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Abstract

CELES is a freely available MATLAB toolbox to simulate light scattering by many spherical particles.
Aiming at high computational performance, CELES leverages block-diagonal preconditioning, a lookup-
table approach to evaluate costly functions and massively parallel execution on NVIDIA graphics processing
units using the CUDA computing platform. The combination of these techniques allows to efficiently
address large electrodynamic problems (>104 scatterers) on inexpensive consumer hardware. In this paper,
we validate near- and far-field distributions against the well-established multi-sphere T -matrix (MSTM)
code and discuss the convergence behavior for ensembles of different sizes, including an exemplary system
comprising 105 particles.

Keywords: T -matrix method, Multiple sphere scattering, Computational electrodynamics, GPU
computing, CUDA

1. Introduction

In computer-assisted investigations of light scattering and propagation, aggregates of spheres are
traditionally used to represent various types of ordered and disordered optical materials. Systems that
have been modeled as multi-sphere geometries include dust [1] and soot particles [2], sand [3], white paint
[4], photonic glasses [5, 6], chiral structures [7], ice crystals [8], arrays of plasmonic nano-particles [9] and
scattering layers in optoelectronic devices [10, 11, 12].

Whereas the individual particles show a high degree of symmetry, structure is encoded in the relative
particle configuration and size distribution. In the case of dilute particle ensembles, an individual-scattering
approximation can be applied, which allows for a probabilistic ray optics description in combination with
the Mie solution of single sphere scattering [13, 14, 15]. On the other hand, when particles are densely
packed, coherent and near-field effects become important [16, 17, 18, 19, 20, 21, 22] and a full wave-optics
treatment of the multi-particle scattering problem is required.

In this paper, we focus on the simulation of dense aggregates comprising large numbers of scattering
particles. These simulations are usually employed to study bulk properties of scattering media, such
as slabs or half-spaces of particles with a spatial dimension that is large compared to the extent of the
probing beam. When increasing the number of simulated particles, however, the computational load
induced by multiple scattering grows rapidly. In order to push the limits of feasible ensemble sizes, one
can either aim at more efficient algorithms, or at a better exploitation of available computer resources.
Existing scattering codes for multiple spheres already offer parallel execution on computer clusters [23].
With the release of a new code named CELES, we want to add a simulation environment that makes use of
the massively parallel computing capabilities offered by consumer graphics processing units (GPUs). The
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purpose of this paper is to introduce the software, to demonstrate the correctness of the calculated fields,
and to investigate the convergence behavior of simulations involving very large numbers of scattering
particles.

2. Electromagnetic scattering by N spheres

The T -matrix formalism for the simulation of electromagnetic scattering by multiple particles has
been described in many publications [24, 25] (for spherical particles, this formalism is also referred to
as the generalized multiparticle Mie-solution). Here, the theory is briefly summarized, mainly in order
to establish the notation. We consider an ensemble of N disjoint spheres Si, each characterized by its
center position ri, its radius Ri and complex refractive index ni, i = 1 . . . N . The spheres are embedded
inside a background medium with refractive index n0. For simplicity, we assume that all materials are
homogeneous, isotropic and non-magnetic. The particles are illuminated by a monochromatic incident
field Ein(r) fulfilling Maxwell’s equations in the absence of the scatterers. A harmonic time dependence
exp(−iωt) is implicitly understood for all fields and we define the background wavenumber k = n0ω/c
with c denoting the vacuum speed of light.

2.1. Scattering by a single sphere

In the case of electromagnetic scattering by one sphere, the T -matrix approach is equivalent to the
well known Mie solution. Picking out one sphere Si, we can write the total electric field as the sum of an
incoming wave and the scattered field, which are expanded in terms of regular and outgoing spherical
vector wave functions (SVWFs, see Appendix A):

E(r) = E
i
in(r) +E

i
scat(r) (1)

with

E
i
in(r) =

∑

n

ainΨ
(1)
n (r − ri) (2)

E
i
scat(r) =

∑

n

binΨ
(3)
n (r − ri). (3)

Here, ain and bin denote the SVWF coefficients of the incoming and the scattered field of the i-th sphere,
respectively, while n is a multi-index that subsumes the polarization τ = 1, 2 and the multipole indices
l = 1, 2, . . . and m = −l, . . . , l. The T -matrix relates the coefficients of the incoming field to the coefficients
of the scattered field:

bin =
∑

n′

T i
nn′ain′ . (4)

For isotropic spheres, T i
nn′ is diagonal and does not depend on m. Explicit expressions are given in

Appendix B.

2.2. Multiple scattering

In the case of multiple particles, the incoming field for each particle Si is the sum of the initial
excitation and the scattered field of all other spheres:

E
i
in(r) = Ein(r) +

∑

i′ 6=i

E
i′

scat(r) (5)

Consequently, the incoming field coefficients are given by a contribution from the initial field plus a sum
over contributions from all other particles. Whereas the former is known a priori (see Appendix C for a
derivation of the initial field coefficients in the case of Gaussian beam illumination), the latter is a linear
function of the scattered field coefficients of the other particles:

ain = aiin,n +
∑

i′ 6=i

∑

n′

W ii′

nn′bi
′

n′ . (6)
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Here, the coupling matrix W is the transposed of the SVWF translation operator A from ri′ to ri (see
Appendix A)

W ii′

nn′ = An′n(ri − ri′). (7)

Equations (4) and (6) form a coupled system of linear equations for ain and bin. Eliminating ain yields

∑

i′,n′

M ii′

nn′bi
′

n′ =
∑

n′

T i
nn′aiin,n′ (8)

with
M ii′

nn′ = δnn′δii′ −
∑

n′′

T i
nn′′W ii′

n′′n′ . (9)

The multiple scattering problem is thereby reduced to the solution of the linear system of equations (8).
When the scattered field coefficients bin have been determined, all quantities of interest can be derived
from them, including near and far-field distributions (see Appendix D).

3. The software

The CELES package is implemented in MATLAB, using an object oriented programming style. Code
design was guided by the attempt to optimize the efficiency at the computational bottleneck (that is the
solution of the linear system (8)) and following a “keep it simple” paradigm throughout the rest of the
software design process.

The software is intended to simulate light scattering by large aggregates of spheres, where the ensemble
of scattering targets is larger than the width of the incoming light ray. The appropriate initial excitation for
the simulations is thus that of a Gaussian beam (although plane waves are implemented, too). Accordingly,
the simulation output is given in terms of power reflectivity and transmittivity figures, as well as electric
near field patterns and far field intensity distributions.

3.1. Installation

The CELES toolbox for the simulation of light scattering by many spherical particles is a free
software distributed under the 3-Clause BSD License and can be downloaded from http://github.com/

disordered-photonics/celes. In order to run simulations, the following system requirements need to
be met:

• A current MATLAB installation. The code was developed and tested using MATLAB 2016b.

• A CUDA-capable NVIDIA GPU.

• A CUDA toolkit installation consistent with the GPU model and MATLAB release. Use MATLAB’s
gpuDevice command to check for the compatible toolkit version.

• A C++ compiler that MATLAB accepts for CUDA compilation. Usually, on Linux platforms
the built-in GCC C++ compiler is automatically detected and used. On Windows systems with
MATLAB 2016b, the MS Visual Studio 2013 compiler needs to be installed.

If the system requirements are met, an exemplary simulation can be started by running the CELES MAIN

script. Parameters that represent the particle configuration, the initial field as well as the numerical
settings can be specified in that script following the instructions in the comments.

3
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subset G j

Figure 1: Graphical illustration of the block-diagonal preconditioner. The coupling between nearby particles is treated in
terms of direct matrix inversion.

3.2. Computational strategy

For very large numbers of particles, the matrix M ii′

nn′ is too large to be stored in the main memory.
Instead, we make use of the fact that for an iterative solution of the linear system (8), only matrix-vector
products are required. In the current version, the user can select between the biconjugate gradient
stabilized method (BiCGSTAB) and the generalized minimal residual method (GMRES) [26]. Then,
the translation coefficients An′n(ri − ri′) can be computed on the fly during each iteration step, and
do not need to be stored [23]. Nonetheless, the convergence time of the iterative solver depends on the
number of iterations needed to achieve some desired accuracy, and on the time that a single matrix-vector
multiplication takes. Both factors grow with the number of considered particles. The computational
strategy employed in the CELES software is thus based on three cornerstones to speed up the iterative
solver: a block-diagonal preconditioner, a lookup table for the spherical Hankel function and GPU
acceleration of the matrix vector-product evaluation.

3.2.1. Block-diagonal preconditioner

The number of steps needed by an iterative solver to converge can be quite large, depending on
the condition number of the linear system. One general strategy to improve the situation is to find a
preconditioner, that is a map which approximates the inverse of the linear operator, and the computation
of which takes much less time than the actual solution of the linear system itself. In order to construct a
preconditioner, we take advantage of the fact that the strongest interaction occurs over short distances. The
idea is thus to divide the sphere cluster into subgroups of neighboring particles and treat the interaction
inside each of these groups in terms of a direct solution of the respective linear sub-system. In practice,
this implies the following steps:

1. Dividing the set of spheres into NG subsets Gj , j = 1, . . . , NG, see Figure 1. Each subset contains
Nj spheres, such that

∑

j Nj = N . The subsets are constructed by dividing the volume occupied
with spheres into an array of cuboids. For simplicity, the order of sphere indices i is rearranged such
that one subset Gj corresponds to one successive series of sphere indices ij , . . . , ij+Nj−1.

2. Computing the block matrices Mj = M ii′

nn′ with ij ≤ i, i′ ≤ ij+Nj−1.

3. Computing the LU -factorization for each block, PjMj = LjUj , where Pj is a permutation matrix,
and Lj and Uj are lower and upper triangular matrices, respectively. The matrices Pj , Lj and Uj

are stored.

4. The preconditioner is then a block-diagonal operator with blocks M−1
j . In practice, the multiplication

by a block, x = M−1
j y is evaluated by solving the system LjUjx = Pjy.

Note, however, that the memory occupied by the storage of the LU matrices scales as
∑

j N
2
j . This

limits the possible size of the subsets Gj when simulating very large particle aggregates. The size of the
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Figure 2: Norm of the electric field, computed along the y = 0 µm plane with CELES (left) and MSTM (right) for a target
sample made of 2.5× 103 spheres. A 3D rendering of the spheres is superimposed to the field distribution to illustrate the
configuration.

cuboids defining the subsets NG is provided by the user as an input parameter. We recommend the user
to play with the partition edge size to find a reasonable trade-off between convergence rate and memory
consumption.

3.2.2. Matrix-vector product

Now we turn to the actual evaluation of the matrix-vector products of type
∑

i′,n′ M ii′

nn′xi′

n′ . In the

limit of large N , the computationally most intensive part is the product
∑

i′,n′ W ii′

nn′xi′

n′ , with an effort

scaling as N2 (in contrast, the effort caused by the subsequent multiplication with the T -matrices scales
linearly with N , as in (9) T i

nn′ does not depend on i′). It is thus sufficient to optimize the translation
operator run time. The following methods are applied to achieve a good computational speed:

• We run the matrix-vector product
∑

i′,n′ W ii′

nn′xi′

n′ on the GPU by assigning one thread to each
receiving particle i. The corresponding section of the code is implemented on NVIDIA’s CUDA
platform. The interface to the CUDA C kernel is provided by MATLAB’s mexcuda environment.
As a consequence of having one thread per particle, a good occupancy of the GPU is only achieved
for high numbers of particles. Therefore, CELES runs most efficiently for large particle numbers.
Because consumer graphic cards are in many cases optimized for single precision arithmetic, CELES
is also implemented to run most operations in single precision in order to fully take advantage of
the performance boost. As demonstrated in section 4.1, the accuracy of the simulation results is not
significantly affected.

• The coefficients a5(l,m|l′,m′|p) and b5(l,m|l′,m′|p) in (A.7) and (A.8) involve the costly evaluation
of square roots and Wigner-3j functions. However, as they do not depend on i or i′, they are
evaluated only once and stored in a table. Efficiency of this operation is therefore not critical.

• The spherical Hankel function h
(1)
p (kd) depends only on the radial distance coordinate d. We

precompute this function and store it in a table. On the GPU, cubic splines are used to interpolate
the lookup table with good accuracy. The user can set the spatial resolution ∆r of the lookup table.
Whereas a very fine resolution has a slightly negative effect on the computational performance, a
too coarse resolution can affect the accuracy. We recommend the user to play with this parameter
in order to find a reasonable trade-off.

5
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Figure 3: Far field intensity, computed with CELES and MSTM.

• The associated Legendre functions P
|m−m′|
p (cos θd) are polynomials in cos θd and sin θd such that

they can be quickly evaluated on the GPU. The coefficients of these polynomials are precomputed
and stored in a table.

4. Application examples

In the following, two case studies are presented to probe the validity and the convergence speed of the
simulations. Afterwards, we present simulation results for light scattering by a large target comprising 105

spheres. In each case, the investigated aggregates consist of spheres with radius Ri = 100 nm and refractive
index ni = 1.5 in vacuum (n0 = 1), and the excitation is provided by a linearly polarized Gaussian
beam with a beam waist of 4 µm and a vacuum wavelength of λ = 532 nm (size parameter of the spheres
2πRi/λ ≈ 1.18). The truncation multipole degree was set to lmax = 3, and the plane wave expansion
of the incident field and the scattered field during the power flux evaluation of the CELES simulations
was sampled with a polar and azimuthal angle resolution of ∆β = 2.5× 10−4π and ∆α = 2× 10−3π,
respectively. The lookup table for the spherical Hankel functions was prepared using a spatial resolution
of ∆r = 1nm. For the solution of the linear system, we employed the GMRES solver with a relative
tolerance of 10−4. All simulations were run on a Linux workstation computer with 64GB RAM and
a Maxwell NVIDIA® GTX Titan X graphic card (3072 single precision CUDA cores, 12GB GDDR5
memory). The code has also been tested on a Maxwell GeForce GTX 980 Ti card (2816 single precision
CUDA cores, 6GB GDDR5 memory) with similar performances.

4.1. Validation

In order to demonstrate the quantitative accuracy of the software, we have performed an exemplary
simulation both with the CELES software package and with the MSTM software package [23]. The
example target consists of N = 2500 spheres packed using the Lubachevsky-Stillinger algorithm to yield a
final volume density of 10% inside a spherical region centered at r = 0. The incident beam is focused at
the center of the target.

Figure 2 shows the norm of the resulting electric near-field distribution for the CELES and the MSTM
simulations, exhibiting perfect agreement. Figure 3 shows the (1, 1)-element of the phase matrix, S1,1,
which was determined by running two simulations in CELES, one with an incoming TE-polarized beam
and one with a TM-polarized beam, and then averaging the far field intensity distribution over both runs.
On the other hand, MSTM returns the phase matrix directly (normalized to S1,1(0) = 1). Also in this
case the results are in excellent agreement. In addition, we have checked that the conservation of energy
is fulfilled by verifying that the reflected power (16.25%) plus the transmitted power (83.73%) equals the
incident power up to a relative error < 10−3.

6
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aggregates.

4.2. Convergence behavior

Another interesting aspect to discuss is the convergence speed and performance offered by CELES.
Figure 4 shows the convergence of the solution for two slab configurations comprising 2× 104 particles
each, but with different overall volume fractions (vf = 10% and vf = 50%). The initial Gaussian beam is
focused on the outer surface of the cylindrical slab. When active, the block-diagonal preconditioner is set
so to divide the aggregate into cuboids containing roughly 200 particles each.

As can be seen, using the block-diagonal preconditioner offers limited advantage at lower volume
fractions. Considering the vf = 10% case, even though the number of iterations required is on average
reduced by 10–20%, the total run time is basically unchanged due to the overhead introduced by the
preconditioner (cfr. Figure 5). The situation changes dramatically at higher densities (vf = 50%), where
the convergence rate is much lower compared to the low-density samples. Then, using the preconditioner
results in a significant reduction of the number of iterations and of the run time. Figure 5 shows how
both these quantities grow with systems size. The time needed to partition the system into several sub-
groups and calculate a direct solution of each respective system grows linearly and becomes progressively
inexpensive if compared to the overall simulation time for large aggregates.

It is interesting to compare the best run time obtained using CELES with that achievable by MSTM
when leveraging all its speed-up techniques (i.e., far-field approximation and storing the translation
matrix). For this comparison, we have used a workstation with the same amount of memory (64GB)
and 12 physical Xeon E5 2620 cores. We have checked that MSTM delivered best performance using a
near-field translation distance of kr = 10 and 20 for the sparser and denser configurations, respectively.
With increasing particle number, the available memory became a limiting factor when using multithreading.
For 2× 104 particles, we therefore needed to restrict MSTM to only 6 of the available 12 cores. The
resulting runtimes are displayed in Table 1.

Table 1: Run times comparison.

N density CELES MSTM (threads)

1× 104
10% 1096 s 2715 s (12)
50% 3463 s 7574 s (12)

2× 104
10% 5663 s 29 491 s (6)
50% 15 951 s 39 380 s (6)

As a final note, in cases where convergence to a solution is particularly difficult to obtain, CELES
offers the possibility to pass to the iterative solver a custom initial condition, typically represented by the
solution of a smaller system comprising a sub-set of the total number of spheres.
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Figure 6: Norm of the electric field for a Gaussian beam scattered by 105 spheres. In the left panel, a 3D rendering of the
spheres is superimposed to the field distribution to illustrate the configuration. The right panel shows a magnification of the
cross-cut plane y = 0 µm along which the field is calculated. White circles display the position of spheres cut by the image
plane.
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4.3. Large-scale target

As we have seen in the last section, the effort to achieve convergence grows rapidly with the number of
particles. However, we have successfully used CELES to run a simulation for a system comprising 105

particles. Figure 6 shows the norm of the near field for a Gaussian beam hitting a spherical aggregate
of 105 particles at 10% volume density. The GMRES solver with block-diagonal preconditioner took
3.15× 105 s (∼87.5 h) to converge with a tolerance of 10−4. Also in this case, the relative error with
regard to energy conservation is less than 10−3, with 55.42% of the incoming power scattered into the
backward hemisphere and 44.54% transmitted or scattered into the forward hemisphere.

5. Discussion

In the following, we will review and discuss some similarities and differences between CELES and
existing codes or algorithms.

One of the most established software packages for multi-sphere scattering simulations is Mackowski’s
MSTM FORTRAN code [23], which is also freely available and which we used in our validation section.
Supporting parallel execution on computer clusters, MSTM is also designed to allow for large particle
numbers, and a far-field approximation can be switched on to accelerate the convergence of the iterative
solver. A rotation-translation-rotation scheme is used for the SVWF translation, reducing the complexity
of the matrix-vector product from O(l4max) to O(l3max) [25]. In addition, MSTM is currently more flexible
than CELES in that it allows for spheres inside other spheres and for chiral materials. It also offers the
possibility to compute the ensemble T -matrix which in turn allows for an efficient orientation averaging.
In comparison, some advantages of CELES are given by the unique speedup techniques described in
section 3.2, which substantially enhance the calculation performance on a workstation computer equipped
with a CUDA-capable GPU when addressing systems with a large number of particles.

Other implementations of electromagnetic multiple-sphere scattering are the FORTRAN GMM code
by Xu and Gustafson [27] (which has also been used to tackle scattering by >104 spherical particles
[8]) and Pellegrini’s py gmm package [28], which offers python scripting capabilities and a user-friendly
interface.

Chew et al. [29] have proposed an aggregation of scattered field origins to a regular grid in combination
with an acceleration of the matrix vector products based on the Fast-Fourier-Transform to achieve an
effort that scales like O(N logN).

Finally, the Fast Multipole Method (FMM) has been employed for the efficient simulation of wave
scattering by large numbers of particles. It also brings a reduction of the complexity of matrix-vector
products from O(N2) to O(N logN) [30, 31]. Very good performances have been reported by Gimbutas
and Greengard [32], as well as by Markkanen and Yuffa [33]. Both groups exploit FMM in combination
with integral equation techniques to compute the individual particle T -matrices for large clusters of
arbitrary-shaped particles.

With respect to CELES, it should be noted that the programmatic overhead introduced by FMM and
other sophisticated techniques needs to be carefully considered, especially in the context of parallelization
on GPU hardware. Occupancy and coalesced memory access are critical parameters for achieving a good
computational performance and difficult to achieve when implementing more elaborate algorithms like
FMM. Nevertheless, successful implementations of that kind have been demonstrated [34]. We thus believe
that the combination of a Fast-Multipole scheme and GPU execution represents a promising direction to
explore for future CELES releases.

6. Conclusions

The CELES software package is a new tool for the simulation of light scattering by large numbers of
spherical particles. We have shown that 32 bit floating-point precision is sufficient to compute accurate
near- and far-field distributions for large ensembles of scattering spheres, which opens up the possibility
to exploit cost-effective non-scientific grade GPU hardware for this kind of calculations. An analysis of
the convergence behaviour revealed that the application of a block-diagonal preconditioner is especially
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useful for the simulation of very dense particle aggreagates. As an open-source project, CELES is also
open for contributions from other developers. Possible features for future releases include polydisperse
particle samples, dipole source excitation or one of the advanced acceleration schemes for the matrix-vector
product reviewed in section 5.
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Appendix A. Vector wave functions

Appendix A.1. Definition

The spherical vector wave functions Ψ
(ν)
τlm live in the spherical coordinate system (r, θ, φ) of the position

vector r and are defined as [35]

Ψ
(ν)
1lm(r) =

1
√

2l(l + 1)
∇×

(

rz
(ν)
l (kr)P

|m|
l (cos θ)eimφ

)

Ψ
(ν)
2lm(r) =

1

k
∇× Ψ

(ν)
1ml(r)

(A.1)

The number (ν) indicates if the SVWF is of regular kind (ν = 1) or represents an outgoing wave (ν = 3).

Correspondingly, the radial wave function z
(ν)
l stands either for the spherical Bessel function of order l,

z
(1)
l = jl, or the spherical Hankel function of first kind, z

(3)
l = h

(1)
l . Pm

l denote the normalized associated
Legendre functions. Explicitly, the SVWFs read

Ψ
(ν)
1lm(r) =

exp(imφ)
√

2l(l + 1)
z
(ν)
l (kr)

(

imπ
|m|
l (θ)êθ − τ

|m|
l (θ)êφ

)

Ψ
(ν)
2lm(r) =

exp(imφ)
√

2l(l + 1)

(

l(l + 1)
z
(ν)
l (kr)

kr
P

|m|
l (θ)êr

+
∂kr

(

krz
(ν)
l (kr)

)

kr

(

τ
|m|
l (θ)êθ + imπ

|m|
l (θ)êφ

)



 ,

(A.2)

where

πm
l (θ) =

Pm
l (cos θ)

sin θ
τml (θ) = ∂θP

m
l (cos θ).

(A.3)

Further, the plane vector wave functions are defined as

Φ1(α, β; r) = exp(ik · r)êα

Φ2(α, β; r) = exp(ik · r)êβ
(A.4)

where (k, β, α) are the radial, polar and azimuthal spherical coordinate of the wavevector k, respectively.
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Appendix A.2. Translation and transformation

The SVWF addition theorem accounts for the translation of the coordinate origin:

Ψ
(3)
n (r + d) =

∑

n′

Ann′(d)Ψ
(1)
n′ (r) for |r| < |d|. (A.5)

The translation operator Ann′ can be constructed iteratively [36] or calculated from a closed form
expression [37, 38, 39, 40] involving the Wigner-3j function:

Amlp,m′l′p′(d) = δpp′Aml,m′l′(d) + (1− δpp′)Bml,m′l′(d) (A.6)

with

Aml,m′l′(d) = ei(m−m′)φd

l+l′
∑

p=|l−l′|

a5(l,m|l′,m′|p)h(1)
p (kd)P

|m−m′|
p (cos θd) (A.7)

Bml,m′l′(d) = ei(m−m′)φd

l+l′
∑

p=|l−l′|+1

b5(l,m|l′,m′|p)h(1)
p (kd)P

|m−m′|
p (cos θd), (A.8)

where

a5(l,m|l′,m′|p) =i|m−m′|−|m|−|m′|+l′−l+p(−1)m−m′

× (l(l + 1) + l′(l′ + 1)− p(p+ 1))
√

2p+ 1 (A.9)

×

√

(2l + 1)(2l′ + 1)

2l(l + 1)l′(l′ + 1)









l l′ p
m −m′ m′ −m

















l l′ p
0 0 0








(A.10)

b5(l,m|l′,m′|p) =i|m−m′|−|m|−|m′|+l′−l+p(−1)m−m′

×
√

(l + l′ + 1 + p)(l + l′ + 1− p)(p+ l − l′)(p− l + l′)(2p+ 1)

×

√

(2l′ + 1)(2l + 1)

2l(l + 1)l′(l′ + 1)









l l′ p
m −m′ m′ −m

















l l′ p− 1
0 0 0







 . (A.11)

In the above, (d, θd, φd) are the spherical coordinates of d, whereas




...

...



 denote the Wigner-3j symbols.

In addition, the SVWFs can be transformed into PVWFs and vice versa. We make use of the following
formulae:

Ψ
(3)
n (r) =

1

2π

∫ 2π

0

dα

∫

C±

dβ sinβ

2
∑

j=1

Bnj(β)Φj(α, β; r)e
imα (A.12)

for z ≷ 0, and

Φj(α, β; r) = 4
∑

n

e−imαB†
nj(β)Ψ

(1)
n (r). (A.13)

Here, the transformation operator Bnj is given by

Bnj(β) = −
1

il+1

1
√

2l(l + 1)
(iδj1 + δj2)

(

δτjτ
|m|
l (β) + (1− δτj)mπ

|m|
l (β)

)

, (A.14)

whereas B†
nj has all explicit i in (A.14) set to −i.

In (A.12), the contour C± of the β-integral is defined such that sinβ runs from 0 to ∞. In the case of
z > 0, β starts at 0 and goes to π/2 and then to π/2− i∞ parallel to the imaginary axis, whereas in the
case of z < 0, z starts at π/2 + i∞ and goes parallel to the imaginary axis to π/2 and then to π, compare
[39].
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Appendix B. T -matrix of a sphere

The T -matrix of a sphere [41] is diagonal in all indices and its entries do not depend on the multipole
order m.

T i
nn′ = Qi

τlδττ ′δmm′δll′ (B.1)

with

Qi
1l =

jl (kRi) ∂kiRi
(kiRijl (kiRi))− jl (kiRi) ∂kRi

(kRijl (kRi))

jl (kiRi) ∂kR (kRihl (kRi))− hl (kRi) ∂kiRi
(kiRijl (kiRi))

(B.2)

Qi
2l =

k2jl (kRi) ∂kiRi
(kiRijl (kiRi))− k2i jl (kiRi) ∂kRi

(kRijl (kRi))

k2i jl (kiRi) ∂kRi
(kRihl (kRi))− k2hl (kRi) ∂kiRi

(kiRijl (kiRi))
. (B.3)

In the above, ki = nik denotes the wavenumber inside the sphere.

Appendix C. Gaussian beam

To mimic a Gaussian beam propagating into the positive z-direction, with a beam waist of width w,
centered at rG = (xG, yG, zG), we require that for z = zG

EG(r) = exp

[

−
(x− xG)

2 + (y − yG)
2

w2

]

E0

=

∫

R2

dkx dky e
i(kxx+kyy)T (kx, ky)

(C.1)

where E0 = (− sinαGêx + cosαGêy)E0 is a constant vector in the xy-plane and

T (kx, ky) =
w2

4π
exp

[

−(k2x + k2y)
w2

4
− i(kxxG + kyyG)

]

E0, (C.2)

is the angular spectrum of the beam, compare [42]. Further, we use k2x + k2y = k2 sin2 β and dkx dky =
k2 dα dβ sinβ cosβ and for β ≈ 0 we use

E0 ≈ (cos(α− αG)êα + sin(α− αG)êβ)E0

=

(

êα − iêβ
2

ei(α−αG) +
êα + iêβ

2
e−i(α−αG)

)

E0

(C.3)

to approximate (C.1) by

EG(r) ≈ Ein(r)

= E0
k2w2

4π

2
∑

j=1

∫ π/2

0

dβ sinβ cosβ exp

[

−
w2

4
k2 sin2 β

]

×

∫ 2π

0

dα

(

ei(α−αG) δj1 − iδj2
2

+ e−i(α−αG) δj1 + iδj2
2

)

eik·(ri−rG)
Φj(α, β; r − ri)

(C.4)

We can use
eik·(ri−rG) = exp [ikρG,i sinβ cos(α− φG,i)] + exp(ikzG,i cosβ) (C.5)

where (ρG,i, φG,i, zG,i) are the cylindrical coordinates of ri − rG. Inserting (A.13) into (C.4) then yields

Ein(r) = E0
k2w2

π

2
∑

j=1

∑

n

∫ π/2

0

dβ sinβ cosβ exp

[

−
w2

4
k2 sin2 β

]

eik cos βzG,iB†
jn(β)Ijn(β)Ψ

(1)
n (r − ri)

(C.6)
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where Ij(β) denotes the α-integral that can be evaluated analytically by using the identity
∫ 2π

0
dα eiναeix cos(α−φ) =

2πi|ν|J|ν|(x)e
iνφ [43].

Ijn(β) =

∫ 2π

0

dα

(

ei(α−αG) δj1 − iδj2
2

+ e−i(α−αG) δj1 + iδj2
2

)

e−imα exp [ikρG,i sinβ cos(α− φG,i)]

= 2πe−iαG i|m−1|e−i(m−1)φG,iJ|m−1|(kρG,i sinβ)
δj1 − iδj2

2

+ 2πeiαG i|m+1|e−i(m+1)φG,iJ|m+1|(kρG,i sinβ)
δj1 + iδj2

2

(C.7)

Finally, by comparison of (6) with (C.6) one finds

aiin,n = E0
k2w2

π

2
∑

j=1

∫ π/2

0

dβ sinβ cosβB†
jn(β)Ij(β) exp

[

−
w2

4
k2 sin2 β + ikzG,i cosβ

]

. (C.8)

Appendix D. Far field intensity

A field that is given by a plane wave expansion of the form

E(r) =

2
∑

j=1

∫

dα

∫

dβ sin(β)gj(α, β)Φj(r) (D.1)

gives rise to a radiant flux of [10]

P =
2π2

ωkµ0

2
∑

j=1

∫

dα

∫

dβ sin(β)|gj(α, β)|
2

=

2
∑

j=1

∫

dα

∫

dβ sin(β)Ij(α, β),

(D.2)

where

Ij(α, β) =
2π2

ωkµ0
|gj(α, β)|

2
(D.3)

is the radiant intensity in the direction given by the polar angle β and the azimuthal angle α with
polarization j. The radiant intensity of the scattered field (3) can thus be evaluated by first transforming
it from the spherical wave expansion to a plane wave expansion using (A.12) for each of the spheres,
adding up the contribution of all spheres, and finally employing (D.3).

Further, for a Gaussian beam (C.4) we have

gj(α, β) = E0
k2w2

4π
cosβ exp

[

−
w2

4
k2 sin2 β

]

(δj1 cosα+ δj2 sinα)e
−ik·rG (D.4)

such that

P = |E0|
2πk

3w4

4ωµ0

∫ π/2

0

dβ sinβ cos2 β exp

[

−
w2

2
k2 sin2 β

]

. (D.5)
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[27] Y. Xu, B. Å. Gustafson, A generalized multiparticle Mie-solution: further experimental verification,
J. Quant. Spectrosc. Radiat. Transf. 70 (2001) 395–419.

[28] G. Pellegrini, G. Mattei, V. Bello, P. Mazzoldi, Interacting metal nanoparticles: Optical properties
from nanoparticle dimers to core-satellite systems, Mater. Sci. Eng. C 27 (2007) 1347–1350.

[29] W. C. Chew, J. H. Lin, X. G. Yang, An fft t-matrix method for 3d microwave scattering solutions
from random discrete scatterers, Microw. Opt. Technol. Lett. 9 (1995) 194–196.

[30] N. A. Gumerov, R. Duraiswami, Computation of scattering from clusters of spheres using the fast
multipole method, J. Acoust. Soc. Am. 117 (2005) 1744.

[31] N. A. Gumerov, R. Duraiswami, Fast multipole methods for the Helmholtz equation in three
dimensions, Elsevier, 2005.

[32] Z. Gimbutas, L. Greengard, Fast multi-particle scattering: A hybrid solver for the maxwell equations
in microstructured materials, J. Comp. Phys. 232 (2013) 22–32.

[33] J. Markkanen, A. J. Yuffa, Fast superposition t-matrix solution for clusters with arbitrarily-shaped
constituent particles, J. Quant. Spectrosc. Radiat. Transf. 189 (2017) 181–188.

[34] N. A. Gumerov, R. Duraiswami, Fast multipole methods on graphics processors, J. Comp. Phys. 227
(2008) 8290–8313.

[35] Y. A. Doicu, A; Wriedt, T; Eremin, Light Scattering by Systems of Particles, Springer-Verlag, Berlin,
Heidelberg, 2006.

[36] D. W. Mackowski, Analysis of Radiative Scattering for Multiple Sphere Configurations, Proc. R. Soc.
London A Math. Phys. Eng. Sci. 433 (1991).

[37] S. Stein, Addition theorems for spherical wave functions, Q. Appl. Math. 19 (1961) 15–24.

[38] O. R. Cruzan, Translational addition theorems for spherical vector wave functions, Q. Appl. Math.
20 (1962) 33–40.

15



[39] A. Boström, G. Kristensson, S. Ström, Transformation properties of plane, spherical and cylindrical
scalar and vector wave functions, in: V. Varadan, A. Lakhtakia, V. Varadan (Eds.), Acoustic,
Electromagnetic and Elastic Wave Scattering, Field Representations and Introduction to Scattering,
volume 1, Elsevier, 1991, pp. 165–210.

[40] M. I. Mishchenko, L. D. Travis, A. A. Lacis, Scattering, Absorption, and Emission of Light by Small
Particles, Cambridge University Press, 2002.

[41] C. F. Bohren, D. R. Huffman, Absorption and scattering of light by small particles, Wiley science
paperback series, Wiley, 1983.

[42] L. Novotny, B. Hecht, Principles of Nano-Optics, volume 1, Cambridge University Press, Cambridge,
2006.

[43] J. A. Stratton, Electromagnetic Theory, McGraw-Hill, New York, 1941.

16


