
1792
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

INVITED PAPER Special Section on Enhancing Information Centric Networking Technologies Towards Real-world Infrastructure

Cefore: Software Platform Enabling Content-Centric Networking

and Beyond

Hitoshi ASAEDA†a), Senior Member, Atsushi OOKA†, Kazuhisa MATSUZONO†, and Ruidong LI†, Members

SUMMARY Information-Centric or Content-Centric Networking

(ICN/CCN) is a promising novel network architecture that naturally in-

tegrates in-network caching, multicast, and multipath capabilities, without

relying on centralized application-specific servers. Software platforms are

vital for researching ICN/CCN; however, existing platforms lack a focus on

extensibility and lightweight implementation. In this paper, we introduce a

newly developed software platform enabling CCN, named Cefore. In brief,

Cefore is lightweight, with the ability to run even on top of a resource-

constrained device, but is also easily extensible with arbitrary plugin li-

braries or external software implementations. For large-scale experiments,

a network emulator (Cefore-Emu) and network simulator (Cefore-Sim) have

also been developed for this platform. Both Cefore-Emu and Cefore-Sim

support hybrid experimental environments that incorporate physical net-

works into the emulated/simulated networks. In this paper, we describe

the design, specification, and usage of Cefore as well as Cefore-Emu and

Cefore-Sim. We show performance evaluations of in-network caching and

streaming on Cefore-Emu and content fetching on Cefore-Sim, verifying

the salient features of the Cefore software platform.

key words: ICN, CCN, in-network cache, computing in network, Cefore,

open source

1. Introduction

Billions of people with mobile devices and small devices,

such as sensors, actuators, and robots, are generating tremen-

dous amounts of data. The Internet adopts the host-centric

model, assigning Internet Protocol (IP) addresses to hosts,

which enables end-to-end communications. However, this

model results in redundant communication overheads as

well as large latencies for data retrieval because of dupli-

cate data transmissions from distant servers. To cope with

these problems, Information-Centric/Content-Centric Net-

working (ICN/CCN) has emerged as a novel networking

paradigm advocating data retrieval through content identi-

fiers or names, regardless of locations and further addresses.

ICN/CCN shifts this communication model to the content-

centric model by assigning names to content. By using these

content names, an ICN/CCN router intrinsically supports

caching and multicast content without relying on centralized

or application-specific servers.

Owing to these salient features, ICN/CCN has attracted

substantial research attention in the past few years. Many

researchers have focused on the ability to efficiently and se-

Manuscript received November 29, 2018.
Manuscript revised February 1, 2019.
Manuscript publicized March 22, 2019.
†The authors are with the Network System Research Institute at

National Institute of Information and Communications Technology
(NICT), Koganei-shi, 184-8795 Japan.

a) E-mail: asaeda@nict.go.jp
DOI: 10.1587/transcom.2018EII0001

curely disseminate/retrieve content and have proposed var-

ious protocols and mechanisms to enhance ICN/CCN ar-

chitectures and technical features. We have also studied

the essential functions, such as name-based routing [1], [2],

transport [3], [4], mobility [5], caching [6], [7], security

[8], [9], testbed [10], and measurement [11], [12]. For pro-

tocol evaluations, ICN/CCN software implementations play

a fundamental role in research in this area, and Community

ICN (CICN) [15] and NDN Forwarding Daemon (NFD) [16]

are the major implementations that have successfully pushed

forward research and satisfied, in part, demand from the

ICN/CCN research community in this initial phase.

In addition, there has recently been a strong trend toward

the integration of in-network computation with the novel net-

working architecture to enable efficient data sharing. New

computation technologies, such as modern machine learn-

ing and blockchain technologies, have the potential to be

embedded into networks to provide intelligence and addi-

tional functions. Activities such as the IEEE SIG on big data

intelligent networking [19] and Computing in the Network

(COIN) [20] in the Internet Research Task Force (IRTF)

have been initiated for these novel studies. This new trend

imposes requirements for the extensibility and ease of use of

ICN/CCN software platforms with the capability of embed-

ding various potential functions.

To satisfy the requirements for implementing future net-

works, we identify the following design requirements for an

ICN/CCN software platform: (1) Lightweight: the software

implementation should be compact and the platform should

be usable for resource-constrained devices, such as sensor

nodes; (2) Easy usage: the platform should be easily con-

figured, set up, reloaded, and connected to the experimental

environments. Ideally, its emulation/simulation should be

easily conducted and tested using real network equipment;

(3) Extensibility: the platform should be easily extensible

to accommodate novel functions to satisfy future network

needs.

To satisfy these requirements, we have developed a soft-

ware platform, named “Cefore” [13]. The development of

Cefore aims to not only provide actual running code for CCN-

based communications, but also to initiate new research ac-

tivities that emerge from or are based on ICN approaches. In

Cefore, the forwarding daemon is implemented with a mini-

mum set of functions, and hence the implementation can be

lightweight and scalable. Other functions, such as caching

and computing functions, are or can be implemented us-

ing plugins or external daemons, providing extensibility and

Copyright © 2019 The Institute of Electronics, Information and Communication Engineers



ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1793

easy usage. In summary, Cefore consists of the following

components: (1) “cefnetd” daemon, which is a lightweight

packet forwarding daemon that supports the basic functions

of the CCN, such as Interest/Data handling and Forward In-

formation Table (FIB) and Pending Interest Table (PIT) man-

agement; (2) “csmgrd” daemon, which implements Content

Store (CS) using the UNIX filesystem or memory and inter-

acts with one or more cefnetd daemon(s), is an optional func-

tion; (3) arbitrary plugin library implementations that extend

the functionality of cefnetd or csmgrd, which achieves ex-

tensibility; (4) network tools/commands and sample applica-

tions for easy performance measurements. For ease of usage,

Cefore can run on diverse OSs, such as Ubuntu, Raspbian

Jessie, macOS, and Android.

In addition, Cefore is advantageous for experiments,

since we further developed Cefore-Emu and Cefore-Sim for

emulation and simulation using Cefore, respectively. Cefore-

Emu and Cefore-Sim can be easily configured, reloaded, and

used for CCN emulations and simulations. They also support

hybrid experimental environments that incorporate physical

networks into the emulated/simulated networks. The hybrid

experimental environments enable precise performance or

quality of experience measurement for wireless communica-

tions, mobility, and streaming.

The remainder of this paper is organized as follows.

We first introduce two major ICN/CCN implementations as

related work in Sect. 2. In Sect. 3, we describe the Cefore

software platform enabling CCN. In Sect. 4, we provide the

design, operations, and features of the network emulator

Cefore-Emu and summarize our experiments related to in-

network caching mechanisms and streaming using Cefore-

Emu. In Sect. 5, we describe the implementation structure

and operations of the network simulator Cefore-Sim and

show our experiments with hybrid configurations. Finally,

we conclude our work in Sect. 6.

2. Related Work

Reference implementations of the ICN/CCN architecture

have emerged. The first released implementation for CCN

is known as CCNx version 0 (CCNx-0) [14]. After CCNx-

0 became obsolete, CCNx version 1 (CCNx-1.0) was pro-

posed by PARC, Inc., and its packet formats are specified

as an IRTF document [17], [18]. Cisco Systems, Inc. has

recently acquired the CCN platform (including the CCNx

code license) from PARC. CCNx-1.0 is practically merged

into Community ICN (CICN) [15].

CICN provides two CCN forwarders, a plugin imple-

mentation of the Vector Packet Processing (VPP) framework

(named VPP cicn-plugin) for an FD.IO community and a

socket-based forwarder (named Metis) that does not require

VPP. In VPP, the Data Plane Development Kit (DPDK) is

used to bypass kernel processing. The packet processing

pipeline in VPP is defined by a graph in which nodes rep-

resent specific processes and edges represents their depen-

dency relations. By inserting the cicn-plugin into the graph

as a new node, the DPDK-based CCN forwarder can be

easily implemented. This forwarder can support up to 14

Mpps of throughput on a 3.5 GHz CPU [28]. However, the

specialization in high-throughput forwarding results in in-

stallation difficulty, low extensibility, and limited supported

OSs (Ubuntu and CentOS). It is also suspected that VPP can

be run on top of resource-constrained nodes or devices.

In contrast, Metis can be easily installed and used in

various OSs, such as Ubuntu, Debian, CentOS, macOS,

and Android, although socket-based forwarding is slower

than VPP. The software forwarder, metis_daemon, is imple-

mented as a forwarder that accurately follows CCNx specifi-

cations [17], [18]. In addition, it is expected to support multi-

threading and interface generalization for higher throughput.

Currently, the interfaces of listeners (TCP/UDP, Ethernet,

etc.), PIT, and CS are modularized, and it is relatively easy

to modify the features. However, it is still necessary for

developers to fully understand the internal structure of the

heavily weighted Metis program.

Named-data networking (NDN) is a different architec-

ture similar to CCN, and an NDN software platform is pro-

vided by the NDN project [16]. The software includes an

NDN Forwarding Daemon (NFD) and many relevant tools

and application programs, enriching the NDN communica-

tion architecture. NFD is a socket-based forwarding dae-

mon, as is Metis. Its target is high modularity to promote

the development of new algorithms and features as well as

experiments that use them. Thus, almost all features in NFD

are modularized and their interfaces are detailed in the de-

veloper’s guide [16]. Currently, more than 30 organizations,

including universities and companies, are developing many

tools and applications, such as NLSR (Named Data Link

State Routing), Mini-NDN (emulator), ndnSIM (simulator),

and NDN tools. However, precisely because NDN focuses

on avoiding premature standardization rather than interoper-

ability and global rollout, the NDN packet/message format

is not officially defined by the IRTF or other Standards De-

velopment Organizations. As a result, the NDN platform is

frequently modified, yet developers need to always carefully

and continuously follow the activities in the NDN project to

extend functionality with their own applications. Another

consequence is a lack of interoperability between NDN and

CICN or other CCNx-1.0-based implementations, as their

packet formats are different.

CICN and NFD have successfully satisfied some de-

mands of the ICN/CCN research community in the initial

phase, but limitations in terms of lightweight implementa-

tion, ease of usage, and extensibility remain. In addition, the

recent trend to embed various potential functions in the novel

networking architecture (e.g., service function chaining) or

computation technologies (e.g., machine learning) neces-

sitates the extensibility and easiness of use for ICN/CCN

software platforms. According to the research directions re-

cently discussed in [19], [20], it is important to consider the

potential extensibility of the ICN/CCN software platform;

yet, how future extensions can be used and linked to CICN

and NFD software has not been carefully studied.



1794
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

3. Cefore: Extensible Packet Forwarding Engine En-

abling CCN Communications

To overcome the aforementioned limitations, we developed

and released Cefore [13], which is an open-source software

platform enabling CCN communications. Basically, Cefore

consists of a no-frills forwarding daemon named cefnetd

and a CS manager daemon named csmgrd that can manage

a UNIX file system-based in-network cache.

Cefnetd is a base component of Cefore and contains

the essential functions for forwarding CCNx messages [17]

equipped with Forwarding Information Base (FIB) and Pend-

ing Interest Table (PIT). Csmgrd is a Content Store (CS)

daemon that can be operated on a node that behaves as CS.

Cefnetd can connect to csmgrd via a local socket or TCP. Be-

sides these basic functions, Cefore can be easily customized

and enhanced by adding plugin libraries. Potentially, re-

searchers can develop new mechanisms and build them into

cefnetd and/or csmgrd without modifying these codes. Ce-

fore also includes useful network tools, such as cefputfile and

cefgetfile, for uploading and downloading data, respectively,

and utilities, such as CCNinfo [12].

Through cefnetd, publishers provide data through the

network, and consumers retrieve data by name. A router

running cefnetd forwards data requests by means of its

FIB, which is populated by name-based routing protocols.

Cefnetd enables consumers to retrieve data from in-network

cache, which is maintained by own memory or csmgrd. If

a router receiving a data request has the requested data in

the cache, it sends the data toward the consumer without

forwarding the data request ahead.

Figure 1 shows an image of the software components

of Cefore and Fig. 2 shows how it can be used with different

equipment and for different purposes.

3.1 Cefnetd: Packet Forwarding Daemon

Cefnetd is a packet forwarding daemon that can be used in

a resource-constrained environment as well as a high-spec

machine. The resident memory size required to run cefnetd

is about one-third of the memory usage for starting the Metis

forwarder. Even when CS is enabled by csmgrd, cefnetd can

maintain memory consumption at the same level, without

an increase, in contrast to the increasing memory usage for

Metis to cache data. This is because cefnetd cooperates with

csmgrd, which provides an external CS process. In fact, the

total memory consumption of cefnetd and csmgrd is higher

than that of Metis. However, csmgrd has the salient ability to

be executed on a computer different from one where cefnetd

is executed. For example, if a user wants to run the CCN

router function on Raspberry Pi, s/he can launch cefnetd

on Raspberry Pi and configure it to cooperate with csmgrd

running on another machine, such as a high-end server.

Cefnetd has high extensibility via plugin libraries or co-

operation with external processes. Developing a plugin only

requires the use of plugin interfaces; therefore, it is generally

Fig. 1 Cefore and its software components.

Fig. 2 Cefore applied for heterogeneous environments using arbitrary

plugin libraries.

Table 1 Throughput of cefnetd in a physical environment.

OS CPU Memory Throughput

Ubuntu 16.04 2.9 GHz × 4 8 GB 480 Mbps

unnecessary to understand and modify the internal programs

of cefnetd, in contrast to Metis or NFD. For example, users

can install transport functions for a specific application or

mobility functions into cefnetd by developing them as plu-

gins. In addition, arbitrary processes can be implemented

as external daemon processes like a costly CS process that

is assigned to csmgrd. Cefnetd provides APIs and can con-

nect to such external processes via a local socket or TCP.

This cooperation with external processes will activate the

potential of other enhanced mechanisms. For example, a

network controller daemon enabling intelligent in-network

cache management based on artificial intelligence or ma-

chine learning will be interconnected with multiple cefnetds

in the network.

Users can also easily configure and setup cefnetd. The

cefnetd configuration file allows changes in the parameters

and forwarding information (e.g., FIB) but also the ability to

enable or disable user-defined plugins and cooperation with

external processes without re-compilation. Thus, users can

concentrate on the development of desired functions without

implementing interprocess communication mechanisms.

Table 1 shows the maximum throughput of cefnetd run-

ning on a physical environment. In the evaluation, two

cefnetd PCs (Intel Core i5) connected via 1 Gbps link acted

as a consumer and a producer, and the consumer requested

streaming content to the producer.



ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1795

3.2 Csmgrd: CS Manager Daemon Using UNIX Filesys-

tem

A significant feature in CCN is that a portion of the routers

holds cache for close data retrieval. However, the consump-

tion of a large memory for cache affects the efficient usage

of the router resources, which will be a substantial burden,

especially for resource-constrained devices. To address this

issue, Cefore implements a CS manager daemon (csmgrd)

that enables data caching on a UNIX filesystem, which can

be co-located or separated with the cefnetd routers. More

precisely, Cefore provides three types of CS implementa-

tions: a local cache memory on cefnetd (called local cache),

a local cache memory on csmgrd (called on-memory cache),

and a cache space on a UNIX filesystem on csmgrd (called

on-filesystem cache).

Users can enable or disable CS for cefnetd. If they en-

able CS for cefnetd, they select the cache type either from

local cache, on-memory cache, or on-filesystem cache. The

on-filesystem cache has been introduced in detail for the im-

plementation of the global ICN testbed called CUTEi [10],

and we herein provide a simple introduction. On-filesystem

cache avoids the memory occupation of routers. Further-

more, the on-filesystem cache system accommodates two

kinds of caches: “individual cache” and “shared cache.” In-

dividual cache is accessible for only one dedicated router,

while shared cache is accessible for a set of routers in the

same group to avoid duplicated caching in the neighbor-

hood. Multiple cefnetd daemon processes can share the

cached contents.

To implement the shared cache, csmgrd provides two

sub-functions, “cache expiration control” and “cache write

control”. Cache expiration control enables csmgrd to expire

(and discard) the cached content according to its expiration

time. It is necessary for shared cache, because the expiration

time of the content stored by one router may be updated by

another router and cannot be detected by any router. The

cache write control prevents routers from writing duplicate

content (chunk) into shared cache when the same content is

already stored.

In addition, csmgrd has another sub-function, “cache

buffer control”, which temporarily keeps content in memory

without direct write. That is, the data are written into the

on-filesystem cache after the temporary memory space is full

(or certain timeout). The cache buffer control reduces fre-

quent disk I/O process calls to avoid the caching performance

penalty comparing with on-memory cache.

4. Cefore-Emu

4.1 Overview

Based on the Cefore software platform, we further devel-

oped a network emulator named Cefore-Emu that runs on a

Linux machine. Cefore-Emu is a fork of the Mininet-HiFi

Fig. 3 An example of the configuration files and emulated network topol-

ogy for Cefore-Emu.

emulator [21] to integrate it with Cefore. Like Mininet-

HiFi, Cefore-Emu creates a container by using the following

features: a process group, a network namespace, and vir-

tual network interfaces. The process group and the network

namespace are private. That is, they belong to a particular

container and cannot be seen by the other containers. In ad-

dition, cgroups in Linux, which realizes the private process

group, has a promising feature in which it isolates and limits

the resource usage of each process group. The virtual net-

work interfaces are connected via virtual network links. The

properties of virtual links (e.g., bandwidth, delay, and packet

loss) can be configured by using the Linux traffic control (tc)

command.

For the operations of Cefore-Emu, Fig. 3 illustrates an

example in which a simple network is emulated using Cefore-

Emu. A Cefore-Emu user needs to take the following ac-

tions: (1) prepare the configuration file for Cefore-Emu,

cefemu.conf, (2) execute the cefemu command to set up an

emulated network, and (3) use a command line interface

(CLI) to operate the emulated network. The configuration

file, cefemu.conf, is simpler than the original python script

used by Mininet-HiFi. It defines a topology as a collec-

tion of nodes and links. The detailed properties of nodes

and links can also be configured in cefemu.conf. The node-

types definition allows users to define the behaviors of the

daemons, such as cacheable router or non-cacheable router.

The host and router definitions can specify an upper limit

of CPU usage for nodes, FIB entries, and node type (de-

fined in nodetypes). In this example, the user configures the

topology as follows: for each named content (i.e., ccn:/), the

neighbor of h2 is s1, the neighbor of h3 is s1, and so on. To

run applications on top of Cefore-Emu, the user’s programs,

such as producer.sh and consumer.sh, are also specified in

the definitions of hosts and routers. The links definition in-

dicates that the link bandwidth between h1 and s1 is 100

Mbps. After the user prepares the configuration files, s/he

can start network emulation by executing the cefemu com-

mand, which automatically launches cefnetd and csmgrd (if

configured) on each emulated node.

Compared with existing emulators, Cefore-Emu pro-

vides the following three unique features. First, a topology



1796
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

Fig. 4 Topology generator for Cefore-Emu.

Fig. 5 Scenario generator for Cefore-Emu.

generator (Fig. 4) and a scenario generator (Fig. 5) are pro-

vided to easily initiate emulation environments. In particu-

lar, when writing a configuration file based on a real topology

that consists of a large number of nodes and links, there is

a risk of human error in writing the nodes’ and links’ prop-

erties, such as delay and bandwidth. For Cefore-Emu, the

topology generator creates the cefemu.conf file based on the

specified topology, such as a mesh, chain, tree, or grid topol-

ogy, or the Internet topology provided by CAIDA [23]. After

a user specifies a set of parameters (as shown in scenario.txt

in Fig. 5), the scenario generator loads it and generates (or

modifies if exists) cefemu.conf, Cefore configuration files

(cefnetd.conf, csmgrd.conf, and plugin.conf), and scripts for

producers and consumers. If multiple values are specified in

the parameters in scenario.txt, the scenario generator creates

the configuration files and scripts for the different sets of

parameters. Figure 5 shows that eighteen scenarios are gen-

erated by the combinations of six cache replacement policies

and three cache sizes. The scenario generator then conducts

the experiments using Cefore-Emu, and finally reports about

the evaluation results in a summary.log file located in each

scenario directory. These two generators significantly re-

duce the burden of configuration when conducting a large

number of evaluation scenarios.

The second feature is a “reloading function.” If users

develop a new mechanism and install it into cefnetd or csm-

grd running on Cefore-Emu nodes, it often changes the pa-

rameters of the user-defined mechanisms according to the

emulation results. When users modify one or some of these

configurations, they can reload the configurations of the dae-

mons on Cefore-Emu nodes by using the reload command

without restarting the whole emulation. The reloading func-

tion allows users to quickly use multiple parameters or vari-

ous proposals for CCN, as the time to set up and clean up an

emulated network is not always negligible.

Third, Cefore-Emu enables a “hybrid emulation” that

incorporates physical networks into the emulated network.

Although results given by emulation for wired networks can

be slightly stable and modeled feasibly, those for wireless

networks or mobile communications are sometimes far from

the real results as the characteristics of the wireless medium

are too complicated and highly sensitive in the network

conditions. The hybrid experimental environment we de-

veloped allows users to leverage the fidelity of a physical

environment including the wireless medium to generate an

arbitrarily customizable network on the fly. For ease of

configuration, Cefore-Emu adds a new node parameter in

cefemu.conf to specify a physical interface including wire-

less interfaces. Users can incorporate physical interfaces

into emulated nodes by merely setting the optional parame-

ter (e.g., a wireless interface wlan0 can be incorporated to a

node by specifying “exintf=wlan0” as the parameter of the



ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1797

Fig. 6 Popularity distribution.

node).

4.2 Cefore-Emu in Action

4.2.1 Comparing Cache Replacement Policies

We measured CCN performance for different cache replace-

ment policies in a large-scale emulated network, as shown

in Fig. 5. The evaluation here was performed using the tools

described in Sect. 4.1. The parameters used in this emula-

tion are listed in scenario.txt in Fig. 5. The topology included

66 nodes consisting of 22 core routers based on the CAIDA

topology (depicted by large yellow circles) and 44 edge nodes

attached to them (depicted by small blue rectangles). The

edge nodes named “pN” and “cM” (1 ≤ N, M ≤ 22) repre-

sent producers and consumers, respectively. The nodes are

connected by 94 links. The numbers on the links shown in

the figure indicate their link delays in milliseconds, which

are used to execute Dijkstra’s algorithm. In this experiment,

we do not consider dynamic routing for simplicity.

In this emulation, producers upload 11,307 content ob-

jects (cobs) and consumers issue 100,000 requests (i.e., In-

terests) to download the content, allowing repetition. The

content popularity basically follows a Zipf-like distribution

with α = 1.2 and the rank-shift model [24] to realize the

dynamic change in popularity. Figure 6 shows the generated

popularity distribution, which roughly follows a power law

with a fat tail, as is commonly observed for network content.

Cefore-Emu supports Cache Everything Everywhere

(CEE) (also known as Leave-Copy Everywhere (LCE)) as

the cache placement policy, where all cacheable nodes try

to cache all transferred content. We examined six cache

replacement policies: first-in first-out (FIFO), random re-

placement (Rand), least recently used (LRU), least frequently

used (LFU), CLOCK (a low-overhead version of LRU), and

CLOCK-Pro using switching hash-tables (CUSH) [7]. In

this emulation, all core routers have the cache mechanisms

installed and the cache is enabled. Each cache has a capacity

ranging from 100 KB to 10 MB. These sizes approximately

correspond to 0.1 – 10% of the total size of all content in the

network.

The evaluation results are shown in Figs. 7 and 8, which

depict cache hit rates and path stretches, respectively. The

cache hit rate is defined as the fraction of the number of

Fig. 7 Cache hit rate.

Fig. 8 Path stretch.

cache hits to the total number of requests, excluding the first

request for each content. The path stretch is defined as the

fraction of the sum of actually transferred hops of all packets

to the sum of hops without in-network caches. CUSH outper-

forms the other algorithms when the cache size is not large.

LFU is significantly degraded in contrast to common experi-

ments adopting static popularity because its focuses on only

the number of accesses to content. This frequency-based

strategy fills the cache with outdated content and pushes out

content that newly (dynamically) becomes popular.

Although the evaluation requires experimental effort to

conduct 18 emulation scenarios (6 cache replacement poli-

cies × 3 cache sizes), implementing many scenarios is easy

owing to the support of the topology generator and the sce-

nario generator. The scenario generator can also visualize

the topology and popularity distribution; in fact, the topol-

ogy graph in Fig. 5 and the popularity distribution graph in

Fig. 6 were generated by the scenario generator.

4.2.2 Measuring the Streaming Performance of Hybrid

Emulation

To examine the feature of hybrid emulation, we conducted an

experiment in the hybrid experimental environment enabled

by Cefore-Emu incorporating physical networks into the em-

ulated virtual network. The advantage of the incorporation

is that it allows experiments in realistic environments that

are too complicated to be simulated/emulated. In this exper-



1798
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

Fig. 9 Cefore-Emu hybrid experimental environment that combines a virtual intercontinental network

and physical equipments including wireless medium.

Table 2 Experimental computers.

Node OS CPU Memory HDD

Cefore-Emu Ubuntu 16.04 Intel Core i5-3470T (2.90 GHz × 4) 8 GB 512 GB
Producer Ubuntu 16.04 Intel Core i5-3470T (2.90 GHz × 4) 8 GB 512 GB

Consumer 1 Raspbian 9.3 (Raspberry Pi 3 B+) ARMv8 (900 MHz × 4) 1 GB 16 GB (microSDHC)
Consumer 2 macOS High Sierra Intel Core i7-3667U (2.00 GHz × 4) 8 GB 512 GB

iment, three physical devices (two laptops and a Raspberry

Pi) are connected to a virtual network that emulates inter-

continental communication, as shown in Fig. 9. The virtual

network consists of the core topology used in the previous

evaluation and three additional nodes, TOKYO (in Tokyo,

Japan), NY (in New York City, USA), and PARIS (in Paris,

France). Figure 9 shows only eight nodes for simplicity,

although there are a total of 25 nodes in the virtual network.

The virtual network is emulated by the Cefore-Emu

node, which is connected by three physical computers. Pro-

ducer connects to NY via the wired interface eth0 and pub-

lishes 720 Kbps of streaming video content to Consumer

1 and Consumer 2, which are connected to TOKYO and

PARIS via wireless interfaces wlan0 and wlan1, respectively.

The specifications of computers used in this experiment are

shown in Table 2. As described in Sect. 4.1 and depicted in

Fig. 9, the incorporation of physical interfaces into Cefore-

Emu is easily realized by adding the parameter “exintf” to the

nodes. The experiment is conducted in two environments:

(a) an environment without movement where the consumers

stay 1 m away from the access points (APs) and (b) an envi-

ronment with movement where the both consumers are car-

ried from 1 to 14 m away from the APs at a constant speed

for 70 s. To demonstrate the instability of a real wireless

network, the round-trip time (RTT) is measured in the ex-

periments. The RTT is defined as the elapsed time between

when a consumer sends out a request and when the consumer

receives a corresponding content object (cob). The theoret-

ical RTTs of Consumer 1 and Consumer 2 are 238 ms and

170 ms, respectively. If the junction node caches a requested

cob, the RTT is shortened by 52 ms.

Figures 10 and 11 plot the RTTs and error rates per 100

cobs of requests made from 10 s after requesting the first

cob. The x-coordinate of each point corresponds to the time

when the request is sent by the consumer. The color of points

is darkened every 1,000 cobs to visualize the difference in

request timing between two consumers. Because the RTTs

of unsatisfied requests are undefined, the y-coordinate of the

point for a packet loss is assumed to be a certain constant

value. The averages and standard deviations of RTTs are

shown in Table 3.

These results reflect the fluctuations of the wireless

medium. The jitter of Consumer 1 is larger than that of

Consumer 2 because of the poor performance of Raspberry

Pi. In Fig. 10, Consumer 1 can partially receive a cob within

200 ms, which is faster than the theoretical RTT between

NY and TOKYO. This is because the requests of Consumer

1 hit in-network cache at the junction node. This is indicated

by the color change in Fig. 10: the requests of Consumer 1

are issued after those of Consumer 2 (e.g., when 40 s has

elapsed). In Fig. 11, the further Consumer 1 moves from the

AP, the longer the RTT of Consumer 1 becomes. The packet

loss rate also increases and Consumer 1 loses the connection

at 48 s after receiving the 2,577th cob.

Table 4 shows the maximum throughput of cefnetd on

the emulated environment. We configured two emulated

nodes and measured the maximum throughput for transfer-

ring streaming content between them. Although the through-

put was decreased because of the emulation, Cefore-Emu still

achieved 303 Mbps data forwarding.



ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1799

Fig. 10 Evaluation of video streaming on the Cefore-Emu hybrid experimental environment (without

movement).

Fig. 11 Evaluation of video streaming on the Cefore-Emu hybrid experimental environment (with

movement).

Table 3 RTT statistics.

Computer Ave. [ms] Dev. [ms]

(a) Consumer 1 233.46 70.46
(a) Consumer 2 172.14 53.55

(b) Consumer 1 280.26 232,78
(b) Consumer 2 221.13 116.56

Table 4 Throughput of cefnetd in emulation.

OS CPU Memory Throughput

Ubuntu 16.04 2.9 GHz × 4 8 GB 303 Mbps

5. Cefore-Sim

5.1 Overview

To further improve the ease of usage of Cefore, we devel-

oped Cefore-Sim, which is an NS-3 [26] based simulation

platform. With Cefore-Sim, real implemented Cefore pro-

grams can be simulated within NS-3. The main objectives

of Cefore-Sim are to enable flexible and faster development

and to provide a repeatable and fully controllable evaluation

environment for Cefore applications and protocols.



1800
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

Fig. 12 An example of the Cefore-Sim framework.

Figure 12 illustrates the Cefore-Sim framework. Direct

Code Execution (DCE) [25] is utilized to allow Cefore de-

velopers and experimenters to directly run the unmodified

Cefore implementations, such as cefnetd, csmgrd, and ce-

fgetfile, on each simulated node in an NS-3 network. Cefore-

Sim gets rid of the duplicate effort of writing both simulation

and real implementation code. It facilitates the development

and testing of the original Cefore applications and protocols

in a complex scenario and/or large-scale simulated network

in NS-3. For instance, we can easily run a mobility sce-

nario under mixed wireless networks (e.g., WiFi, WiMax,

and LTE) by writing the simulation scenario script using

NS-3 wireless-related modules provided as defaults. This

feature eliminates the high cost of real equipment setups.

Moreover, the simulation scenario is fully controllable and

reproducible, which enables users to debug the implemen-

tations running with Cefore and explore performance for

further improvements.

In contrast, the NS-3-based NDN simulator (called

ndnSIM) provides a simulator platform for evaluating NDN

applications and/or protocols [27]. Unlike Cefore-Sim,

ndnSIM imposes several requirements to run a real imple-

mentation on the simulator. For instance, a tested appli-

cation must use a subset of specific APIs provided, and it

should not use disk operations to avoid undefined behavior,

unless application instances access unique parts of the file

system. It is not realistic for developers or experimenters to

expect NDN real implementations to run on the simulator

without modifications, which requires the duplicate effort

of developing source codes for both the simulation and real

implementations.

To build and use Cefore-Sim, NS-3 and DCE must first

be installed on a Linux machine. To use the Cefore exe-

cutable binary for Cefore-Sim, Cefore source codes need to

be recompiled using some specific compile/link options, be-

cause DCE needs to relocate the executable binary in mem-

ory. Next, it is necessary to copy the target executable pro-

duced in a specified directory in the variable environment

DCE_PATH so that DCE can find it (see [25] for more de-

tail). To use the resulting Cefore executable, we need to

write the NS-3 DCE scenario script with the help of a set of

DCE Helper classes (e.g., DceManagerHelper and DceAp-

plicationHelper). As in a typical NS-3 script without DCE,

the other required descriptions (e.g., setup of the nodes and

topology) must be specified in the NS-3 DCE script.

Cefore-Sim also provides a “hybrid simulation” envi-

ronment in which the simulated Cefore nodes running on

a single physical node can communicate and interact with

other real physical Cefore nodes via real networks (e.g., Eth-

ernet or WiFi). To enable this feature, Cefore-Sim utilizes

“tap-bridge-module” provided by NS-3 as default. The tap-

bridge creates a software channel between a virtual tap in-

terface on the physical node and a simulated node in the

NS-3 network, and enables the exchange of Interest/Data

packets between these. We can use “TapBridgeHelper” in

the scenario script to create the interface. This function can

be useful for developers and experimenters when (1) real

network environments must be combined with the simulated

network in order to realize a more realistic scenario (e.g., var-

ious real-world traffic flows are required) and (2) the node

running Cefore-Sim does not have sufficient computational

capability (e.g., the experiment requires some applications

requiring high CPU and memory usage, such as high-quality

video streaming servers).

One of the concerns of using NS-3 simulated time clock

is the timing accuracy with respect to real environments.

Although Cefore-Sim using DCE provides accurate results

whatever the scale of the experiment, it runs slower than

real time depending on the scale of scenario used. Such

conditions are undesirable when Cefore-Sim is connected to

real networks via tap-bridge-module. However, this issue

can be overcome by using Message Passing Interface (MPI)-

based distributed simulation built into NS-3 [29].

5.2 Cefore-Sim in Action

Here, similar to Cefore-Emu, we present a simple experi-

ment to examine the feature of the hybrid simulation pro-

vided by Cefore-Sim. The experiment considers a cache-

enabled WiFi scenario in which a WiFi access-point enables

in-network cache (csmgrd), as shown in Fig. 13. This ex-

periment requires two physical nodes: one is used to run

Cefore-Sim, and the other is used as a content publisher.

Since the publisher with csmgrd requires a certain amount

of CPU and memory, we separately use the non-simulated

node as a content publisher to make the csmgrd stable. We

investigate the in-network cache efficacy regarding the flow

completion time (FCT) of Cefore content retrieval by the

cefgetfile command, compared with TCP/IP-based content

retrieval using HTTP (wget).

In this experiment, three WiFi consumers retrieve the

content (about 5.3 MB) published by the producer through

IEEE 802.11g using the NS-3 default settings. In the case

of the Cefore experiment, the content is divided into small

content objects by cefputfile, the sizes of which are 1024

bytes. Cefore consumers invoke cefgetfile to send the In-

terests for each data object until the download is completed.



ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1801

Fig. 13 Network topology used for the Cefore-Sim experimentation.

The pipeline size of cefgetfile, which represents the maxi-

mum number of outstanding Interests sent to the network,

is set to 16 or 32. The Interest lifetime, defined as the time

limit to expire in PIT, is set to 100 ms. Cefore consumers

thus retransmit the Interest that could not receive the cor-

responding content object for 100 ms. In the case of the

TCP/IP-based experiment, consumers download the content

using wget. Considering a realistic scenario, the start time

for each consumer varies using an exponential distribution

with a mean value of 5 s and a maximum value of 10 s.

In both cases, the bandwidth/propagation-delay for each

link in the NS-3 network is set to 10 Mbps/5 ms. The physical

node running Cefore-Sim is connected to the real content

publisher via an Ethernet link of 100 Mbps. Considering

the realistic size of the in-network cache space affected by

the ability to perform memory/storage lookups at line speed

and/or the processing load required to store/forward content

objects, the size of the in-network cache enabled by the WiFi

AP is set to 1 GB. In the link between the two simulated

routers, background traffic is generated as a UDP flow by

using the iperf command tool to create a congested link.

The UDP traffic rate varies to cause different rates of packet

loss in the link in order to investigate how the loss conditions

impact the performance of content retrieval in association

with the WiFi in-network cache.

Figure 14 shows the average FCTs of wget using TCP/IP

and Cefore’s cefgetfile with and without in-network cache

at the AP (hereinafter, referred to as cefgetfile-cache and

cefgetfile-noncache, respectively). The FCTs of wget and

cefgetfile-noncache become longer with increasing back-

ground traffic rate. Wget achieves a lower FCT (i.e., higher

throughput) than that of cefgetfile-noncache with a pipeline

size of 16 because the pipeline size cannot fully consume

the available bandwidth due to the low Interest transmis-

sion rate. However, in the case of the pipeline size of 32,

cefgetfile-noncache achieves a lower FCT than wget. This

result indicates that the Cefore consumer needs to configure

the pipeline size appropriately according to the network con-

dition in order to achieve higher throughput. Note that, de-

pending on the network conditions, cefgetfile with a substan-

tially larger pipeline size adversely decreases the throughput

due to further network congestion caused by a much larger

volume of Interest/Data traffic.

On the other hand, cefgetfile-cache with a pipeline size

Fig. 14 Results for each flow completion time (FCT) under the back-

ground traffic using UDP at different rates.

Table 5 Throughput of cefnetd in simulation.

OS CPU Memory Throughput

Ubuntu 14.04 2.5 GHz × 4 16 GB 303 Mbps

of 16 maintains an FCT of about 8 s, except in the case of

background traffic of 6 Mpbs; the FCT is far superior to

those of both wget and cefgetfile-noncache. For a pipeline

size of 32, the FCT becomes better owing to the higher In-

terest transmission rate. Since the AP with in-network cache

stores the received content objects during the first download

attempt by a consumer, the second and third downloads of

the content objects can be served directly by the AP, which

makes the consumers likely to be unaffected by network

congestion due to the background traffic. This result also

demonstrates that the in-network cache enabled by the ac-

cess point reduces the traffic load between the publisher and

the in-network cache point, which is an important feature in

view of the current rapid growth in mobile traffic volume.

Although this experiment simply investigates the in-network

efficacy, we can easily and flexibly execute more complex

scenarios such as vertical/horizontal handover scenarios by

using the wireless and mobility modules provided by NS-3.

In this way, we can easily investigate and evaluate Cefore

functions by using real Cefore implementations, which pro-

motes further developments and improvements.

We also assessed the maximum throughput achieved

by Cefore-Sim running two simulated nodes on the Ubuntu

machine as shown in Table 5.

6. Conclusion and Outlook

Software platform development plays a fundamental role in

researching and evaluating proposed protocols and mecha-

nisms. To study the ICN/CCN architecture or future net-

working, existing ICN/CCN software platforms, still lack a

focus on extensibility and lightweight implementation. To

solve these problems, we developed the software platform

Cefore, which satisfies the requirements of lightweight im-

plementation, easy usage, and extensibility. Cefore can run

on a resource-constrained node/device and is easily extensi-



1802
IEICE TRANS. COMMUN., VOL.E102–B, NO.9 SEPTEMBER 2019

ble through plugin libraries or external software implemen-

tations. For easy usage and scalable experiments, we also

developed Cefore-Emu and Cefore-Sim whose design, spec-

ification, and usage method were elaborated in this paper.

We performed performance evaluations of in-network

caching and streaming on Cefore-Emu and content fetch on

Cefore-Sim, demonstrating the salient features of the Ce-

fore software platform. These evaluations are made with the

hybrid experimental environments that incorporate physi-

cal networks into the emulated/simulated networks. The

hybrid experimental environments give a great chance to ob-

tain precise performance or Quality of Experience (QoE)

measurement for wireless communications, mobility, and

streaming; therefore these implementations contribute to the

future study of CCN technologies applied to IoT (Internet

of Things) or M2M (Machine to Machine) environments or

ultra-high-quality video streaming.

References

[1] R. Li, K. Matsuzono, H. Asaeda, and X. Fu, “Consecutive caching

and adaptive retrieval for in-network big data sharing,” Proc. IEEE

ICC, Kansas City, USA, May 2018.

[2] R. Li and H. Asaeda, “MWBS: An efficient many-to-many wireless

big data delivery scheme,” IEEE Trans. Big Data, DOI: 10.1109/TB-

DATA.2018.2878584, 2018. (Accepted)

[3] K. Matsuzono and H. Asaeda, “NRTS: Content name-based real-time

streaming,” Proc. IEEE CCNC, Las Vegas, USA, Jan. 2016.

[4] K. Matsuzono, H. Asaeda, and T. Turletti, “Low latency low loss

streaming using in-network coding and caching,” Proc. IEEE Info-

com, Atlanta, USA, May 2017.

[5] K. Matsuzono and H. Asaeda, “NMRTS: Content name-based mobile

real-time streaming,” IEEE Commun. Mag., vol.54, no.8, pp.92–98,

Aug. 2016.

[6] H. Shimizu, H. Asaeda, M. Jibiki, and N. Nishinaga, “Local tree

hunting: Finding the closest contents in an in-network cache,” IEICE

Trans. Inf. & Syst., vol.E98-D, no.3, pp.557–564, March 2015.

[7] A. Ooka, E. Suyong, S. Ata, and M. Murata, “Scalable cache com-

ponent in ICN adaptable to various network traffic access patterns,”

IEICE Trans. Commun., vol.E101-B, no.1, pp.35–48, Jan. 2018.

[8] R. Li, H. Asaeda, and J. Li, “A distributed publisher-driven se-

cure data sharing scheme for information-centric IoT,” IEEE Internet

Things J., vol.4, no.3, pp.791–803, June 2017.

[9] R. Li, H. Asaeda, and J. Wu, “DCAuth: Data-centric authentication

for secure in-network big-data retrieval,” IEEE Trans. Netw. Sci.

Eng., DOI: 10.1109/TNSE.2018.2872049, 2018. (Accepted)

[10] H. Asaeda, R. Li, and N. Choi, “Container-based unified testbed

for information-centric networking,” IEEE Netw. Mag., vol.28, no.6,

pp.60–66, Nov. 2014.

[11] H. Asaeda, K. Matsuzono, and T. Turletti, “Contrace: A tool for

measuring and tracing content-centric networks,” IEEE Commun.

Mag., vol.53, no.3, pp.182–188, March 2015.

[12] H. Asaeda and X. Shao, “CCNinfo: Discovering content and network

information in content-centric networks,” IRTF Internet Draft (work

in progress), Oct. 2018, Available at: https://tools.ietf.org/html/draft-

irtf-icnrg-ccninfo

[13] “Cefore,” Available at: https://cefore.net/, accessed Nov. 1, 2018.

[14] “CCNx,” Available at: https://github.com/ProjectCCNx/ccnx, ac-

cessed Nov. 1, 2018.

[15] “CICN,” Available at: https://wiki.fd.io/view/Cicn, accessed Nov. 1,

2018.

[16] “Named Data Networking,” Available at: http://named-data.net/, ac-

cessed Nov. 1, 2018.

[17] M. Mosko, I. Solis, and C. Wood, “CCNx messages in TLV format,”

IRTF Internet-Draft (work in progress), July 2018, Available at:

https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages

[18] M. Mosko, I. Solis, and C. Wood, “CCNx Semantics,” IRTF

Internet-Draft (work in progress), June 2018, Available at: https://

tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics

[19] IEEE SIG on Big Data Intelligent Networking (BDIN), https://

github.com/IEEETCBDIN/Home/blob/master/index.md/, accessed

Nov. 9, 2018.

[20] Computing in the Network (COIN), https://trac.ietf.org/trac/irtf/wiki/

coin, accessed Nov. 1, 2018.

[21] “Mininet,” Available at: http://mininet.org/, accessed Nov. 1, 2018.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible network experiments using container-based emula-

tion,” Proc. ACM CoNEXT’12, Dec. 2012.

[23] “CAIDA Data,” Available at: https://www.caida.org/data/, accessed

Nov. 1, 2018.

[24] J. Ratkiewicz, S. Fortunato, A. Flammini, F. Menczer, and A. Vespig-

nani, “Characterizing and modeling the dynamics of online popular-

ity,” Phys. Rev. Lett., vol.105, no.15, p.158701, Oct. 2010.

[25] “Direct Code Execution (DCE),” Available at: https://github.com/

direct-code-execution/ns-3-dce, accessed Jan. 26, 2019. direct-code-

execution/, accessed Nov. 1, 2018.

[26] “NS-3: discrete-event network simulator for Internet systems,” Avail-

able at: https://www.nsnam.org/, accessed Nov. 1, 2018.

[27] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnSIM

2: An updated NDN simulator for NS-3,” NDN Project, Technical

Report NDN-0028, Revision 2, 2016.

[28] L. Muscariello, “CICN community information-centric networking,”

Tutorial at ACM SIGCOMM ICN, Sept. 2017.

[29] H. Tazaki, F. Urbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,

and W. Dabbous, “Direct code execution: Revisiting library OS

architecture for reproducible network experiments,” Proc. ACM

Conext, California, USA, Dec. 2013.

Hitoshi Asaeda is an executive researcher at

the Network System Research Institute, National

Institute of Information and Communications

Technology (NICT). He received a Ph.D. from

Keio University. He previously worked at IBM

Japan, Ltd. and as a research engineer specialist

at INRIA, France. He was a project associate

professor at Keio University in 2005–2012. He

is a chair of the IEICE technical committee on

ICN and a program officer for several interna-

tional projects. He serves as a TPC member for

premier conferences such as IEEE Infocom, WCNC and ACM ICN, and was

a guest editor-in-chief of the special series of IEICE Trans. Commun. in

2016. His research interests include routing, streaming, distributed comput-

ing, and large-scale testbeds. He is actively working in the IETF standards

body. He is a senior member of the IEEE and a member of the ACM.

http://dx.doi.org/10.1109/icc.2018.8422233
http://dx.doi.org/10.1109/icc.2018.8422233
http://dx.doi.org/10.1109/icc.2018.8422233
http://dx.doi.org/10.1109/TBDATA.2018.2878584
http://dx.doi.org/10.1109/TBDATA.2018.2878584
http://dx.doi.org/10.1109/TBDATA.2018.2878584
http://dx.doi.org/10.1109/ccnc.2016.7444837
http://dx.doi.org/10.1109/ccnc.2016.7444837
http://dx.doi.org/10.1109/infocom.2017.8057026
http://dx.doi.org/10.1109/infocom.2017.8057026
http://dx.doi.org/10.1109/infocom.2017.8057026
http://dx.doi.org/10.1109/mcom.2016.7537182
http://dx.doi.org/10.1109/mcom.2016.7537182
http://dx.doi.org/10.1109/mcom.2016.7537182
http://dx.doi.org/10.1587/transinf.2014ntp0010
http://dx.doi.org/10.1587/transinf.2014ntp0010
http://dx.doi.org/10.1587/transinf.2014ntp0010
http://dx.doi.org/10.1587/transcom.2017itp0006
http://dx.doi.org/10.1587/transcom.2017itp0006
http://dx.doi.org/10.1587/transcom.2017itp0006
http://dx.doi.org/10.1109/jiot.2017.2666799
http://dx.doi.org/10.1109/jiot.2017.2666799
http://dx.doi.org/10.1109/jiot.2017.2666799
http://dx.doi.org/10.1109/TNSE.2018.2872049
http://dx.doi.org/10.1109/TNSE.2018.2872049
http://dx.doi.org/10.1109/TNSE.2018.2872049
http://dx.doi.org/10.1109/mnet.2014.6963806
http://dx.doi.org/10.1109/mnet.2014.6963806
http://dx.doi.org/10.1109/mnet.2014.6963806
http://dx.doi.org/10.1109/mcom.2015.7060502
http://dx.doi.org/10.1109/mcom.2015.7060502
http://dx.doi.org/10.1109/mcom.2015.7060502
https://tools.ietf.org/html/draft-irtf-icnrg-ccninfo
https://tools.ietf.org/html/draft-irtf-icnrg-ccninfo
https://tools.ietf.org/html/draft-irtf-icnrg-ccninfo
https://tools.ietf.org/html/draft-irtf-icnrg-ccninfo
https://cefore.net/
https://github.com/ProjectCCNx/ccnx
https://github.com/ProjectCCNx/ccnx
https://wiki.fd.io/view/Cicn
https://wiki.fd.io/view/Cicn
http://named-data.net/
http://named-data.net/
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxmessages
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics
https://tools.ietf.org/html/draft-irtf-icnrg-ccnxsemantics
https://github.com/IEEETCBDIN/Home/blob/master/index.md/
https://github.com/IEEETCBDIN/Home/blob/master/index.md/
https://github.com/IEEETCBDIN/Home/blob/master/index.md/
https://trac.ietf.org/trac/irtf/wiki/coin
https://trac.ietf.org/trac/irtf/wiki/coin
http://mininet.org/
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
http://dx.doi.org/10.1145/2413176.2413206
https://www.caida.org/data/
https://www.caida.org/data/
http://dx.doi.org/10.1103/physrevlett.105.158701
http://dx.doi.org/10.1103/physrevlett.105.158701
http://dx.doi.org/10.1103/physrevlett.105.158701
https://github.com/direct-code-execution/ns-3-dce
https://github.com/direct-code-execution/ns-3-dce
https://github.com/direct-code-execution/ns-3-dce
https://www.nsnam.org/
https://www.nsnam.org/
http://dx.doi.org/10.1145/2535372.2535374
http://dx.doi.org/10.1145/2535372.2535374
http://dx.doi.org/10.1145/2535372.2535374
http://dx.doi.org/10.1145/2535372.2535374


ASAEDA et al.: CEFORE: SOFTWARE PLATFORM ENABLING CONTENT-CENTRIC NETWORKING AND BEYOND

1803

Atsushi Ooka is a researcher at the Network

System Research Institute, NICT. He received

M.E. and Ph.D. degrees in the Graduate School

of Information Science and Technology, Osaka

University in 2014 and 2017, respectively. His

research interests include the design and imple-

mentation of a router in content-centric network-

ing. He is a member of the IEEE.

Kazuhisa Matsuzono is a researcher at the

Network System Research Institute, NICT. He

received a Ph.D. from Keio University in 2012.

He was a post-doctoral fellow at INRIA in 2013.

His research interests include transport proto-

cols for multimedia flows, network coding, and

information-centric networks. He is a member

of the IEEE.

Ruidong Li received a bachelor’s degree

in engineering from Zhejiang University, China

in 2001 and a doctorate of engineering from the

University of Tsukuba in 2008. He is a senior

researcher at the Network System Research In-

stitute, NICT. He is a chair of the IEEE SIG on

Big Data Intelligent Networking and serves as

co-chair for the Young Researcher Group in the

Asia Future Internet Forum (AsiaFI). His current

research interests include future networks, big

data networking, information-centric networks,

internet of things, network security, and wireless networks. He is a member

of the IEEE.


