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1 Introduction

Pasterski, Shao, and Strominger (PSS) have proposed a map between S-matrix elements in

four-dimensional Minkowski spacetime and correlation functions in two-dimensional con-

formal field theory (CFT) living on the celestial sphere [1, 2]. Celestial CFT is interesting

both for understanding the long elusive holographic description of flat spacetime [3–8] as

well as for exploring the mathematical structures of amplitudes. In recent years many

remarkable properties of amplitudes have been uncovered via twistor space, momentum

twistor space, scattering equations, etc.(see [9] for review), hence it is quite plausible that

exploring properties of celestial amplitudes may also lead to new insights.

A key idea behind the PSS proposal was to transform the plane wave basis to a

manifestly conformally covariant basis called the conformal primary wavefunction basis.

This basis was constructed explicitly by Pasterski and Shao [10] for particles of various

spins in diverse dimensions. The celestial sphere is the null infinity of four-dimensional

Minkowski spacetime. The double cover of the four-dimensional Lorentz group is identified

with the SL(2,C) conformal group of the celestial sphere. Two-dimensional correlators on

the celestial sphere will be referred to as celestial amplitudes from here on.

The celestial amplitudes of massless particles are given by Mellin transforms of the

corresponding four-dimensional amplitudes

Ãn(zj , z̄j) =

∫ ∞

0

n
∏

l=1

dωl ω
∆l−1
l An(kl) , (1.1)

where ∆l = 1+iλl, with λl ∈ R [10], are conformal dimensions taking values in the principal

continuous series, in order to ensure the orthogonality and completeness of the conformal

primary wavefunction basis. Further details are given below.
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Figure 1. Four-Point Exchange Diagrams.

In the spirit of recent developments in understanding scattering amplitudes from the

on-shell perspective by studying symmetries, analytic properties, and unitarity, many re-

cent studies have delved into similar aspects of celestial amplitudes. The structure of

factorization of singularities of celestial amplitudes was investigated in [11]; three- and

four-point gluon amplitudes were computed in [2] and arbitrary tree-level ones in [12].

Celestial four-point string amplitudes have been discussed in [13]. Unitarity via the mani-

festation of the optical theorem on celestial amplitudes has been observed recently [14, 15]

and the generators of Poincaré and conformal groups in the celestial representation were

constructed in [16].

This paper is organized as follows. In section 2 we compute massless scalar four-point

celestial amplitudes and study its properties such as conformal partial wave decomposition,

crossing relations, and optical theorem. In section 3 we derive conformal partial wave

decomposition for four-point gluon celestial amplitude, and in section 4 single and double

soft limits for all gluon celestial amplitudes. The conformal partial wave decomposition

formalism is summarized in appendix A and details about inner product integrals, required

in the main text, are evaluated in appendix B.

Note added. During this work, we became aware of related work by Pate, Raclariu, and

Strominger [17] which has some overlap with section 4 of our paper.

2 Scalar four-point amplitude

In this section we study a tree level four-point amplitude of massless scalars mediated by

exchange of a massive scalar depicted on figure 1.1

The corresponding celestial amplitude (1.1) is

Ã4(zj , z̄j) = g2
∫ ∞

0

4
∏

j=1

dωj ω
∆j−1
j δ(4)

(

4
∑

i=1

ki

)

(

1

(k1+k2)2+m2
+

1

(k1+k3)2+m2
+

1

(k1+k4)2+m2

)

,

(2.1)

1The same amplitude in three dimensions was studied in [15].
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where zj , z̄j are coordinates on the celestial sphere and ωj are the energies. Defining ǫj = −1

(+1) for incoming (outgoing) particles, we can parameterize the momenta kµj as

kµj = ǫjωj

(

1 + |zj |2, zj + z̄j , iz̄j − izj , 1− |zj |2
)

. (2.2)

Under conformal transformations, by construction [10], the four-point celestial ampli-

tude behaves as a four-point CFT correlation function of operators with conformal weights

(hj , h̄j) =
1

2
(∆j + Jj ,∆j − Jj) , (2.3)

where Jj are spins. We can split the four-point celestial amplitude into a conformally

invariant function of only the cross-ratios Ã4(z, z̄) and a universal prefactor

Ã4(zj , z̄j) =

(

z24
z14

)h12
(

z14
z13

)h34

zh1+h2
12 zh3+h4

34

(

z̄24
z̄14

)h̄12
(

z̄14
z̄13

)h̄34

z̄h̄1+h̄2
12 z̄h̄3+h̄4

34

Ã4(z, z̄) , (2.4)

where we define hij = hi − hj , h̄ij = h̄i − h̄j and cross-ratios

z =
z12z34
z13z24

, z̄ =
z̄12z̄34
z̄13z̄24

with zij = zi − zj , z̄ij = z̄i − z̄j . (2.5)

Let’s fix the external points in (2.1) as z1 = 0, z2 = z, z3 = 1, z4 = 1/τ with τ → 0,

and compute

Ã4(z) ≡ |z|∆1+∆2 lim
τ→0

τ−2∆4Ã4(0, z, 1, 1/τ) . (2.6)

We will consider the case where particles 1 and 2 are incoming while 3 and 4 are

outgoing, so ǫ1 = ǫ2 = −ǫ3 = −ǫ4 = −1 and denote it as 12 ↔ 34. The s-channel diagram

on figure 1 is

Ã12↔34
4,s (z) ∼ g2|z|∆1+∆2 lim

τ→0
τ−2∆4

∫ ∞

0

4
∏

i=1

dωi ω
∆i−1
i δ(4)





4
∑

j=1

kj





1

m2 − 4ω1ω2|z|2
.

(2.7)

The momentum conservation delta functions can be rewritten as:

δ(4)





4
∑

j=1

kj



 =
4τ2

ω1
δ(iz̄ − iz)

4
∏

i=2

δ(ωi − ω∗
i ) , (2.8)

where

ω∗
2 =

ω1

z − 1
, ω∗

3 =
zω1

z − 1
, ω∗

4 = zω1τ
2 . (2.9)

The delta function only has solutions when all the ω∗
i are positive, so z > 1.
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Then (2.7) reduces to a single integral

Ã12↔34
4,s (z) ∼ g2δ(iz̄ − iz)z∆1+∆2 lim

τ→0
τ2−2∆4

∫ ∞

0
dω1ω

∆1−2
1

4
∏

i=2

(ω∗
i )

∆i−1 1

m2 − 4z2

z−1ω
2
1

=
g2 (im/2)2α−2

sin(πα)
δ(iz̄ − iz) z2 (z − 1)h12−h34 . (2.10)

Adding the s-, t-, and u-channel contributions, we obtain our final result

Ã12↔34
4 (z) ∼ g2

(m/2)2α−2

sin(πα)
δ(iz̄ − iz) z2 (z − 1)h12−h34

(

eπiα +

(

z

z − 1

)α

+ zα
)

, (2.11)

where

α =
4

∑

i=1

hi − 2 . (2.12)

Let us discuss some properties of this expression.

• First, it is straightforward to verify that the Poincaré generators on the celestial

sphere, constructed in [16],

L1,i = (1− z2i )∂zi − 2zihi ,

L̄1,i = (1− z̄2i )∂z̄i − 2z̄ih̄i ,

P0,i = (1 + |zi|2)e(∂hi+∂h̄i
)/2 ,

P2,i = −i(zi − z̄i)e
(∂hi+∂h̄i

)/2 ,

L2,i = (1 + z2i )∂zi + 2zihi , L3,i = 2(zi∂zi + hi) ,

L̄2,i = (1 + z̄2i )∂z̄i + 2z̄ih̄i , L̄3,i = 2(z̄i∂z̄i + h̄i) ,

P1,i = (zi + z̄i)e
(∂hi+∂h̄i

)/2 ,

P3,i = (1− |zi|2)e(∂hi+∂h̄i
)/2

(2.13)

annihilate the celestial amplitude on the support of the delta function δ(iz̄ − iz).

• Second, we can show that Ã4 satisfies the crossing relations

Ã13↔24
4 (1− z) =

(

1− z

z

)2(h2+h3)

Ã13↔24
4 (z) , 0 < z < 1 , (2.14)

as well as

Ã13↔24
4 (z) = z2(h1+h4)Ã12↔34

4 (1/z)

= (1− z)2(h12−h34)Ã14↔23
4

(

z

z − 1

) , 0 < z < 1 . (2.15)

The relations (2.14) and (2.15) generalize similar relations in [15].

• Third, the conformal partial wave decomposition of s-channel celestial ampli-

tude (2.10)2 is computed in the appendix A, B and takes the following form

Ã12↔34
4,s (z) ∼ g2 (im/2)2α−2

2 sin(πα)

∫

C

d∆

4π2

Γ
(

1−∆
2 −h12

)

Γ
(

∆
2 −h12

)

Γ
(

1−∆
2 −h34

)

Γ
(

∆
2 −h34

)

Γ(1−∆)Γ(∆−1)
Ψ∆

hi
(z, z̄) ,

(2.16)

2The other two channels can be obtained in similar manner.
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where Ψ∆
hi
(z, z̄) is given in (A.3) restricted to the internal scalar case with J = 0 and

the contour C runs from 1− i∞ to 1 + i∞.

The gamma functions in (2.16) unambiguously specify all pole sequences in

conformal dimensions. Closing the contour to the right or left of the complex axis in

∆, we find simple poles at ∆ and their shadows at ∆̃ given by

∆

2
= 1− h12 + n ,

∆

2
= 1− h34 + n ,

∆̃

2
= h12 − n ,

∆̃

2
= h34 − n , (2.17)

with n = 0, 1, 2, 3, . . . .

• Finally, let’s explicitly check the celestial optical theorem derived by Shao and Lam

in [15], which relates the imaginary part of the four-point celestial amplitude to

the product of two three-point celestial amplitudes with the appropriate integration

measure. Taking imaginary part of (2.16) we obtain

Im
[

Ã12↔34
4,s (z)

]

∼
∫

C

d∆µ(∆)C(h1, h2; ∆)C(h3, h4; 2−∆)Ψ∆
hi
(z, z̄) , (2.18)

up to some overall constants independent of hi. Here C(hi, hj ; ∆) is the coefficient

of the three-point function given by [15]

C(hi, hj ; ∆) = g
(m2)hi+hj−2

4hi+hj

Γ
(

hij +
∆
2

)

Γ
(

∆
2 − hij

)

Γ(∆)
, (2.19)

µ(∆) is the integration measure

µ(∆) =
Γ(∆)Γ(2−∆)

4π3Γ(∆− 1)Γ(1−∆)
, (2.20)

and Ψ∆
hi
(z, z̄) is

Ψ∆
hi
(z, z̄) ≡ Γ

(

1− ∆
2 − h12

)

Γ
(

∆
2 − h34

)

Γ
(

∆
2 + h12

)

Γ
(

1− ∆
2 + h34

)Ψ∆
hi
(z, z̄) . (2.21)

3 Gluon four-point amplitude

In this section we study the massless four-point gluon celestial amplitude, which has been

computed in [2], and is given by

Ã12↔34
−−++(z) ∼ δ(iz̄ − iz)|z|3|1− z|h12−h34−1 , z > 1 , (3.1)

where the conformal ratios z, z̄ are defined in (2.5).

Evaluating the integral in appendix B, we find the conformal partial wave expansion

is given by the following simple result3

Ã12↔34
−−++(z) ∼ 2i

∞
∑

J=0

′ ∫

C

dh

4π2
Ψh,h̄

hi,h̄i

π (1−2h)(2h−1−2J)

(h34−h12) sin(π(h12−h34))

(

Γ(h−h12)Γ(1+J−h34−h)

Γ(h+h12)Γ(1+J+h34−h)
+(h12 ↔ h34)

)

,

(3.2)

where
∑′ means that the J = 0 term contributes with weight 1/2.

3When considering J < 0, take h ↔ h̄ in the expansion coefficient.
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There is no truncation of the spins J in this case, so primary operators of all integer

spins contribute to the OPE expansion of the external gluon operators, in contrast with

the previously considered scalar case.

Poles ∆ and shadow poles ∆̃ are located at

∆− J

2
= 1− h12 + n ,

∆− J

2
= 1− h34 + n ,

∆̃ + J

2
= h12 − n ,

∆̃ + J

2
= h34 − n ,

(3.3)

with n = 0, 1, 2, 3, . . . . These poles are integer spaced as expected.

4 Soft limits

Single soft limits. In this section we study the analog of soft limits for celestial am-

plitudes. The universal soft behavior of color-ordered gluon scattering amplitudes, corre-

sponding to ωk → 0, is well-known [18] and takes the form

lim
ωk→0

Aℓk=+1
n =

〈k − 1 k + 1〉
〈k − 1 k〉〈k k + 1〉An−1 ,

lim
ωk→0

Aℓk=−1
n =

[k − 1 k + 1]

[k − 1 k][k k + 1]
An−1 ,

(4.1)

where ℓk is the helicity of particle k.

The spinor-helicity variables are related to the celestial sphere variables via [2]

[ij] = 2
√
ωiωj z̄ij , 〈ij〉 = −2ǫiǫj

√
ωiωjzij . (4.2)

Conformal primary wavefunctions become soft (pure gauge) when ∆k → 1 (or λk →
0) [10, 19]. In this limit we can utilize the delta function representation4

δ(x) =
1

2
lim
λ→0

iλ |x|iλ−1 , (4.3)

such that (1.1) becomes

lim
λk→0

Ãn(zj , z̄j) =
1

iλk

n
∏

j=1,j 6=k

∫ ∞

0
dωj ω

iλj

j

∫ ∞

0
dωk 2 δ(ωk)ωk An(ωj ; zj , z̄j) . (4.4)

We see that the λk → 0 limit localizes the integral at ωk = 0 and we obtain

lim
λk→0

ÃJk=+1
n =

1

iλk

zk−1 k+1

zk−1 kzk k+1
Ãn−1 , (4.5)

lim
λk→0

ÃJk=−1
n =

1

iλk

z̄k−1 k+1

z̄k−1 kz̄k k+1
Ãn−1 . (4.6)

An alternative derivation of these relations was given in [20].

4See http://mathworld.wolfram.com/DeltaFunction.html.
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Double soft limits. For consecutive soft limits, one can apply (4.5) or (4.6) multiple

times and the consecutive soft factors are simply products of single soft factors.

For simultaneous double soft limits, energies of particles are simultaneously scaled by

δ, so ωk → δωk and ωl → δωl with δ → 0, which for example yields [21, 22]

lim
δ→0

An(δω1, δω2, ωj ; zk, z̄k) =
1

〈n|1 + 2|3]

(

[13]3〈n3〉
[12][23]s123

+
〈n2〉3[n3]

〈n1〉〈12〉sn12

)

An−2(ωj ; zj , z̄j) ,

(4.7)

for ℓ1 = +1, ℓ2 = −1, j = 3, . . . , n, and k = 1, . . . , n. Here sijl = (ki + kj + kl)
2. More

generally we will write

lim
δ→0

An(δωk, δωl, ωj ; zi, z̄i) = DS(kℓk , lℓl)An−2(ωj ; zj , z̄j) , (4.8)

where DS(kℓk , lℓl) is the simultaneous double soft factor.

For celestial amplitudes, the analog of the simultaneous double soft limit is to take two

λ’s, scale them by ǫ, λk → ǫλk and λl → ǫλl, and take the ǫ → 0 limit. To implement this

practically in (1.1), we change variables for the associated ω’s

ωk = r cos(θ), ωl = r sin(θ), 0 ≤ r < ∞, 0 ≤ θ ≤ π

2
. (4.9)

The mapping (1.1) becomes

Ãn(zj , z̄j) =
n
∏

j=1,j 6=k,l

∫ ∞

0
dωj ω

iλj

j

∫ ∞

0
dr

∫ π/2

0
dθ r(iλk+iλl)ǫ−1

× (cos(θ))iλkǫ(sin(θ))iλlǫr2An(ωj ; zj , z̄j) .

(4.10)

We can use (4.3) to obtain a delta function in r, which enforces the simultaneous double

soft limit for the scattering amplitude as in (4.7). The result is

lim
ǫ→0

Ãn(λkǫ, λlǫ) = D̃S(kJk , lJl)Ãn−2 , (4.11)

where D̃S(kJk , lJl) is the simultaneous double soft factor on the celestial sphere,

D̃S(kJk , lJl) =
1

(iλk + iλl)ǫ

[

2

∫ π/2

0
dθ (cos(θ))iλkǫ(sin(θ))iλlǫ

[

r2DS(kℓk , lℓl)
]

r=0

]

ǫ→0

.

(4.12)

As an example, consider the simultaneous double soft factor in (4.7). We can use (4.2) to

translate it into celestial sphere coordinates and plug into (4.12) to obtain

D̃S(1+1, 2−1) ∼ 1

2(iλ1 + iλ2)ǫ2
1

zn1z̄23

(

1

iλ1

z̄n3z2n
z12z̄2n

+
1

iλ2

z3nz̄31
z̄12z31

)

. (4.13)
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Explicitly let us check (4.11) by considering the six-point NMHV split helicity ampli-

tude [23]

A+++−−− = δ(4)

(

6
∑

i=1

ki

)

1

4ω1 · · · ω6

×





ω2
1ω

2
4(ω3z34z̄13−ω2z24z̄12)3

(ω3ω4z34z̄34−ω2ω4z24z̄24−ω2ω3z23z̄23)

z23z34z̄56z̄61 (ω4z24z̄54−ω3z23z̄35)
+

ω2
3ω

2
6(ω4z46z̄34+ω5z56z̄35)3

(ω3ω4z34z̄34+ω3ω5z35z̄35+ω4ω5z45z̄45)

z12z16z̄34z̄45 (ω3z23z̄35+ω4z24z̄45)



 ,

(4.14)

and map it via (1.1). Taking the simultaneous double soft limit of particles 3 and 4, as

prescribed in (4.11), we find

lim
ǫ→0

Ã+++−−−(λ3ǫ, λ4ǫ) =
1

2(iλ3 + iλ4)ǫ2
1

z23z̄45

(

1

iλ3

z̄25z41
z34z̄42

+
1

iλ4

z52z̄53
z̄34z53

)

Ã++−− ,

(4.15)

where the four-point correlator is given by mapping the appropriate MHV amplitude

via (1.1)

Ã++−− = 4iδ(λ1+λ2+λ5+λ6)
z356 δ(iz̄

′−iz′)

z12z225z
2
16z̄25z̄61

(

z15z̄61
z25z̄26

)iλ2−1 (

z12z̄16
z25z̄56

)iλ5+1 (

z15z̄12
z56z̄26

)iλ6+1

,

(4.16)

where z′ = z12z56
z25z61

and z̄′ = z̄12z̄56
z̄25z̄61

. The conformal soft factor found in (4.15) matches our

general result by taking the double soft factor [21, 22]

1

〈2|3 + 4|5]

(

[35]3〈25〉
[34][45]s345

+
〈24〉3[25]

〈23〉〈34〉s234

)

, (4.17)

and mapping it via (4.12). The simultaneous double soft limit can similarly be checked for

non-adjacent legs, leading to a soft factor that is a product of two single soft factors.

It is straightforward to generalize (4.11) to m particles taken simultaneously soft, by

introducing m-dimensional spherical coordinates as in (4.9) and scale m λ’s by ǫ.
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A Conformal partial wave decomposition

In the CFT four-point function defined as (2.4), we can expand the conformally invariant

part Ã4(z, z̄) on the basis of conformal partial waves Ψh,h̄

hi,h̄i
(z, z̄). As can be shown along

the lines of [24–26], the expansion takes the following form

Ã4(z, z̄) = i
∞
∑

J=0

′ ∫

C

d∆Ψh,h̄

hi,h̄i
(z, z̄)

(1− 2h)(2h̄− 1)

(2π)2
〈Ã4(z, z̄),Ψ

h,h̄

hi,h̄i
(z, z̄)〉 , (A.1)

where h − h̄ = J , h + h̄ = ∆ = 1 + iλ. The contour C runs from 1 − i∞ to 1 + i∞. The

integration and summation is over all dimensions and spins of exchanged primary operators

in the theory.
∑′ means that the J = 0 summand contributes with a weight of 1/2. The

inner product is defined by

〈G(z, z̄), F (z, z̄)〉 ≡
∫

dzdz̄

(zz̄)2
G(z, z̄)F (z, z̄) . (A.2)

The conformal partial waves Ψh,h̄
hi,h̄i

(z, z̄) have been computed in [27–29] and are given by

Ψh,h̄

hi,h̄i
(z, z̄) = c′1F+(z, z̄) + c′2F−(z, z̄) , (A.3)

with

F+(z, z̄) =
1

zh34 z̄h̄34
2F1

(

1−h+h34, h+h34

1+h12+h34

;
1

z

)

2F1

(

1−h̄+h̄34, h̄+h̄34

1+h̄12+h̄34

;
1

z̄

)

, (A.4)

F−(z, z̄) = zh12 z̄h̄12

2F1

(

1−h−h12, h−h12

1−h12−h34

;
1

z

)

2F1

(

1−h̄−h̄12, h̄−h̄12

1−h̄12−h̄34

;
1

z̄

)

,

c′1 = (−1)h−h̄+h12−h̄12
Γ (−h12−h34)

Γ
(

1+h̄12+h̄34

)

Γ (1−h+h12) Γ (h+h34) Γ
(

h̄+h̄12

)

Γ
(

1−h̄+h̄34

)

Γ (1−h−h12) Γ (h−h34) Γ
(

h̄−h̄12

)

Γ
(

1−h̄−h̄34

) ,

c′2 = (−1)h−h̄+h34−h̄34
Γ (h12+h34)

Γ
(

1−h̄12−h̄34

) .

Here we made use of hypergeometric identities discussed in [28] to rewrite the result in a

form which is suited for the region z, z̄ > 1.

Conformal partial waves are orthogonal with respect to the inner product (A.2)

〈Ψh,h̄

hi,h̄i
(z, z̄),Ψh′,h̄′

hi,h̄i
(z, z̄)〉 = (2π)2

(1− 2h)(2h̄− 1)
δJ,J ′δ(λ− λ′) . (A.5)

The basis functions (A.3) span a complete basis for bosonic fields on each of the ranges

(J ∈ Z , λ ∈ R
+ | J ∈ Z

+ , λ ∈ R | J ∈ Z , λ ∈ R
− | J ∈ Z

− , λ ∈ R) . (A.6)

We can perform the ∆ integration in (A.1) by collecting residues of poles located to

the left or to the right of the complex axis. One can use e.g. the integral representation of

the conformal partial wave (A.3) (given by eq. (7) in [29]) to make sure that the half-circle

integration at infinity vanishes.
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B Inner product integral

In this appendix we evaluate the inner product

〈Ã4(z, z̄),Ψ
h,h̄

hi,h̄i
(z, z̄)〉 ≡

∫

dzdz̄

(zz̄)2
δ(iz̄ − iz) |z|2+σ |z − 1|h12−h34−σ Ψh,h̄

hi,h̄i
(z, z̄) , (B.1)

for σ = 0 and σ = 1, where Ψh,h̄

hi,h̄i
(z, z̄) is given by (A.3).5

First we change integration variables to z = x + iy, z̄ = x − iy and localize the delta

function on y = 0. Subsequently, we write the hypergeometric functions from (A.3) in the

following Mellin-Barnes representation:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)Γ(c−a)Γ(c−b)

∫

C

ds

2πi
(1−z)sΓ(−s)Γ(c−a−b−s)Γ(a+s)Γ(b+s) ,

(B.2)

where (1 − z) ∈ C\R− and the contour C goes from minus to plus complex infinity while

separating pole sequences in Γ(−s)Γ(c− a− b− s) from pole sequences in Γ(a+ s)Γ(b+ s).

The x > 1 integral then gives a beta function which we express in terms of gamma

functions. At this point, similarly to section 3.4 in [30], the gamma function arguments in

the integrand arrange themselves exactly such that one of the Mellin-Barnes integrals (B.2)

can be evaluated by second Barnes lemma.6 The final inverse Mellin transform integral

is then done by closing the integration contour to the left, or to the right of the complex

axis. Performing the sum over all residues of poles wrapped by the contour in this process

we obtain

〈Ã4(z, z̄),Ψ
h,h̄

hi,h̄i

(z, z̄)〉 =

π
2(−1)h−h̄ csc (π (h12 − h34)) csc (π (h12 + h34)) Γ(1− σ) (B.3)








Γ (1− σ + h12 − h34) 4F3

(

1−σ,1−h̄+h12,h̄+h12,1−σ+h12−h34

2−h−σ+h12,h−σ+h12+1,h12−h34+1
; 1
)

Γ (h12 − h34 + 1)Γ
(

1− h̄+ h34

)

Γ
(

h̄+ h34

)

Γ (2− h− σ + h12) Γ (h− σ + h12 + 1)
− (h12 ↔ h34)





+

(

Γ(1−h̄−h12)Γ(h̄−h12)Γ(1−σ−h12+h34)

Γ(1−h12+h34)Γ(2−h−σ−h12)Γ(h−σ−h12+1) 4F3

(

1−σ,1−h̄−h12,h̄−h12,1−σ−h12+h34

2−h−σ−h12,h−σ−h12+1,1−h12+h34
; 1
)

− (h12 ↔ h34)

)

Γ (1− h+ h12) Γ (h+ h12) Γ (1− h+ h34) Γ (h+ h34)









,

where we used identities such as sin(x+πh̄) sin(y+πh̄) = sin(x+πh) sin(y+πh) for integer

J , and sin(πx) = π/(Γ(x)Γ(1− x)) to write (B.3) in a shorter form.

Evaluation for σ = 0. When σ = 0, one upper and one lower parameter in the 4F3

hypergeometric functions become equal and cancel, so that the functions reduce to 3F2.

Interestingly, an even greater simplification occurs as

3F2

(

1, a− c+ 1, a+ c

a− b+ 2, a+ b+ 1
; 1

)

=

Γ(a−b+2)Γ(a+b+1)
Γ(a−c+1)Γ(a+c) − (a− b+ 1)(a+ b)

(b− c)(b+ c− 1)
. (B.4)

5Note that in both of our examples we have h̄ij = hij , and the complex conjugation prescription

h → 1− h̄, h̄ → 1− h, hij → −hij and z ↔ z̄.
6We assume the integrals to be regulated appropriately such that these formal manipulations hold.
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Then, making use of various sine- and gamma function identities as mentioned above, it

turns out that the result is proportional to

sin(2πJ)

2πJ
=

{

1 ; J = 0

0 ; J 6= 0
. (B.5)

Therefore, the only non-vanishing inner product in this case comes from the scalar confor-

mal partial wave Ψ∆
hi

≡ Ψh,h̄

hi,h̄i

∣

∣

∣

J=0
, which simplifies to

〈Ã4(z, z̄),Ψ
∆
hi
(z, z̄)〉 = Γ

(

1− ∆
2 − h12

)

Γ
(

∆
2 − h12

)

Γ
(

1− ∆
2 − h34

)

Γ
(

∆
2 − h34

)

Γ(2−∆)Γ(∆)
. (B.6)

Evaluation for σ = 1. As we take σ → 1 the overall factor Γ(1−σ) diverges. However,

the rest of the terms conspire to cancel this pole, so that the limit σ → 1 is finite. The

simplification of the result in all generality is quite tedious, here we instead discuss a less

rigorous but quick way to arrive at the end result.

The cases for the first few values of J = 0, 1, . . . can be simplified directly e.g. in Mathe-

matica. We recognize that the result is always proportional to csc(π(h12−h34))/(h12−h34).

To quickly arrive at the full result, start with (B.3) and divide out the overall factor

csc(π(h12 − h34))/(h12 − h34). By the previous observation we see that the rest is finite in

h12 − h34 → 0. Sending h34 → h12 under a small 1 − σ deformation, the hypergeometric

functions become equal to 1 for σ → 1 and the remaining terms simplify. To recover the

full h12, h34 dependence it then suffices to match these terms e.g. to the specific example

in the case J = 1, which then for all J ≥ 0 leads to

〈Ã4(z, z̄),Ψ
h,h̄
hi,h̄i

(z, z̄)〉 = π csc(π(h12 − h34))

(h34 − h12)

(

Γ(h− h12)Γ(1− h34 − h̄)

Γ(h+ h12)Γ(1 + h34 − h̄)
+ (h12 ↔ h34)

)

.

(B.7)

To obtain the result for J < 0 substitute h ↔ h̄.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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