures without any changes required in the policies themselves.

We believe that in its current state CEDR has the ability to address, at some level, the needs of
each of these users, respectively. In the subsequent sections, we will explore the ways in which
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this is achieved, starting first with characterization of the target applications and experimental
methodology used in the remainder of the work.

3 EXPERIMENTAL SETUP

In Section 4, we will demonstrate the capability of the CEDR framework through a number of
experiments. In this section, we provide background on the applications and hardware platforms
that are used in these studies. All experiments are performed on a Xilinx Zynq Ultrascale+ ZCU102
MPSoC development board [52]. This MPSoC combines general purpose CPUs (4x Arm Cortex
A53 processors) with programmable FPGA fabric. To demonstrate the portability of CEDR, we
also conduct experiments on the Nvidia Jetson AGX SoC platform that couples eight Arm cores
with a Volta GPU. We vary the heterogeneous hardware configurations by adjusting the number
and types of PEs used by CEDR, such as the number of CPUs as well as the accelerators present
in the FPGA or GPU fabric. On the FPGA fabric, we add the Xilinx FFT IP accelerator for FFT
and a custom designed accelerator for Matrix Multiply (MMULT) computation, with the FFT
IP able to support all the sizes of radix-2 between 8-point and 2,048-point FFT computations. To
facilitate data transfer to and from accelerators, we use direct memory access (DMA) blocks to
move data between the host CPUs and the hardware accelerators via the AXI4-Stream protocol [1].
On the host side, we utilize udmabuf [48] to enable contiguous userspace-accessible buffers for
transferring data to and from the hardware accelerators. A user application communicates with
the accelerators by writing the data into a udmabuf buffer and a DMA engine is then configured
to move data from this buffer into an accelerator for processing. Once the accelerator completes
processing the task, it then writes the data, through the DMA engine, back into the udmabuf buffer.
All in all, the ZCU102 platform has three Arm CPU cores, one FFT accelerator, and one MMULT
accelerator that can be used as PEs by the CEDR runtime. One of the four present Arm cores is
used to execute the runtime itself.

On the Jetson platform, to run the accelerator functions (FFT and MMULT) on the GPU, we
use the cuFFT and the cuBLAS APIs provided by CUDA, respectively. Within cuFFT, we use the
cufftExecZ2Z function that performs a complex to complex transform on double precision data.
For the MMULT, we use the cublasCgemm function that multiplies two matrices with complex
numbers of single precision. Both functions use the standard cudaMemcpy functions for copying
data between the GPU device memory and the host memory, over the PCIe interface.

For our analysis we use four representative real-world applications from the domain of software
defined radio: Radar Correlator, Temporal Interference Mitigation, Pulse Doppler, and WiFi TX

(TX). Radar correlator models the use of a radar pulse to determine distance to an object by
looking at the time delay in the received pulse compared to the input pulse. This application
involves calculating the time shift in the received signal with respect to the transmitted signal,
using two 256-point FFT computations. Hence, it is a suitable candidate for studying moderate
use of FFT accelerator. Temporal Interference Mitigation is a computational kernel that receives
a signal consisting of low-energy radar signals combined with high-energy communications
data and applies a technique known as successive interference cancellation to cancel out the
communications data and extract the radar signals for further processing. This process relies
heavily on matrix multiplication to cancel out the incoming communications data, and as such,
it is an excellent candidate for the matrix multiplication accelerator. In Pulse Doppler, a series
of short radar pulses are emitted, and the user application observes the shift in the frequencies
of the return pulses with respect to the input pulse, to determine both the distance of an object
and its velocity. This application has up to 128 parallel 256-point FFT task nodes, which makes
it an ideal candidate for studying heavy use of FFT accelerator. Finally, WiFi TX works by
implementing a WiFi transmit chain, generating a single packet with 64 bits of input data and
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Table 1. Basic Characteristics of the Applications Used in Experimental Studies

Application
Avg. Exec. Time

CPU (ms)
Task

Count
FFT

Support
MMULT
Support

Radar
Correlator

0.82 7 �
Temporal Mitigation 4.39 11 �

WiFi TX 16.12 93 �
Pulse Doppler 95.83 1027 �

Table 2. Characterization of Workloads Used for CEDR Experiments

Workload Applications
Application

instances
Total Input

data size (Kb)
Accelerator

Low latency
Radar Correlator,

Temporal Mitigation
10, 10 640 FFT, MMULT

High latency
Pulse Doppler,

WiFi TX
5, 5 5185 FFT

scrambling, encoding, modulating, and adding forward error correction to it for transmission over
an arbitrary communications channel. This application involves one inverse FFT operation of size
128 points per packet transmission. Hence it can be considered as a good scenario of moderate FFT
utilization in a high-latency job. The serial chain of processing seen in the WiFi TX also makes this
application a suitable application to couple with Pulse Doppler type of application and generate a
workload that mixes serial execution with concurrency. In Table 1, we summarize execution time
and complexity in terms of number of tasks in the DAG-based representation of each application.

For the purposes of our studies in this article, we aim to use these four applications according to
their ability to stress the CEDR runtime differently, with the low-latency applications helping to
expose runtime overhead in various aspects of the system and high-latency applications stressing
the ability of the scheduler to effectively manage resources without becoming over-encumbered.
With this aim in mind, from Table 1, we can see that the applications clearly fall into two distinct
categorizations based on average observed latencies: Radar Correlator and Temporal Mitigation
fall into the category of low-latency applications, whereas WiFi TX and Pulse Doppler fall relatively
into the category of high-latency applications. Therefore, we classify these two sets of applications
with different scale of latencies into two workloads as shown in Table 2. Each workload consists
of even mixture of its constituent applications in terms of the number of application instances.
Mixing applications of different latencies in the same workload would result in high-latency ap-
plications dominating PE utilization and, in turn, the runtime execution, while correspondingly
delaying and diluting the impact of low-latency applications in the broader scope of the experi-
ment. Furthermore, Table 2 shows that the input data sizes for low- and high-latency workloads
are smaller and larger, respectively. We can see that the adopted workload categorization allows
us to simultaneously observe the effects of application latency and input data rate on the runtime
execution and utilization of PEs. These workloads will be referred to as low-latency workload and
high-latency workload, respectively. In Table 3, we summarize the configuration parameters used
in our experiments. On the ZCU102 platform with three Arm Cores along with FFT and MMULT
accelerators, we compose 12 hardware configurations. We use 29 injection rates, where each injec-
tion rate defines a periodic rate of job arrival for its given workload in microseconds. We sweep
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all input configurations, repeat each experiment five times, and collect performance metrics listed
in the table by averaging across the five runs. The scheduling overhead metric captures the time
spent by the runtime in making scheduling decisions. This time is proportional to the number of
scheduling rounds made by the runtime as well as the complexity of the scheduling algorithm.
The cumulative execution time of an application is the sum of execution times of its individual
tasks, ignoring the overhead associated with scheduling them. Lower cumulative execution time
indicates better scheduling decisions made and better exploitation of the available heterogeneity at
hand. The application execution time is the difference between the end of the last task and the start
of the first task of an application, including the overhead of all scheduling decisions in between.
Lower execution times indicate the scheduler’s capability to manage the workload efficiently. The
resource utilization ratio is the ratio between the total time a PE is active and the overall end-to-end
execution time. A higher resource utilization on each type of PE indicates scheduler’s capability
of better exploiting heterogeneity. To make the first three metrics comparable across different run-
time configurations, we normalize them with the number of applications (per application). Then
we average these three normalized metrics along with the resource utilization ratio, across five
repetitions. For brevity, throughout the article, we will take each metric (for instance “cumulative
execution time”) to refer to its corresponding averaged-per-application version (“average cumu-
lative execution time/application”). Overall, we conduct an exhaustive sweeping experiment that
covers 3,480 configuration scenarios for our analysis on an off-the-shelf SoC platform under three
hours. While three hours may seem fairly long, we note that this is orders of magnitude faster
than an equivalent sweep relative in many cycle-accurate and discrete-event simulators. As one
point of reference, Figure 19(c) in DS3 [2] quantifies the simulation overhead versus the number
of tasks present in the simulation. In our experiments, each design point in our high-latency work-
load experiments consists of over 5,000 application tasks, and accordingly, we can estimate that
this workload would incur a simulation overhead of approximately 10 ms/μs, a 10,000× slowdown.
Assuming that this simulation overhead can be reduced through means such as rescaling the short-
est task in the workload to execute for a handful of simulation timesteps, it is perhaps reasonable
to optimistically assume that this overhead can be reduced to 50–100×. Even then, that would
imply that the 3-hour configuration sweep presented here would require on the order of 150–300
hours, and this disregards the fact that there will undoubtedly be differences in the simulation
output given that executing in a framework like CEDR is inherently “cycle-accurate” while high
level simulators are not. If the goal is to avoid these differences, then a cycle-accurate methodology
must be applied. Again referring to DS3, they find that their relative simulation speedup against
gem5 is 600×, and as such, by leveraging this number, we can estimate that an equivalent sweep
would incur a 30,000–60,000× simulation overhead, requiring a simulation time on the order of
months to execute. In the following subsections, we present these metrics with respect to varying
runtime configurations and analyze their implications.

4 EXPERIMENTAL EVALUATION

In this section, we will demonstrate the utility of CEDR through validation-based sweeping
experiments that show its ability to yield insights in application design, scheduler integration, and
accelerator verification before moving on to showing advanced features that are possible through
the use of schedule caching, queuing, streaming, and performance counters. The experiments
presented in this section involve sweeping the search space of runtime configurations based on
hardware composition, scheduling heuristics, and application workloads for various data rates
as defined in Table 3. In the following subsections, we present the four performance metrics
captured from the sweeping experiments, and analyze the trends in these results.
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Table 3. Runtime Configurations to Sweep across and Performance Metrics to Capture

in Large-scale CEDR Validation

Input Configurations

12 Hardware configurations
3 CPUs (C1-C3), 1 FFT (F0-F1), 1 MMULT (M0-M1)

5 Schedulers (SIMPLE, MET, EFT, ETF, HEFTRT)
2 Workloads (High latency, Low latency) (Table 2)

29 Injection rates
High latency (29 points between 10 and 2,000 Mbps)
Low latency (29 points between 1 and 1,000 Mbps)

Output Metrics

Average cumulative execution time/application
Average execution time/application

Average scheduling overhead/application
Average resource utilization ratio

CPU core configuration is indexed as 1 to 3, since minimal resource pool is composed of a single CPU
core, but notation for accelerators use 0 or 1 indicating whether a specific accelerator is used or not.

4.1 Runtime Configuration Sweep

4.1.1 Average Cumulative Execution Time Analysis. Figure 3(a) and (b) present the average cu-
mulative execution time per application for low-latency and high-latency workloads, respectively,
using the input configurations specified in Table 3. Here, the X axis shows the distinct hardware
configurations, the Y axis shows the injection rates, and the Z axis presents the average cumula-
tive execution time per application. The unique colors of the data points correspond to different
schedulers.

We observe that the average cumulative execution time per application remains about the same
for CPU-only hardware configurations (C1-F0-M0, C2-F0-M0, and C3-F0-M0) among both low and
high workloads. As expected, we observe a reduction in the cumulative execution time with the
addition of accelerators listed in Table 2 to the pool of PEs. For example, the low-latency workload
benefits from both FFT and MMULT accelerators, while the high-latency workload benefits from
the FFT accelerator. Besides the data points that follow the above described execution trends, we
also notice some outlier points with significantly higher cumulative execution times in Figure 3(a)
and (b) as marked by a selected red square on each plot. These rarely occurring outliers are caused
by one or more tasks within a workload running for up to an order longer than their expected
execution time. Although these points may seem erroneous, we shall functionally verify them
in Section 4.2 and further explain the reason behind these long running tasks with the help of
performance counters.

4.1.2 Average Execution Time Analysis. Figure 4(a) and (b) show the average execution time per
application (Z axis) for low and high workloads, respectively, across the same configuration sweep
used for generating Figure 3.

Looking at these figures from the perspective of injection rate shows that, as we increase
the injection rate, a saturation trend for average execution time is observed across all hardware
configurations and schedulers for both low- and high-latency workloads. This saturation trend
is expected across all the injection rates, as we run the experiments for a fixed number of
application instances rather than a fixed amount of time. Therefore, beyond a certain injection
rate, the different application arrivals are frequent enough such that CEDR effectively receives
them all simultaneously, and any increase in injection rate stops causing a meaningful difference
in the workload as observed by CEDR. At this point, CEDR becomes oversubscribed, and for
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Fig. 3. Average cumulative execution time per application for 12 resource pool configurations, 5 schedulers

and 29 injection rates, using (a) low-latency, (b) high-latency workloads.

fair/insightful evaluations, it is desired that our experimental evaluations capture these oversub-
scribed saturation regions. From the hardware configuration perspective, we observe a decreas-
ing/downward trend in execution time as the number of PEs and PE types increase, excluding the
scenario where MMULT accelerator is added to the resource pool for the high-latency workload.

Now, we analyze the downward trend in average execution time from scheduling heuristic point
of view. We observe that for low-latency workload all the schedulers follow this downward trend.
For high-latency workload, all schedulers follow the downward trend except for the ETF sched-
uler. Instead, ETF shows an upward trend in execution time with increasing number of PEs in the
hardware configuration. To better view this trend, we fix the hardware configuration to the most
heterogeneous one (three CPUs, one FFT, and one MMULT) and present the average execution
time per application with varying injection rates in Figure 5(a) and (b) for low- and high-latency
workloads, respectively. For the low-latency workload, we notice that all of the schedulers show
similar performance in Figure 5(a), confirming our observation from Figure 4(a). For the high-
latency workload, the ETF is the only divergent case with significantly higher execution time
performance, while showing a saturation trend similar to the other schedulers. We attribute the
higher execution time performance of ETF to the increase in its scheduling overhead with respect
to increase in the number of PEs and types of PEs. The ETF scheduler traverses over the tasks
ready to be scheduled, as well as the list of available PEs. Therefore, the complexity and overhead
of ETF scheduler increases with the number of PEs and number of tasks ready to be scheduled. We
will take a closer look at the scheduling overhead analysis in Section 4.1.3.

4.1.3 Average Scheduling Overhead Analysis. We show the average scheduling overhead per
application (Z axis) across the sweeping input configurations in Figure 6(a) and (b) for low- and
high-latency workloads, respectively.

We notice that the average scheduling overhead per application does not vary by any signifi-
cant margin for the low-latency workload as shown in Figure 6(a). However, organizing the five
schedulers in an increasing order of average scheduling overhead gives us the order of RR, MET,
EFT, ETF, and HEFTRT, where ETF and HEFTRT have similar average scheduling overheads. The
ordering of schedulers aligns with the increasing complexity of these heuristics.

For the high-latency workload, as shown in Figure 6(b), we observe that except for ETF, the
remaining schedulers perform very similar across all injection rates and hardware configurations.
Instead, the scheduling overhead of ETF increases with respect to increasing PEs (similar to our
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Fig. 4. Average execution time per application for 12 resource pool configurations, five schedulers, and

29 injection rates, using (a) low-latency, (b) high-latency workloads.

Fig. 5. Average execution time per application with respect to varying injection rates, for different schedulers

with three CPUs, one FFT, and one MMULT using (a) low-latency workload and (b) high-latency workload.

previous observation in Section 4.1.2). Next we take a slice from the three-dimensional (3D) plots
by fixing the hardware configuration to most heterogeneous setup (three CPUs, one FFT, and one
MMULT), and compare scheduling overhead trend with respect to injection rate in Figure 7(a)
and (b) for low and high-latency workloads, respectively. In the low-latency workload scenario,
the average scheduling overhead is slightly higher at lowest injection rates, but saturates at a
lower value for increasing injection rates. The increased scheduling overhead at lower injection
rates is caused by the applications arriving to the runtime in a less overlapped manner. Hence, the
scheduler runs more number of scheduling rounds for the same amount of workload. In the case
of high-latency workload, the overhead of running ETF grows substantially for higher injection
rates, compared to the remaining schedulers as seen in Figure 7(b). This increase can be attributed
to complexity of ETF growing with the number of tasks ready to be scheduled, as well as the
number of PEs. The high workload consists of Pulse Doppler, which contains up to 512 parallel
task nodes, making the cost of running ETF significantly higher on this workload. However, for
the low-latency workload, the average scheduling overhead of ETF follows the trend of remaining
schedulers as seen in Figure 7(a). We attribute this to the low number of tasks present in this
workload, which is not enough to stress ETF, as opposed to the high-latency workload.

4.1.4 Average Resource Utilization Ratio. Another metric for scheduler performance analysis is
the measurement on how well the system resources are utilized. Improving the utilization of the
resources enables realizing better parallel execution of tasks in the applications, thereby improving
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Fig. 6. Average scheduling overhead per application for 12 resource pool configurations, five schedulers, and

29 injection rates, using (a) low-latency and (b) high-latency workloads.

Fig. 7. Average scheduling overhead per application for the (a) low-latency and (b) high-latency workloads

on three CPU, one FFT, and one MMULT.

the end-to-end execution time. A heuristic that prioritizes minimum execution time such as MET,
or a scheduler with high penalty in terms of time spent on scheduling decisions such as ETF are
expected to play critical role on determining the scheduling objective function for the interleaved
workload scenarios. In this experiment, we evaluate resource utilization performance of the five
schedulers. For this, we choose the three CPU core, one FFT, and one MMULT-based hardware
configuration for the high-latency and low-latency workloads. We set the injection rate to a high
enough value (2,000 Mbps) to ensure that the system is oversubscribed. Figure 8(a) and (b) present
the five schedulers along the X axis, and the corresponding average resource utilization ratio for
each resource type that is color coded for CPU, MMULT, and FFT along the Y axis for low- and
high-latency workloads, respectively.

For the low-latency workload, Figure 8(a) shows that, in terms of FFT accelerator utilization, ETF
performs the best at 38.3%, followed by EFT and HEFTRT with 27.4% and 23.1% utilization, respec-
tively. The MET although assigns all of the FFT tasks to FFT accelerator, interestingly achieves a
lower FFT accelerator utilization at 17.9%. We attribute this to MET’s inability to fully take advan-
tage of the remaining three CPUs to parallelize execution, causing the overall execution time of
the workload to grow and in turn reducing the resource utilization ratio of FFT accelerator. Finally,
as expected, the simple RR scheduler utilizes the FFT accelerator the least at 6.4%. Here we note
that we do not observe insightful trend for the MMULT utilization, since the amount of time spent
on matrix multiplication in the low-latency workload is very small.
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Fig. 8. Average resource utilization ratio for different types of PEs (for hardware configuration having three

CPUs, one FFT, and one MMULT) using (a) low-latency (injection rate 1,000 Mbps) and (b) high-latency

(injection rate 2,000 Mbps) workload.

For the high-latency workload, Figure 8(b) shows that EFT, MET, and HEFTRT perform relatively
well in terms of FFT accelerator utilization, with average resource utilization of 30.6%, 29.9%, and
26.9%, respectively. The accelerator utilization drops to 23.7% for the RR scheduler. For the ETF
scheduler, however, opposite to the trend observed for low-latency workload, here we notice poor
average resource utilization of 4.3% and 4.8% for FFT accelerator and CPU. This behavior can be
attributed to the large scheduling overhead of ETF for high-latency workload as shown in Sec-
tion 4.1.3. Due to increased overhead of scheduling, the PEs have to remain idle for longer period
of time, causing the resource utilization ratio to drop significantly.

4.1.5 Research Questions: Runtime Configuration Perspective. The capability of CEDR to con-
duct large-scale experiments as shown in Section 4.1 allows us to explore the answers to some
crucial research questions related to the field of domain specific computing. In this section, we
explore the answer to the following two questions:

RQ1. Is accelerator always the best choice?
RQ2. Is the scheduler with best cumulative execution time performance always the best choice?

To answer RQ1, we utilize the end-to-end execution time as the key indicator of the efficient
execution of a given workload on the runtime framework. This metric captures the total latency
of the execution of the workload, along with any overhead encountered by the runtime to manage
the workload. Furthermore, the effect of various task to PE type mapping decisions is reflected in
the end-to-end execution time.

We create two execution scenarios in CEDR, using the high-latency workload with the injection
rate of 2,000 Mbps, which belongs to the saturated region of average execution time per applica-
tion as shown in Figure 5(b). This injection rate ensures that the system is oversubscribed. In the
first execution scenario, MET scheduler is used. MET, due to its objective function, favors sched-
uling and executing FFT tasks on the accelerator (ACC_only). In the second execution scenario,
we use EFT scheduler that provides the flexibility of mapping FFT task to either accelerator or
CPU (ACC+CPU). The resulting timing details are plotted as Gantt charts in Figure 9(a) and (b), for
ACC_only and ACC+CPU cases, respectively.

The high-latency workload consists of 2,610 FFT task nodes. As denoted in Figure 9(a), when
all of these task nodes are executed on the FFT accelerator, the end-to-end execution time is
approximately 350 ms. However, the ACC+CPU policy uses the FFT accelerator for executing only
1,165 of the FFT task nodes but completes execution in approximately 260 ms, a 25% reduction.
Furthermore, we observe that the CPU cores remain comparatively underutilized for ACC_only
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Fig. 9. Gantt chart showing execution of high-latency workload on three CPUs and one FFT using (a) accel-

erator only policy (ACC_only) and (b) both accelerator and CPU selection policy (ACC+CPU).

case compared to ACC+CPU case. Due to the freedom of running FFT tasks on either type of
resources, the ACC+CPU policy better exploits the parallelism within the workload, and achieves
improved end-to-end execution time. This result indicates that during the application design
process, naively mapping/scheduling the kernels to accelerator at compile time can lead to poor
execution performance of the application at runtime, especially for workloads with dynamically
arriving applications in an interleaved manner. This implies that a DSSoC should provide users
with a development environment where application programmers can design their applications
in a hardware-agnostic manner.

To answer RQ2, we focus on the RR and ETF schedulers as these schedulers exhibit a large
variation in typical cumulative execution time performance. We present the average cumulative
execution time per application and average execution time per application in Figure 10(a) and (b),
respectively, with respect to various injection rates for C3-M1-F1 hardware configuration based
on the high-latency workload. In Figure 10(a), we observe that the cumulative execution time
for ETF across all injection rates are significantly lower than RR. At the highest injection rate
(2,000 Mbps), ETF shows 1.9 ms lower cumulative execution time compared to RR. This implies
that ETF makes better scheduling decisions by better exploiting the available accelerators. How-
ever, Figure 10(b) suggests that as the system becomes oversubscribed with higher injection rates,
the average execution time per application suffers severely for ETF compared to RR. At the highest
injection rate, ETF takes 468 ms longer on average than RR to complete each application instance.
This extra overhead of ETF is caused by its lengthy scheduling process as demonstrated earlier
in Section 4.1.3. With this, we conclude that despite making better task-to-PE mapping decisions,
the complexity of a sophisticated scheduling heuristic can cause it to perform worse than a sim-
pler scheduling heuristic that makes less informed decisions. Therefore, new class of scheduling
heuristics are needed for heterogeneous platforms to balance the tradeoff between the quality and
complexity of scheduling decisions.

4.2 CEDR Verification

4.2.1 Performance Counter Collection. Having access to the state of task execution in each of
the concurrently running applications in terms of performance counters is a key capability for de-
bugging, hot spot analysis and performance optimization. Performance Application Program-

ming Interface (PAPI) [47] is a well-known library for interfacing with performance counters
and it is integrated within the runtime workflow of the CEDR. This enables low-level performance
profiling and workload characterization of applications at the granularity of individual kernels or
DAG nodes, and it is worth noting that collection of these counters is possible without needing
changes in the user code itself.
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Fig. 10. (a) Average cumulative execution time per application and (b) average execution time per application,

for high-latency workload using RR and ETF schedulers.

Table 4. Application Characterization in CEDR Using PAPI Counters on ZCU102

Applications Instructions Branches Branch Misses L1 Cache Loads L1 Cache Misses

Radar Correlator 158,341 6,273 958 69,348 1,435
Temporal
Mitigation

3,543,527 349,478 11,944 1,351,507 4,063

Pulse Doppler 15,016,980 686,875 80,525 6,484,258 192,936
WiFi-TX 9,861,806 1,102,819 60,703 3,339,442 11,475

In Table 4, we provide five frequently studied low-level performance values collected through
CEDR using PAPI, for the four applications used in this article. These values include number of
instructions, branches, branch misses, L1 cache loads, and L1 cache misses. The instruction counts
for Pulse Doppler and WiFi-TX are significantly higher compared to Radar Correlator and Tem-
poral Mitigation—reaffirming our knowledge about these application characteristics from Table 1.
To see this, we can focus on the high-latency applications and see that, for instance, WiFi-TX con-
tains around 1.6 times more branches compared to pulse doppler, whereas Pulse Doppler performs
around 1.9 times higher L1 cache loads compared to WiFi-TX. This suggests that WiFi-TX is more
compute intensive, whereas Pulse Doppler is more communication intensive.

We demonstrate CEDR’s capability to collect finer grained performance counters by present-
ing task-level counters for Radar Correlator application in Table 5. This table helps identify the
FFT_1 task containing largest number of instructions, and requiring largest number of L1 cache
loads among the tasks of Radar Correlator. This kind of deep workload characterization can enable
application users and scheduling heuristic designer to truly craft workloads that can be built to
stress specific aspects of the scheduler and conduct root cause analysis as we will demonstrate in
the following subsection.

4.2.2 Application Verification and Outlier Analysis. In Section 4.1, we extensively demonstrated
CEDR’s capability to execute different workloads with a wide variety of runtime configurations.
To ensure the validity of these results, we cross check the outputs from these experiments with
the outputs collected from the corresponding stand-alone execution of each application. The stand-
alone versions refer to the application code prior to being modified into a CEDR-executable DAG
and shared object. All outputs from CEDR-based execution match with the output of stand-alone
execution for each application.

Now, to further validate the results, we will investigate the two outlier points marked by red
squares in Figure 3(a) and (b). We monitor the performance counters for the unusually high
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Table 5. Task-level Characterization of Radar Correlator in CEDR Using PAPI Counters on ZCU102

Task Name Instructions Branches Branch Misses L1 Cache Loads
L1 Cache

Misses

Head Node 728 65 43 476 38
Linear Frequency

Modulation
13,417 875 110 6,146 189

FFT_0 33,411 1,299 204 14,781 384
FFT_1 47,703 1,398 126 21,029 317

Multiplication 23,607 382 54 10,499 176
IFFT 23,556 667 64 10,010 195

Find maximum 15,919 1,587 357 6,407 136

average cumulative execution times for these two data points. For the low-latency workload,
the outlier point corresponds to hardware configuration with one CPU core, one FFT, and one
MMULT (C1-F1-M1), injection rate of 325 Mbps, and the HEFTRT scheduler. In this workload,
there are ten Temporal Mitigation instances, and only one of those instances show the outlier
behavior because of the last task node associated with file I/O taking up to 40× longer time
than the same task in remaining application instances. For all 10 instances of this Temporal
Mitigation task the performance counters such as the number of instructions, cycles, and cache
or branch misses associated with the last node are identical showing no abnormal behavior in
task execution, and all outputs match their serial stand-alone counterparts. The file I/O operation
relies on the OS and lies beyond the control of CEDR despite configuring each worker thread to
utilize the highest possible static priority. Therefore, we believe that for the outlier instance, the
last task node is interrupted by a kernel-level operating system job to use the CPU that the task
was executing on. Similar trend is noticed in the outlier point for high workload as shown in
Figure 3(b), which belongs to hardware configuration of C3-F1-M0, injection rate of 40 Mbps with
EFT scheduler. The outlier task in this case is also a file I/O process. This particular task takes
up to 20× longer to execute compared to the other instances. However, no significant variation
is observed among the performance counter values of each instance of the outlier task. Apart
from these minor number of outliers that are reliant on the OS and beyond the control of the
CEDR runtime, CEDR is well validated and produces functionally correct output in 100% of the
experiments, thus enabling an efficient runtime framework for DSSoCs.

5 CASE STUDIES

With the functional validation of CEDR established, in this section, we will explore a selection of
unique features of CEDR and provide examples for the types of analysis these features enable. We
begin, in Section 5.1, with an investigation of schedule caching, a simple and yet effective feature
in enabling scheduling heuristic developers to explore the trade space of scheduling quality versus
scheduling overhead. We continue with PE-level work queues in Section 5.2 and discuss how they
are another avenue by which scheduler developers can reduce scheduling overhead while trading
off against the delay between task scheduling and task execution. For application developers in-
terested in heavily optimizing the performance of a single application, in Section 5.3, we describe
CEDR’s support for application graphs that exploit their concurrency through software pipelining
rather than DAG concurrency. Finally, in Section 5.4, we illustrate the portable nature of CEDR
through its deployment and expanded analysis on the Nvidia Jetson AGX Xavier development
board.
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5.1 Schedule Caching

Earlier in Section 4.1.3, we showed that, with the increase in number of PEs and heterogeneity, ETF
scheduler suffered from time spent on scheduling decisions, while providing high-quality sched-
uling decisions. In this case, a research problem is investigation of opportunities for addressing
the scheduling overhead of ETF like algorithms by leveraging the design principles of the DSSoC
architectures. In the context of a DSSoC, the target architecture is designed for a specific applica-
tion domain and certain applications will likely be executed repeatedly on periodically arriving
input data. From the scheduler’s point of view, the repetition in an arriving workload will likely
result into similar list of tasks that require scheduling. Therefore, instead of making task to PE
mapping decisions through complex scheduling heuristics on reoccurring lists of task nodes over
and over again; caching those decisions into memory, and simply looking up those decisions can
significantly reduce the overhead of a scheduler like ETF. CEDR runtime has the ability save prior
scheduling decisions, which we refer to as schedule-caching. The CEDR runtime uses the prior
scheduling decision made for that task if it exists in the schedule cache. If such a decision is not
present, then CEDR calls the scheduling heuristic, dispatches the task to its assigned PE and caches
the decision made by the scheduler to the schedule cache. However, even in the context of ETF,
this simplistic approach should not be sufficient to increase overall performance of the runtime,
as with dynamically arriving workloads, the ideal task to PE mapping decision for a specific task
may change over time depending on the current state of the PEs and the workload characteristics
as illustrated in Section 4.1.5. We analyze this tradeoff over ETF and naive RR schedulers, while
evaluating the benefit of schedule-caching.

Figure 11(a), (b), and (c) present the average cumulative execution time, average execution time
and average scheduling overhead (per application), respectively, with respect to change in injec-
tion rate for ETF, RR, and ETF with schedule-caching (Cached ETF) on the C3-F1-M1 hardware
configuration. In Figure 11(a), we observe that the quality of decisions made by Cached ETF is
better than RR but worse than ETF across all injection rates. On average across all injection rates
Cached ETF results with 4.3% higher cumulative execution time compared to the ETF. This obser-
vation is in agreement with the fact that in dynamically arriving workload scenarios, the ideal task
to PE mapping decisions may vary.

However, focusing on Figure 11(b), we notice that caching scheduling decisions clearly solves
the scheduling overhead bottleneck for ETF as Cached ETF performs almost identical to RR in
terms of average execution time per application. Looking closely into the time spent on scheduling
decisions in Figure 11(c), we attribute this execution time benefit observed in Cached ETF to its
low scheduling overhead achieved by schedule-caching.

These results demonstrate that reusing the historical scheduling decision made by a sophis-
ticated scheduler for repeatedly arriving workloads can reduce the scheduling overhead signifi-
cantly while maintaining an acceptable level of scheduling quality. Exploring the tradeoff between
complex schedulers and schedule caching can lead to low-overhead high-quality schedulers, which
has been shown by the recently proposed Dynamic Adaptive Scheduler by Goksoy et al. [20].

5.2 PE-level Work Queues

In this subsection, we investigate the impact of PE-level work queues on the degree of utilization
of the PEs in terms of PE idle time measurements and discuss how a queuing mechanism enables
integration of advanced schedulers such as EFT.

During runtime, task to PE mapping event occurs whenever a PE becomes available. In our ear-
lier work [30], the emulation framework was limited to single scheduling decision for each map-
ping event. This poses as a key restriction toward development and integration of richer scheduling
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Fig. 11. Comparative analysis among RR, ETF, and Cached ETF scheduling in terms of (a) average cumulative

execution time, (b) average execution time, and (c) average scheduling overhead.

algorithms. For example, the intelligent scheduler proposed by Krishnakumar et al. [26] requires
the ability to schedule multiple tasks on any desired PE without having to wait for that PE to be-
come idle. To lift this barrier, we incorporate the thread level task queuing mechanism into our
framework. As illustrated in Figure 12, with queuing mechanism, task queues are inserted at the
“input” and “output” interfaces between the CEDR worker threads and the main “CEDR Manage-
ment Thread,” and we refer to these queues as the To-do and Completed queues, respectively. As the
scheduler maps each task, the task is pushed into the To-do queue of the corresponding resource.
These tasks are then popped by each worker thread as they become available such that the worker
thread can begin computation. As worker threads finish their tasks, they then signal completion
back to the runtime by pushing the tasks back through their Completed queues. This queuing mech-
anism reduces the task dispatch overhead, which we define as the delay between completion of
one task on a worker thread and the beginning of the execution of the next task on the same thread.
We conduct timing analysis based on the EFT scheduler using workload of varying instances of
Radar Correlator (1–300 instances) with three Arm cores. We present our experimental results in
Figure 13. TheX axis of this plot presents the number of instances of Radar Correlator applications,
and the Y axis presents the task dispatch overhead. The blue and red curves capture the trend of
task dispatch overhead with respect to the increasing number of applications for queuing-based
and non-queuing-based executions, respectively. Both queuing and non-queuing approaches show
a drop in task dispatch overhead with respect to the increase in number of application instances
from 1 to 60. Initially task dispatch overhead is higher due to the fact that there are not sufficient
tasks to fully exploit the execution potential of the PEs. However, going beyond this region (appli-
cation instances > 60), the non-queuing execution shows linear increase in task dispatch overhead
with increasing number of application instances, whereas the queuing method tends to approach
to a saturation. The linearly increasing trend of non-queuing mechanism is caused by the fact that,
under this policy a task is dispatched to each PE upon the PE becoming idle. This implies that with
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Fig. 12. Architectural overview of the PE-level Work Queues.

Fig. 13. Task dispatch overhead with respect to varying number of Radar Correlator application instances

for queuing and non-queuing executions.

increasing number of application instances (linearly increasing number of tasks), the number of
instances where a task is dispatched after waiting for the PE to become idle increases linearly. This
in turn increases the task dispatch overhead. However, in the queuing-based approach, while the
PEs execute existing tasks assigned to them, the scheduler has the freedom to assign more tasks
to the queues of PEs. This approach helps mask the task dispatch overhead behind the execution
of tasks by PEs, and enables reducing the dispatch overhead to a saturated value. There are some
exceptional points on the curve for the queuing-based execution, which makes the curve non-
smooth and requires some explanation. These points are for application instances 60, 90, and 150,
which are all divisible by 3 (the number of CPU cores). Having number of application instances
divisible by the core-count enables the scheduler to evenly dispatch and offload the tasks, to the
To-do queues and from the Completed queues of the PEs, respectively. This eventually leads to lower
number of scheduling rounds, which further reduces the task dispatch overhead.

5.3 Stream-based DAG execution

Until this point, we have demonstrated CEDR’s ability to deploy applications on a given hardware
configuration under dynamically arriving workload scenarios including dispatching tasks to
accelerators. Processing a continuous stream of data is typical for applications in radar-based
navigation systems, such as the Radar Correlator, that detects the time shift observed in the
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Fig. 14. Non-stream vs. Stream-based execution.

incoming signal with respect to the reference signal to determine the distance to other objects.
This application could be executed continuously in an autonomous vehicle over frames of
streaming, where each frame is composed of a fixed number of input samples. Supporting this
continuous data processing requires invoking a unique instance of Radar Correlator for each
incoming frame data. This corresponds to invoking a new instance of the entire DAG representing
that application and opening the corresponding shared object file for each frame as illustrated
in Figure 14(a) using an example DAG with four nodes (A, B, C, and D). In this execution model,
during each application invocation, static memory buffers are allocated between the pairs of
dependent DAG nodes, and used by the parent node to write output data to send to the child node.
These buffers are freed at the end of each application instance execution.

Each application instance invocation experiences a latency overhead due to the buffer memory
allocation and de-allocation. The overall memory demand and latency overhead can grow substan-
tially as the number of frames increases to larger values for a streaming application. To address
this issue we implemented the support for task-level pipelined execution of streaming applications
in CEDR, where we instantiate a single instance of the application, setup the buffers between the
dependent DAG nodes once, invoke the application, and execute for each incoming frame data
in a pipelined manner as illustrated in Figure 14(b). This setup avoids replicating the buffers be-
tween producers and consumers for each frame and reduces latency associated with setting them
up. This pipelined manner of stream-based execution managed by CEDR allows for processing
multiple input frames using the same set of memory resources, while ensuring synchronization
between parent and child nodes. In the streaming setup, we adopt a double-buffer scheme where
each DAG node maintains communication with its adjacent nodes using a pair of buffers, namely
even and odd buffers. These pairs are used in an alternating manner by nodes so that at a given
time instance, the data-write by a parent node and data-read by a child node use the opposite
buffers of the pair. Applications implemented for stream-based execution follow the hand-crafted
flow of compilation presented in Section 2.2.2, where buffers between the dependent DAG nodes
are defined and allocated by the application developer in the application code constructor and
de-allocated in the destructor.

To quantify the benefits of the stream-based execution, we use the streaming adapted versions
of Temporal Mitigation and Radar Correlator applications. We use two workloads, one with Radar
Correlator and the other with Temporal Mitigation applications, both processing 40 frames to exe-
cute on the target MPSoC. We run experiments with both non-stream and stream-based executions
using the RR scheduler. In the case of non-stream-based execution, we limit the number of appli-
cation instances to one to make the comparison with stream-based execution fair. The obtained
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Table 6. Execution Time and Average Core Utilization Percentage for 40

Instances of Radar Correlator and Temporal Mitigation with and without

Stream-based Execution

Application
Execution time (ms) Avg. Core Utilization (%)
Non-stream Stream Non-stream Stream

Radar Correlator 19.35 9.80 28.74 56.32
Temporal Mitigation 86.41 63.03 36.68 50.27

Fig. 15. Gantt chart showing execution of 40 frames with Radar Correlator in (a) Non-streaming and

(b) Streaming manner and Temporal Mitigation in (c) Non-streaming and (d) Streaming manner.

Gantt charts from the experiments are presented in Figure 15. The X axis of these charts indicate
execution time and the Y axis presents the individual PEs. Each colored rectangle indicates the
execution event of a task processing a certain frame. These rectangles also present the execution
time of each task and the order of different tasks on different PEs. The Gantt charts show that for
both Radar Correlator and Temporal mitigation applications, the tasks are scheduled more densely
and executed in a pipelined manner, rather than a frame by frame execution. The execution time
and average core utilization of these experiments are shown in Table 6. This table shows that the
stream-based execution reduces execution time by up to 50% while increasing the average resource
utilization by up to 27.6%.

5.4 Portability across Platforms

To illustrate the portability of CEDR, in this case study, we seek to validate experimental trends
observed in Section 4 on the Nvidia Jetson AGX development board. As discussed in Section 3,
on this platform, we implemented the FFT and MMULT kernels used there with equivalent sets
of CUDA APIs using cuFFT and cuBLAS. We then adjusted the JSON of each application to sup-
port dispatch of its FFT and MMULT kernels to resources of type gpu, and we modified CEDR to
support spawning worker threads that are “tagged” to support tasks of type gpu. With this setup,
we then performed a similar resource sweep as in Section 4.2. In this sweep, we tested hardware
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Fig. 16. (a) Average Execution time per application for high workload and (b) Average scheduling overhead

per application for high workload.

configurations ranging from one to three CPU cores and 0 or 1 “GPU Resources” available for
CEDR to dispatch to, and we swept across all five schedulers, using both low-latency (injection
rate range 1–1,000 Mbps) and high-latency (injection rate range 10–2,000 Mbps) workloads. We
validated the outputs for these experiments by comparing against the serial-based execution of
the original implementations and observed a one to one match.

As another validation point, among the 3D plots shown in Section 4.1, we present only the
average execution time performance plot generated based on the Jetson AGX over the high-latency
workload as shown in Figure 16(a). Here we observe a saturation trend similar to what we observed
in Figure 4(b) for all the schedulers with respect to increase in injection rate across all the hardware
configurations. Even though not shown, this similar trend behavior holds for average cumulative
execution time and average scheduling overhead metrics for both low- and high-latency workloads.

Unlike the ETF that performed worst on the ZCU102, we observe that on the Jetson AGX,
MET scheduler performs the worst for the hardware configurations that use a GPU accelerator.
For example in the case of most PE rich configuration of three CPUs and one GPU (C3-G1), the
MET scheduler results with the highest execution time per application. Taking a close look at
the scheduling overhead for this hardware configuration as shown in Figure 16(b), interestingly
we observe that, as another validation point, it is still the ETF scheduler that has the highest
scheduling overhead by significant margin, which is in agreement with our findings on the
ZCU102 from Figure 7(b).

Although the actual FFT computation on GPU is faster than CPU, it suffers from data transfer
overhead between CPU and GPU. As the high workload contains large number of FFTs and MET
schedules all of them on the GPU accelerator, while ETF favors CPU or GPU depending on the state
of the PEs. As a result, with the data transfer overhead included, execution time becomes higher
with the MET compared to the other schedulers. The diverging behavior observed on Jetson AGX
compared to ZCU102 suggests that during DSSoC development, besides the runtime configura-
tions, the platform specific constraints such as the PE to PE data transfer mechanisms and the
interconnect structure are needed to be taken into account as well.

With this cross-platform verification in place, we are confident that CEDR can be deployed
quickly across a wide variety of heterogeneous architectures quite easily, and because of the
portable nature by which its schedulers and applications are defined, little to no work needs to
be done to enable this cross-platform compatibility. In future GPU-related work, we will explore
the ability to specify CUDA Streams as distinct resources to better allow tasks to fully utilize the
compute elements of the underlying hardware.
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6 RELATED WORK

In this section, we present a thorough overview of other works in this space and discuss how
CEDR provides a unique set of capabilities within this context. In the broader scope of modeling
and evaluation of heterogeneous systems, a large amount of work has been done in simulators
ranging from high level simulators [2, 5, 9, 18, 33, 50] to cycle-accurate simulators [12, 41, 42, 44, 51].
Compared to these approaches, CEDR takes a much more runtime-oriented approach with the
view that, despite its increased setup cost, well-developed hardware runtimes coupled with direct
architectural experimentation can avoid many of the downsides that can arise with these two
approaches. With high level simulators, these downsides typically take the form of divergence
between the fast models utilized and the underlying hardware platforms, while with cycle-accurate
simulators, the primary downsides are instead typically related to the long simulation time and
complexities associated with modeling advanced hardware platforms that may not fit into the
simulator’s set of assumptions. With this in mind, for the remainder of this review, we focus instead
on works that seek to provide application-level runtimes.

In the domain of HPC, a large body of previous work exists in creating runtime systems with
various capabilities. Within each runtime, support for hardware capabilities primarily varies from
CPU-only execution [6, 34, 39] to CPU/GPU execution [23, 25, 43] to CPU/GPU/FPGA execution
and beyond [19, 24], with FPGA support in the latter category primarily enabled through varia-
tions of OpenCL. However, with the exception of Reference [19], these environments focus pri-
marily on providing the user with the technical capability to dispatch computations across all of
these resources without also providing scheduling heuristics to help them do so in a dynamic,
utilization-aware manner. Meanwhile, a large body of work exists on HPC-scale job scheduling
algorithms [17, 27, 40], but these scheduling algorithms are detached from any particular runtime
system. In comparison, CEDR provides an environment that couples all aspects of application
programming, scheduling, and execution into a single extensible environment. One of the closest
environments to CEDR from the HPC domain is likely StarPU [4]. StarPU is a well known platform
for enabling heterogeneous task scheduling and execution on HPC-scale systems, and it has even
been extended to enable features like FPGA support [11]. However, to the best of our knowledge,
it has not been applied to SoC-scale systems, and as such the workloads it excels at executing
have characteristics that are quite different from those seen in frameworks like CEDR. Addition-
ally, while it does provide a C-based programming API and rich support for scheduling policies,
application programmers are primarily required to rewrite their applications to target the StarPU
runtime rather than leverage compilation tooling that can convert off-the-shelf source code to be
compatible. Taken together, while there is a large body of work in the realm of HPC computing
that designers of DSSoC runtimes should certainly leverage and seek to learn from where possible,
to the best of our knowledge, CEDR fills a unique niche when compared to this body of work.
For the remaining literature discussions, we will focus primarily on works that target SoC-scale
resource scheduling and dispatch.

Within the scope of SoC-scale application-level runtimes, we can further segment these works
based on those that target accelerator-rich heterogeneous platforms and those that do not. Starting
first with those that do not, there are a number of works on application-level runtimes that target
either homogeneous or single-ISA heterogeneous platforms (such as Arm big.LITTLE architec-
tures). This category includes works such as SPARTA [16], SOSA [15], SEAMS [31], and the work
of Martins et al. [14]. While each of these works explores highly interesting avenues in the area of
application runtime design in their own right (such as the control theory-based approaches lever-
aged by SOSA [15] and SEAMS [31]), here, we prioritize discussion of works that address runtimes
for multi-ISA or accelerator-rich architectures. There are a number of studies in the area of devel-
oping environments for accelerator-rich platforms. In HESSLE-FREE [35], a fuzzy control-based
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heterogeneous runtime management layer is introduced that allows the user to hook “sensors” into
standard Linux applications targeting heterogeneous systems and provide the means by which a
listening runtime can receive these sensor values and “actuate” the underlying hardware platform
to modify that application’s execution to achieve, for instance, improvements in energy consump-
tion. However, despite the runtime management layer in HESSLE-FREE coordinating aspects such
as operating frequency or active cores, it does not appear that this framework itself has support for
managing on which resource a given task launches – for instance, tasks that launch on the GPU
look to be statically mapped at compile time to launch on the GPU, with the primary “actuation”
policies adjusting constraints such as the operating frequency of the GPU. Bolchini et al. [7]
present a runtime controller for OpenCL-based applications on heterogeneous architectures.
This OpenCL controller can integrate with Linux, perform mapping decisions via cluster-level
mapping, and monitor power and execution metrics on the underlying platform. However, the
authors do not discuss the ability of this runtime to map multiple simultaneous applications, and
they do not discuss the ease by which users can adjust their scheduling policy for a new one.

Across the runtimes mentioned thus far, little-to-no support is provided (or, at the very least,
discussed) with regards to stand-alone compilation tooling that can be utilized to easily map appli-
cations into their respective frameworks. As such, we conclude our discussions here by comparing
directly to frameworks that present themselves, in some form, as unified compilation and runtime
environments for enabling execution on heterogeneous systems. Picos++ [46] is one such work
in this area that proposes a hardware-based runtime that is coupled with support for applications
written with OpenMP or OmpSs. These applications are then mapped to Nanos++ API calls [37]
using the Mercurium Source-to-Source compiler (with current capabilities and status of this com-
piler described in Reference [13]). While the compilation tooling in this ecosystem is quite sub-
stantial, by the nature of their hardware design, they are unable to support platform-independent,
easily interchangeable scheduling policies. Boutellier et al. present PRUNE [8], a framework built
to enable efficient, heterogeneous execution of signal processing workflows on SoC systems. As
one distinction relative to other works presented, PRUNE explicitly includes “dataflow rates” in
its underlying model of computation, which allow it to include FIFO buffers between nodes as a
part of their model similar to the streaming discussed in Section 5.3. This modeling assumption,
along with related “design rules” for dynamic workflows, allow them to propose a compilation
framework that receives XML-based, platform-independent application DAGs, generates a set of
C code to represent that DAG, and then map that via separate OpenCL and standard C compilation
paths to support execution on CPU and GPU hardware. In this work, the authors determine the
actual computational mapping of each node in a primarily static process, with little flexibility for
adjusting the mapping at a later point based on the current mixture of workloads. Additionally, it
would appear that the proposed runtime framework cannot itself handle the presence of multiple
independent applications. Auerbach et al. [3] present a unified compilation and runtime environ-
ment that introduces a Java Virtual Machine–based language called Lime that supports generation
of OpenCL or Verilog code for GPU or FPGA backends. Finally, Hsieh et al. present SURF [21], a
runtime built around enabling efficient execution on heterogeneous SoCs. In SURF, applications
are represented as chains of tasks, where each task has a number of implementations in the form
of, for instance, OpenMP, OpenCL, or Hexagon DSP kernels. In addition, SURF couples this appli-
cation representation with a dynamic, profiling-driven resource management layer that enables it
to sense and adjust its management strategy dynamically at runtime based on system priorities
and goals. While they do provide APIs by which users can specify SURF applications, they do not
appear to provide a framework by which users can map novel applications to utilize these calls.
Additionally, it would appear that SURF applications can only consist of linear chains of kernels
given their construction as a sequence of surf_task_enqueue API calls.
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Table 7. Feature Comparison of CEDR Against Other State-of-the-art SoC-scale

Multi-ISA Heterogeneous Runtime Managers with Integrated Compilation Tooling

Features [46] [8] [21] [3] CEDR

Portable across Linux-based systems � � � �
Supports arbitrary mixtures of

dynamically-submitted workloads
� �

Flexible support for arbitrary
software-based schedulers

�

Flexible support for arbitrary hardware
IP accelerators

� � �

Support for measuring hardware
performance counters

� � �

Open source � �
Streaming support � �

DAG-based, fine-grained workflow
processing

� � � �

Support for DVFS � � �
Support for hardware-based scheduling �

An overview of CEDR’s position against other runtimes that include integrated compilation
frameworks is presented in Table 7. We can see that, with its broad support for application and
scheduler integration coupled with its portability, support for highly parallel DAG-based work-
loads, and ability to collect fine-grained hardware performance counters, CEDR maintains a unique
set of functionalities and features compared to the rest of the literature. Namely, to the best of our
knowledge, there is no other framework in the literature that provides all of CEDR’s features in
one unified environment. For the sake of completeness, we end our discussions here by acknowl-
edging some of the key limitations with CEDR as it currently stands as well as how our goals align
with these limitations. As shown in the last two rows of the table, we do not currently have support
for implementing and testing of energy-savings policies that rely on mechanisms such as DVFS or
for schedulers that are, themselves, integrated as stand-alone hardware accelerators. Support for
these features is on the development roadmap for CEDR, however, and despite their exclusions,
we believe that even in its current state, CEDR provides a wholly unique set of capabilities relative
to those in the rest of the literature.

7 CONCLUSION

In this study we present the CEDR ecosystem that provides a unified compile time and runtime
workflow as an abstraction layer over which software can be programmed in a hardware-
independent manner and then dynamically mapped and executed over a variety of heterogeneous
computation units. With respect to other runtime environments, CEDR offers unique capabilities
with regards to its flexibility at the application, resource management, and hardware integration
layers. CEDR has been implemented and validated on SoC platforms such as Xilinx Zynq
UltraScale MPSoC, Odroid XU3, X86 systems, and the Nvidia Jetson Xavier through dynamically
arriving workload scenarios. Overall we believe that CEDR offers key capabilities to facilitate
broader usability and allow multiple players in domain specific architecture research (application
developers, hardware architects, scheduler heuristic developers) to experiment with multiple
concurrently executing real-life applications over heterogeneous architectures on off-the-shelf
SoC and SoC-prototyping platforms.
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We see several avenues for enhancing CEDR as a next step in DSSoC research. First, with its
ability to collect incredibly fine-grained timing and performance counter characteristics about
the nodes it executes, CEDR is well positioned to be able to leverage this data in helping to
train the next generation of intelligent scheduling algorithms that enable scheduling quality to
approach that of complex heuristics without incurring the same associated overheads. Beyond
this, there is also a large opportunity for exploration of systems where the scheduler itself is
hardware accelerated to better free up the CEDR runtime to instead focus on coordinating task
launches and data transfers. Next, there are a large amount of potential ways in which the trace-
based compilation analysis shown here can be generalized to support more complex memory
analysis and kernel recognition techniques to enable features such as automatic parallelization
of memory-independent DAG nodes or improved heuristics for detecting and enabling automatic
heterogeneous hardware execution. Additionally, with its support for caching of scheduling
decisions, algorithmic investigations can be conducted into areas such as determining the optimal
eviction polices for such cached decisions (for instance, based on transitions in system load)
so that we can ensure that they improve on scheduling overhead without degrading overall
system performance too heavily. Finally, since collecting power consumption information from
SoC platforms is a non-trivial issue, several studies in the literature have proposed performance
counter-based power estimation models covering memory, CPU and interconnect characteristics
during application execution. Along with DVFS policies, we see incorporating power estimation
as a valuable enhancement for CEDR to support power-aware design decisions and leverage
portability of CEDR across different SoC platforms.
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