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Abstract

Scattering amplitudes in d  +  2 dimensions can be expressed in terms of a 

conformal basis, for which the S-matrix behaves as a CFT correlation function 

on the celestial d-sphere. We explain how compact expressions for the full 

tree-level S-matrix of gauge theory, gravity and other QFTs extend to this 

conformal basis, and are easily derived from ambitwistor strings. Using these 

formulae and their worldsheet origins, we prove various tree-level ‘conformal 

soft theorems’ in gauge theory and gravity in any dimension; these arise from 

limits where the scaling dimension of an external state in the scattering process 

takes special values. These conformally soft limits are obscure from standard 

methods, but they are easily derived with ambitwistor strings. Additionally, 

we make an identification between the residues of conformally soft vertex 

operator insertions in ambitwistor strings and charges generating asymptotic 

symmetries.

Keywords: scattering amplitudes, asymptotic symmetries, ambitwistor 

strings, soft theorems

1. Introduction

The external legs in a massless scattering process are solutions of the free equations of motion, 

often expressed in a plane wave momentum eigenstate basis. In this plane wave basis, external 

states are specified by a momentum pµ obeying p 2  =  0 (and other relevant quantum numbers 

like polarization or charge). Recently, it was noted that there is another basis which represents 

massless spin s free fields in d  +  2 dimensional Minkowski space as spin s conformal pri-

maries on the d-sphere [1–3]. The data of an on-shell momentum vector is traded for a point 

k ∈ Sd and a (freely chosen) scaling dimension ∆.
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Scattering amplitudes expressed in this conformal basis are equivalent to a Mellin trans-

form of the amplitudes in the standard momentum eigenstate basis. The resulting S-matrix 

elements transform as conformal correlators on Sd, with scaling dimensions of the insertions 

given by the choices of ∆ for the external states. Viewing Sd as the celestial sphere of null gen-

erators of J —the conformal boundary of d  +  2-dimensional Minkowski space—S-matrix 

elements in the conformal basis are referred to as celestial amplitudes. Since they manifest 

an underlying boundary conformal symmetry for bulk observables, celestial amplitudes are 

of interest as objects of study in attempts to understand holography for asymptotically flat 

space-times (see [4–15]).

Celestial amplitudes manifest the conformal covariance of the massless S-matrix on the 

asymptotic d sphere of null directions, but other properties of scattering amplitudes familiar 

from the momentum basis become obscure in the conformal basis. An important example is 

the soft physics of massless particles: S-matrix elements for gluons or gravitons where one 

particle becomes soft are constrained by soft theorems, giving rise to universal limits [16–21]. 

In the conformal basis, there is no notion of energy or frequency; for special values of the 

scaling dimension ∆, gluons or gravitons become pure gauge but the celestial amplitudes 

nevertheless have nontrivial limits [2, 22, 23].

Frequency ω  in the momentum basis and scaling dimension ∆ in the conformal basis are 

related non-locally via a Mellin transform, so the behaviour of S-matrix elements in a ‘con-

formally soft limit’ (i.e. when ∆ approaches a pure gauge configuration) is not immediately 

clear. Recently, the structure of the conformally soft limit ∆ → 1 was investigated for tree-

level gluon scattering in four space-time dimensions [24–26]. Through explicit calculations 

at low particle number and for specific helicity configurations, a four-dimensional conformal 

soft theorem was conjectured whose structure is essentially inherited from the energetic soft 

theorem. However, calculations for general particle number and polarization or for general 

dimension and other theories remain lacking.

In this paper, we present formulae for all massless tree-level celestial amplitudes and derive 

a variety of tree-level conformal soft theorems in gauge theory and gravity in any space-time 

dimension. The key tool which enables these calculations is ambitwistor string theory, a class 

of chiral, constrained worldsheet models which describe massless QFTs [27]. Ambitwistor 

strings underpin the scattering equations and Cachazo-He-Yuan (CHY) formulae [28, 29] for 

massless scattering in the momentum basis [27, 30, 31], but they also encode the full non-

linearity of the underlying classical equations of motion [32, 33] and their spectrum always 

imposes the free equations  of motion [34, 35]. Thus, they can equally well describe scat-

tering in the conformal basis, leading to CHY formulae for celestial scattering amplitudes. 

Ambitwistor strings and CHY formulae have been used to study energetic soft limits and their 

connection to asymptotic symmetries [9, 36–40], so it is no surprise that they are also useful 

in the conformal basis.

In section 2, we briefly review the conformal basis and ambitwistor strings before deriv-

ing CHY formulae for celestial scattering in any space-time dimension. While our focus is on 

gauge theory and gravity, the general form of a tree-level n-point celestial amplitude in CHY 

form is shown to be:

An = lim
ε→0+

n
∏

i=1

∫ ∞

0

dti

ti
t
∆i

i e−εti δd+2

(

n
∑

i=1

αi tiki

)

∫

dµn

∏′

j

δ





∑

l �=j

αjαltjtl kj · kl

σj − σl





×In(σi,αitiki, . . .),

 

(1.1)

T Adamo et alClass. Quantum Grav. 36 (2019) 205018



3

where {∆i} are the scaling dimensions of the external states; {ki} are insertion points on 

the sphere Sd; {αi = ±1} indicate whether each state is outgoing (+) or incoming (−); and 

ε → 0+ is a regulator to ensure convergence of the integrals over {ti}. Integrals over points on 

the Riemann sphere {σi} are performed against a Möbius-invariant measure dµn, and local-

ized by the conformal basis scattering equations appearing in the Möbius-invariant product of 

delta functions. The space-time theory is specified by the choice of CHY integrand In, whose 

functional dependence on the quantum numbers differs from the momentum basis only by the 

replacement pi → αitiki for on-shell momenta.

Conformally soft limits are then investigated in section  3. Using the behaviour of 

ambitwistor string vertex operators in the relevant limits, we obtain several conformal soft 

theorems at tree-level in both gauge theory and gravity. For a colour-ordered Yang–Mills 

celestial amplitude, we find analytic continuations in ∆ so that

lim
∆→1

(∆− 1)An+1(∆1, . . . ,∆n,∆) =

(

ǫ · k1

k · k1

−
ǫ · kn

k · kn

)

An(∆1, . . . ,∆n),

 (1.2)

where k ∈ Sd and ǫµ are the insertion point and polarization of the ∆ → 1 gluon. For tree-level 

celestial graviton amplitudes, we find conformal soft theorems for both ∆ → 1 and ∆ → 0:

lim
∆→1

(∆− 1)An+1(∆1, . . . ,∆n,∆) =
n

∑

i=1

αi

ǫµν k
µ

i kνi
k · ki

An(∆1, . . . ,∆i + 1, . . . ,∆n), (1.3)

and

lim
∆→0

∆An+1(∆1, . . . ,∆n,∆) =
n

∑

i=1

ǫµσ kν
kσi J

µν

i

k · ki

An(∆1, . . . ,∆n), (1.4)

for J
µν

i  the angular momentum operator associated to graviton i. We also give refinements 

of these conformal soft theorems in four space-time dimensions, with their derivation from 

ambitwistor strings in appendix.

The structure of (1.2)–(1.4) is clearly related to that of leading and sub-leading energetic 

soft theorems (see [41]). From the perspective of ambitwistor strings, the reason for this is 

clear: the structure of a conformally soft vertex operator is identical to that of an energetically 

soft vertex operator. In section 4, we use this fact to prove that conformally soft gluon or 

graviton vertex operators have the structure of charges which generate asymptotic symmetries 

of gauge theory and gravity at J .

We also comment on a peculiarity in gauge theory: while ∆ → 0 does not correspond to 

a pure gauge gluon conformal primary, this limit does generate factorization behaviour at the 

level of the tree-level celestial gluon amplitudes, and produces an asymptotic symmetry asso-

ciated with the sub-leading energetic soft theorem of Yang–Mills theory.

2. CHY formulae for celestial amplitudes

The remarkable formulae of Cachazo–He–Yuan (CHY) for tree-level scattering amplitudes in 

a wide variety of massless QFTs take the universal form [28, 29]:

An = δD

(

n
∑

i=1

pi

)

∫

dµn

∏′

i

δ





∑

j�=i

pi · pj

σi − σj



 In(σi, pi, . . .), (2.1)

T Adamo et alClass. Quantum Grav. 36 (2019) 205018
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where D is the space-time dimension, {p i} are the on-shell D-momenta associated with the 

representation of each external state in a plane wave basis, and the integral is over the location 

of n marked points {σi} on the Riemann sphere with respect to a Möbius-invariant measure 

dµn. These integrals are localized by the scattering equations,

∑

j�=i

pi · pj

σi − σj

= 0, ∀i = 1, . . . , n.
 (2.2)

Only (n − 3) of these equations are independent; the prime appearing on the product in (2.1) 

ensures that only (n − 3) of these constraints are imposed, compatibly with the Möbius-

invariant measure (see [42, 43]). The final ingredient in the CHY formula (2.1) is the inte-

grand In, which is a rational function of the {σi} and any quantum numbers associated to the 

scattering process (e.g. momenta, polarizations, colour charges); the choice of this integrand 

determines which theory’s scattering amplitudes are described in this way. To date, integrands 

are known for gauge theory, gravity and many other massless QFTs in any dimension [29].

A priori, it seems that the CHY formulae are closely tied to expressing amplitudes in a 

plane wave basis: (2.1) is only well-defined on the support of overall momentum conservation, 

and the scattering equations (2.2) explicitly depend on the momenta associated to each parti-

cle. However, the worldsheet origin of the CHY formulae makes it easy to see that compact 

expressions for the tree-level S-matrix—and the scattering equations—extend to other choices 

of basis, including the conformal basis.

2.1. The conformal basis

From now on, we will take the space-time dimension to be D  =  d  +  2, working on Minkowski 

space R1,d+1 with signature (−,+, · · · ,+). A massless scalar field φ, satisfying

�φ = 0, (2.3)

for � the wave operator on R1,d+1, is usually represented in terms of a basis of Fourier mode 

wavepackets. An element of this basis is the familiar plane wave momentum eigenstate: 

φ±(X) = e±ip·X  for p 2  =  0 and p 0  >  0, the choice of sign dictating whether the state is outgo-

ing (+) or incoming (−).
A general analogue of Fourier transform enables a formal expansion via the inverse Mellin 

transform [44]

e±i p·X =

∫ +∞

−∞

dν

2π

(∓i)h+iν Γ(h + iν)

(−p · X)h+iν
, (2.4)

where h is any positive real number. This expands momentum eigenstates in homogeneous 

functions of p . In [2], it was realized that this relation can be inverted to construct a new con-

formally covariant, delta-function normalizable basis for massless free fields φ(X) in terms of 

bulk-to-boundary propagators (−p · X)−(h+iν) in AdS. Now, Sd naturally embeds into R1,d+1 

as the projective light cone (i.e. the celestial sphere) via

k : Sd → R
1,d+1, kµ(xa) =

(

1 + x2

2
, xa,

1 − x2

2

)

, (2.5)

with xa flat coordinates on Sd. Solutions to the free field equation (2.3) can be constructed by 

continuing a bulk-to-boundary propagator to R1,d+1:

T Adamo et alClass. Quantum Grav. 36 (2019) 205018



5

φ±

∆
(X; k) =

∫ ∞

0

dt

t
t∆ e±i tk·X−εt =

(∓i)∆ Γ(∆)

(−k · X ∓ iε)∆
, (2.6)

where ε → 0+ is a regulator, ∆ is a complex number and k ∈ Sd. The sign ± again denotes 

outgoing/incoming states (k is always future pointing).

Note that φ±

∆ solves the massless wave equation for any value of ∆; the role of ∆ is to set 

a scaling dimension for the solution associated to a conformal transformation on Sd. A confor-

mal transformation is given by the simultaneous group action

Λ ∈ SO(1, d + 1), Xµ
�→ X′µ = Λµ

ν
Xν , kµ(x) �→ k′µ(x′) = Ω(x)

1
d Λµ

ν
kν(x), (2.7)

where Ω =

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

 is the Jacobian of the induced conformal transformation on Sd. Under such 

a transformation, the new state (2.6) transforms as

φ±

∆
(X; k) �→ Ω(x)−

∆

d φ±

∆
(X; k), (2.8)

and hence is a conformal primary on Sd of scaling dimension ∆.

In [2], it was shown that a basis of these modes which are delta function normalizable in the 

Klein–Gordon norm and span the space of plane wave modes is given by:
{

φ±

∆
(X; k)

∣

∣

∣

∣

∆ ∈
d

2
+ iR, k2 = 0, k0 + kd+1 = 1

}

. (2.9)

The conditions on kµ ensure that it labels a point on the sphere Sd, while the condition that 

∆ = d
2
+ iR is a consequence of harmonic analysis on the conformal group SO(1, d + 1), 

commonly known in the literature as the principal continuous series. The basis of states (2.9) 

is known as the conformal basis.

Conformal bases have also been constructed for gluons and gravitons propagating on R1,d+1 

[2]. For gluons, the appropriate wavefunction is a solution to the Maxwell equations on R1,d+1 

which transforms as a vector in d  +  2 dimensions and a spin-1 conformal primary on Sd under 

SO(1, d + 1). A solution which satisfies both Lorenz (∂µAµ = 0) and radial (XµAµ = 0) 

gauge conditions is given by:

A∆,±
µ

(X; k) = (∓i)∆ Γ(∆)
(ǫ · X) kµ − (k · X) ǫµ
(−k · X ∓ iε)∆+1

, (2.10)

which is closely related to the spin-1 bulk-to-boundary propagator in AdS (see [45]). Once 

again, ∆ labels the scaling dimension and k ∈ Sd is a point on the celestial sphere; the polar-

ization vector takes the form:

ǫµ := ǫa ∂

∂xa
kµ(x), (2.11)

for kµ(x) given by (2.5). The constants ǫa parameterize the d degrees of freedom of an on-shell 

gluon in R1,d+1, and the condition k2  =  0 ensures that k · ǫ = 0.

A simpler solution to the Maxwell equations can be obtained from (2.10) by a gauge trans-

formation, leading to (up to normalization constants):

A∆,±
µ

(X; k) = (∓i)∆ Γ(∆)
ǫµ

(−k · X ∓ iε)∆
= ǫµ φ

±

∆
(X; k). (2.12)

While this gauge transformed solution is no longer a spin-1 conformal primary (since ǫµ 

depends on k and transforms non-trivially), gauge-invariant observables like the S-matrix are 

T Adamo et alClass. Quantum Grav. 36 (2019) 205018
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unaffected. As for the massless scalar, a normalizable and complete conformal basis of gluon 

states is given by A∆,±
µ

(X; k) with ∆ = d
2
+ iR.

For gravitons the appropriate wavefunction is a solution of the linearised Einstein equa-

tions on R1,d+1 which transforms as a rank-2 symmetric tensor in d  +  2 dimensions and a 

spin-2 conformal primary on Sd under SO(1, d + 1):

h∆,±
µν

(X; k) = (∓i)∆ Γ(∆)

[

(ǫ · X) k(µ − (k · X) ǫ(µ
] [

(ǫ̃ · X) kν) − (k · X) ǫ̃ν)
]

(−k · X ∓ iε)∆+2
,

 (2.13)

where ǫ̃µ is another copy of the polarization (2.11). Once again, this can be simplified by using 

a diffeomorphism to arrive at:

h∆,±
µν

(X; k) = (∓i)∆ Γ(∆)
ǫ(µ ǫ̃ν)

(−k · X ∓ iε)∆
= ǫ(µ ǫ̃ν) φ

±

∆
(X; k). (2.14)

While (2.14) is not a spin-2 conformal primary, it is gauge-equivalent to (2.13). A normaliz-

able and complete conformal basis of graviton states corresponds to ∆ = d
2
+ iR.

So a conformal basis state is labeled by a point on Sd and a scaling dimension ∆ (along with 

the relevant polarization data), while a plane wave state is labeled by an on-shell momentum 

in R1,d+1. The conformal basis spans the same set of free fields as the plane wave basis, so the 

conformal basis is an equally valid one to use when amputating external legs in a massless 

scattering process via the LSZ procedure. A scattering amplitude evaluated on these states 

is referred to as a celestial amplitude since the external states are specified by points on the 

celestial sphere Sd [2, 3]. Celestial amplitudes can be obtained directly from the momentum 

basis by Mellin transforms

An(αi,∆i, ki) =

n
∏

j=1

∫

∞

0

dtj

tj
t
∆j

j e−εtj An(αitiki), (2.15)

in the limit ε → 0+. Here, αi = ±1 represents whether the ith-particle is incoming (−) or 

outgoing (+). From the definitions of the conformal states, it is clear that the conformal basis 

amplitude An(αi,∆i, ki) transforms as a conformal correlator of operators with dimensions 

{∆i} on Sd.

2.2. Ambitwistor strings and the conformal basis

Ambitwistor strings are worldsheet models that directly produce the CHY formulae (2.1) as 

their worldsheet path-integral [27, 30, 31]. Unlike ordinary string theories, they are chiral and 

constrained, containing only massless degrees of freedom in their spectrum. In general, the 

worldsheet action of an ambitwistor string theory takes the form (in conformal gauge)

S =
1

2π

∫

Σ

Pµ ∂̄Xµ
−

e

2
P2

+ · · · , (2.16)

where Σ is a closed Riemann surface, Xµ is a map from Σ to the target space-time, and Pµ 

has conformal weight (1, 0) on Σ (i.e. a section of the holomorphic canonical bundle KΣ). 

The constraint P2  =  0 is enforced through the Lagrange multiplier field e, which is a Beltrami 

differ ential on Σ of conformal weight (−1, 1). The additional terms ‘+ · · ·’ are matter content, 

determining which particular space-time theory is described by the ambitwistor string.

T Adamo et alClass. Quantum Grav. 36 (2019) 205018
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Consider the matter content of: d  +  2 left-moving fermionic spinors and a left-mov-

ing worldsheet current algebra for the Lie algebra g. This model is known as the heterotic 

ambitwistor string, with worldsheet action:

S =
1

2π

∫

Σ

Pµ ∂̄Xµ
−

e

2
P2

+
1

2
Ψµ ∂̄Ψ

µ
− χΨ · P + Sg, (2.17)

where Sg is the worldsheet action for the current algebra and χ is a fermionic Lagrange mul-

tiplier of conformal weight (− 1
2
, 1) enforcing the constraint Ψ · P = 0. The action (2.17) is 

invariant with respect to holomorphic conformal transformations on Σ, as well as a bosonic 

gauge freedom associated to the constraint P2  =  0 and a fermionic gauge freedom associated 

to the constraint Ψ · P = 0. Fixing these redundancies leads to a gauge-fixed action

S =
1

2π

∫

Σ

Pµ ∂̄Xµ
+

1

2
Ψµ ∂̄Ψ

µ
+ b ∂̄c + b̃ ∂̄c̃ + β ∂̄γ + Sg, (2.18)

and associated BRST charge

Q =

∮

cT + bc∂c +
c̃

2
P2 + γΨ · P +

b̃

2
γ2, (2.19)

where ghost systems (b, c), (b̃, c̃) and (β, γ) are associated with holomorphic conformal trans-

formations, the (bosonic) gauge freedom coming from P2  =  0 and the (fermionic) gauge free-

dom coming from Ψ · P = 0, respectively. T is the holomorphic stress tensor including all 

current algebra contributions.

Vertex operators in the ambitwistor string CFT live in the BRST cohomology associated to 

Q. Consider a fixed vertex operator of the form:

V = cc̃ δ(γ) ja Ψµ Aa

µ
(X), (2.20)

where a is an adjoint index of g and ja is the associated worldsheet current of conformal 

weight (1, 0). It is easy to see that the condition QV = 0 imposes the Maxwell equation and 

Lorenz gauge condition on Aa

µ. So any basis of gluon wavefunctions can be used to construct 

Q-closed vertex operators, including the conformal basis.

In particular, choose Aa

µ
(X) = T

a A∆,±
µ

(X; k) from (2.12), where Ta are generators of g. 

This gives the fixed vertex operator

V−1 = cc̃ δ(γ) j · TΨµ

∫ ∞

0

dt

t
t∆ ǫµ e±itk·X−εt

= (∓i)∆ Γ(∆) cc̃ δ(γ)
j · TΨ · ǫ

(−k · X ∓ iε)∆
,

 (2.21)

where the superscript on V−1 denotes its picture number. The vertex operator in zero picture 

number is given by convolving the operator obtained from the descent procedure on momen-

tum eigenstates with the conformal primary wavefunction:

V0 = cc̃ j · T

∫

∞

0

dt

t
t∆ (ǫ · P ± itǫ ·Ψ k ·Ψ) e±itk·X−εt, (2.22)

and the integrated vertex operator is

U =

∫ ∞

0

dt

t
t∆

∫

Σ

j · T (ǫ · P ± itǫ ·Ψ k ·Ψ) e±itk·X−εt δ̄(tk · P). (2.23)

T Adamo et alClass. Quantum Grav. 36 (2019) 205018
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The holomorphic delta function δ̄(z) = ∂̄z−1 = δ2(z)dz̄ , so δ̄(tk · P) is understood to have 

support where k · P vanishes.

The conformal basis of graviton modes can be realized through vertex operators of the 

type II ambitwistor string, for which the matter content are two sets of left-moving fermionic 

spinors on the worldsheet. After fixing holomorphic worldsheet conformal transformations 

in addition to the various symmetries generated by constraints, one obtains the gauge-fixed 

action

S =
1

2π

∫

Σ

Pµ ∂̄Xµ
+

1

2
Ψµ ∂̄Ψ

µ
+

1

2
Ψ̃µ ∂̄Ψ̃

µ
+ b ∂̄c + b̃ ∂̄c̃ + β ∂̄γ + β̃ ∂̄γ̃,

 (2.24)

and BRST charge

Q =

∮

cT + bc∂c +
c̃

2
P2 + γΨ · P + γ̃ Ψ̃ · P +

b̃

2

(

γ2 + γ̃2
)

. (2.25)

Vertex operators in the BRST cohomology encode the linearised Einstein equations  in de 

Donder gauge (together with a B-field and dilaton if desired), and once again we are free to 

construct explicit realizations using any basis of solutions, including the conformal basis.

In the conformal basis, the fixed graviton vertex operator is given by:

V−1,−1 = (∓i)∆ Γ(∆) cc̃ δ(γ) δ(γ̃)
ǫ ·Ψ ǫ̃ · Ψ̃

(−k · X ∓ iε)∆
, (2.26)

using the representative (2.14). The picture number zero and integrated graviton vertex opera-

tors are

V0,0 = cc̃

∫ ∞

0

dt

t
t∆

(

ǫ · P ± itǫ ·Ψ k ·Ψ
)(

ǫ̃ · P ± itǫ̃ · Ψ̃ k · Ψ̃
)

e±itk·X−εt,

 (2.27)

and

U =

∫ ∞

0

dt

t
t∆

∫

Σ

(

ǫ · P ± itǫ ·Ψ k ·Ψ
)(

ǫ̃ · P ± itǫ̃ · Ψ̃ k · Ψ̃
)

e±itk·X−εt δ̄(tk · P),

 (2.28)

respectively.

While we have only discussed gluon and graviton vertex operators here, it is easy to see 

that the conformal basis can be encoded in the vertex operators of any ambitwistor string (e.g. 

biadjoint cubic scalar theory, Einstein–Maxwell theory).

2.3. CHY formulae

The CHY formulae for tree-level scattering amplitudes in the plane wave basis are obtained 

from the genus zero (i.e. Σ ∼= CP
1) correlation functions of ambitwistor strings. With the ver-

tex operators listed above, these correlation functions are easily computed in the conformal 

basis. First, consider the n-point worldsheet correlator of gluon vertex operators on Σ ∼= CP
1 

in the heterotic ambitwistor string. Zero-mode saturation of the various worldsheet fields dic-

tates that this correlation function is given by:

An(αi,∆i, ki, ǫi,T
ai) =

〈

V−1
1 V−1

2 V0
3

n
∏

j=4

Uj

〉

, (2.29)
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where we have explicitly listed the dependence of the amplitude on the various quantum num-

bers of the gluon conformal basis.

Performing the X path integral in (2.29) fixes the worldsheet field Pµ to a classical value,

Pµ(σ) = dσ

n
∑

i=1

αi ti ki µ

σ − σi

, (2.30)

where σ is an affine coordinate on Σ ∼= CP
1 and {σi} are the locations of the vertex operator 

insertions. The remaining portions of the path integral can also be performed explicitly, result-

ing in the celestial CHY formula:

An(αi,∆i, ki, ǫi) =

n
∏

i=1

∫ ∞

0

dti

ti
t
∆i

i e−εti δ
d+2





n
∑

j=1

αj tjkj





×

∫
σ

2
12σ

2
23σ

2
31

dσ2
1 dσ2

2 dσ2
3

PTn Pf′M(σ,αtk, ǫ)

n
∏

i=4

δ̄



dσi

∑

j�=i

αiαjtitj ki · kj

σij



 .

 (2.31)

Here σij := σi − σj ; PTn is the worldsheet Parke–Taylor factor

PTn := tr(Ta1T
a2 · · ·T

an)
dσ1 dσ2 · · · dσn

σ12 σ23 · · ·σn1

+ perms., (2.32)

and Pf′M  is the reduced Pfaffian

Pf′M(σ,αtk, ǫ) :=

√
dσ1 dσ2

σ12

PfM12
12 , (2.33)

for M12
12, the matrix M below with rows and columns 1, 2 removed. This matrix M is a slight 

modification of the usual CHY matrix,

M(σ,αtk, ǫ) :=

(

A −CT

C B

)

, (2.34)

with entries

Aij = αiαjtitj ki · kj

√

dσi dσj

σij

, Bij = ǫi · ǫj

√

dσi dσj

σij

, (2.35)

Cij = αjtj ǫi · kj

√

dσi dσj

σij

, Cii = −dσi

∑

j�=i

αjtj
ǫi · kj

σij

.

It is the standard matrix appearing in the momentum space CHY formulae, but with the on-

shell momenta replaced by pi → αitiki.

It is straightforward to confirm that (2.31) is Möbius invariant under transformations 

of the {σi}, and is furthermore permutation invariant. These properties follow from the 

(d + 2)-dimensional delta function appearing under the Schwinger parameter integrals, which 

plays the role of overall momentum conservation in the plane wave basis. Indeed, (2.31) can 

be written more invariantly as:
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An =

∫

dµn PTn

n
∏

i=1

∫ ∞

0

dti

ti
t
∆i

i e−εti

× Pf′M(σ,αtk, ǫ) δd+2





n
∑

j=1

αj tjkj





∏′

j

δ̄





∑

l �=j

αjαltjtl kj · kl

σjl



 ,

 (2.36)

where the prime on the product in the second line indicates that only a Möbius-invariant prod-

uct of n  −  3 of these modified scattering equations are imposed. Note that (2.36) transforms as 

a conformal correlator on Sd of spin-1 primaries with scaling dimensions {∆i}; as expected, 

the difference between the states (2.12) and the true conformal primary wavefunction (2.10) 

drops out at the level of the gauge-invariant scattering amplitudes.

For celestial graviton amplitudes, we perform the analogous worldsheet correlation func-

tion calculation in the type II ambitwistor string. At genus zero, the prescription for a n-point 

correlator is

An(αi,∆i, ki, ǫi, ǫ̃i) =

〈

V−1,−1
1 V−1,−1

2 V0,0
3

n
∏

j=4

Uj

〉

, (2.37)

which leads to the CHY formula

An =

n
∏

i=1

∫ ∞

0

dti

ti
t
∆i

i e−εti δ
d+2





n
∑

j=1

αj tjkj





×

∫
dµn Pf′M(σ,αtk, ǫ) Pf′M(σ,αtk, ǫ̃)

∏′

j

δ̄





∑

l �=j

αjαltjtl kj · kl

σjl



 .

 (2.38)

Once again, the conformal basis analogues of overall momentum conservation and the scat-

tering equations are universal, while the integrand is simply the familiar CHY integrand for 

gravitons with on-shell momenta replaced by αitiki. It is easy to see that (2.38) transforms as 

a conformal correlator on Sd of spin-2 primaries with scaling dimensions {∆i}.

Similar reasoning for other ambitwistor string theories gives a general rule to obtain the 

CHY formula for celestial amplitudes:

An(αi,∆i, ki, . . .) =
n
∏

i=1

∫ ∞

0

dti

ti
t
∆i

i e−εti δ
d+2

(

n
∑

i=1

αi tiki

)

×

∫

dµn

∏′

j

δ̄





∑

l �=j

αjαltjtl kj · kl

σjl



 In(σ,αtk, . . .),

 (2.39)

where In(σ,αtk, . . .) is the CHY integrand relevant to the given QFT, with functional depend-

ence on null momenta p i replaced by αitiki.

3. Conformal soft theorems

For certain values of the scaling dimension ∆, conformal primary gluons or gravitons become 

pure gauge [2, 22]. These special values are dimension independent: ∆ = 1 for gluons and 
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∆ = 0, 1 for gravitons. For tree-level gluon scattering in R1,3, it was recently shown that in 

the limit where one of the gluons obeys ∆ → 1, the celestial amplitude factorizes at leading 

order, with all dependence on this ‘conformally soft’ gluon appearing in a conformal soft fac-

tor [24–26]. This was confirmed by studying explicit examples of 4-dimensional gluon scat-

tering in certain helicity configurations. Ambitwistor strings and the celestial CHY amplitudes 

allow us to probe conformal soft limits in arbitrary dimension and for all tree-level gluon and 

graviton celestial amplitudes.

3.1. Gauge theory: ∆ → 1

Consider the integrated gluon vertex operator given by (2.23). The Schwinger parameter int-

egral can be performed explicitly to give an equivalent expression for this vertex operator:

U = (∓i)∆−1 Γ(∆− 1)

∫

Σ

j · T δ̄(k · P)

(−k · X ∓ iε)∆−1

[

ǫ · P + (∆− 1)
ǫ ·Ψ k ·Ψ

−k · X ∓ iε

]

.

 (3.1)

This expression has a manifest pole at ∆ = 1 due to the gamma function; a Laurent expansion 

of the vertex operator near ∆ = 1 leads to

U =
1

∆− 1

∫

Σ

j · T ǫ · P δ̄(k · P) + O((∆− 1)0) :=
Usoft

∆− 1
+ O((∆− 1)0).

 (3.2)

The leading conformally soft contribution to this vertex operator can be rewritten as

Usoft =
1

2πi

∮

j · T ǫ · P

k · P
, (3.3)

where the holomorphic delta function has been expressed as a contour integral on the world-

sheet containing the pole at k · P = 0.

When Usoft  is inserted into a worldsheet correlation function it will develop poles coming 

from Wick contractions against the other vertex operators (which have generic, not confor-

mally soft, values of ∆), which are picked out by the contour integral. At the level of the 

worldsheet correlator:

lim
∆→1

〈

V−1
1 V−1

2 V0
3

n
∏

i=4

Ui U

〉

=
1

∆− 1

〈

V−1
1 V−1

2 V0
3

n
∏

i=4

Ui Usoft

〉

, (3.4)

where all sub-leading terms have been dropped on the right-hand side. Evaluating the contour 

integral of the conformally soft vertex operator by using (2.30) within this correlation func-

tion gives:

1

∆− 1

∑

ρ∈Sn/Zn

n
∑

j=1

tr (Taρ(1)
· · · [Ta, Taρ( j) ] · · ·Taρ(n))

〈

ǫ · P(σρ( j))

k · P(σρ( j))
V−1

1 V−1
2 V0

3

n
∏

i=4

Ui

〉

=
1

∆− 1

∑

ρ∈Sn/Zn

n
∑

j=1

tr (Taρ(1)
· · · [Ta, Taρ( j) ] · · ·Taρ(n))

ǫ · kρ( j)

k · kρ( j)

〈

V−1
1 V−1

2 V0
3

n
∏

i=4

Ui

〉

,

 (3.5)

where the colour structure of each state has been explicitly displayed and the sum is over 

distinct colour orderings. The formula follows from observing that the contraction of P with 

an exponential eik·X  yields k.
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The remainder of the correlator can be evaluated as before. Using the equivalence between 

the ambitwistor string correlators and the celestial amplitudes, (3.4) gives a relation between 

scattering amplitudes in the ∆ → 1 limit. For the colour ordering with the conformally soft 

gluon inserted between n and 1, this gives the conformal soft gluon theorem:

lim
∆→1

An+1(∆1, . . . ,∆n,∆) =
1

∆− 1

(

ǫ · k1

k · k1

−

ǫ · kn

k · kn

)

An(∆1, . . . ,∆n) + · · · ,

 (3.6)

where ǫµ is the polarization of the conformally soft gluon, kµ is its insertion point on Sd and 

{ki} are the insertion points on Sd of the remaining gluons which have generic scaling dimen-

sions. The ‘  ⋯  ’ indicate subleading terms of order (∆− 1)0.

The formula (3.6) is valid in arbitrary dimension, but it can be refined for four-dimensional 

scattering on R1,3 (i.e. d  =  2). In the momentum eigenstate basis, gluon polarizations can 

be traded for a helicity label and on-shell 4-momenta are specified by two-component Weyl 

spinors of opposite chirality pµ ↔ (λα, λ̃α̇). In the conformal basis, this on-shell 4-momen-

tum is traded for a point (z, z̄) ∈ S2 and a scaling dimension ∆. At the level of spinors,

λα =
√

t

(

−z

1

)

≡
√

tzα, λ̃α̇ = ±
√

t

(

z̄

−1

)

≡ ±
√

tz̃α̇, (3.7)

with zα homogeneous coordinates on the sphere S2 ∼= CP
1.

Details of the d  =  2 formalism are in the appendix, but for a positive helicity conformally 

soft gluon one obtains the soft theorem

lim
∆→1

An+1(∆
±

1 , . . . ,∆±

n ,∆+) =
−1

∆− 1

〈1 n〉

〈1 s〉 〈s n〉
An(∆

±

1 , . . . ,∆±

n ) + · · ·

=
−1

∆− 1

z1n

z1s zsn

An(∆
±

1 , . . . ,∆±

n ) + · · · ,

 (3.8)

where ∆±

i  is short-hand for the scaling-dimension and helicity of each external gluon, zs ∈ S2 

is the location of the ∆ → 1 gluon, and we have expressed the right-hand side in both homo-

geneous and affine coordinates on S2. In the former case, 〈i j〉 stands for the SL(2,C)-invariant 

inner product zαi zj α = ǫαβzi βzj α. The formula (3.8) agrees with the results of [24–26].

3.2. Gravity: ∆ → 1

The integrated graviton vertex operator (2.28) is equal to

U = (∓i)∆−1 Γ(∆− 1)

∫

Σ

δ̄(k · P)

(−k · X ∓ iε)∆−1

[

ǫ · P ǫ̃ · P

+
(∆− 1)

(−k · X ∓ iε)

(

ǫ̃ · P ǫ ·Ψ k ·Ψ+ ǫ · P ǫ̃ · Ψ̃ k · Ψ̃
)

+∆(∆− 1)
ǫ ·Ψ k ·Ψ ǫ̃ · Ψ̃ k · Ψ̃

(−k · X ∓ iε)2

]

,

 

(3.9)

upon performing the Schwinger parameter integrals. As in the gluon case, the vertex operator 

has a simple pole as ∆ → 1 due to the gamma function, and we can expand

U =
Usoft

∆− 1
+ O((∆− 1)0), (3.10)
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with

Usoft =
1

2πi

∮

ǫ · P ǫ · P

k · P
. (3.11)

Here, we have explicitly symmetrized the graviton polarization by setting ǫ̃µ = ǫµ, and the 

contour integral on the worldsheet Σ surrounds k · P = 0.

Now, inserting the leading conformally soft graviton operator into a worldsheet correlator 

of the type II ambitwistor string leads to:

1

∆− 1

〈

V−1,−1
1 V−1,−1

2 V0,0
3

n
∏

i=4

Ui Usoft

〉

=
1

∆− 1

1

2πi

〈

∮

ǫ · P(σ) ǫ · P(σ)

k · P(σ)
V−1,−1

1 V−1,−1
2 V0,0

3

n
∏

i=4

Ui

〉

,

 

(3.12)

where the contour integral encircles poles in σ ∈ Σ, the insertion location of Usoft . The remain-

der of the correlator can be evaluated, but there is a new subtlety which did not appear in the 

gluon calculation. Using (2.30), it follows that

1

2πi

∮

ǫ · P(σ) ǫ · P(σ)

k · P(σ)
=

1

2πi

∮

dσ

n
∑

i=1

αi ti
ǫ · ki ǫ · ki

k · ki (σ − σi)
+ O((σ − σi)

0)

=

n
∑

i=1

αi ti
ǫ · ki ǫ · ki

k · ki

.

 (3.13)

The additional power of the Schwinger parameter ti means that the scaling dimensions of the 

remaining graviton states are shifted in the ∆ → 1 limit.

Thus, we obtain the ∆ → 1 conformal soft graviton theorem:

lim
∆→1

An+1(∆1, . . . ,∆n,∆)

=
1

∆− 1

n
∑

i=1

αi

ǫ · ki ǫ · ki

k · ki

An(∆1, . . . ,∆i + 1, . . . ,∆n) + · · · ,
 (3.14)

where the scaling dimension of the ith external graviton is shifted to ∆i → ∆i + 1 in the ith 

term. This shift ensures that the soft limit has the correct overall scaling dimension ∆i in each 

ki. This conformal soft limit can be refined in four space-time dimensions:

lim
∆→1

An+1(∆
±

1 , . . . ,∆±

n ,∆+)

=
1

∆− 1

n
∑

i=1

αi

[i s] 〈ξ i〉2

〈i s〉 〈ξ s〉2
An(∆

±

1 , . . . , (∆i + 1)±, . . . ,∆±

n ) + · · ·

=
1

∆− 1

n
∑

i=1

αi

z̄is (ξ − zi)
2

zis (ξ − zs)2
An(∆

±

1 , . . . , (∆i + 1)±, . . . ,∆±

n ) + · · · ,

 (3.15)

where ξ ∈ S2 is an arbitrary reference point on the two-sphere3.

3 We thank Andrea Puhm [46] for pointing out a typo in passing to the final line of this formula in an earlier version.
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3.3. Gravity: ∆ → 0

In [2], it was shown that graviton conformal primaries with ∆ = 0 are also pure gauge. Sure 

enough, the graviton vertex operator (3.9) also has a simple pole at ∆ = 0 due to the gamma 

function. The vertex operator can be expanded around the ∆ → 0 limit as

U =
Usoft

∆
+ O(∆0), (3.16)

where the new soft vertex operator is given by

Usoft = ±
1

2π

∮

ǫ · P

k · P

(

ǫ · P k · X + ǫ · Ψ̃ k · Ψ̃ + ǫ ·Ψ k ·Ψ
)

= ±
1

2π

∮

ǫ · P

k · P
ǫµ kν

(

P[µ Xν] +Ψµ Ψν + Ψ̃µ Ψ̃ν

)

.

 

(3.17)

Once again, we have explicitly symmetrized the graviton polarization by setting ǫ̃µ = ǫµ. In 

going from the first to second line of (3.17), we added a term regular in k · P which does not 

contribute inside of correlation functions since there is no pole for the contour to wrap.

Inserting Usoft  in a correlation function of graviton vertex operators, one obtains a ∆ → 0 

conformal soft theorem for gravity by following steps virtually equivalent to the previous 

calculations:

lim
∆→0

An+1(∆1, . . . ,∆n,∆) =
1

∆

n
∑

i=1

ǫ · ki

k · ki

ǫµ kν J
µν

i An(∆1, . . . ,∆n) + · · · ,

 (3.18)

where the operator

J
µν

i = 2 ǫ
[µ
i

∂

∂ǫi ν]
+ k

[µ
i

∂

∂ki ν]
, (3.19)

acts on the insertion points of the ith graviton in An. Note the absence of any shifts in the scal-

ing dimensions, as every J
µν

i  is homogenous in ki. In four-dimensions, this conformal soft 

theorem takes the form4

lim
∆→0

An+1(∆
±

1 , . . . ,∆±

n ,∆+) =
1

∆

n
∑

i=1

z̄is (ξ − zi)

zis (ξ − zs)

(

z̄si

∂

∂z̄i

− 2h̄i

)

An(∆
±

1 , . . . ,∆±

n ), (3.20)

where ξ ∈ S2 is once again arbitrary, and (hi, h̄i) =
1
2
(∆i + Ji,∆i − Ji) represent the confor-

mal weights of the gravitons. We find that the ∆ → 0 conformal soft limit is just the Mellin 

transform of the subleading energetic soft limit of momentum space graviton amplitudes.

4. Asymptotic symmetries at J

The relationship between energetic soft limits and asymptotic symmetries of gauge theory 

and gravity is well-established (see [41, 48, 49]). A similar relationship has been suggested 

between conformally soft wavefunctions and asymptotic symmetries [22, 24], although the 

origins of this connection seem more obscure. By writing ambitwistor strings in variables 

explicitly adapted to the null conformal boundary J  of R1,d+1, we prove that the conformally 

soft vertex operators for gluons and gravitons are equivalent to charges which generate asymp-

totic symmetries of gauge theory and gravity.

4 We thank Alfredo Guevara [47] for pointing out an error in this formula in an earlier version.
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4.1. Ambitwistor strings at J

The conformal boundary of R1,d+1 is composed of space-like, future and past time-like and 

future and past null infinities. The null boundaries J ± are the endpoints of null trajectories 

followed by massless particles during a scattering process. Recall that J ± ∼= R× Sd.

For ambitwistor strings we work in complexified space-time Cd+2 for which the associ-

ated JC has the topology of a line bundle of Chern class one O(1) over a projective quadric, 

the complexified d-sphere. Let ζµ be homogeneous coordinates obeying ζ2 = 0; these give 

homogeneous coordinates on Sd
C
. Then JC is described by coordinates (u, ζµ) subject to the 

homogeneity relation

(u, ζµ) ∼ (ru, rζµ), ∀r ∈ C
∗. (4.1)

If (w, qµ) are the conjugate (dual) coordinates to (u, ζµ), then (u, ζµ, w, qµ) chart T∗JC, which 

is the space of all (complexified) null geodesics.

It is easy to see that this space is precisely the target space of ambitwistor string theory. 

Consider the generic model for such a worldsheet theory (2.16), which is written in terms 

of canonical coordinates (Xµ, Pµ) on T∗
C

d+2. The constraint P2  =  0 reduces T∗
C

d+2 to 

the bundle of null directions, and its associated gauge freedom (which allows translations 

Xµ → Xµ + r Pµ) further quotients by motion along these null directions. The coordinates 

(Xµ, Pµ) can be related explicitly to those on T∗JC by

Xµ = w−1 qµ, Pµ = w ζµ, w u = X · P = q · ζ, (4.2)

with the variable w acting like a frequency for the field Pµ.

The generic worldsheet action (2.16) of ambitwistor string theory can now be rewritten 

with the worldsheet fields given by coordinates on T∗JC [38]. With respect to the symplectic 

structure

θ = w du − qµ dζµ, (4.3)

the homogeneity relation (4.1) has as its canonical generator the constraint,

wu − q · ζ = 0. (4.4)

Imposing this constraint along with ζ2 = 0 at the level of a worldsheet action leads to the 

generic form of an ambitwistor string written in J -adapted variables [38]:

S =
1

2π

∫

Σ

w ∂̄u − qµ ∂̄ζµ −

e

2
ζ2

− a (wu − q · ζ) + · · · . (4.5)

Here, e and a are Lagrange multipliers on the worldsheet which enforce the constraints, and 

‘+ · · ·’ stands for whatever matter content is chosen for the particular realization of the ambit-

wistor string.

4.2. Conformally soft vertex operators as asymptotic symmetry generators

Conformal primary vertex operators for gluons and gravitons can be written down, and the 

CHY formulae (2.31), (2.38) derived using the J -adapted ambitwistor strings. However, the 

real power of this perspective is in allowing a geometric interpretation for the action of world-

sheet operators at J . Consider the vertex operator for a ∆ = 1 conformally soft gluon (3.3); 

written in the J  variables it takes the form:
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U∆=1
gluon =

1

2πi

∮

j · T
ǫ · ζ

k · ζ
. (4.6)

This has the structure of a canonical charge generating some canonical transformations5 in 

the heterotic ambitwistor string. Acting at J , this charge is the generator of a Kac-Moody 

algebra (through the worldsheet current ja) corresponding to a gauge transformation on the 

celestial sphere Sd with gauge parameter ǫ · ζ/k · ζ [38]. Such large gauge transformations on 

Sd are well-known asymptotic symmetries of Yang–Mills theory [50].

A similar story holds for conformally soft graviton vertex operators. Translating into 

J -adapted variables, the ∆ = 1 and ∆ = 0 conformally soft graviton vertex operators are:

U∆=1
grav =

1

2πi

∮

w
(ǫ · ζ)2

k · ζ
, (4.7)

and

U∆=0
grav = ±

1

2π

∮

ǫ · ζ

k · ζ
ǫ
µ kν

(

ζ[µ qν] +Ψµ Ψν + Ψ̃µ Ψ̃ν

)

. (4.8)

As w is the canonical conjugate of u, the coordinate on the generators of J , U∆=1
grav  acts to 

shift u by 
(ǫ·ζ)2

k·ζ . This is precisely the action of a supertranslation within the BMS group [51, 

52], though when d  >  2 these supertranslations are not naturally asymptotic symmetries (see 

[53, 54]).

In (4.8), the terms in parentheses act on J  by the operator

Jµν = ζ[µ qν] +Ψµ Ψν + Ψ̃µ Ψ̃ν , (4.9)

which is a sum of orbital and intrinsic angular momentum operators [38]. Therefore, U∆=0
grav  

acts as a superrotation [55, 56] by 
ǫ·ζ
k·ζ ǫ

µkν on J .

4.3. The ∆ → 0 limit for subleading soft gluons

The gluon vertex operator (3.1) also has a simple pole for scaling dimension ∆ = 0; how-

ever, the gluon conformal primary wavefunction is not pure gauge when ∆ = 0. It therefore 

seems that the ∆ → 0 limit for gluon conformal primary wavefunctions should have no spe-

cial meaning. However, isolating the leading part of (3.1) gives

U∆=0
gluon = ±

1

2π

∮

j · T

w k · ζ
(ǫ · ζ k · q + ǫ ·Ψ k ·Ψ) . (4.10)

This acts on J  through a mixture of gauge transformation and rotation, which is precisely the 

Yang–Mills analogue of a superrotation [49, 57]. This is perhaps puzzling, since it appears to 

link an asymptotic symmetry of gauge theory with a non-soft limit of the scaling dimension.

Furthermore, upon inserting (4.10) into a worldsheet correlation function, a universal 

decoupling behaviour akin to a conformal soft theorem emerges:

5 In worldsheet theories, a canonical transformation corresponding to a Hamiltonian function h(X, P) is generated 

via a charge Qh acting on functions f (X, P) as

[Qh, f (X, P)(z)] =

∮

dz′

2πi
R[h(X, P)(z′) f (X, P)(z)],

with the contour of integration encircling poles at z′ = z and R denoting radial ordering in the 2d CFT.
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lim
∆→0

An+1(∆1, . . . ,∆n,∆) =
ǫµ kν

∆

(

J
µν

1

k · k1

An(∆1 − 1,∆2, . . . ,∆n)

−
Jµνn

k · kn

An(∆1, . . . ,∆n−1,∆n − 1)

)

+ · · · ,

 

(4.11)

where we have displayed the result for the partial amplitude with the ∆ → 0 gluon inserted 

between 1 and n in the colour-ordering. Here J
µν

i  is angular momentum operator

J
µν

i = ǫ
[µ
i

∂

∂ǫi ν]
+ k

[µ
i

∂

∂ki ν]
, (4.12)

for the ith gluon. Note that in this limit, the reduced amplitudes appear with scaling dimen-

sions shifted down: ∆1,n → ∆1,n − 1.

The structural form of (4.11) is clearly inherited from the sub-leading energetic soft gluon 

theorem. This follows directly from (2.10) or (2.12) by evaluating the conformal primary 

wavefunction at ∆ = 0. This leads to a vertex operator at ∆ = 0 that corresponds precisely to 

the subleading part of the standard momentum vertex operator. It would be very interesting to 

understand this from some underlying (perhaps holographic) framework.

More generally, it is clear that the conformal primary vertex operators for both gauge the-

ory and gravity have simple poles for all negative integer values of ∆. While these do not 

correspond to pure gauge configurations (like the ∆ = 0 gluon example discussed here), one 

still expects the S-matrix to factorize in a way that is structurally related to the energetic soft 

expansion. For instance, the ∆ → −1 limit for gravitons has been shown to be related to the 

sub-sub-leading soft graviton theorem using recursive techniques [47].
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Appendix. Results in four-dimensions

The case of celestial scattering in R1,3 (i.e. d  =  2) is special for several reasons: scattering 

is refined by helicity instead of polarizations, the celestial sphere S2 carries the full Virasoro 

algebra, and the conformally soft limit ∆ → 1 occurs within the conformal basis relevant for 

this dimension. In addition, the shadow transform of the graviton conformal primary with 

scaling dimension 2 −∆ becomes conformally soft as ∆ → 2 [2]. In this appendix, we give 

a brief derivation of conformal soft theorems with d  =  2, using four-dimensional ambitwistor 

strings [58].

A.1. Ambitwistor strings in 4-dimensions

The space of (complexified) null geodesics in R1,3 is given by a projective quadric in 

CP
3
× CP

3. If each factor is endowed with homogeneous coordinates ZA = (µα̇,λα), 

WA = (λ̃α̇, µ̃α), then this quadric is Z · W = [µ λ̃] + 〈µ̃ λ〉 = 0. A worldsheet theory adapted 

to this target space is given in conformal gauge by
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S =

∫

Σ

Z · ∂̄W − W · ∂̄Z + a Z · W + · · · , (A.1)

where the worldsheet fields (ZA, WA) are bosonic spinors on Σ of conformal dimension ( 1
2
, 0) 

and a is a Lagrange multiplier of conformal weight (0, 1) enforcing the constraint Z · W = 0. 

The ‘+ · · ·’ stand for theory-dependent matter content.

In a plane wave basis, the data for an on-shell gluon or graviton is given by a helicity sign 

and an on-shell 4-momentum, represented by spinors {λα, λ̃α̇}. To transform to the confor-

mal basis, this data must be transformed to {∆, z, z̄}, where ∆ is the scaling dimension and 

(z, z̄) ∈ S2. This is accomplished with the conventions

λα =
√

t

(

−z

1

)

≡
√

tzα, λ̃α̇ = ±
√

t

(

z̄

−1

)

≡ ±
√

tz̃α̇, (A.2)

where the sign in the second relation denotes whether the momentum is outgoing/incom-

ing, and zα define homogeneous coordinates on S2 ∼= CP
1. This enables vertex operators in 

models (A.1) to be obtained by a simple Mellin transform of those for plane wave momentum 

eigenstates.

For Yang–Mills theory, the matter content needed in (A.1) is simply a left-moving world-

sheet current algebra for the gauge group [58]. Integrated vertex operators for positive and 

negative helicity gluons in the conformal basis are then given by:

U =

∫

Σ

∫ ∞

0

dt

t
t∆

∫

C∗

ds

s
δ̄

2
(√

tz − sλ(σ)
)

e±i
√

ts[µ(σ)̃z]−εt j · T,

Ũ =

∫

Σ

∫ ∞

0

dt

t
t∆

∫

C∗

ds

s
δ̄

2
(

±
√

tz̃ − sλ̃(σ)
)

ei
√

ts〈µ̃(σ)z〉−εt j · T,

 

(A.3)

respectively. These vertex operators can be further simplified by scaling s →
√

ts in order to 

perform the t integral, making a pole at ∆ = 1 manifest. The bulk-to-boundary propagator 

forms of these vertex operators are also produced naturally from the t integral, illustrating the 

correspondence between (A.3) and (2.23).

For gravity, the worldsheet action (A.1) is supplemented with a complex fermion system 

(ρA, ρ̃A) of conformal weight ( 1
2
, 0) as well as several new fermionic and bosonic constraints 

(see [58]). Positive and negative helicity graviton vertex operators in the conformal basis are 

given by:

U =

∫

Σ

(1 + ρ · ∂Z ρ̃ · ∂W)

∫ ∞

0

dt

t
t∆

∫

C∗

ds

s2
δ̄2

(√
tz − sλ(σ)

)

× [λ̃(σ)z̃] e±i
√

ts[µ(σ)̃z]−εt,

Ũ =

∫

Σ

(1 + ρ · ∂Z ρ̃ · ∂W)

∫ ∞

0

dt

t
t∆

∫

C∗

ds

s2
δ̄2

(

±
√

tz̃ − sλ̃(σ)
)

× 〈λ(σ)z〉 ei
√

ts〈µ̃(σ)z〉−εt.

 

(A.4)

Once again, these are obtained by a Mellin transform of the momentum eigenstate graviton 

vertex operators in 4d ambitwistor strings.

A.2. Conformal soft theorems in 4d

The conformal soft theorems are derived in the same fashion as in general dimension: by 

expanding the vertex operators around the soft scaling dimensions and then inserting the 
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leading soft vertex operator into a worldsheet correlation function. First, consider the ∆ → 1 

conformal soft limit for a gluon, which we take to be positive helicity without loss of general-

ity. Both the t and s integrals in (A.3) can be performed to yield

U = (−i)∆−1 Γ(∆− 1)

∫

Σ

j · T

(
〈ξλ(σ)〉

〈ξz〉

)∆
δ̄(〈zλ(σ)〉)

(−[µ(σ)z̃]− iε)∆−1
, (A.5)

where ξ ∈ S2 is an arbitrary reference point. Clearly, this has a pole at ∆ = 1; the coefficient 

of (∆− 1)−1 in a Laurent expansion of (A.5) is the operator

U∆=1
soft =

1

2πi

∮

j · T
〈ξλ(σ)〉

〈ξz〉 〈zλ(σ)〉
, (A.6)

where the contour encircles the pole at 〈zλ〉 = 0. As shown in [38, 40], this is a generator of 

asymptotic gauge transformations in R1,3. Inserting (A.6) in a worldsheet correlation function 

(between 1 and n in the colour ordering) produces the positive helicity conformal soft gluon 

theorem:

lim
∆→1

An+1(∆
±

1 , . . . ,∆±

n ,∆+) =
−1

∆− 1

〈1 n〉

〈1 s〉 〈s n〉
An(∆

±

1 , . . . ,∆±

n ) + · · ·

=
−1

∆− 1

z1n

z1s zsn

An(∆
±

1 , . . . ,∆±

n ) + · · · ,

 (A.7)

where the ∆ → 1 gluon is inserted at (zs, z̄s) ∈ S2 and superscripts on the scaling dimensions 

indicate the helicity of the external gluon. The result is displayed in both homogeneous and 

affine coordinates on the celestial S2.

Likewise, the positive helicity graviton vertex operator of (A.4) can be written as:

U = (−i)∆−1 Γ(∆− 1)

∫

Σ

(1 + ρ · ∂Z ρ̃ · ∂W)

(
〈ξλ(σ)〉

〈ξz〉

)∆+1
δ̄(〈zλ(σ)〉) [λ̃(σ)z̃]

(−[µ(σ)z̃]− iε)∆−1
. (A.8)

This has poles at both ∆ = 1 and ∆ = 0. In the first case the coefficient of (∆− 1)−1 is given 

by

U∆=1
soft =

1

2πi

∮

(1 + ρ · ∂Z ρ̃ · ∂W)

(
〈ξλ(σ)〉

〈ξz〉

)2
[λ̃(σ)z̃]

〈zλ(σ)〉
, (A.9)

with the contour taken around the pole at 〈zλ〉 = 0. This vertex operator can be shown to gen-

erate supertranslations at J  [38], and inserting it into a worldsheet correlation function leads 

to the positive helicity conformal soft graviton theorem:

lim
∆→1

An+1(∆
±

1 , . . . ,∆±

n ,∆+)

=
1

∆− 1

n
∑

i=1

αi

[i s] 〈ξ i〉2

〈i s〉 〈ξ s〉2
An(∆

±

1 , . . . , (∆i + 1)±, . . . ,∆±

n ) + · · ·

=
1

∆− 1

n
∑

i=1

αi

z̄is (ξ − zi)
2

zis (ξ − zs)2
An(∆

±

1 , . . . , (∆i + 1)±, . . . ,∆±

n ) + · · · ,

 (A.10)

with ξ ∈ S2 arbitrary.
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Expanding the graviton vertex operator (A.8) near ∆ → 0, the leading term is

U∆=0
soft =

1

2π

∮

(1 + ρ · ∂Z ρ̃ · ∂W)
〈ξλ(σ)〉 [λ̃(σ)z̃] [µ(σ)z̃]

〈ξz〉 〈zλ(σ)〉
, (A.11)

where the contour once again encircles the 〈zλ〉 = 0 pole. This operator acts as a charge gen-

erating superrotations at J  [38], and it produces the positive helicity conformal soft graviton 

theorem:

lim
∆→0

An+1(∆
±
1 , . . . ,∆±

n ,∆+) =
1

∆

n
∑

i=1

z̄is (ξ − zi)

zis (ξ − zs)

(
z̄si

∂

∂z̄i

− 2h̄i

)
An(∆

±
1 , . . . ,∆±

n ), (A.12)

with h̄i the anti-holomorphic conformal weight of the gravitons. This ∆ → 0 limit is also of 

interest thanks to its interaction with the shadow transform when d  =  2.

In general dimension, the conformal primary wavefunction h∆,±
µν  is related to its shadow 

transform by

˜
h∆,±
µν (X; k) = (−X2)

d
2
−∆ hd−∆,±

µν
(X; k), (A.13)

where tilde denotes the shadow transform (see [59]). When d  =  2 and ∆ = 2, h̃2,±
µν  is pure 

gauge, being closely related to the ∆ → 0 limit. This ∆ = 2 pure diffeomorphism state can 

be used to construct a stress tensor for a boundary CFT on S2 whose insertion into a correlator 

leads to the sub-leading energetic soft graviton theorem [7, 8]. In the context of celestial scat-

tering, (A.12) indicates that ∆ → 2 will be linked with a conformal soft theorem, inheriting 

the functional form of this sub-leading soft graviton theorem.
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