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Abstract: This paper considers a particular relationship defined over pairsaagjument
monotone Boolean functions. The relationship is of interest since we can show that if
(g, h) satisfy it then for any-argument monotone Boolean functibithere is a close rela-
tionship between the combinational and monotone network complexities of the function
(fAg)Vh. We characterise the class of pairs of functions satisfying the relationship and
show that it extends and encapsulates previous results concerning translations from combi-
national to monotone networks.
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1. Introduction

One of the most challenging problems facing researchers in computational com-
plexity theory is to pve asuperlinear lower bound on the Time Complexity of
some decision problem iMNP. The results of [Fischer and Pippenger 1979],
[Schnorr 1976] show that for any decision probldntomputable by a 2-tape
(deterministic) Turing machine in tim&(n) for inputs of lengthn, there is a
sequence of combinational networlkG,, that computef (restricted to inputs of
length n) and havingO (T (n)logT (n)) gates. So, by virtue of these simulations,

a superlinear lower bound on Time Complexity could be obtained by proving that
the combinational network complexity of some explicitly defined family of
Boolean functions wasJgnlog,n). Yet, despite the fact that ‘almost alt-
argument Boolean functions require exponentially many 2-input gates to be used
in their optimal combinational networks [Shannon 1949], the best lower bounds
obtained to date for explicitly defined families of Boolean function are only linear.
The lack of progress in analysing combinational network complexity has led to
the investigation of restricted classes of Boolean network. The motivation underly-
ing such investigations is twofold: first, in the hope that proof techniques for
bounding the complexity of restricted models may yield insights into proof tech-
nigues for the most general form of combinational networks; secondly, to derive
general network lower bounds by using efficient simulations of combinational net-
works by the restricted network class. The monotone network model — in which
only 2-input A\ andV gates are permitted — has been one of the most widely
studied of these restricted models. Although this model is incomplete — networks
within it can only realise the class of monotone Boolean functions — a number of
important advances have been made within it. Undoubtedly the most significant of
these are the methods for obtaining non-trivial bounds on specific monotone
Boolean functions as described in [Alon and Boppana 1986], [Andreev 1985], and
[Razborov 1985]. The techniques discovered have been of sufficient potency to
permit the derivation of exponential lower bounds on monotone complexity. There
remains, however, the problem of whether such results can be translated into simi-
lar bounds on combinational network size. The proof techniques developed for
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monotone Boolean networks rely heavily on combinatorial results associated with
properties of monotone computation, and it seems unlikely that these techniques
could be applied directly to combinational networks. Given that the monotone
model is tractable with respect to proving non-trivial lower bound results, it is
valuable to consider conditions under which lower bound results on monotone net-
work complexity can be directly translated into corresponding results on combina-
tional network size, i.e. to examine when efficient simulation of combinational by
monotone networks exist. The use shite functionsas advocated by [Berkowitz
1983], indicates that in many cases such translations exist. Nevertheless, although
slice functions have a number of interesting properties, cf [Dunne 1986], [Dunne
1989], [Valiant 1986] it seems to be difficult to apply the available lower bound
methods to them.

The purpose of the present paper is to examine the issue of combinational
to monotone transformations by introducing a relationship between pairs of mono-
tone Boolean functions and investigating its properties. This relationship offers a
general method for translating from combinational to monotone complexity that
subsumes the slice function transformation of [Berkowitz 1983]. In the next sec-
tion of the paper we introduce some basic definitions and notations. In Section 3
the concept of a monotone functibnbeing aceiling of a monotone functiony is
introduced. The important property of this relationship is the following.gJfh()
is a pair of monotone Boolean functions such thét a ceiling ofg, then for any
monotone Boolean functiof, we can state a precise relationship between the
combinational and monotone network complexities of the funddenf/Ag V h
Under suitable conditions, this is such that sufficiently large lower bounds on the
monotonecomplexity of F imply similar lower bounds on theombinationalcom-
plexity of f. A characterisation of those functiong, (1) such thath is a ceiling
of g is given and some properties of this class of functions derived. In Section 4
we obtain some combinatorial estimates concerning the number of such functions
within a specific class. In Section 5, we describe a mechanism for efficiently con-
structing a combinational network fdrfrom networks which compute functions
with related combinational and monotone complexity. Under suitable conditions
this shows that iff does have large combinational complexity then a related func-
tion must have large monotone complexity. Conclusions are given in Section 6.

2. Preliminary Definitions and Notation

B, denotes the set af-input Boolean functiond (X, ):{0,3" - {0,1} with for-
mal argumentsX, =<Xi, X, . . . ,X,>. M, denotes the subset &, correspond-
ing to the set oimonotoneBoolean functions, i.e. those functions with the prop-
erty that( 1<i<n

F(Xy, oo o 3 %21 0001y - - o %) S F(Xe, o oo %o L %y - - 2 0 %)
(where the ordering €1 is assumed).

If f, g OM, with argumentsX,, then f<g if Oa 0{0,1" such thatf (a¢)=1 and
g(a)=0.

A combinational networkis a directed acyclic graph comprising two types of
node: input nodes which have in-degree 0 and are associated with elem¥pis of
and gate nodes which are associated with 2-input Boolean functions. A combina-
tional network is considered to have a singlégput node,t say, which has out-
degree 0. In the obvious way, an assignment{0,1}" to X, induces a value
S(a) at the output gate, of any combinational network. Sis said to compute

f OB, if O0a0{0,1" it holds thatf (a)=S(a). A monotoneBoolean network is
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defined in a similar manner to a combinational network except that the gate func-
tions are restricted to be 2-input(disjunction) and 2-inpuf\ (conjunction). It is

well known thatf OM, if and only if there is a monotone Boolean netwdzk,

that computed.

For f OB, C(f) denotes theombinational network complexitf f, i.e. the num-

ber of gates in the smallest combinational network computingimilarly, for

f OM,, C™(f) denotes the number of gates in the smallest monotone network
realisingf, i.e. themonotone network complexiof f.

If YOX, and 70{0,}!"! then f!Y*=" denotes thesub-functionof f (in B,_y
and having argumentX, —Y) obtained by fixing the variables M to = For
Y OX, a function of the form A x is called aproduct a function of the form

. . x Oy . -
V' xis called asum It is well known that anyf CIM,, has unique minimal repre-
x Oy

sentations as a disjunction of product terms (DNF) and as a conjunction of sum
terms (CNF). The set of product terms (sum terms) occurring in such representa-
tions of f are called theprime implicants of {prime clauses of) fthese sets being
denotedPI(f) (PC(f)). For a producp or sumq, |p | (resp. |q|) will denote

the number of variables defining(resp.q).

For further background on Boolean complexity theory the reader is referred to
[Dunne 1988].

3. Ceilings of Monotone Functions

Definition 3.1: Let g, h OM, with formal argument,. h is aceiling of g if
Ox0X, g% < ptx=t .

The reason why this relationship is of interest is the following result.
Theorem 3.1:1f (g, h) are such that h is a ceiling of g then for any1¥,, with
argumentsx,, it holds

C™((fAg)Vh) < 6C((fAg)Vh) +nC™(h)

Proof: Let F(X,)=((fAg) V h)(X,). It is well known, e.g. [Dunne 1988]
(pp.239-241), that any optimal combinational netwoik, for F can be trans-
formed into a network in which negation is only applied to input nodes and the
only gate operations used afeand V. This network contains at mosiC6F )
gates (not counting the negations on input nodes). Thus if each instanoan

be replaced by some monotone Boolean functionM,,_; then we can construct

a monotonenetwork that still computes (X, ). In [Dunne 1984] it is proved
that h; is a suitable monotone Boolean function with which to reptaggeif and

only if h; satisfies

(F™0) (X =0a}) < h(Xo=0i}) < (FP7) (X, -{x})

To provethe theorem it suffices to show that choosmg- plx=t yields a cor-
rect replacement. We have

le‘::O (f/\g)l)(‘:zo \/ hlxi::o

g|xi::0 \/ h|Xi::0

g|><4-::O \ h|><1‘::1 (3_1)
px=t (3.2)

IN

IN
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(FAg)¥=t y phet
— I:|xi::l

IN

as required. (3.1) follows from the monotonicity lnf(3.2) from the definition of
ceiling and the fact that for monotone Boolean functionsind w it holds
(v=sw) => (vVw=w). O

Definition 3.2: If his a ceiling ofg and f OM,, then the @,h)-variant of f, is the
functionfAg V h

We note, in passing, thafl{, TR.; ) (where Ty, is the mth threshold functioni.e.
the function which is 1 if and only if at least inputs are 1) has the property
that TR, is a ceiling of T} and these give rise to the slice function transformation

of E%erkowitz. Similarly one extension of slice functions — the construction
(g, 'Vl(xi/\g"“:o)) — introduced in [Dunne 1992] gives a mechanism for con-
| =

structing a ceiling of any functiog.

The set of §, h) of functions inM,, such thath is a ceiling ofg is characterised
by a relationship between the prime clauses (or prime implicants) of the functions.

Definition 3.3: For f OM, with argumentsX,,,

\/—core(f) {g:q is a sum andJx OX, with x £ q it holds that f< x V q}
N—core(f) {p:p is a product anddx OX, with p £ x it holds that x N\ = f}
If Qis a set of sums,

N-cover(Q) = [] {qé\Q,q}

QuQ

Similarly if P is a set of products

V-cover(P) = [] { V p} .
pop POP

For example, suppose thatIM; is the function
f (X1, X2,X3) = (X1 V X2) N (X1 V X3)

= X V(X2 \X3).
For this choice off, Definition 3.3, gives
\/-core( f)
N=core(f) = { X AXoAX3 ; X4A\Xs ; XgNAX3 ; XoN\X3 ; X1 ; Xo ; X3}

{x1VXVxg 5 XgVXp 5 XgVXg 3 XpVX3 ; X1}

Theorem 3.2:0 g OM,, O h OM, with g and h having formal argumenks,
h is a ceiling of g = h OA\-cover(\/-core(g))
<> g 0OV-cover(N\-core(h))

Proof: It suffices to pove the first equivalence since a dual argument then estab-
lishes the second.

<: Supposeh OA-cover(V-core(g)). We provethat h is a ceiling ofg in two
stages. We first establish that for agyl\/-core(g), g is a ceiling ofg. It is
then shown that for any set of sun€@, with the property thatlq 0Q, g is a
ceiling of g, it holds thatdOh OA-cover(Q), h is a ceiling ofg. Clearly these
two results yield the<= implication.
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Let g DV—core(g). Consider anyx OX,. If x<q then gle=0 < glx=t
since ql)“" =1. On the other hand i £q then from the definition of
\/-core(g) we have thag<x; Vg Thus

g < (xVa)* T =q=s g
It follows thatOx OX,, g% < q'*~*, i.e. thatq is a ceiling ofg.

Now supposeQ is a set of products such thatg 0Q, q is a ceiling ofg.
Let h OA-cover(Q), so thath= é\ g, for some subse@' of Q. Sinceq is a

ceiling of g for everyq 0Q" we hqave
0% 0X, g/%7% < ql*=t
Hence

[%:=0 _ | %= %=1 _ pl%:=1
Ox OX, g _qé\Q’g sqé\Q’q = h
proving thath is a ceiling ofg.
=: Suppose thah is a ceiling ofg. Leth= A\ q, for some set of sumQ. It is
sufficient to show thaflq OQ, g OV-core( gqfQ
Let g 0Q, so thath<q. Sinceh is a ceiling ofg, it follows thatOx 00X,

g|>§I=Osh|xi:=1Sq|xi;=1
Hence,Ox OX,, g/ %% = q!*=*png!* =0,
But Ox OX,
g = (x Vg ngTt
= (xi\/(q'xi:zll\glﬁizo))/\glm::l
= (x V qlw:=1)/\(xi V g'x‘::o)/\glxi’zl
< (x VglTh

Now if x ¢ g, thenq'*“*=q and thusdx OX,, such thatx£q we have
g < (xVg*©') = xVq
proving thatq OV-core(g) as equired. O .

For the exampld (x4, X5, X3)=X1 V (X, /AX3), from Theorem 3.2, using the def-
initions of N\-cover andV/-cover, the table below (in which we writey for x /\y)
enumerates all of the appropriaggeand h for f.

{h:his a ceiling of f} {g: fis a ceiling of g}

1 0

X1 VX5V X3 X1 Xo X3

X1V Xz, X1V X3, X2V X3 X1 X2, X1X3, X2X3

Xl X11 X21 X3

X1 (X2 VX3) X1 (X2 X3), X2 (X1 VX3), X3(X1VX3)
X1V XoX3, X5V X1X3, X3V X1X5 X1V XoX3, XoVX1X3, X3V X1X5

(X1 VX)) (X1 VX3) (X2 V X3) X1X2 V X1 X3V X5X3

Table 1: Ceiling Properties of =x; V/ (x5 A X3)

The next result shows that the constructfdhg V h, whereh is a ceiling ofg is,
in a weak sense, equivalent to the characterisation of functions which can replace
-X; as described in the proof of Theorem 3.1.
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Theorem 3.3:Let fOM, with argumentsX,.
i. If f(X )= (FAG V H)(X,) where HX,,) is a ceiling of @X,) and
’—| OMh, thenq %_[Xn, Oh, OM,,_; (defined only in terms of H) such

thatf’“ Coh < T

i. If Ox OX,, Oh OM,_; such that t%7° < h < %= then OG, H OM,
(defined only in terms of )hsuch that EFAG V H (for some HIM,) and
with H a celling of G

Proof: (i) is immediate from the definition of ceiling, by choosihg=H %=1

For (i), sincex OX,

R Tt LA B
and
fo= 1970yt = (g v e e
we have,
f=fAMVh) ; f=xARVS
Hence
f= /i\(x|Vh)VV(x|/\h)

Let G(X, )—/\ (xVh), H(X,)= v (x Ahy). ThenG'=% <n <H!**! and
thusH is a ce|I|ng ofG. O
An immediate consequence of Theorem 3.2 is that we can define functionals:

Min:M, - M, ; Max:M, - M,
by

Min(g)(Xn)
Max(h)(X,)

g OV- core(g) )(X )
P)(Xn)

p ONA-core(h)

and for these, it is easy to see that
. 0 h OM, Min(g)<h if and only ifh is a ceiling ofg.
. 0 g OM, g<sMax(h) if and only if h is a ceiling ofg.
With our example functionf =x; VV (x,/\X3), we get that
Min(f) = x; A(XoVX3) 5 Max(f) = x VX,V Xs.

It may be the case, however, tidin(f) and Max(f) are uninteresting functions
compared withf. This behaviour is illustrated by
Lemma 3.1: O f OM, with argumentsX,, it holds that

Min(f) < f < Max(f)

Proof: Consider any prime clausg, say, of f. Clearly sincelx OX, it is the
case thatf<q<qVx, it follows that g OV-core(f). Similarly, for any prime
implicant, p, of f we havep OA\-core(f). It follows that

Min(f) = fAMIn(f) ; Max(f) = fV Max(f)
from which the lemma is immediatex
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If it is the case thag=Min (g), then for any functiorh such thath is a ceiling
of g and anyf OOM, it holds that

(fAg)Vh = (fAg)VMin(g)Vh = Min(g)Vh = h
Similarly if h=Max(h) then
(fAg)Vh = h
Thus in such cases the translation described by Theorem 3.1 would be of no inter-

est. We therefore wish to identify necessary and sufficient conditionsCivi,,
which will establish wheMin (f)<f and similarlyf <Max (f).

Definition 3.4: Let f OM, with argumentsX,. We say thatf has adisjunctive
soft-core(alternativelyf is adisjunctive soft-core functignf

Og OV-core(f) f<q
f has aconjunctive soft-cordalternatively,f is a conjunctive soft-core functionf
Op ON-core(f) p<f
f has adisjunctive hard-core(resp. conjunctive hard-core if g OV-core(f)
(resp.Op OA-core( f)) such thatf£q (resp.p£f).
Theorem 3.4:0 f OM,, with arguments{,:
i. Min ( f) < fif and only if f has a disjunctive hard-core.
. f <Max(f) if and only if f has a conjunctive hard-core.
Proof: We prove(i) only, since (ii) follows by a dual argument. LECIM, with
argumentsX,,. Suppose thatMin (f)<f. By definition Min(f) = A q
and, sincePC(f) 0V-core(f), it follows that @ EVFeore(

Min(f) = fA( A q)
qbQ

where

Q = {q:f£q and gOV-core(f) }

If Q=0 thenMin (f)=f. SinceMin(f)<f so Q is non-empty, i.ef has a dis-
junctive hard-core.

On the other hand, suppog$ehas a disjunctive hard-g(or_QT say, and )I(etg 0Q.

By definition f£q so there existsr0{0,1}" such thatf "= :>(1._andqI EY

g OV-core(f) and thereforeMin(f)=q /A Min(f) thus Min(f)| "="=0 also. This
proves thatMin(f)<f as claimed. O

4. The number of hard-core functions

In this section we give some estimates on the number of monotone Boolean func-
tions within a certain class that have disjunctive hard-cores. In particular we con-
centrate on the class consisting of the monotone dualsk-f)-homogeneous
functions, denoted, y+;. Thus

Qi+t Zger {f OMn:0OqOPC(f) |q| =k+1}

Let P, (n) denote the set of all subsets of sizdrawn from{1,2, ... ,n} and
for a setS let 2 denote the set of all subsets & Since any subset
SOPy41 (n) uniquely describes the variables defining the prime clauses of some
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f 0Quya it follows that

A oo
|Qn,k+1| =2
Define the functional: 2™*") _ Q, .1 by
r
)(({31152, CR 13'}) = /_\ (V X])
i=1jOs

In this way if Cp, k41 D(Snkﬂ is some property of functions ién k+1 the problem
of determining the number of functions O+ IS equivalent to counting the
number of subsetS of Py, (n) such thaty(S) OC k1.

The specific propertyC, ., that we are interested in is that of a function having

a disjunctive hard-core. The definition below introduces the terminology we shall
use to describe the corresponding subsetd, of(n).

Definition 4.1: Let SOPy.1(n). S has ahard-core (equivalently S is a hard-core
se) if O0{s1,S2, ...,S«}0Ssuch that [n s | =k. Fort OP.(n), we say that
a setSD Py+1(n) coversthe hard-core element ff 0{s1,S2,...,S«OSsuch
that m s =t. It should be noted thaBOP,.;(n) may cover several different
hard- core elements. Finally we introduce the following sets:

HC(n, k, r) =gt {SOPy+1(n):|S|=r and S is a hardcore set}

H(n, k) =g {SOPg41(n):S is a hard-core set}

Obviously

On O
k+10

|[H(n, k)| = Zl | HC(n, k1) | .

For |H(n, k) | it is easy to show that

On 0O

2D(+1D_n | H(n, k) | I:h[lzg(:l-lg_nﬂ(

<

= S kO

For the specific cask=1 we obtain an asymptotically exact estimate.
Lemma 4.1: - OSOP,(n) such that S covers exactly n-1 hard-core elements.

Proof: Suppose, to the contrary, thatis such a set. Without loss of generality, let
{1,2,...,n-1} be the hard-core elements coveredSy hen, from the defini-
tion of hard-core element, it follows th& must contain each of the sdtg n}
for all 1<i <n-1. But this means th& also covers the hard-core elementon-
tradicting the assumption th&covered exactlyh—1 hard-core elementst

Lemma 4.2: Let r, m, rN such that

0<sms<sn-2 ; mn-m(m+1)/2 <r < (M+1)n—-(m+1)(m+2)/2.
For any SOP,(n) such that |S|=r, S covers at most m distinct hard-core ele-
ments.

Proof: (Note: The casem=n-1 givesn(n—-1)/2 as the only permissible value of
r. The onlySOP,(n) containing this number of membersRs(n) itself, which
clearly covers exactly distinct hard-core elements.)
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Let m, n,r be as in the Lemma statement &d P,(n) with | S| =r. Suppose,
that S coverst distinct hard-core element§y,,y,, ... ,Y:} say. Then for each
1<i<t since S covers the hard-core elemeytit follows from the definition of
hard-core that for alk 0{1, 2, . . . ,n} with y; ¥x we have{x, y;} OS To estab-
lish the lemma it suffices to show that (O<t<n-2)

t
| O U {x.yi}} | = tn-t(t+1)/2 (4.1)

i=1 {x:1l<x<n, x$y;}
We proceed by induction on The Inductive Base,=0, is obvious since both the
left and right-hand sides of inequality (4.1) are identically O.

Inductively assume that the inequality in (4.1) holds for all vakilesn-2 and
prove that it holds fort. Let SOP,(n) be the smallest set that coverkard-core

elements{y., ..., %} ThenS contains exactly the sets
t n
O O vyl
i=1 j=i+l
n
The setS- [] {{y.. ¥ }} still covers the hard-core elementy,,...,Vi1}

i=t+l
and is a rlnir+1imal such set. By the inductive hypothesis it contains exactly
(t-)n-t(t-1)/2 sets from Py(n). Hence S contains exactly
(t-Dn-t(t-1)/2+(n-t) = tn—t(t+1)/2 sets. This completes the Inductive Step.

The Lemma now follows easily since ai$/covering m+1 hard-core ele-
ments must contain at leash{1)n —(m+1)(m+2)/2 sets, which exceeds the max-
imum number permitted by the rangerof O

Lemma 4.3:

OnDh | _ e, qy+ OnO _
| HC(n, 1, DZI:I)l = |§1( 1) oo - 1

Proof: That |[HC(n, 1, Bg E) | =1 is immediate from the fact that there is only

one subset oP,(n) containing Eggsets, i.eP,(n), and this covers hard-core
elements. The identity

- i+1 OnO

Z (_1)I+l oo - (4.2)
i=1

follows from the Binomial Theoremo

The identity described by (4.2) is used when estimatifyr}, 1) | subsequently.
Lemma 4.4:0r, m, n ON such that

0<mz<n-2 ; mn—-mm+l) < r < (M+l)n—-(M+1)(M+2)/2
it holds that
OnO_ . ..,
HC 1 — - _1i+l DnDDDZD_nI+I(I+1)/ZB
IHC( LT = 2 (U7 5ol ronivig+y2 5

Proof: Let r, m andn be as in the Lemma statement. For eaghth 1<i<m we
defineP, (i, n) to be the set obrderedsets of size formed as follows:

Each T OP,(i, n) consists of two subsetsStart(T) followed by Re<).
The ordering of sets withistart(T) is not significant; and the ordering of
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sets withinRes{T) is not significant.Start(T) is formed by choosing ele-
ments ¢q, ...,V say) from{l1,2,...,n} and Start(T) contains the
ni—i(i+1)/2 sets fromP,(n) needed to ensure th&tart(T) covers thei
hard-core elementg,, . .. ,V. ResE}'})Dconsists of a set af-ni+i(i+1)/2

sets fromP,(n) chosen from theDZD—niH(i +1)/2 sets that have not
been used irStar(T).

Notice that typicallyT OP, (i, n) may cover more than thehard-core elements
included in Starf(T). In addition, when the ordering dbtart(T) followed by
Res(T) is ignored, the set corresponding tanay be represented more than once
in P(i, n), e.g. suppose=1 andT = <c,;Cy C3, . ..,C, S>wherec; denotes

the sets fromP,(n) needed to ensure thatis a hard-core element covered by
andSis a subset oP,(n) that does not create any new hard-core elements. Then
T appeard times inP,(1,n), i.e. in each of the forms

<Cj;Ciy--++C-1,Cs1,---,C S>

Clearly, for all 1<i <m, we have
On0d

O -ni+i(i+1)/20
. _ OnOog020
[P = 5io] r-niviG+2 5 (4-3)

We now define a partition d? (i, n) into m—i +1 setsEij (i<j<m) by
E‘j = {T OP,(i,n) : T covers exactly j hardcore elements }
Finally, for eachk, with 1<k<m

S = {SOP,(n): |S|=r and S covers exactly k hardore elements }
We have that:

| E} |

Ms

|[HC(n, L,r)| = 2 IS : [P(in)| =

J

M3

Now consider any se@ 0S. By the definition ofP, (i, n) ordered sets containing
exactly the same sets froﬁ}z(ﬂtbas are inQ occur in eachP, (i, n) for 1<i<t.

In particular there arexactly i O members ofP, (i, n) containing the same sets

from P,(n) as Q. To see this suppos® ={c4,C,, . .., ¢, S} wherec; are the
sets needed to ensure ti@atcovers a hard-core elemeyjt and S are the remain-
ing sets inQ that do not contribute to the covering of ‘one of theard-core ele-
ments. Then sets correspondingQaare formed inP, (i, n) by choosing any sub-
set of sizel from the hard-core elemenfy,, . . .,y:}; including the relevant;
sets to formStart and using the remaining-i core sets and the sets $to form
Rest

It follows from the observations in the paragraplbwethat,

|El] = |S| gitg O1<tsm, 1<ist
Thus,
i s | Ei i 0j 0
PG, = SIE 1 = J1S1g (4.4)

j=i j
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So now consider the expression

S (1) P(i,n) | (45)
i=1

From (4.4)

S U PG n) | 3 1)'“z|3|DID (4.6)

i=1 i=1
§|suz<wﬂ%%

(Th|s expressmn follows from the fact that in (4.6) the coefficient §f || is

Z( 1)I +1 |:|J

3

0o

1S 1 (= Z(l)' +1)

m
Z
m
2
j=1
(From the Binomial Theorem)

= |HC(n, 1,r) |

The Lemma now follows immediately from the size Bf(i, n) given by (4.3)
and from the expansion of (4.5) above

Theorem 4.1:Let A(m) = mn—-m(m+1)/2 where1<m<n—1. Then
n-1

On O, 020 AM)
|H (n, l) | = Z (_1)m+1 DmDZDZD + (_1)n+1
m=1
Proof: We have that,
OnO
020
I[H(n, 1) ] = 3 [HC(n 1,r)]
r=n-1
From Lemma 4.3 and Lemma 4.4, this is equal to
OnO_ OoOnO_,.\O
TS (- py O DnDDDZD na, $ (cayn OnOOC20 A1) g
m=1 r=i(m) i=1 _A(I) 0 i=1 bibo-n A(l)D
gb20
The term ¢1)* Eng occurs for each (1<i<n). Furthermore, for ¥i<n-2
Un0O

and eachr such thati(i)<r < 20 in the expression ale there is exactly one

occurrence of the summand
On0O

1y 08208
D|DD r=A@) 0
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Fori=n-1 andi =n there are terms of the form
oOnO_ ., . 0O
(ﬂanDDmDAml) o
On-1000n D—A(n—l)D !
Oo20d

On0O
—1wﬁanD 4.7)

Collecting terms with a common coefficient of1f** g?g gives for each

1<i<sn-2

B0 oANH_aiypg  BEo DDnD—/\(l)D
020 _ 020
O r - AG) = > O ] (4.8)
r=x) U O r=0 [ 0
_ oo
For the cases=n-1 andi =n the coefficients of 1) ** B?Eare both identically
1. Hence
4 i+1 On0
[H(n, L,r) | = Z (-1)*t Oi D(Coefficient from(4.8))

z( 1)|+1 DI"ID DZD () + (_1)n+l

as claimed. o

Corollary 4.1:
On0O

1
[H(n 1) ~ n220 "™

Proof: In the expression for H(n, 1) |, proved in Theorem 4.1, the dominant
positive term occurs whem=1 and the dominant negative term when=2.
Hence

OnO OnO
~ o0 "l OnO,meo20+3
|[H(n,1)| n2 o202

On0O_

n+1
2D2D 0

Corollary 4.2: The number of disjunctive hard-core functions~im Qs asymptot-
ically equal to
OnO

-n+1
n2EI2D O

5. {The combinational complexity of functions built from variant
sets

One of the important properties of Berkowitz' slice function transformation is the
following fact: given then+1 (T}, TRy, )-variants of anyf OB, {fc} say, (where
O<ksn, T§ =1, Th.q =0) the identity

n
f = f -TRs
V(A= Tha))
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holds. Thus, iff has superpolynomial combinational complexity, then we know
that someslice function off must have superpolynomial monotone complexity. In
this section we show how given agy(1M, a sequence ofi-argument monotone
Boolean functions<gg, g4, . . . , 0, >, which includesg, can be constructed with
the properties that

P1. gg=1.

P2. g, =0.

P3. O0<i<r,gu <g;.

P4. 0 0<i<r, g4 is a ceiling ofg;.
r-1

PS. D f0By, f = V (fAGV Gea )N (= 0k )-

Properties P4 and P5 establish that, provided the monotone complexity ofeach
is polynomial and is bounded atve by a plynomial inn, if f has superpolyno-
mial combinational complexity theat least one( gy, gy«+1 )-variant of f must have
superpolynomialmonotonecomplexity. In conjunction with Theorem 3.1, proving
such a bound on the monotone complexity of the approprgtey ., )-variant of

f would give the same size of bound on the combinational complexity of

Note: For the explicit construction developed below, it is possible that the condi-
tion ‘r is bounded by a kpolynomial im is redundant, i.e. for aly OM,, this con-
struction guarantees<n®, for somek. At present, however, we have not been
able to establish that such is the case.

Definition 5.1: The functionald : M, - M,, andA: M, - M, are defined as

M@ (X)) =wr A A (xVa)
B(O)(Xn) Zar V-V (xAp)

pOPI(g) xOX,:pgx
For g OM,, ['*(g) andA*(g) (k=0) denote thé-fold iterates of and A respec-
tively, i.e. F%(g)=A%g)=g and r*1(g)=r(r(g)). We use the convention
that[(1)=1 andA(0)=0. Finally forg OM,,
A9) =ger Min{k:T¥g)=1}
Ag) =ger Min{k:A(g)=0} .
With the convention that the empty disjunction is equivalent to 0 and the empty

conjunction equal to 1 it is clear thatg) (resp. d(g)) is well-defined for all
g UM, -{0} (resp.g OM,—{1}).

Lemma 5.1: 0 g OM, Min(I' (g)) = Max(A(g)) =g
Proof: Obvious. O
Definition 5.2: The functionaly: NxM, - M, is defined by:
O r#o-k(g) if 0sksp(g)
Mk 9) Zer O peko) (g) it pg)<kshg)+ &)
|

The functional®:NxM,xM, - M, is given by
®(k g, f) =gt (FAw(k g))V y(k+l,g) .

Lemma 5.2:
®(y(g)-k g f) = (fAT*(g)) VI*(g) (I=sk<y(9))
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®(p(9)+k g, f) = (fAA(g)) VA (g) (0<k<4(9))

Proof: Immediate from the definitions @b and ¢ given above O
Returning to our example function
f(X1,X2,X3) = X1 VXoAX3 = (X1 VX)) N (X4 VX3)
it is easily seen that(f)=2, &f)=3, and the sequence of 6 functiong,, f)
(0<i<b) is
w0, f) 1, UL f) = xqg VX VXzg 5 2,f) = f
W3, f) = Xg Ao VX Axs 5 (4,f) = Xy NxaA\xz ; ¢(5,f) =0

Theorem 5.1:0 g OM,

P1. ¢(0,9) = 1.

P2. w(y(g)+d4(g).g) = 0.

P3. O0<sk<y(g)+d(9g), w(k+l,g) < w(k 9).

P4. O0<sk<y(g)+d(g), w(k+1l,g) is a ceiling ofy(k, g).
P5 0O f0OB,

K9) + X9) -
f = V. ®(k g f)Ayp(k+l,g)

Proof:

P1: ¢(0,g) = M9 (g) = 1 from the definition of(g).

P2: ¢(Kg)+&g),g) = A%9 (g) = 0 from the definition of{ g).
P3 and P4: First suppose that I0< y(g) then

w(k+l,g) = MO E(g) = h
for some functionh say.
w(k g) = TO*(g) = r(r9**(g)) = r(h)

From Lemma 5.1, we have thBtin (I (h)) = h, henceh is a ceiling ofl"(h).
From Lemma 3.1 it follows thah<I'(h). That the inequality is strict follows
from the definition ofl sincel(h) is the function such that every prime clause
of h is a hard-core element covered b{h ).

Now suppose tha{g)<k <y g)+ag). In this case
gk g) = &M (g) = h
for some functionh say.
p(k+l,g9) = A9 (g) = AL (g)) = A(h)
From Lemma 5.1Max(A(h))=h and henceA(h) is a ceiling ofh. The result
A(h)<h now follows from Lemma 3.1 and the constructionfof

P5: Letf OB, and defineF OB, by
y(g)+\a/(g)—1

(kg F)NyYk+1,9)

Kg)ﬂ;(g)—l -
Vo fAyk )N (k+1,0)
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First suppose theft (a)=1 for somea 0{0,1}". Then there must be sonkewith
0<k < g)+ag) for which

(fAuk g)Ny(k+1,9))(a) =1
and thusf (a)=1 also.

On the other hand, suppose tlidta) =1 for somea 0{0,1}". To show that
F(a)=1 also it is sufficient to show that

Ok ¢(k g)(a)=1 ; ¢(k+l,9)(a)=0. (5.1)
From P1, P2, and P3 ae we knowthat [0 O0<k < /g)+dQ)

0 = UU9+X9).9) < w(k+lg)<wy(kg) < ¢(0,9) = 1. (5.2

Hence sincey( K9)+Xg), 9)(a)+¢(0,9)(a), it follows from (5.2) that (5.1)
holds. This is enough to establish tlidta)=1 = F (a)=1 as equired. O

6. Conclusions

In this paper we introduced the concept of a monotone Boolean furcti@ng

a ceiling of a monotone Boolean functignIt has been shown that fif is a ceil-

ing of g then the ¢, h)-variant of any monotone Boolean functidni.e. the func-

tion F=(fAg) V h is such that the monotone and combinational complexities of
F differ by at most an additive term ofC™ (h). We have described necessary
and sufficient conditions fon to be a ceiling ofy and characterised the cases for
which the §, h)-variant of f is not equivalent td. In Section 4, some combina-
torial estimates of the number of pairg ) within a specific class, having the
property that the g h)-variant is not identical tch, were obtained. The exact
counting argument given here does not extend to larger classes of monotone
Boolean function and it remains an open combinatorial problem dee p&xact
asymptotic estimates for these cases. Finally, in Section 5, we have shown how
any fOB, may be efficiently constructed given a sequence of appropriate
(g, h)-variants off. In consequence it can be seen that the slice function transfor-
mation of [Berkowitz 1983], represents a special case of the more general transla-
tion classes given by ceilings and variants as described above.
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