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Abstract: This paper considers a particular relationship defined over pairs ofn-argument
monotone Boolean functions. The relationship is of interest since we can show that if
( g, h ) satisfy it then for anyn-argument monotone Boolean functionf there is a close rela-
tionship between the combinational and monotone network complexities of the function
(f /\ g) \/ h. We characterise the class of pairs of functions satisfying the relationship and
show that it extends and encapsulates previous results concerning translations from combi-
national to monotone networks.
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1. Introduction

One of the most challenging problems facing researchers in computational com-
plexity theory is to prove a superlinear lower bound on the Time Complexity of
some decision problem inNP. The results of [Fischer and Pippenger 1979],
[Schnorr 1976] show that for any decision problemf computable by a 2-tape
(deterministic) Turing machine in timeT ( n ) for inputs of lengthn, there is a
sequence of combinational networks,Cn, that computef (restricted to inputs of
length n) and havingO ( T (n) logT (n) )  gates. So, by virtue of these simulations,
a superlinear lower bound on Time Complexity could be obtained by proving that
the combinational network complexity of some explicitly defined family of
Boolean functions wasω( n log2 n ). Yet, despite the fact that ‘almost all’n-
argument Boolean functions require exponentially many 2-input gates to be used
in their optimal combinational networks [Shannon 1949], the best lower bounds
obtained to date for explicitly defined families of Boolean function are only linear.
The lack of progress in analysing combinational network complexity has led to
the investigation of restricted classes of Boolean network. The motivation underly-
ing such investigations is twofold: first, in the hope that proof techniques for
bounding the complexity of restricted models may yield insights into proof tech-
niques for the most general form of combinational networks; secondly, to derive
general network lower bounds by using efficient simulations of combinational net-
works by the restricted network class. The monotone network model — in which
only 2-input /\ and \/ gates are permitted — has been one of the most widely
studied of these restricted models. Although this model is incomplete — networks
within it can only realise the class of monotone Boolean functions — a number of
important advances have been made within it. Undoubtedly the most significant of
these are the methods for obtaining non-trivial bounds on specific monotone
Boolean functions as described in [Alon and Boppana 1986], [Andreev 1985], and
[Razborov 1985]. The techniques discovered have been of sufficient potency to
permit the derivation of exponential lower bounds on monotone complexity. There
remains, however, the problem of whether such results can be translated into simi-
lar bounds on combinational network size. The proof techniques developed for
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monotone Boolean networks rely heavily on combinatorial results associated with
properties of monotone computation, and it seems unlikely that these techniques
could be applied directly to combinational networks. Given that the monotone
model is tractable with respect to proving non-trivial lower bound results, it is
valuable to consider conditions under which lower bound results on monotone net-
work complexity can be directly translated into corresponding results on combina-
tional network size, i.e. to examine when efficient simulation of combinational by
monotone networks exist. The use ofslice functions, as advocated by [Berkowitz
1983], indicates that in many cases such translations exist. Nevertheless, although
slice functions have a number of interesting properties, cf [Dunne 1986], [Dunne
1989], [Valiant 1986] it seems to be difficult to apply the available lower bound
methods to them.

The purpose of the present paper is to examine the issue of combinational
to monotone transformations by introducing a relationship between pairs of mono-
tone Boolean functions and investigating its properties. This relationship offers a
general method for translating from combinational to monotone complexity that
subsumes the slice function transformation of [Berkowitz 1983]. In the next sec-
tion of the paper we introduce some basic definitions and notations. In Section 3
the concept of a monotone functionh being aceiling of a monotone functiong is
introduced. The important property of this relationship is the following. If (g, h )
is a pair of monotone Boolean functions such thath is a ceiling ofg, then for any
monotone Boolean functionf, we can state a precise relationship between the
combinational and monotone network complexities of the functionF ≡ f /\ g  \/ h.
Under suitable conditions, this is such that sufficiently large lower bounds on the
monotonecomplexity of F imply similar lower bounds on thecombinationalcom-
plexity of f. A characterisation of those functions (g, h ) such thath is a ceiling
of g is given and some properties of this class of functions derived. In Section 4
we obtain some combinatorial estimates concerning the number of such functions
within a specific class. In Section 5, we describe a mechanism for efficiently con-
structing a combinational network forf from networks which compute functions
with related combinational and monotone complexity. Under suitable conditions
this shows that iff does have large combinational complexity then a related func-
tion must have large monotone complexity. Conclusions are given in Section 6.

2. Preliminary Definitions and Notation

Bn denotes the set ofn-input Boolean functionsf ( Xn ) : {0, 1}n → {0, 1} with for-
mal argumentsXn = < x1, x2 , . . . , xn > . Mn denotes the subset ofBn correspond-
ing to the set ofmonotoneBoolean functions, i.e. those functions with the prop-
erty that∀ 1≤ i ≤ n

f ( x1 , . . . , xi −1, 0,xi +1 , . . . , xn ) ≤ f ( x1 , . . . , xi −1, 1,xi +1 , . . . , xn )

(where the ordering 0< 1 is assumed).
If f, g ∈Mn with argumentsXn then f ≤ g if ∃ α ∈{0, 1}n such thatf ( α ) = 1 and
g ( α ) = 0.
A combinational networkis a directed acyclic graph comprising two types of
node: input nodes which have in-degree 0 and are associated with elements ofXn;
and gate nodes which are associated with 2-input Boolean functions. A combina-
tional network is considered to have a singleoutput node, t say, which has out-
degree 0. In the obvious way, an assignmentα ∈{0, 1}n to Xn induces a value
S( α ) at the output gate,t, of any combinational networkS. S is said to compute
f ∈Bn if ∀ α ∈{0, 1}n it holds that f ( α ) ≡ S( α ). A monotoneBoolean network is
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defined in a similar manner to a combinational network except that the gate func-
tions are restricted to be 2-input\/ (disjunction) and 2-input/\ (conjunction). It is
well known that f ∈Mn if and only if there is a monotone Boolean network,S,
that computesf.
For f ∈Bn, C( f ) denotes thecombinational network complexityof f, i.e. the num-
ber of gates in the smallest combinational network computingf. Similarly, for
f ∈Mn, Cm( f ) denotes the number of gates in the smallest monotone network
realising f, i.e. themonotone network complexityof f.
If Y ⊆ Xn and π ∈{0, 1} |Y | then f | Y := π denotes thesub-functionof f (in Bn− |Y |
and having argumentsXn − Y) obtained by fixing the variables inY to π. For
Y ⊆ Xn a function of the form

x ∈Y
/\ x is called aproduct; a function of the form

x ∈Y
\/ x is called asum. It is well known that anyf ∈Mn has unique minimal repre-

sentations as a disjunction of product terms (DNF) and as a conjunction of sum
terms (CNF). The set of product terms (sum terms) occurring in such representa-
tions of f are called theprime implicants of f(prime clauses of f) these sets being
denotedPI( f ) (PC( f )). For a productp or sumq, | p | (resp. |q | )  will denote
the number of variables definingp (resp.q).
For further background on Boolean complexity theory the reader is referred to
[Dunne 1988].

3. Ceilings of Monotone Functions

Definition 3.1: Let g, h ∈Mn with formal argumentsXn. h is a ceiling of g if

∀ xi ∈Xn g | xi := 0 ≤ h | xi := 1 •

The reason why this relationship is of interest is the following result.
Theorem 3.1: If ( g, h ) are such that h is a ceiling of g then for any f∈Mn with
argumentsXn it holds

Cm ( (f /\ g) \/ h ) ≤ 6C ( (f /\ g) \/ h ) + n Cm( h )

Proof: Let F ( Xn ) ≡ ( (f /\ g) \/ h )( Xn ). It is well known, e.g. [Dunne 1988]
(pp.239-241), that any optimal combinational network,T, for F can be trans-
formed into a network in which negation is only applied to input nodes and the
only gate operations used are/\ and \/. This network contains at most 6C( F )
gates (not counting the negations on input nodes). Thus if each instance¬ xi can
be replaced by some monotone Boolean functionhi ∈Mn−1 then we can construct
a monotonenetwork that still computesF ( Xn ). In [Dunne 1984] it is proved
that hi is a suitable monotone Boolean function with which to replace¬ xi if and
only if hi satisfies

( F | xi := 0 ) ( Xn − {xi } ) ≤ hi ( Xn − {xi } ) ≤ ( F | xi := 1 ) ( Xn − {xi } )

To prove the theorem it suffices to show that choosinghi = h | xi := 1 yields a cor-
rect replacement. We hav e

F |xi :=0 ≡ ( f /\ g ) |xi :=0 \/ h |xi :=0

≤ g |xi :=0 \/ h |xi :=0

≤ g |xi :=0 \/ h |xi :=1 (3.1)

≡ h |xi :=1 (3.2)
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≤ ( f /\ g ) |xi :=1 \/ h |xi :=1

≡ F |xi :=1

as required. (3.1) follows from the monotonicity ofh; (3.2) from the definition of
ceiling and the fact that for monotone Boolean functionsv and w it holds
( v ≤ w ) => ( v \/ w ≡ w). .
Definition 3.2: If h is a ceiling ofg and f ∈Mn, then the (g,h)-variant of f, is the
function f /\ g  \/ h. •
We note, in passing, that (Tk

n, Tk+1
n ) (whereTm

n is them-th threshold function, i.e.
the function which is 1 if and only if at leastm inputs are 1) has the property
that Tk+1

n is a ceiling ofTk
n and these give rise to the slice function transformation

of Berkowitz. Similarly one extension of slice functions — the construction

( g,
i =1
\/
n

( xi /\ g | xi :=0 ) )  —  introduced in [Dunne 1992] gives a mechanism for con-

structing a ceiling of any functiong.
The set of (g, h ) of functions inMn such thath is a ceiling ofg is characterised
by a relationship between the prime clauses (or prime implicants) of the functions.
Definition 3.3: For f ∈Mn with argumentsXn,

\/−core( f ) = { q : q is a sum and∀ x ∈Xn with x ≤ q it holds that f≤ x \/ q }

/\−core( f ) = { p : p is a product and∀ x ∈Xn with p ≤ x it holds that x /\ p≤ f}

If Q is a set of sums,

/\−cover( Q ) =
Q′ ⊆ Q
∪ {

q ∈Q′
/\ q }

Similarly if P is a set of products

\/−cover( P ) =
P′ ⊆ P
∪ {

p ∈P′
\/ p } •

For example, suppose thatf ∈M3 is the function

f ( x1, x2, x3 ) = ( x1 \/ x2 ) /\ ( x1 \/ x3 )

≡ x1 \/ ( x2 /\ x3 ).

For this choice off, Definition 3.3, gives

\/−core( f ) = { x 1 \/ x2 \/ x3 ; x1 \/ x2 ; x1 \/ x3 ; x2 \/ x3 ; x1 }

/\−core( f ) = { x 1 /\ x2 /\ x3 ; x1 /\ x2 ; x1 /\ x3 ; x2 /\ x3 ; x1 ; x2 ; x3 }

Theorem 3.2: ∀ g ∈Mn, ∀ h ∈Mn with g and h having formal argumentsXn

h is a ceiling of g  <=> h ∈ /\−cover( \/−core( g ) )

<=> g ∈ \/−cover( /\−core( h ) )

Proof: It suffices to prove the first equivalence since a dual argument then estab-
lishes the second.
<=: Supposeh ∈ /\−cover( \/−core( g ) ). We prove that h is a ceiling ofg in two
stages. We first establish that for anyq ∈ \/−core( g ), q is a ceiling ofg. It is
then shown that for any set of sums,Q, with the property that∀ q ∈Q, q is a
ceiling of g, it holds that∀ h ∈ /\−cover( Q ), h is a ceiling ofg. Clearly these
two results yield the<= implication.
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Let q ∈ \/−core( g ). Consider anyxi ∈Xn. If xi ≤ q then g | xi := 0 ≤ q | xi := 1

since q | xi := 1 = 1. On the other hand ifxi ≤ q then from the definition of
\/−core( g ) we hav e thatg ≤ xi \/ q. Thus

g | xi := 0 ≤ ( xi \/ q ) | xi := 0 = q ≤ q | xi := 1

It follows that ∀ xi ∈Xn, g |xi := 0 ≤ q | xi := 1, i.e. thatq is a ceiling ofg.
Now supposeQ is a set of products such that∀ q ∈Q, q is a ceiling ofg.

Let h ∈ /\−cover( Q ), so thath ≡
q ∈Q′

/\ q, for some subsetQ′ of Q. Since q is a

ceiling of g for everyq ∈Q′ we have

∀ xi ∈Xn g | xi := 0 ≤ q | xi := 1

Hence

∀ xi ∈Xn g | xi := 0 ≡
q ∈Q′

/\ g | xi := 0 ≤
q ∈Q′

/\ q | xi := 1 ≡ h | xi := 1

proving thath is a ceiling ofg.
=> : Suppose thath is a ceiling ofg. Let h =

q ∈Q
/\ q, for some set of sumsQ. It is

sufficient to show that∀ q ∈Q, q ∈ \/−core( g ).
Let q ∈Q, so thath ≤ q. Sinceh is a ceiling ofg, it follows that ∀ xi ∈Xn

g | xi := 0 ≤ h | xi := 1 ≤ q | xi := 1

Hence,∀ xi ∈Xn, g | xi := 0 ≡ q | xi := 1 /\ g | xi := 0.
But ∀ xi ∈Xn

g ≡ ( xi \/ g | xi := 0 ) /\ g | xi := 1

≡ ( xi \/ ( q | xi := 1 /\ g | xi := 0 ) ) /\ g | xi := 1

≡ ( xi \/ q | xi := 1 ) /\ ( xi \/ g | xi := 0 ) /\ g | xi := 1

≤ ( xi \/ q | xi := 1 )

Now if xi ≤ q, thenq | xi := 1 ≡ q and thus∀ x ∈Xn such thatx ≤ q we have

g ≤ ( x \/ q | x := 1 ) ≡ x \/ q

proving thatq ∈ \/−core( g ) as required. .
For the examplef ( x1, x2, x3 ) = x1 \/ ( x2 /\ x3 ), from Theorem 3.2, using the def-
initions of /\-cover and\/-cover, the table below (in which we writexy for x /\ y)
enumerates all of the appropriateg and h for f.

{ h : h is a ceiling of f } { g: f is a ceiling of g }
1 0
x1 \/ x2 \/ x3 x1 x2 x3
x1 \/ x2, x1 \/ x3, x2 \/ x3 x1 x2, x1 x3, x2 x3
x1 x1, x2, x3
x1 ( x2 \/ x3 ) x1 ( x2 \/ x3 ), x2 ( x1 \/ x3 ), x3 ( x1 \/ x2 )
x1 \/ x2x3, x2 \/ x1x3, x3 \/ x1x2 x1 \/ x2x3, x2 \/ x1x3, x3 \/ x1x2
( x1 \/ x2 ) ( x1 \/ x3 ) ( x2 \/ x3 ) x1x2 \/ x1x3 \/ x2x3

Table 1: Ceiling Properties off = x1 \/ ( x2 /\ x3 )
The next result shows that the constructionf /\ g  \/ h, whereh is a ceiling ofg is,
in a weak sense, equivalent to the characterisation of functions which can replace
¬ xi as described in the proof of Theorem 3.1.
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Theorem 3.3: Let f ∈Mn with argumentsXn.
i. If f ( Xn ) ≡ ( F /\ G  \/ H ) ( Xn ) where H( Xn ) is a ceiling of G( Xn ) and

F, G, H ∈Mn then ∀ xi ∈Xn, ∃ hi ∈Mn−1 (defined only in terms of H) such
that f | xi := 0 ≤ hi ≤ f | xi := 1.

ii. If ∀ xi ∈Xn, ∃ hi ∈Mn−1 such that f| xi := 0 ≤ hi ≤ f | xi := 1 then ∃ G, H ∈Mn
(defined only in terms of hi ) such that f≡ F /\ G  \/ H  (for some F∈Mn) and
with H a ceiling of G

Proof: (i) is immediate from the definition of ceiling, by choosinghi = H | xi := 1.
For (ii), since∀ xi ∈Xn

f | xi := 0 ≡ hi /\ f | xi := 0 ; f | xi := 1 ≡ hi \/ f | xi := 1

and

f ≡ f | xi := 0 \/ xi /\ f
| xi := 1 ≡ ( xi \/ f | xi := 0 ) /\ f | xi := 1

we have,

f ≡ f /\ ( xi \/ hi ) ; f ≡ xi /\ hi \/ f

Hence

f ≡ f /\
i =1
/\
n

( xi \/ hi ) \/
i =1
\/
n

( xi /\ hi )

Let G ( Xn ) ≡
i =1
/\
n

( xi \/ hi ), H ( Xn ) ≡
i =1
\/
n

( xi /\ hi ). Then G | xi := 0 ≤ hi ≤ H | xi := 1 and

thus H is a ceiling ofG.
An immediate consequence of Theorem 3.2 is that we can define functionals:

Min : Mn → Mn ; Max : Mn → Mn

by

Min( g )( Xn ) = (
q ∈ \/−core(g)

/\ q ) ( Xn )

Max( h )( Xn ) = (
p ∈ /\−core(h)

\/ p ) ( Xn )

and for these, it is easy to see that
• ∀ h ∈Mn Min( g ) ≤ h if and only if h is a ceiling ofg.
• ∀ g ∈Mn g ≤ Max( h ) if and only if h is a ceiling ofg.
With our example function,f = x1 \/ ( x2 /\ x3 ), we get that

Min( f ) = x1 /\ ( x2 \/ x3 ) ; Max( f ) = x1 \/ x2 \/ x3.

It may be the case, however, thatMin( f ) and Max( f ) are uninteresting functions
compared withf. This behaviour is illustrated by
Lemma 3.1: ∀ f ∈Mn with argumentsXn it holds that

Min ( f ) ≤ f ≤ Max ( f )

Proof: Consider any prime clause,q say, of f. Clearly since∀ xi ∈Xn it is the
case thatf ≤ q ≤ q \/ xi , it follows that q ∈ \/−core( f ). Similarly, for any prime
implicant, p, of f we havep ∈ /\−core( f ). It follows that

Min ( f ) ≡ f /\ Min ( f ) ; Max ( f ) ≡ f \/ Max ( f )

from which the lemma is immediate.
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If it is the case thatg = Min ( g ), then for any functionh such thath is a ceiling
of g and anyf ∈Mn it holds that

( f /\ g ) \/ h ≡ ( f /\ g ) \/ Min ( g ) \/ h ≡ Min ( g ) \/ h ≡ h

Similarly if h = Max ( h ) then

( f /\ g ) \/ h ≡ h

Thus in such cases the translation described by Theorem 3.1 would be of no inter-
est. We therefore wish to identify necessary and sufficient conditions onf ∈Mn
which will establish whenMin ( f ) < f and similarly f < Max ( f ).
Definition 3.4: Let f ∈Mn with argumentsXn. We say thatf has adisjunctive
soft-core(alternatively f is a disjunctive soft-core function) if

∀ q ∈ \/−core( f ) f ≤ q

f has aconjunctive soft-core(alternatively, f is a conjunctive soft-core function) if

∀ p ∈ /\−core( f ) p ≤ f

f has a disjunctive hard-core(resp. conjunctive hard-core) if ∃ q ∈ \/−core( f )
(resp.∃ p ∈ /\−core( f )) such thatf ≤ q (resp.p ≤ f). •
Theorem 3.4:∀ f ∈Mn with argumentsXn:
i. Min ( f ) < f  if and only if f has a disjunctive hard-core.
ii. f < Max( f ) if and only if f has a conjunctive hard-core.
Proof: We prove (i) only, since (ii) follows by a dual argument. Letf ∈Mn with
argumentsXn. Suppose thatMin ( f ) < f . By definition Min ( f ) =

q ∈ \/−core(f )
/\ q

and, sincePC( f ) ⊆ \/−core( f ), it follows that

Min ( f ) ≡ f /\ (
q ∈Q
/\ q )

where

Q = { q : f ≤ q and q∈ \/−core( f ) }

If Q = ∅ then Min ( f ) = f. Since Min( f ) < f so Q is non-empty, i.e.f has a dis-
junctive hard-core.
On the other hand, supposef has a disjunctive hard-core,Q say, and letq ∈Q.
By definition f ≤ q so there existsπ ∈{0, 1}n such thatf |Xn := π = 1 and q |Xn := π = 0.
q ∈ \/−core(f ) and thereforeMin( f ) ≡ q /\ Min( f ) thus Min( f ) | Xn := π = 0 also. This
proves thatMin( f ) < f as claimed.

4. The number of hard-core functions

In this section we give some estimates on the number of monotone Boolean func-
tions within a certain class that have disjunctive hard-cores. In particular we con-
centrate on the class consisting of the monotone duals of (k+1)-homogeneous
functions, denotedQ̃n,k+1. Thus

Q̃n,k+1 =def { f ∈Mn : ∀ q ∈PC( f ) | q | = k+1 }

Let Pr ( n ) denote the set of all subsets of sizer drawn from {1, 2 , . . . ,n } and
for a set S, let 2S denote the set of all subsets ofS. Since any subset
S⊆ Pk+1 ( n ) uniquely describes the variables defining the prime clauses of some
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f ∈Q̃n,k+1 it follows that

| Q̃n,k+1 | = 2

k+1

n



Define the functionalχ : 2Pk+1( n ) → Q̃n,k+1 by

χ( { s1, s2 , . . . , sr } ) =
i =1
/\
r

(
j ∈si

\/ xj )

In this way if Cn,k+1 ⊆ Q̃n,k+1 is some property of functions inQ̃n,k+1 the problem
of determining the number of functions inCn,k+1 is equivalent to counting the
number of subsetsS of Pk+1( n ) such thatχ( S) ∈Cn,k+1.
The specific propertyCn,k+1 that we are interested in is that of a function having
a disjunctive hard-core. The definition below introduces the terminology we shall
use to describe the corresponding subsets ofPk+1( n ).
Definition 4.1: Let S⊆ Pk+1(n). S has ahard-core (equivalentlyS is a hard-core

set) if ∃ { s1, s2 , . . . , sn−k } ⊆ S such that |
i =1
∩

n−k

si | = k. For t ∈Pk(n), we say that

a setS⊆ Pk+1(n) coversthe hard-core element tif ∃ { s1, s2 , . . . , sn−k } ⊆ S such

that
i =1
∩

n−k

si = t. It should be noted thatS⊆ Pk+1( n ) may cover sev eral different

hard-core elements. Finally we introduce the following sets:

HC( n, k, r ) =def { S ⊆ Pk+1( n ) :  |S| = r and S is a hard−core set }

H( n, k ) =def { S ⊆ Pk+1( n ) : S is a hard−core set }

Obviously

| H ( n, k ) | =
r =1
Σ



k+1

n



| HC( n, k, r ) |  •

For | H ( n, k ) |  it is easy to show that

2

k+1

n

 − n+k

≤ | H( n, k ) | ≤ 

k
n

 2


k+1

n

 − n+k

For the specific casek = 1 we obtain an asymptotically exact estimate.
Lemma 4.1: ¬ ∃ S⊆ P2( n ) such that S covers exactly n-1 hard-core elements.
Proof: Suppose, to the contrary, thatS is such a set. Without loss of generality, let
{ 1, 2 , . . . ,n−1 } be the hard-core elements covered byS. Then, from the defini-
tion of hard-core element, it follows thatS must contain each of the sets{ i , n }
for all 1≤ i ≤ n−1. But this means thatS also covers the hard-core elementn con-
tradicting the assumption thatS covered exactlyn−1 hard-core elements.
Lemma 4.2: Let r, m, n∈N such that

0≤ m ≤ n−2 ; mn− m(m+1)/2 ≤ r < (m+1)n − (m+1)(m+2)/2.

For any S⊆ P2( n ) such that |S|=r, S covers at most m distinct hard-core ele-
ments.
Proof: (Note: The casem = n−1 giv esn (n−1)/2 as the only permissible value of
r. The onlyS⊆ P2( n ) containing this number of members isP2( n ) itself, which
clearly covers exactlyn distinct hard-core elements.)
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Let m, n, r be as in the Lemma statement andS⊆ P2( n ) with | S | = r. Suppose,
that S covers t distinct hard-core elements:{ y 1, y2 , . . . , yt } say. Then for each
1≤ i ≤ t since S covers the hard-core elementyi it follows from the definition of
hard-core that for allx ∈{1, 2 , . . . ,n} with yi = x we have{ x, yi } ∈S. To estab-
lish the lemma it suffices to show that∀ t (0≤ t ≤ n−2)

|
i =1
∪

t

{ x : 1≤ x ≤ n, x = yi }
∪ { { x, yi } } | = tn − t (t +1)/2 (4.1)

We proceed by induction ont. The Inductive Base,t =0, is obvious since both the
left and right-hand sides of inequality (4.1) are identically 0.
Inductively assume that the inequality in (4.1) holds for all values< t ≤ n−2 and
prove that it holds fort. Let S⊆ P2( n ) be the smallest set that coverst hard-core
elements,{ y 1 , . . . , yt }. ThenS contains exactly the sets

i =1
∪

t

j =i +1
∪

n

{ { yi , yj } }

The set S−
i =t +1
∪

n

{ { yt , yi } } still covers the hard-core elements{ y 1 , . . . , yt −1 }

and is a minimal such set. By the inductive hypothesis it contains exactly
(t −1)n − t (t −1)/2 sets from P2( n ). Hence S contains exactly
(t −1)n − t (t −1)/2+ (n−t) = tn − t (t +1)/2 sets. This completes the Inductive Step.

The Lemma now follows easily since anyS covering m+1 hard-core ele-
ments must contain at least (m+1)n − (m+1)(m+2)/2 sets, which exceeds the max-
imum number permitted by the range ofr.
Lemma 4.3:

| HC ( n, 1, 


2
n


 ) | =

i =1
Σ
n

(−1)i +1



i
n


 = 1

Proof: That |HC ( n, 1, 


2
n


 ) | = 1 is immediate from the fact that there is only

one subset ofP2( n ) containing 


2
n


 sets, i.e.P2( n ), and this coversn hard-core

elements. The identity

i =1
Σ
n

(−1)i +1



i
n


 = 1 (4.2)

follows from the Binomial Theorem. .
The identity described by (4.2) is used when estimating |H ( n, 1 ) |  subsequently.
Lemma 4.4: ∀ r, m, n ∈N such that

0 ≤ m ≤ n−2 ; mn−m(m+1) ≤ r < (m+1)n−(m+1)(m+2)/2

it holds that

| HC ( n, 1, r ) | =
i =1
Σ
m

(−1)i +1



i
n








r − ni + i (i +1)/2



2
n


 − ni + i (i +1)/2





Proof: Let r, m and n be as in the Lemma statement. For eachi with 1≤ i ≤ m we
definePr ( i, n ) to be the set oforderedsets of sizer formed as follows:

Each T ∈Pr ( i, n ) consists of two subsets:Start(T) followed by Rest(T).
The ordering of sets withinStart( T ) is not significant; and the ordering of
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sets withinRest(T) is not significant.Start(T) is formed by choosingi ele-
ments (y1 , . . . , yi , say) from {1, 2 , . . . ,n} and Start(T) contains the
ni −i (i +1)/2 sets fromP2(n) needed to ensure thatStart(T) covers thei
hard-core elementsy1 , . . . , yi . Rest(T) consists of a set ofr −ni +i (i +1)/2
sets from P2(n) chosen from the


2
n


 − ni + i (i +1)/2 sets that have not

been used inStart(T).
Notice that typicallyT ∈Pr ( i, n ) may cover more than thei hard-core elements
included in Start(T). In addition, when the ordering ofStart(T) followed by
Rest(T) is ignored, the set corresponding toT may be represented more than once
in Pr ( i, n ), e.g. supposei =1 andT = < c 1 ; c2, c3 , . . . , ct , S > wherecj denotes
the sets fromP2(n) needed to ensure thatj is a hard-core element covered byT
and S is a subset ofP2( n ) that does not create any new hard-core elements. Then
T appearst times inPr ( 1, n ), i.e. in each of the forms

< cj ; c1 , . . . , cj −1, cj +1 , . . . , ct , S >

Clearly, for all 1≤ i ≤ m, we hav e

| Pr ( i, n ) | = 


i
n








r − ni + i (i +1)/2



2
n


 − ni + i (i +1)/2





(4.3)

We now define a partition ofPr ( i, n ) into m−i +1 setsEj
i (i ≤ j ≤ m) by

Ej
i = { T ∈ Pr ( i, n ) : T covers exactly j hard−core elements }

Finally, for eachk, with 1≤ k ≤ m

Sk = { S ⊆ P2( n ) :  |S| = r and S covers exactly k hard−core elements }

We hav e that:

| HC ( n, 1, r ) | =
i =1
Σ
m

| Si | ; | Pr ( i, n ) | =
j =i
Σ
m

| Ej
i |

Now consider any setQ ∈St . By the definition ofPr ( i, n ) ordered sets containing
exactly the same sets fromP2( n ) as are inQ occur in eachPr ( i, n ) for 1≤ i ≤ t.
In particular there areexactly 


i
t

 members ofPr ( i, n ) containing the same sets

from P2( n ) as Q. To see this supposeQ = { c 1, c2 , . . . , ct , S } where cj are the
sets needed to ensure thatQ covers a hard-core elementyj and S are the remain-
ing sets inQ that do not contribute to the covering of one of thet hard-core ele-
ments. Then sets corresponding toQ are formed inPr ( i, n ) by choosing any sub-
set of sizei from the hard-core elements{ y 1 , . . . , yt }; including the relevantcj
sets to formStart; and using the remainingt −i core sets and the sets inS to form
Rest.

It follows from the observations in the paragraph above that,

| Et
i | = | St | 


i
t

 ∀ 1≤ t ≤ m, 1≤ i ≤ t

Thus,

| Pr ( i, n ) | =
j =i
Σ
m

| Ej
i | =

j =i
Σ
m

| Sj | 


i
j

 (4.4)
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So now consider the expression

i =1
Σ
m

(−1)i +1 | Pr ( i, n ) |  (4.5)

From (4.4)

i =1
Σ
m

(−1)i +1 | Pr ( i, n ) | =
i =1
Σ
m

(−1)i +1

j =i
Σ
m

| Sj | 


i
j

 (4.6)

=
j =1
Σ
m

| Sj | (
i =1
Σ
j

(−1)i +1



i
j

 )

(This expression follows from the fact that in (4.6) the coefficient of |Sj | is

i =1
Σ
j

(−1)i +1



i
j

.)

=
j =1
Σ
m

| Sj | (−
i =0
Σ
j

(−1)i 


i
j

 + 1 )

=
j =1
Σ
m

| Sj |

(From the Binomial Theorem)

= | HC( n, 1, r ) |

The Lemma now follows immediately from the size ofPr ( i, n ) giv en by (4.3)
and from the expansion of (4.5) above.
Theorem 4.1: Let λ( m ) = mn− m(m+1)/2 where1≤ m ≤ n−1. Then

| H ( n, 1 ) | =
m=1
Σ
n−1

( −1 )m+1



m
n


 2


2
n


 − λ( m )

+ ( −1 )n+1

Proof: We hav e that,

| H ( n, 1 ) | =
r =n−1
Σ



2
n




| HC ( n, 1, r ) |

From Lemma 4.3 and Lemma 4.4, this is equal to

m=1
Σ
n−2

r =λ(m)
Σ

λ(m+1)−1

i =1
Σ
m

(−1)i +1



i
n








r − λ(i )



2
n


 − λ(i )





+
i =1
Σ
n

(−1)i +1



i
n












2
n


 − λ(i )




2
n


 − λ(i )






The term (−1)i +1



i
n


 occurs for eachi (1≤ i ≤ n). Furthermore, for 1≤ i ≤ n−2

and eachr such thatλ( i ) ≤ r ≤ 


2
n


, in the expression above there is exactly one

occurrence of the summand

(−1)i +1



i
n








r − λ(i )



2
n


 − λ(i )




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For i = n−1 and i = n there are terms of the form

(−1)n 


n−1
n












2
n


 − λ(n−1)




2
n


 − λ(n−1)






; (−1)n+1



n
n


 (4.7)

Collecting terms with a common coefficient of (−1)i +1



i
n


 gives for each

1≤ i ≤ n−2

r = λ(i )
Σ



2
n








r − λ(i )



2
n


 − λ(i )





=
r = 0
Σ




2
n


−λ(i )





r



2
n


 − λ(i )





(4.8)

= 2


2
n


 − λ(i )

For the casesi = n−1 and i = n the coefficients of (−1)i +1



i
n


 are both identically

1. Hence

| H ( n, 1, r ) | =
i =1
Σ
n

(−1)i +1



i
n


 ( Coefficient from(4.8) )

=
i =1
Σ
n−1

(−1)i +1



i
n


 2


2
n


 − λ(i )

+ (−1)n+1

as claimed.
Corollary 4.1:

| H ( n, 1 ) | ˜ n 2


2
n


 − n + 1

Proof: In the expression for |H (n, 1) | , proved in Theorem 4.1, the dominant
positive term occurs whenm=1 and the dominant negative term whenm=2.
Hence

| H ( n, 1 ) | ˜ n 2


2
n


 − n + 1

− 


2
n


 2


2
n


 − 2n + 3

˜ n 2


2
n


 − n + 1

Corollary 4.2: The number of disjunctive hard-core functions in Q˜
n, 2 is asymptot-

ically equal to

n 2


2
n


 − n + 1

5. The combinational complexity of functions built from variant
sets

One of the important properties of Berkowitz’ slice function transformation is the
following fact: given then+1 (Tk

n, Tk+1
n )-variants of anyf ∈Bn, { fk } say, (where

0≤ k ≤ n, T0
n ≡ 1, Tn+1

n ≡ 0) the identity

f ≡
k=0
\/
n

( fk /\ ( ¬ Tk+1
n ) )
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holds. Thus, if f has superpolynomial combinational complexity, then we know
that someslice function of f must have superpolynomial monotone complexity. In
this section we show how giv en anyg ∈Mn a sequence ofn-argument monotone
Boolean functions< g 0, g1 , . . . , gr > , which includesg, can be constructed with
the properties that
P1. g0 ≡ 1.
P2. gr ≡ 0.
P3. ∀ 0≤ i < r , gi +1 < gi .
P4. ∀ 0≤ i < r , gi +1 is a ceiling ofgi .

P5. ∀ f ∈Bn, f ≡
k=0
\/

r −1

( f /\ gk \/ gk+1 ) /\ ( ¬ gk+1 ).

Properties P4 and P5 establish that, provided the monotone complexity of eachgk
is polynomial andr is bounded above by a  polynomial in n, if f has superpolyno-
mial combinational complexity thenat least one( gk, gk+1 )-variant of f must have
superpolynomialmonotonecomplexity. In conjunction with Theorem 3.1, proving
such a bound on the monotone complexity of the appropriate (gk, gk+1 )-variant of
f would give the same size of bound on the combinational complexity off.
Note: For the explicit construction developed below, it is possible that the condi-
tion ‘r is bounded by a polynomial inn’ is redundant, i.e. for allg ∈Mn this con-
struction guaranteesr ≤ nk, for somek. At present, however, we hav e not been
able to establish that such is the case.
Definition 5.1: The functionalsΓ : Mn → Mn and ∆ : Mn → Mn are defined as

Γ ( g ) ( Xn ) =def
q ∈PC( g )

/\
x ∈Xn : x ≤ q

/\ ( x \/ q )

∆ ( g ) ( Xn ) =def
p ∈PI( g )

\/
x ∈Xn : p ≤ x

\/ ( x /\ p )

For g ∈Mn, Γk( g ) and ∆k( g ) (k ≥ 0) denote thek-fold iterates ofΓ and ∆ respec-
tively, i.e. Γ0( g ) = ∆0( g ) = g and Γk+1( g ) = Γ ( Γk ( g ) ). We use the convention
that Γ( 1 )= 1 and∆( 0 )= 0. Finally for g ∈Mn,

γ( g ) =def min { k : Γk( g ) ≡ 1 }

δ( g ) =def min { k : ∆k( g ) ≡ 0 } •

With the convention that the empty disjunction is equivalent to 0 and the empty
conjunction equal to 1 it is clear thatγ( g ) (resp. δ ( g )) is well-defined for all
g ∈Mn − {0} (resp.g ∈Mn − {1}).
Lemma 5.1: ∀ g ∈Mn Min ( Γ ( g ) ) ≡ Max ( ∆ ( g ) ) ≡ g
Proof: Obvious.
Definition 5.2: The functionalψ : N × Mn → Mn is defined by:

ψ( k, g ) =def




∆k − γ( g ) ( g ) if γ (g) ≤ k ≤ γ( g ) + δ( g )

Γγ( g ) − k ( g ) if 0 ≤ k ≤ γ ( g )

The functionalΦ : N × Mn × Mn → Mn is given by

Φ( k, g , f ) =def ( f /\ ψ ( k, g ) ) \/ ψ ( k+1, g ) •

Lemma 5.2:

Φ ( γ ( g ) − k, g, f ) ≡ ( f /\ Γk ( g ) ) \/ Γk−1 ( g ) (1≤ k ≤ γ ( g ))
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Φ ( γ ( g ) + k, g, f ) ≡ ( f /\ ∆k ( g ) ) \/ ∆k+1 ( g ) (0≤ k < δ ( g ))

Proof: Immediate from the definitions ofΦ and ψ given above.
Returning to our example function

f ( x1, x2, x3 ) = x1 \/ x2 /\ x3 ≡ ( x1 \/ x2 ) /\ ( x1 \/ x3 )

it is easily seen that,γ( f ) = 2, δ( f ) = 3, and the sequence of 6 functions,ψ( i, f )
(0≤ i ≤ 5) is

ψ( 0, f ) = 1 ; ψ( 1, f ) = x1 \/ x2 \/ x3$ ; ψ( 2, f ) = f

ψ( 3, f ) = x1 /\ x2 \/ x1 /\ x3 ; ψ( 4, f ) = x1 /\ x2 /\ x3 ; ψ( 5, f ) = 0

Theorem 5.1: ∀ g ∈Mn

P1. ψ ( 0, g ) ≡ 1.
P2. ψ ( γ ( g ) + δ ( g ), g ) ≡ 0.
P3. ∀ 0≤ k < γ ( g ) + δ ( g ), ψ ( k+1, g ) < ψ ( k, g ).
P4. ∀ 0≤ k < γ ( g ) + δ ( g ), ψ ( k+1, g ) is a ceiling ofψ ( k, g ).
P5 ∀ f ∈Bn

f ≡
k=0
\/

γ(g) + δ(g)

Φ ( k, g, f ) /\ ψ ( k+1, g )

Proof:
P1: ψ ( 0, g ) = Γγ(g) ( g ) ≡ 1 from the definition ofγ( g ).
P2: ψ ( γ(g) + δ( g ), g ) = ∆δ(g) ( g ) ≡ 0 from the definition ofδ( g ).
P3 and P4: First suppose that 0≤ k < γ ( g ) then

ψ ( k+1, g ) = Γγ(g)−k−1 ( g ) = h

for some function,h say.

ψ ( k, g ) = Γγ(g)−k ( g ) = Γ ( Γγ(g)−k−1 ( g ) ) = Γ ( h )

From Lemma 5.1, we have thatMin ( Γ ( h ) ) = h, henceh is a ceiling ofΓ( h ).
From Lemma 3.1 it follows thath ≤ Γ( h ). That the inequality is strict follows
from the definition ofΓ since Γ( h ) is the function such that every prime clause
of h is a hard-core element covered byΓ( h ).

Now suppose thatγ( g ) ≤ k < γ( g ) + δ( g ). In this case

ψ ( k, g ) = ∆k−γ(g) ( g ) = h

for some function,h say.

ψ ( k+1, g ) = ∆k+1−γ(g) ( g ) = ∆( ∆k−γ(g) ( g ) ) = ∆ ( h )

From Lemma 5.1,Max ( ∆ ( h ) ) = h and hence∆( h ) is a ceiling of h. The result
∆ ( h ) < h now follows from Lemma 3.1 and the construction of∆.
P5: Let f ∈Bn, and defineF ∈Bn by

F ≡
k=0
\/

γ(g)+δ(g)−1

Φ ( k, g, f ) /\ ψ( k+1, g )

≡
k=0
\/

γ(g)+δ(g)−1

f /\ ψ( k, g ) /\ ψ( k+1, g)
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First suppose thatF ( α ) = 1 for someα ∈{0, 1}n. Then there must be somek with
0≤ k < γ(g)+δ(g) for which

( f /\ ψ( k, g ) /\ ψ( k+1, g ) ) ( α ) = 1

and thusf ( α ) = 1 also.
On the other hand, suppose thatf ( α ) = 1 for someα ∈{0, 1}n. To show that

F ( α ) = 1 also it is sufficient to show that

∃ k ψ ( k, g ) ( α ) = 1 ; ψ ( k+1, g ) ( α ) = 0. (5.1)

From P1, P2, and P3 above we knowthat ∀ 0< k  < γ(g)+δ(g)

0 ≡ ψ( γ(g)+δ(g), g ) < ψ ( k+1, g ) < ψ ( k, g ) < ψ ( 0, g ) ≡ 1. (5.2)

Hence sinceψ( γ(g)+δ(g), g)( α ) = ψ( 0, g )( α ), it follows from (5.2) that (5.1)
holds. This is enough to establish thatf ( α ) = 1 => F ( α ) = 1 as required.

6. Conclusions

In this paper we introduced the concept of a monotone Boolean functionh being
a ceiling of a monotone Boolean functiong. It has been shown that ifh is a ceil-
ing of g then the (g,h)-variant of any monotone Boolean functionf, i.e. the func-
tion F = (f /\ g) \/ h is such that the monotone and combinational complexities of
F differ by at most an additive term ofn Cm ( h ). We hav e described necessary
and sufficient conditions forh to be a ceiling ofg and characterised the cases for
which the (g, h)-variant of f is not equivalent toh. In Section 4, some combina-
torial estimates of the number of pairs (g, h) within a specific class, having the
property that the (g,h)-variant is not identical toh, were obtained. The exact
counting argument given here does not extend to larger classes of monotone
Boolean function and it remains an open combinatorial problem to prove exact
asymptotic estimates for these cases. Finally, in Section 5, we have shown how
any f ∈Bn may be efficiently constructed given a sequence of appropriate
(g, h)-variants of f. In consequence it can be seen that the slice function transfor-
mation of [Berkowitz 1983], represents a special case of the more general transla-
tion classes given by ceilings and variants as described above.
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