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soft UV behavior of quantum gravity is shown to imply that the exact four-particle scat-
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the bulk point singularity. The residues of the poles on the negative axis are identified
with operator coefficients in the IR effective action. Far along the real positive axis, the
scattering is argued to grow exponentially according to the black hole area law. Exclusive
amplitudes are shown to simply factorize into conformally hard and conformally soft fac-
tors. The soft factor contains all IR divergences and is given by a celestial current algebra
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1 Introduction

Scattering amplitudes are amongst the most basic observables in fundamental physics.
They are of immense experimental interest in high-energy physics, but are also of central
theoretical importance as the only known observables of quantum gravity in asymptotically
flat space. It is thus natural to look for a holographic theory that determines the S-matrix,
formulated only in terms of the on-shell particles propagating to the boundary at infinity,
without making any reference to bulk spacetime evolution.

This presents a new set of challenges beyond what we have become accustomed to
in thinking about holography in AdS spacetimes. The boundary of AdS is an ordinary
Lorentzian spacetime, with usual notions of locality and time evolution, and thus a local
quantum field theory on this boundary is a natural candidate for the holographic theory
whose quantum states are directly identified with those of the bulk gravitational theory.
We do not have this luxury in asymptotically flat space. We can label the asymptopia
associated with the scattering process in many different ways. If we are working with
massless particles in four dimensions, this data can be given in terms of null momenta,
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or spinor-helicity variables, or in terms of twistor or momentum-twistor variables, or in
terms of Mandelstam invariants formed between pairs of momenta. However there is no
obvious notion of “locality” and “time evolution” in any of these spaces, and so no obvious
candidate for a holographic theory using familiar physical principles.

Relatedly, even absent a candidate for a holographic theory in AdS, if we were handed
a set of boundary correlators, we would understand the rules for checking their consistency
as implied by conformal field theory. It is striking that over 60 years after the analogous
questions were posed by S-matrix theorists in the 1960’s, we still don’t know the answer to
the analogous question for flat space scattering amplitudes. Indeed the S-matrix program
of the 1960’s was ultimately doomed by the inability to precisely characterize the way in
which bulk causality is imprinted in the analytic structure of the S-matrix.

By contrast the explosion of progress in the understanding of scattering amplitudes
over the past few decades suggests a more adventurous approach to these mysteries, inviting
us to look for new physical principles and mathematical structures that will directly deter-
mine the S-matrix. The emergence of a unitary, appropriately local and casual quantum-
mechanical/spacetime description from the S-matrix would then be seen to follow as an
output, rather than being taken as primary.

An especially natural geometric space to look for this new holographic description is
the celestial sphere at null infinity [1, 2]. The kinematical connection to the variables
describing ordinary momentum-space amplitudes is very simple in four dimensions. Null
four-momenta pαα̇ are written in terms of spinor-helicity variables, pαα̇ = λαλ̃α̇. For
real momenta in Minkowski space, we have λ̃α̇ = η(λα)∗, where η = ± corresponds to
outgoing/incoming particles. Lorentz transformations act as SL(2,C) on the α, α̇ indices.
It is natural to write

λα =
√
ω

(
z

1

)
, λ̃α̇ = η

√
ω

(
z̄

1

)
. (1.1)

The variable z gives the direction of the null momentum and specifies a point on the
(Riemann) celestial sphere, while ω is real and specifies the energy. The use of spinor-
helicity variables makes the action of the little group on scattering amplitudes manifest.
Note that the null-momentum pαα̇ does not uniquely specify λ, λ̃, since we can rephase
λ → eiθλ and λ̃ → e−iθλ̃. In fixing the above form for λ, λ̃, we have made a particular
choice for associating λ, λ̃ with pαα̇, where ω is taken to be real. The SL(2,C) Lorentz
transformations act nicely on z and ω while giving us the appropriate little group rephasing:

√
ω

(
z

1

)
→
(
a b

c d

)
√
ω

(
z

1

)
= eiθ

√
ω′

(
z′

1

)
, (1.2)

where
ω′ = |cz + d|2ω, z′ = az + b

cz + d
, e2iθ = cz + d

c̄z̄ + d̄
. (1.3)

In this way, any n particle scattering amplitude A(λi, λ̃i) = A(ωi, zi) is labeled by
energies ωi and points zi on the celestial sphere. Since the action of the Lorentz SL(2,C) is
simply Möbius transformations on z, it is natural to think of the amplitudes as transforming
just like correlation functions of a conformal field theory on the celestial sphere. On
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the other hand, the usual momentum eigenstates don’t transform nicely under conformal
transformations. Instead, it is natural to scatter conformal primary states |∆, z〉, defined
(for massless scalars) as [2, 3]

|∆, z〉 ≡
∫ ∞

0

dω

ω
ω∆|ω, z〉. (1.4)

Then under the Lorentz SL(2,C), we have |∆, z〉 → |cz + d|−2∆|∆, az+bcz+d〉. This is just the
transformation of conformal primaries of dimension ∆. Given that boosts in the direction
of the null momentum leave z invariant, we can also think of the state |∆, z〉 as an eigenstate
of boosts (or Rindler energies) in the direction of z.

Thus the scattering processes most natural to the celestial sphere are not of momentum
eigenstates, but boost eigenstates, related to the more familiar momentum-space ampli-
tudes via a Mellin transform:

A(∆j , zj) =
(

n∏
i=1

∫ ∞
0

dωi
ωi

ω∆i
i

)
A(ωj , zj). (1.5)

We will refer to these conformal basis scattering amplitudes as celestial amplitudes. Note
that while in this way we have made the action of the Lorentz group manifest, translational
invariance is not manifest and implies further restrictions on A(∆i, zi). For instance in the
case of four-particle scattering, SL(2,C) invariance tells us that non-trivial dependence on
z1, · · · , z4 can only be via the cross-ratio

z ≡ (z1 − z3)(z2 − z4)
(z1 − z2)(z3 − z4) , (1.6)

but translational invariance tells us more. By momentum conservation, the spatial mo-
menta for all four particles must lie on a two-dimensional plane; this plane intersects the
celestial sphere on a circle, and so the four z1, · · · , z4 must lie on that circle. The con-
dition for four points to be co-circular is just that the cross-ratio is real z = z̄, thus the
celestial amplitude must have an overall factor of δ(z − z̄). This is already an indication
that, whatever exotic variety of “conformal field theory” is to be associated with celestial
amplitudes, it must produce interesting new sorts of singularities not usually encountered
in familiar local CFTs.1

In recent years, celestial amplitudes have been intensively studied from a variety of
viewpoints [5–21]. One theme in these investigations has been the realization that the
physics of soft modes in the deep IR — from the leading and subleading soft theorems to
the electromagnetic and gravitational “memory effects” — are beautifully understood from
enhancements of global to local conformal and U(1) symmetries on the celestial sphere [22–
27]. However it is also interesting to note that the celestial amplitudes are highly sensitive
to UV physics — there is no Wilsonian decoupling at play. Consider for instance the Mellin
transform of the 2 → 2 tree-level amplitude in gravity. Since the amplitude grows as the

1This arises because the discrete infinite sequence of primaries implied by translation invariance cancels
against a continuum of light-ray-like ones. While each 2D conformal block contributing to the 4D four-point
scattering is a smooth function of z, integrating over the latter produces a delta function [4].
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square of the energy, the Mellin transform is simply ill-defined! The scattering of boost
eigenstates strongly violates the basic Wilsonian decoupling intuition, since the states we
are scattering involve arbitrarily high energy particles. Thus the natural basis for celestial
scattering makes it impossible for us to work with only partially consistent, low-energy
effective theories: we must deal with fully consistent UV theories from the get-go.

It is thus exciting that an understanding of the physics of the IR, and a proper ac-
counting of UV completion, are both forced on us by the nature of the questions naturally
posed on the celestial sphere. This raises the obvious hope that consistency conditions on
scattering amplitudes may take a different, more tractable form in celestial terms. Recast-
ing the difficulties associated with the inter-relationship of analyticity and causality for
the scattering of momentum eigenstates may open up new routes to directly determining
consistent S-matrices for general theories and, especially, for the real world — to which all
the considerations of this paper directly apply!

With this motivation, in this paper we will investigate various basic aspects of celestial
amplitudes, from the UV to the IR. In section 2 we study the four-point celestial amplitude
A(β, z), where the ratio of Mandelstam invariants z = −t/s is the 2D conformal cross
ratio and β =

∑
k(∆k − 1), in a general effective theory with Wilsonian cutoff ΛUV. In

quantum field theory, A is shown to be a meromorphic function in the complex β plane
with poles confined to even integers on the real axis. Poles on the positive axis arise
from UV asymptotics, while the residues of the poles on the negative axis are related
to coefficients of higher-dimension operators in the low-energy effective action, and are
subject to many positivity constraints [28–36]. Multiple poles cleanly reflect the running
of higher-dimension operators from massless loops in the low-energy theory. In a complete
quantum theory of gravity, one expects high energy scattering to be dominated by black
hole production, which requires exclusive amplitudes to be exponentially damped. This
kills all UV divergences, and all the poles on the positive axis are accordingly erased! This
is a direct analog for flat space holography of the erasure of the bulk point singularity in
AdS holography [37], and further underscores the intimate relation between flat space and
AdS holography. For Re(β) → +∞, A is argued to grow exponentially with a coefficient
governed by the black hole area law, while for Re(β)→ −∞ off the real axis, A dies like a
power governed by the lowest mass scale in the theory. Some stringy examples are analyzed
in detail.

In section 3 we address the IR divergences from photon loops which are regulated in
momentum space by a cutoff ΛIR. The well-known exponentiation of these divergences in
QED [38] is shown, for massless scalars,2 to imply an exact factorization of the celestial
amplitudes of the form

A = AsoftAhard. (1.7)

Moreover Asoft is shown to be the boundary correlator on the celestial sphere of the Gold-
stone bosons of spontaneously broken large gauge symmetry. After a shift in the boost

2We hope to report on the technically more challenging massive fermions elsewhere, using the recent
construction of a conformal basis for massive fermions [39, 40]. Collinear divergences from massless scalars
are suppressed herein.

– 4 –



J
H
E
P
0
8
(
2
0
2
1
)
0
6
2

weight ∆k of the kth charge ek particle proportional to the cusp anomalous dimension

∆k → ∆k + e2
k

4π2 ln ΛIR, (1.8)

it is found that Ahard is a completely IR-safe quantity. Similar results pertain to gravity,
with the Goldstone boson for spontaneously broken supertranslations replacing the one for
broken large gauge symmetry in QED. In section 3.3 we consider scattering amplitudes
which are rendered IR safe by the inclusion of FK dressings by soft photon clouds [41, 42]
and their more physical generalizations introduced in [43]. Recent discussions of dressed
infrared-finite momentum space amplitudes include [43–45]. In the celestial basis, con-
formal symmetry singles out a preferred dressing which is shown to be equivalent to the
insertion of an exponentiated Goldstone boson. We then find that the conformally dressed
scattering amplitudes are simply

Adressed = Ahard. (1.9)

These provide IR-safe celestial observables for abelian gauge theory or gravity.
Conventions and technical details are found in the appendix. As this work was being

written up, overlapping results appeared in [46, 47].

2 The ultraviolet

In this section we will begin an exploration of how the ultraviolet physics manifests in
Mellin space, particularly in the relationship between the couplings in an effective theory
with Wilsonian cutoff ΛUV and the analytic structure of the four-point celestial amplitude.

2.1 The anti-Wilsonian paradigm

The relation between celestial and momentum-space amplitudes is especially simple for
four-particle scattering. Defining the (scalar) momentum-space amplitude as3

A = M× δ(4)
( 4∑
i=1

pi
)
, (2.1)

we show in the appendix that4

A(∆i, zi, z̄i) = XA(β, z), (2.2)

where

β ≡
4∑
i=1

(∆i − 1) (2.3)

3Equation (A.12) in the appendix is the general formula for spinning particles.
4In general one might have thought it necessary to study A(∆k) as a function of all 4 conformal weights.

Interestingly, one of the constraints of translation invariance [17] is that, up to the universal kinematic
prefactor X, it can depend only on their sum β + 4. This would not be the case for the 4-point function in
a garden variety 2D CFT.
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and
A(β, z) =

∫ ∞
0

dω

ω
ωβM(ω2,−zω2). (2.4)

HereX is a kinematic factor fixed by the particle helicities and derived in the appendix. The
detailed form of X is irrelevant to our main interest, namely the β-dependence in A. This
is simply given by a single Mellin transform of the stripped momentum-space amplitude
M with respect to the center of mass energy, and contains the dynamical information of
celestial four-particle amplitudes.

It is easy to see that some basic assumption about UV completeness is needed in order
for the celestial amplitudes to be well-defined and have decent analytic properties. Consider
the celestial amplitude corresponding to the leading 4-point tree amplitude for any theory
with a dimensionful coupling constant, where

M(ω) ∝ ωp. (2.5)

Here p ≥ 0 is the number of derivatives in the interaction and ω an overall (fixed angle)
energy scale. The Mellin transform involves a factor

A(β) ∝
∫ ∞

0

dω

ω
ωβ+p. (2.6)

Clearly A is ill-defined, unless we set β = −p + ib which gives δ(b). But this is obviously
non-analytic in b. On the other hand, if the amplitudes are softened to vanish in the deep
UV, we get an entirely different celestial amplitude with a nice analytic structure in β.
The fact that the amplitudes are thus highly sensitive to UV physics is a first example of
how celestial amplitudes violate our Wilsonian intuition from momentum-space amplitudes;
it is a simple reflection of the fact that we are scattering boost eigenstates that involve
arbitrarily high energies. Since celestial amplitudes involve scattering at all energies, they
cannot be fully understood within the traditional Wilsonian paradigm. Nevertheless, we
will see both that the powerful manifest symmetries of celestial scattering afford a great
deal of control, and that Wilsonian structures are manifest in a novel way in the analytic
behavior of the scattering.

In the rest of this section we make some preliminary investigations into how the physics
of the UV is encoded in the analytic structure of the 4-point celestial amplitude A(β) as a
function in the complex β plane. There is surely also a yet-uncovered wealth of information
in the z dependence of amplitudes, and indeed an investigation of singularities in z is a
standard strategy in understanding CFTs. But it is the transform from ω to β that most
directly reflects the novelty of scattering boost eigenstates, and this is the zeroth order
aspect of the physics we will focus on herein. As we will see, A(β) has an infinite tower of
poles and interesting characteristic behavior at large β which sharply captures fundamental
aspects of the UV physics and reveals a striking distinction between field-theoretic and
quantum-gravitational UV behavior.

2.2 Poles in β: field theory vs. quantum gravity

To begin with, suppose we have a theory of a massless scalar φ with a cubic coupling µφ2χ

to a heavy scalar χ. Integrating out χ at tree-level gives us an effective quartic coupling
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λ = −µ2/M2 together with an infinite tower of irrelevant/higher-dimension operators. The
s-channel contribution to the stripped four-point tree-amplitude is

M(p1, p2, p3, p4) = λ
M2

s−M2 . (2.7)

Here s = −(p1 + p2)2 = ω2 with ω the center-of-mass energy. This goes to −λ at low
energies, but dies as 1/s at high energies.

The ω-integral (2.4) for the Mellin transform

A(β) =
∫ ∞

0

dω

ω
ωβλ

M2

ω2 −M2 (2.8)

can be easily computed by contours, yielding

A(β) = λMβ iπ

e−iβπ − 1 . (2.9)

This simple example already illustrates the anti-Wilsonian character of the celestial
amplitudes. If we take the momentum-space amplitude and send M →∞ keeping λ fixed,
the amplitude goes to −λ, that of the low-energy λφ4 theory obtained by integrating out
χ. Naively, nothing of the sort happens to A(β), where dimensional analysis implies that
all of the M -dependence is in the overall factor Mβ !5 Hence celestial amplitudes are anti-
Wilsonian in that they are highly sensitive to UV physics. In particular, unlike the case
of (low-energy) momentum-space amplitudes, truncated EFT expansions give drastically
different celestial amplitudes, which really only exist in a formal sense. Once again, this
is because scattering boost eigenstates involves arbitrarily high energies, so there is no
“decoupling” of massive particle states.

Note that the celestial amplitude (2.9) has an infinite tower of poles at β = 2n for all
integer n. The reason for the presence of these poles and their physical interpretation are
extremely simple. Consider a general Mellin transform, and ask for the singularities that
can appear from the low-energy ω → 0 part of the integral. To begin with let’s assume the
amplitude is analytic around ω = 0, so we can expand it in powers of ω2

M(ω, z) =
∞∑
n=0

aIR
n (z)ω2n. (2.10)

This is of course always true at tree-level. It is also true when we have only integrated out
massive particles (that may well only appear in loops), but haven’t included the logarithms

5Of course we can formally define the M →∞ limit of the Mellin transform by first taking the M →∞
limit at the level of the integrand in (2.8). Similarly, for β = ib, one can regard

iπ

ebπ − 1 lim
M→∞

M ib = iπ

ebπ − 1 lim
M→∞

1
Γ(ib)

∫ ∞
0

dω

ω
ωibe−ω/M = −2πδ(b)

and thereby reproduce the Mellin transform of the λφ4 amplitude, which was just −2πλδ(b). Note however,
that at any finite M , there is a qualitative difference: δ(b) is non-analytic in β, with support only at β = 0,
while the Mellin amplitude is meromorphic with infinitely many poles away from β = 0. This is in sharp
contrast with the amplitude in momentum space, where at fixed s, the difference between the full amplitude
and that of the low-energy λφ4 theory vanishes as M →∞.
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from massless loops reflecting the running of these coefficients in the low-energy theory. We
will return to dealing with their interesting effects later. Now, let’s look at the low-energy
contribution to the Mellin transform,∫ ω∗

0

dω

ω
ωβ

∞∑
n=0

aIR
n (z)ω2n (2.11)

where we have cut off the integration at some arbitrary energy ω∗ to emphasize that we are
only considering singularities in β that arise from the IR as ω → 0. Obviously, if aIR

0 6= 0,
the integral will have a divergence as β → 0, where the integral as ω → 0 gives us the pole
aIR

0 /β. The integral itself is not convergent for larger negative values of β, but once we
subtract this pole at β = 0 we can analytically continue to more negative values of β. The
new integral converges for β > −2; there is then a pole at β = −2 given by aIR

1 /(β + 2),
and we can continue in this way to find all the poles in β. This shows that poles of the
analytically continued Mellin amplitude are

∑
n

aIR
n

β+2n and are all simple. Thus the residues
of the poles for β = −2n, n ≥ 0, are given by the coefficient aIR

n (z) of ω2n in the low-energy
expansion of the amplitude M(ω, z).

Similarly, at asymptotically high energies, in any field theory at tree-level, we ex-
pect a power-law fall-off for the amplitudes, and so an expansion of the form M(ω, z) =∑
m a

UV
m (z)ω−2m. Correspondingly we have poles at β → +2m, whose residues are given

by aUV
m . Hence in field theory we can have simple poles at all real even integer values of β,

with those on the positive (negative) axis coming from the UV (IR). These general facts
are easily verified in our specific example with M(ω) = λ M2

ω2−M2 .
Note however that the high-energy behavior of the amplitude in string theory and

quantum gravity is radically different than the field theory power-law fall-off with energy.
Already at tree-level, the high-energy amplitudes in string theory scale as e−α′ω2 . More
generally, high-energy scattering at energies parametrically larger than the Planck scale is
dominated by black hole production. As such, the exclusive 2 → 2 scattering amplitude
at center of mass energy ω is expected to be exponentially small, M(ω, z) ∼ e−SBH(ω)/2,
where SBH(ω) = 4πGNω2 is the entropy of a black hole with mass ω. A simple model
that captures some of the relevant physics for black hole production is the following. We
suppose that around mass ω, there are ∼ eSBH(ω) black hole microstates |BHI〉, and that
the exclusive amplitude connecting these to the initial state is 〈BHI |in〉 ∼ e−SBH(ω)/2eiφ

in
I ,

for some phase φin
I . An analogous expression holds for 〈BHI |out〉. This tells us that the

probability for black hole production is

e+SBH∑
I=1

|〈in|BHI〉|2 ∼ e−SBH(ω) × e+SBH(ω) ∼ 1, (2.12)

as expected. The exclusive 2→ 2 amplitude is∑
I

〈out|BHI〉〈BHI |in〉 ∼ e−SBH(ω)∑
I

ei(φ
in
I −φ

out
I ). (2.13)

The second factor is a sum over e+SBH phases; we expect the usual
√
N cancellation in

the sum over N random phases, so this sum should have a modulus of order eSBH(ω)/2.
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This heuristic argument gives us the expected result that |M(ω)|2 ∼ e−SBH . Note that
the exponentially small result is a consequence of summing exponentially many phases: we
don’t expect the actual 2 → 2 amplitude to be a smooth function of energies and angles,
but rather to have chaotic fluctuations about this overall exponentially damped envelope.

Hence we expect the high-energy amplitude to fall off as M(ω) ∼ e−2πGNω2 .6 This
means that no matter how large and positive the real part of β is made, the Mellin integral is
well-defined due to this exponential softness in the UV. This leads to a striking qualitative
difference between celestial amplitudes in quantum gravity versus UV-complete quantum
field theories. In field theory, the celestial amplitude has poles on both the positive and
negative real axis, associated with the IR and UV power-series expansions of the amplitude.
But in quantum gravity, there are no poles or singularities of any kind in the Re(β) > 0
half-plane. On the other hand the poles at negative β, reflecting the expansion of the
low-energy amplitude, are present for both field theory and gravity.

We can see the difference between power-law and exponentially soft high-energy behav-
ior explicitly in a toy example, where we imagine M(ω) ∝ e−ω

2/M2 . This simple example
is unphysical, running afoul of causality/unitarity positivity constraints, but it suffices to
illustrate the difference in pole structure. The Mellin transform gives the Γ function,∫ ∞

0

dω

ω
ωβe−ω

2/M2 = 1
2M

βΓ(β/2), (2.14)

which indeed only has poles on the negative real axis at β = −2n, for n ≥ 0, and
is otherwise analytic everywhere in the right half-plane. The residues on these poles,
Res

[
1
2M

βΓ(β/2)
]
β=−2n

= M−2neinπ/n!, are exactly the coefficients of the ω power-series

expansion of M ∝ e−ω
2/M2 =

∑
ω2nM−2neinπ/n!, as expected from our general discus-

sion above.
The absence of poles on the positive β axis is a flat space analog for celestial amplitudes

of the absence of the “bulk point” singularity for AdS/CFT correlators [37]. The discussion
of [37] was given in terms of position-space boundary correlators, but the analogy with what
we have seen for celestial amplitudes is cleaner to see in the boundary momentum-space
version of their discussion. Consider a boundary correlation function F (~ki). It is easy to
see that Witten diagrams for massless particles in AdS have a singularity when the sum of
the “energies”, Etot =

∑
i |~ki|, is analytically continued, with some of the |~ki| negative and

some positive, allowing Etot → 0. The vectors ~ki now specify the kinematics of a scattering
process, and the coefficient of the singularity as Etot → 0 can be interpreted as the high-
energy limit of the flat-space scattering amplitude [50, 51]. Schematically, the singularity
arises from bulk integrals where all the interaction vertices go to infinity together, giving us
dependence on Etot as

∫∞ dze−EtotzAflat(z~ki) where Aflat(z~ki) approaches the flat-space
scattering amplitude with blue-shifted momenta z~ki as z → ∞. Now if we just have field
theory in the bulk, Aflat(z~ki) falls off at most as a power at large z. Thus the integral
over z must have a singularity at Etot → 0, since for Etot < 0 the exp(−Etotz) factor

6The numerical coefficient in the exponent could be smaller if for some reason for ω →∞ a finite fraction
of the incoming energy does not go into the black hole [48, 49], but the precise coefficient is not important
for the following.
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dominates and the integral necessarily diverges. But, if the bulk theory has gravity as we
have discussed, the high-energy scattering amplitude is dominated by black-hole production
and falls off as exp(−czp) with p = (D−2)

(D−3) > 1 in D > 2 spacetime dimensions. Hence the
integral is completely analytic in Etot, since exp(−Etotz) is dominated by exp(−czp) and
the integral is convergent for any Etot, so there is no singularity as Etot → 0. This is
exactly the same mechanism that removes all poles for positive β in celestial amplitudes.

2.3 Logarithmic running and higher order poles in β

Let us now consider logarithms which arise in the quantum theory. As we have already
discussed, the amplitudes have logarithmic IR divergences which require an IR cutoff ΛIR.
For the real-world scattering of photons and gravitons, these divergences naturally expo-
nentiate, and can be universally stripped off. In the next section we will study these IR
divergences and show they take a very simple form in Mellin space. In an effective theory
with a Wilsonian cutoff ΛUV, loops of photons and gravitons also result in logarithmic
UV divergences which we study in this section. The low-energy expansion in powers of
ω2n is further modulated by powers of (GNω2)log(ω2/Λ2

UV). For instance, if we consider
photon-photon scattering, at 1-loop from photon-graviton loops we find for the (1−2+3−4+)
helicity amplitude

M−+−+ = G2
N 〈13〉2[24]2

240

[(
−7+290

(
s

u

)
+90

(
s

u

)2
+60

(
s

u

)3
)

log
(

s

Λ2
UV

)

−
(

267+290
(
s

u

)
+90

(
s

u

)2
+60

(
s

u

)3
)

log
(

t

Λ2
UV

)
+UVfinite

]
,

(2.15)

where t = −zs and u = (z − 1)s. While the detailed coefficients in this expression are not
important, the structure of this amplitude nicely illustrates some well-known but crucial
aspects of effective field theory. The expression contains logarithms, log(s) and log(t). The
coefficients of these logarithms are calculable from the IR physics and unaffected by the
UV uncertainties associated with the precise nature of the cutoff ΛUV. This is because
the discontinuities across the logarithmic branch cuts are determined by unitarity through
cutting the diagram, given in this case by products of tree amplitudes for photons and
gravitons. The coefficient of log(Λ2

UV) is easily seen to simply be (137/120)G2
N 〈13〉2[24]2.

Note that all the dependence on the interesting ratios s/u = 1/(z − 1) drops out, as must
physically be the case: this divergence is entirely equivalent to the amplitude we would
get from a local F 4 contact term, which indeed has the trivial kinematical dependence
〈13〉2[24]2. We can think of this UV logarithm as giving a “running” of the F 4 operator,
logarithmically induced by the gravitational coupling GN .

More generally, in the theory of photons and gravitons, the general form for the low-
energy expansion of the scattering amplitude has a logarithmic modulation with powers of
the effective gravitational coupling (GNω2) and the large logarithms log(ω/ΛUV):

M =
∑

r≤m;n
an,m,r(z)ω2n × (GNω2)mlogr(ω/ΛUV), (2.16)
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where m is the number of loops. We know that the leading term n = 1,m = r = 0 in
this expansion is just controlled by the low-energy theory of photons plus gravity. As we
have seen, the leading large logarithms, with r = m, are also captured by photon-graviton
loops, with an intricate set of in principle-calculable predictions for the z-dependence of
the coefficients. The coefficient of the n = 2,m = r = 0 term for photon-photon scattering
(the contact F 4 term) does depend on the UV theory. Note that while the simple contact
F 4 term already gives the trivial dependence on ω, z, the finite part of the 1-loop amplitude
gives a calculable but more intricate dependence on z. Also a contact F 4 term, dressed
by photon/graviton loops, will induce subleading logarithmic corrections. This expansion
contains a wealth of physical information, some of which is calculable in the low-energy
theory, but much of which carries information about the UV completion.

This familiar organization of how we think about scattering amplitudes in terms of “the
analytic part” reflecting contact interactions and the “non-analytic parts with logarithms”
is even more sharply reflected in Mellin space. If we look again at the possible divergences
in the celestial amplitude coming from the ω → 0 region of integration, we have only to
note that ∫ ω∗

0

dω

ω
ωalogbω ∼ ∂b

∂ab

∫ ω∗

0

dω

ω
ωa ∼ 1

a1+b . (2.17)

Thus, the presence of the logarithms in the low-energy theory is reflected by higher-order
poles at β = −2n. Indeed, we have that

A(β → −2N, z)→
N∑
n=1

N−n∑
r=0

1
(β + 2N)r+1an,m=N−n,r(z). (2.18)

Note that we only have a simple pole at β = −2, up to a double pole at β = −4 and
poles up to Nth order at β = −2N . The full structure of the low-energy expansion of the
scattering amplitude, including both the analytic and non-analytic dependence on energy,
is beautifully captured by this specific (multiple)-pole structure in Mellin space.

2.4 Positivity constraints

This connection allows us to make a start at formulating some of the known consistency
conditions on amplitudes, following from unitarity and causality, in Mellin space. For
momentum-space amplitudes, causality implies the existence of dispersive representations
for amplitudes at fixed t; this gives a partial wave expansion at fixed s, and unitarity
imposes that the coefficients of the Legendre polynomials in this expansion should be
positive. Now, let us consider the expansion of the low-energy amplitude, for simplicity
here ignoring the massless loops/running in the low-energy effective theory, so we have
only M(s, t) =

∑
ap,qs

ptq. It has long been known that causality and unitarity imply
that the coefficients ap≥2,q=0,7 should all be positive (see [28] and references therein).
More recently [29], it has been realized that this entire table of coefficients ap,q must
satisfy a vast number of hidden positivity conditions associated with a “positive geometry”
known as the EFT-hedron. Constraints sharpen some standard intuitions into precise

7Or in the previous notation an≥2(z = 0) ≥ 0.
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bounds on the coefficients of “garden-variety” higher-dimension operators contributing to
ab → ab scattering amplitudes. For instance we shouldn’t expect operators of the same
mass dimension to have vastly different coefficients. One might think this is merely a
consequence of some type of “naturalness”, and that by suitable fine-tuning in the high-
energy theory, we can engineer any relative sizes we like between these operators. However
the EFT-hedron shows that this is not the case and not everything goes, forcing the ap,q
to satisfy linear inequalities for fixed mass dimension p + q. We also expect operators to
be suppressed by a similar scale, i.e. not to have dimension 6 operators suppressed by the
TeV scale while dimension 8 operators suppressed by the Planck scale. The EFT-hedron
sharpens this expectation as well, imposing non-linear inequalities between different ap,q.
For instance for fixed q, we form the “Hankel Matrix” Aij = ai+j,q; the claim is that all
the minors of the matrix A must be positive. Now we can trivially translate between the
ap,q and the an,m=0,r=0(z) of our low-energy expansion:

an,m=0,r=0(z) =
∑

p,q;p+q=n
ap,q(t/s)q. (2.19)

So all positivity constraints on the ap,q, directly translate into positivity constraints on the
residues of A(β, z) on its simple poles at β = −2n. Note that already the most trivial
constraint that the residues be positive in the forward limit rules out the simplest guess
for a celestial amplitude with poles only for negative β = −2n: Γ(β/2) has this property
and was discussed in a toy example as following from the transform of exp(−ω2), but its
residues (−1)n/n! at β = −2n are alternating in sign. String amplitudes do scale as e−α′ω2

at fixed angle, but deviate from this in the Regge limit, scaling as s (s2) for open (closed)
strings for large s and fixed t, consistent with causality constraints. This is part of the
magic of string theory, which manages to give exponentially soft amplitudes for fixed angle
scattering, while miraculously satisfying the many positivity constraints associated with
causality and unitarity.

Clearly the positivity constraints on the EFT-hedron translate into powerful and hard-
to-satisfy constraints on the analytic structure of the full quantum celestial amplitude
A(β, z). It would be interesting to translate all the non-linear positivity constraints on
the EFT-hedron into constraints on the pole and asymptotic behavior of the meromorphic
function A(β, z). We leave a more complete characterization of these constraints and their
solutions to future work.

2.5 Large β behavior

It is also interesting to consider the behavior of the celestial amplitude at large β. The
behaviors as Re(β) → ±∞ are associated with different physics, and we consider them
in turn.

Let’s begin with β → +∞, and assume that the high-energy growth of scattering
is eventually dominated by black-hole production. For large ω, we expect the modulus
|M(ω)| ∼ e−SBH(ω)/2, and the amplitude M(ω) itself to be modulated by a randomly
oscillating phase, so that M ∼ e−SBH(ω)/2eiφ(ω). Then the Mellin integral is convergent for
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all Re(β) > 0 and dominated by large ω as β → +∞. The leading behavior for |A(β)|2 is

|A(β →∞)|2 ∼
∫ ∞ dω

ω
ωβe−2πGNω2

∫ ∞ dω′

ω′
ω′βe−2πGNω′2ei(φ(ω)−φ(ω′)). (2.20)

The phase φ(ω) is expected to oscillate wildly and the oscillations wash out the integral,
localizing it to a one-dimensional integral. Thus at large β, we have

|A(β →∞)|2 ∼
∫ ∞ dω

ω2 ω
2βe−4πGNω2 ∼ G−βN Γ(β). (2.21)

Thus the modulus of the celestial amplitude grows factorially with β. It is interesting
that while the 2→ 2 amplitude is exponentially small at high energies, the corresponding
celestial amplitude is instead (slightly more than) exponentially large at large positive β!

Let’s now switch to discussing the behavior as β → −∞. Note that unlike the exercise
we just performed above, we can’t trivially analyze the limit starting with the Mellin inte-
gral, since the integral doesn’t converge there and must be defined by analytic continuation.
Nonetheless, as we will see, the large β behavior is very simple to characterize. To get a
quick idea of the physics involved, let’s return to our simple first example of an amplitude
obtained by integrating out a massive scalar χ with a cubic coupling to φ, generalized to
several χi’s with different masses Mi. The celestial amplitude is then

A(β) =
∑
i

λi
Mβ
i iπ

e−iπβ − 1 . (2.22)

Now, let’s go to large β → −∞. Clearly, it is the lightest of all the states, with mass
Mlightest ≡ M∗, that will dominate the celestial amplitude in this limit, and we have
the behavior

A(β → −∞) ∼Mβ
∗ ×

1
e−iπβ − 1 . (2.23)

Let us now try to understand this result more directly, avoiding explicit computation. The
factor 1/(e−iπβ − 1) must be there in any celestial amplitude, as it accounts for the infinite
tower of poles for β = −2n. The factor Mβ

∗ is also easy to understand. Let’s consider the
low-energy expansion of the stripped amplitude as

∑
n anω

2n. We know that this expansion
has a finite radius of convergence, and breaks down when ω2 → M2

∗ . Furthermore, we
know that when ω2 is very close to M2

∗ , it is well approximated by the pole 1/(ω2−M2
∗ ) =

−1/M2
∗
∑
n(ω2/M2

∗ )n. Thus, while we can’t say anything universal about the coefficient an
when n is small, we learn that at large n, we must have that an ∼ 1

M2n
∗
.

Now recall that the an are also the residues of the celestial amplitude at β = −2n.
At large negative β, the residue of the celestial amplitude at β = −2n must then scale as
M−2n
∗ = Mβ

∗ , and thus Mβ
∗ /(e−iπβ − 1) has the correct poles and residues for large β and

correctly captures the asymptotic behavior of A(β).
This logic holds more generally. Suppose instead of a tree-level UV completion, we in-

tegrated out massive particles at loop level. It will be slightly more convenient to work with
s = ω2. The amplitude M(s) can have branch points either for positive s (corresponding
to the threshold for s-channel particle production) or negative s (u-channel production)
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but for simplicity let’s only consider s-channel production; as will become obvious in a
moment, in general whichever branch point is closest to the origin will dominate. Suppose
the s-channel threshold starts at s = M2

∗ . Now, as usual we can express the coefficients
an as a contour integral around the origin an ∼

∮ ds
sn+1 M(s), and then deform the contour

around the branch cuts in the s plane (in this field-theoretic example for large n there is
no contribution from the contour at infinity). Then an is expressed as

an ∼
∫ ∞
s=M2

∗

ds

sn+1 ×Disc(M)(s). (2.24)

Since the factor 1/sn+1 is rapidly dying for large n, this integral becomes dominated near
threshold. The near-threshold discontinuity across the cut, or what is the same, the near-
threshold total cross-section, will be well-approximated as Disc(M) ∼ (s−M2

∗ )q for some
power q depending on the precise coupling to the massive particles. Inserting this into the
integral lets us conclude that for large n, an → M−2n

∗ n−(1+q). This has a simple analytic
dependence on n, and so we conclude that asymptotically for large and negative β,

A(β)→Mβ
∗ β
−(1+q) × 1

e−iπβ − 1 (2.25)

has all the correct poles and residues at large β. Thus the leading behavior is again given
by Mβ

∗ , with the subleading correction β−(1+q) reflecting the power-law growth of the
production cross-section of new states near threshold.

We expect similar behavior at large negative β in string theory. First, we describe
how to apply the previous analysis of the large negative β behavior of tree-level amplitudes
to tree-level string amplitudes. Famously, the fixed-angle amplitude M(s, z) cannot be
expressed as an infinite sum over s poles with bounded residues; the pole expansion can
be done only by keeping one of s, t, u fixed. Nonetheless, the amplitude M(s) for fixed
z = −t/s of course does have an infinite number of poles in s. The closest pole to the
origin is at s = M2

s where Ms is the mass of the lightest string state, and the dependence
of the amplitude on s approaches r(z)

s−M2
s
. Thus if we look at the low-energy expansion

of M(s, z) =
∑
n an(z)sn, we must again find that an → r(z)M−2n

s in order to correctly
capture the breakdown of this expansion at s = M2

s . So the leading large β behavior of
the corresponding celestial amplitude A(β, z) will again scale as Mβ

s × 1
e−iπβ−1 .

We can easily confirm this asymptotic behavior for the coefficients an explicitly from
the string amplitude. To do so, we use an argument based on dispersion relations similar
to the one before. Just for simplicity we will consider open-string scattering, and consider
the scattering of massless colored scalars so as to ignore the irrelevant details of spin. The
scattering amplitude is

M = s2 × Γ(−s)Γ(−t)
Γ(1− s− t) . (2.26)

Working at fixed real z = −t/s with 0 < z < 1 in the physical region, we have M(s, z) =
s2Γ(−s)Γ(sz)/Γ(1 − s(1 − z)). Note that the residues of M(s, z) as s → m decrease
exponentially at large m, while the residues of the poles at t → m =⇒ s → −m/z
grow exponentially at large m, which is why we can’t express M(s, z) as a sum over its
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poles. Here m are non-negative integers, m = 1, 2, 3 · · · . However it is still easy to obtain
the coefficients in a low-energy expansion M(s, z) =

∑
an(z)sn, just as above. We again

express the coefficients an as the usual contour integral an(z) = 1
2πi
∮ ds
sn+1 M(s, z). Now we

deform this contour to one that runs parallel to the imaginary axis, to the left of the origin
and the right of the first pole at negative s, then running counterclockwise at infinity for
large positive real part of s. Note that M(s, z) decreases as we go to infinity along the
vertical line in both directions, and vanishes on the circle at infinity. So, when further
suppressed by the factor of 1/sn+1, this contour integral vanishes at large n. We are left
with the sum over poles at s = m (m = 1, 2, · · · ), where the residues decrease with n as
∼ m−n, and so at large n, we are dominated by the residue at s = 1.

We can also confirm the asymptotic large β behavior by direct inspection of the Mellin
transform of the string amplitude. To do this it is useful to use the Euler integral for the
Beta function. However, this integral is only well-defined when s, t are both negative, so
we must analytically continue to get to the physical region. For the purposes of discussing
the large β behavior of the Mellin transform this detail is not important; we therefore
work directly with the analytically continued amplitude. Such an analytic continuation
was previously studied in [8] and will be our starting point. Our subsequent analysis does
not rely on an expansion in small z and is thus complementary to that in [8].

Beginning with

A(β, z) = −1
2

1
1− z

∫ ∞
0

ds s
β
2

Γ(−s)Γ(zs)
Γ (−s(1− z)) , (2.27)

where z is in the physical region z ∈ [0, 1], we make a change-of-variables s → s/z and
then analytically continue z to z < 0. We find

Â(β, z) = −1
2
z−

β
2−1

1− z

∫ ∞
0

ds s
β
2 × Γ(−s/z)Γ(s)

Γ (−s(1/z − 1)) (2.28)

where the “hat” is to remind us that z has been analytically continued outside the physical
regime. Using the integral representation for the Beta function, this becomes

Â(β, z) = −1
2
z−

β
2−1

1− z

∫ ∞
0

ds

s
s
β
2 +1

∫ 1

0

dy

y(1− y)y
−s/z(1− y)s. (2.29)

Writing y−s/z(1−y)s = exp(−s[−(1/z) log 1/y+log 1/(1−y)]), we can perform the integral
first over s and arrive at

Â(β, z) = −1
2
z−

β
2−1

1− z Γ
(
β

2 + 1
)∫ 1

0

dy

y(1− y)

(
−1
z

log
(1
y

)
+ log

( 1
1− y

))−(β2 +1)

= −1
2

1
1− zΓ

(
β

2 + 1
)∫ 1

0

dy

y(1− y)

(
− log

(1
y

)
+ z log

( 1
1− y

))−β2−1

≡ −1
2

1
1− zΓ

(
β

2 + 1
)
× I.

(2.30)

Note that the integral I converges for β > 0, but requires an analytic continuation for
the large negative β we are interested in. However it is easy to analytically continue the
integral I.
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The integral diverges from the behavior near y → 0 (giving us the s-channel poles of
the amplitude) and y → 1 (giving the t-channel poles). Let y∗ denote the intermediate
point on the interval (0, 1) where log(1/y∗) = −z log(1/(1 − y∗)). We can then divide the
integral I = I< + I> into the regions between (0, y∗) and (y∗, 1), and appropriately Taylor
expand as:

I< =
∫ y∗

0

dy

y

(
− log 1

y

)−(β2 +1)
× (1 + y + y2 + · · · )×

1−
z(y + y2

2 + · · · )
log 1

y

−(β2 +1)

(2.31)

and

I> =
∫ 1

y∗

dy

1− y
(
z log 1

1− y
)−(β2 +1)

× (1 + (1− y) + (1− y)2 + · · · )

×

1−
(1− y) + (1−y)2

2 + · · ·
z log 1

1−y

−(β2 +1)

.

(2.32)

Note that only the leading term in the expansion of I<, I0
< =

∫ y∗
0

dy
y (− log 1

y )−(β2 +1) is
divergent for β ≤ 0. Similarly only the leading term in the expansion of I>, I0

> =∫ 1
y∗

dy
1−y (z log 1

1−y )−(β2 +1) is divergent for β ≤ 0. We can integrate to find

I0
> + I0

< = 2
β

1− z
z

(
− log 1

y∗

)−β/2
, (2.33)

which can be analytically continued past the pole at β = 0 to all β. Note that this grows
exponentially for large negative β but, as we will now see, is subleading to the remaining
part of I.

The remaining terms in the expansion in y given above are already analytic in β. At
large negative β, the dominant contribution is

I → I< − I0
< →

∫ y∗

0
dy

(
− log 1

y

)−β2−1
→ −eiπ

β
2 Γ
(
−β2

)
, (2.34)

leading to

Â(β) = −1
2

1
1− zΓ

(
β

2 + 1
)
× I → 1

2Γ
(
β

2 + 1
)
× eiπ

β
2 Γ
(
−β2

)
= iπ

e−iπβ − 1 . (2.35)

Thus we recover the expected poles in β, with no other β dependence, precisely reflecting
the expected behavior that for M(ω) =

∑
n anω

2n, we have an → 1 as n →∞. Note that
in our analysis we were working in units where Ms → 1. Restoring this would give us the
expected overall Mβ

s dependence. In (2.34), we only determined the contribution from I<
to the leading behavior of I. The leading large negative behavior of I> is associated with
the t-channel poles, to which a similar argument applies. Here

I> − I0
> →

∫ 1

y∗
dy

(
z log 1

1− y

)−β2−1
→ z−

β
2 Γ
(
−β2

)
, (2.36)
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so we find an extra suppression by a power of (−z)−
β
2 when z > −1. This just reflects

the fact that the large β asymptotics is controlled by the proximity of poles to the origin;
working at fixed z = −t/s, the poles as t→ m are at s = −m/z and thus the first t-channel
pole is farther away from the origin by this factor (−z)−1.

2.6 What determines A(β, z)?

We have understood some of the basic analytic properties of A(β, z). The (multiple)
poles and residues on these poles have a nice interpretation associated with the low-energy
effective field theory expansion, which must satisfy positivity properties due to causality
and unitarity. The behavior at large positive β scales as A(β → +∞) ∼ Γ(β/2) and
reflects black hole dominance of the high-energy S-matrix, while the leading behavior
A(β → −∞) ∼ Mβ

∗ /(e−iπβ − 1) is controlled by the lightest threshold for new physics.
It is likely that there is more information contained not just in the leading behavior as
β → −∞, but in the structure of all the subleading corrections to this leading behavior as
well. After all even at tree-level, the leading behavior as β → −∞ is controlled only by the
lightest of the states in the UV, and presumably the presence of all the states is reflected
as some expansion in exponentials of the form Mβ

i .
Can we determine A(z, β) just by specifying the residues on all its poles, together

with its asymptotic behavior? Strictly as a mathematical fact, the answer is clearly “no”.
For any A(z, β) having the correct poles and asymptotics, we can always consider e.g.
A(z, β)→ A(z, β) + cµβ . This doesn’t affect any of the poles and so long as µ > M∗, this
correction is subdominant to the leading behavior for A(z, β) as β → ±∞. However, it
is interesting to note that literally this trivial shift cannot possibly correspond to sensible
physics. If we transform back to momentum space, it corresponds to M→M+2cδ(s−µ2).
This is brutally non-analytic in s, and so violates the most basic tests of causality.

Thus the fundamental challenge confronting any ab-initio theory for the S-matrix
— understanding how even a rough notion of locality and causality for the scattering
process is encoded in an observable measured at infinity — must also be dealt with for
celestial amplitudes. There must be additional constraints on A(β, z) that encode causality,
amongst other things guaranteeing decent analytic structure back in momentum space. We
hope that the simple observations in this section on the analytic structure in the β plane
will serve as a jumping off point for further explorations of this fascinating question.

3 The infrared

Our discussion so far has skirted around the ubiquitous IR divergences arising in QED,
non-abelian gauge theory and gravity which require the introduction of an IR cutoff ΛIR.
As ΛIR → 0, the amplitude for any finite number of particles goes to zero, reflecting the
dominant emission of infinitely many soft quanta. For momentum-space amplitudes, there
is a well-known exponentation of soft divergences, and it is possible to “strip-off” these soft
IR divergences.
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In this section, we will see that this exponentiation of IR divergences has a beautiful
celestial avatar for QED and gravity.8 In the first subsection we address these in detail in
(massless scalar) QED, and demonstrate the simple hard/soft factorization in a conformal
basis. The second subsection treats the gravitational case. The third subsection considers
IR finite Fadeev-Kulish (FK) dressed amplitudes in both QED and gravity, along with
their more physical generalizations which do not require incoming dressings, introduced
in [43]. The conformal primary condition is shown to single out a unique dressing from the
infinite family of FK dressings. Moreover it can be compactly represented by an insertion
of the Goldstone boson for the spontaneous breaking of large gauge or supertranslation
symmetry. A simple and universal formula is presented for IR safe celestial amplitudes.

3.1 Scalar QED

In this subsection we consider massless scalar QED, as a model for studying the IR diver-
gences associated to photons in real-world QED with electrons. We accordingly ignore IR
divergences from the massless scalar loops. We expect similar conclusions pertain to the
physical but technically more involved case of massive fermions, whose conformal primary
wavefunctions have been constructed only recently [39, 40]. We hope to report elsewhere
on the massive case.

The most general quantum theory of massless QED is described in momentum space by
a Wilsonian effective action with a cutoff at a scale ΛUV which we take to be lower than any
other scale in the theory. The effective interactions of photons and scalars with momenta pi
below the cutoff ΛUV and charges eQi,9 are characterized by a double expansion in ω/ΛUV
and ln(ω/ΛUV). Physical amplitudes are corrected by loops of photons with momenta below
ΛUV, and do not depend on ΛUV.10 Here we encounter IR divergences from exchanges of
soft photons between charged external lines and must introduce an IR regulator ΛIR on
the internal loop momenta. These divergences are known to exponentiate [38] and the
momentum-space scattering amplitude takes the form

A = eBA0, (3.1)

8It is amusing to remark, again, on a qualitative difference between momentum-space amplitudes and
celestial amplitudes. For undressed momentum-space amplitudes, some type of “stripping” of IR divergences
is necesssary, since the amplitudes simply vanish as ΛIR → 0. But this is not the case for the celestial
amplitude! Consider the case of gravitational four-point scattering discussed in section 3.2; thanks to the
exponentiation we know that A(β) =

∫∞
0

dω
ω
ωβexp[−|γ|c(z)GNω2]A0(ω). But this expression does not

simply vanish as the ΛIR → 0, γ → −∞. We can see this in the toy example of the Gamma function, where
we consider

∫∞
0

dω
ω
ωβexp(−|γ|ω2) = |γ|−β/2Γ(β/2). This vanishes as γ → −∞ for β > 0, but diverges for

negative β. Furthermore, if we look at the poles on the negative β axis of celestial amplitudes, they are
deformed by powers of |γ|c(z)GN , with a fixed z dependence. Thus there is IR cutoff independent content
even in the “unstripped” celestial amplitude, unlike for momentum-space amplitudes.

9Here Qi are integers obeying
∑

k
Qk = 0.

10They do of course depend on physical high-energy mass scales in the theory.
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where A0(pi) does not involve ΛIR or ΛUV. The exponential prefactor is11

eB = e
−α
∑

i<j
QiQj ln | 12pi·pj |, (3.2)

where
α = e2

4π2 ln ΛIR (3.3)

is the cusp anomalous dimension times the logarithm of the IR cutoff. Taking the Mellin
transform we find

A(∆i, zi, z̄i) =
∏
j

∫ ∞
0

dωj ω
∆j−1
j e−α

∑
k<l

QkQl ln | 12pk·pl|A0

=
( ∏
m<n

(zmnz̄mn)−αQmQn
)∏

j

∫ ∞
0

dωj ω
∆j−1
j

(∏
k<l

(ωkωl)−αQkQl
)
A0.

(3.4)

Here we have used pi · pj = −2ηiηjωiωjzij z̄ij , with ηi = ±1 for outgoing (incoming) energy
ωi particles which cross the celestial sphere at zi, and zij = zi − zj .

Next we use
∑
iQi = 0 to write∏

i<j

(ωiωj)−αQiQj =
∏
i

ω
αQ2

i
i . (3.5)

This enables us to rewrite (3.4) in the conformally soft factorized form

A = AsoftAhard, (3.6)

where the hard12 and soft factors are

Asoft ≡
∏
i<j

(zij z̄ij)−αQiQj , (3.7)

Ahard ≡
∏
i

∫ ∞
0

dωi ω
∆′i−1
i A0, ∆′i ≡ ∆i + αQ2

i . (3.8)

11Here we will not address collinear divergences arising from massless charges but drop their contribution
to B in a Lorentz-invariant manner. Including contributions from collinear divergences, B is of the form

B = −1
2α
∑
i,j

QiQj ln[pi · pj/µ2] = −1
2α
∑
i,j

QiQj ln(−2ηiηjωiωjzij z̄ij/µ2),

where µ is an arbitrary mass scale. Invoking total charge conservation
∑

k
Qk = 0, the above can be put

in the form
B = −1

2α
∑
i,j

QiQj ln(ωiωjzij z̄ij) = −1
2α
∑
i,j

QiQj ln
∣∣∣12pi · pj∣∣∣ ,

which upon dropping the collinear-divergent terms (i.e. when i = j), is precisely the expression in (3.2).
While the ωi’s in the logarithm could also have been removed by this argument, we choose to keep them
so that the result upon discarding the collinear-divergent terms is Lorentz invariant. We will see that the
ωi’s give rise to a shift in conformal dimensions which is required by SL(2,C) covariance.

12Note that the hard factor involves a Mellin transform of external states whose energies are taken all the
way to zero, and are not cut off at ΛIR even though internal loop momenta are. For such an object there
are no loop corrections to the subleading soft graviton theorem [52] which implies 2D conformal invariance.
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In terms of the renormalized conformal dimensions ∆′i, the ‘hard’ amplitude Ahard is exactly
what it would have been had we simply omitted the IR-divergent factor eB in (3.1). So the
effect of including the soft photon loops is simply a shift renormalization of the ∆i by the
cusp anomalous dimension αQ2

i and a multiplication of the amplitude by the IR-divergent
factor Asoft.

We see that celestial amplitudes conformally factorize and IR-safe information about
the physical observables is encoded in Ahard. IR-divergent factors directly cancel out in
certain ratios of amplitudes such as those that give the electromagnetic memory effect.
Moreover in subsection 3.3.3 we will see that Ahard are in fact nothing but the conformal-
primary-dressed celestial Faddeev-Kulish amplitudes.

This conformally soft amplitude Asoft can be written as a 2D correlator by introducing
a 2D free boson Φ ∼ Φ + 2π with a two point function proportional to the cusp anomalous
dimension

〈Φ(z, z̄)Φ(w, w̄)〉 = α ln(z − w) + α ln(z̄ − w̄). (3.9)

One finds for an n-point amplitude

Asoft = 〈eiQ1Φ(z1,z̄1) · · · eiQnΦ(zn,z̄n)〉. (3.10)

The free boson Φ was introduced already in [53]. It is the Goldstone boson for sponta-
neously broken large gauge symmetry and will be further discussed below.

(3.6) expresses conformally soft factorization of celestial amplitudes. It is well known
that, with a carefully defined separation of scales, momentum space amplitudes in QED
factorize into a product of hard and soft parts. Simple factorization does not automatically
apply in an arbitrary basis — sums of momentum eigenstates do not in general factorize.
It is not a priori obvious that any such factorization need occur for conformal basis celestial
amplitudes. Indeed (3.6) is not the usual hard-soft energy factorization — energy is not
even an argument of the S-matrix! Rather it is a conformally hard-soft factorization, whose
implications for the construction of an IR-safe S-matrix will be discussed in section 3.3.

3.2 Gravity

In this section we consider 2 → 2 scattering of gravitons in a general quantum theory
of gravity with assumed soft high-energy behavior. As for QED, we describe this by a
Wilsonian effective action with a cutoff at a scale ΛUV which is lower than any other scale
in the theory. The effective interactions are characterized by a double expansion in ω/ΛUV
and ln(ω/ΛUV). Amplitudes are corrected by loops of gravitons with momenta below ΛUV.
Here we encounter IR divergences from exchanges of soft gravitons between external lines
and must introduce an IR regulator ΛIR on the internal loop momenta. These divergences
are known to exponentiate and, as in the QED case (3.1), the scattering takes the form [38]

A = eBA0, (3.11)
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where A0 does not involve ΛIR or ΛUV. However instead of (3.2) the exponent is [54]

B = −γ
∑
i,j

(pi · pj) ln(pi · pj)

= 2γ
∑
i,j

ηiηjωiωj |zij |2 ln |zij |2,
(3.12)

with
γ = G

π
ln ΛIR. (3.13)

To get the second line in (3.12) we used momentum conservation
∑
i pi = 0 and

pi · pj = −2ηiηjωiωj |zij |2. (3.14)

The celestial amplitude is the Mellin transform of (3.11)

A =
∏
k

∫ ∞
0

dωkω
∆k−1
k exp

2γ
∑
i,j

ηiηjωiωj |zij |2 log |zij |2
A0. (3.15)

Denoting by G(pk) the graviton operator with momentum pk, we may define the translation
operator Pk which acts as

PkG(pk) = ηkωkG(pk). (3.16)

Acting on conformal primaries this becomes

PkG∆k
(zk, z̄k) = ηkG∆k+1(zk, z̄k), (3.17)

while on a celestial amplitude

PkA(∆1, z1, z̄1; . . .∆n, zn, z̄n) = ηkA(∆1, z1, z̄1; . . .∆k + 1, zk, z̄k; . . .∆n, zn, z̄n). (3.18)

Using this operator we may pull the exponential out of the integrand in (3.15) and write

A = AsoftAhard. (3.19)

Here the hard amplitude is exactly the un-soft-dressed expression

Ahard =
∏
i

∫ ∞
0

dωi ω
∆i−1
i A0, (3.20)

and is an IR safe quantity. The conformally soft amplitude Asoft is an operator

Asoft = exp

2γ
∑
i,j

PiPj |zij |2 log |zij |2
, (3.21)

which shifts the conformal weights of the scattering states in the hard amplitude. Asoft
contains all the IR divergences.

The fact that the soft amplitude is an operator, rather than just a number, is familiar
even in momentum space. Only for the leading soft photon factor in momentum space is
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the soft factor simply a number. The subleading soft photon factor involves the angular
momentum, whose representation in a momentum basis is an operator which differentiates
the amplitude with respect to the momentum. Here we see that the leading soft graviton
factor is a number in a momentum basis, but not in a conformal basis where it shifts the
boost weight.

As in the gauge theory case, Asoft can be represented as a correlator of Goldstone
bosons. The Goldstone boson for supertranslations is the metric component at the bound-
ary of I conventionally denoted C(z, z̄). Its celestial two point function was computed
in [55] and shown to be determined from the gravitational cusp anomalous dimension as

〈C(z, z̄)C(w, w̄)〉 = −4γ|z − w|2 ln |z − w|2. (3.22)

While charged operators in QED have the dressings eiQkΦ(zk,z̄k), energetic operators in
gravity in a momentum basis are dressed by eiηkωkC(zk,z̄k). In a conformal basis this becomes
eiPkC(zk,z̄k), and we have

Asoft = 〈eiP1C(z1,z̄1) · · · eiPnC(zn,z̄n)〉, (3.23)

in analogy to the gauge theory case (3.10). Note however that in the gravity case IR safe
quantities are obtained simply by stripping off Asoft, without a simultaneous renormaliza-
tion of the conformal dimensions.

3.3 IR-safe dressed amplitudes

In this section, we explain how to obtain infrared finite13 celestial amplitudes by dressing
charged states in a conformal basis with photon or graviton clouds of the Goldstone modes
constructed in [56]. The dressings studied herein are a special conformally invariant choice
of Faddeev-Kulish (FK) dressing [41, 42] and render amplitudes infrared finite by the usual
FK analysis, with one important difference: the soft IR-divergence-cancelling clouds are
centered at the same point on the celestial sphere as the associated hard particle, but
the cloud can be either ingoing or outgoing independently of whether the hard particle
is ingoing or outgoing. This important generalization does not spoil the cancellation of
IR divergences [43, 57] and is required for the inclusion of physically relevant incoming
configurations with hard but no soft particles.

We begin by identifying a conformally invariant representative of the family of Faddeev-
Kulish dressings in momentum space. Then, we show that the ∆ = 1 Goldstone mode
from [56] is the only definite-conformal-weight mode of the photon that appears with
this choice of dressing. Finally, we explain, for hard massless particles, how the dressing
transforms when the hard charges are put in a conformal basis.

3.3.1 Faddeev-Kulish dressings

Exclusive scattering amplitudes of charged particles with finite numbers of external pho-
tons vanish because they violate the conservation laws following from large gauge symme-
tries [43, 57]. At the level of Feynman diagrams, this is implemented by IR divergences

13Up to suppressed collinear and loop divergences associated with massless charged particles, ignored
throughout this paper.
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which set the amplitudes to zero. Faddeev and Kulish and others [41, 42] constructed a
set of dressed states with non-vanishing, IR-safe scattering amplitudes. The FK states are
comprised of charged particles dressed by soft photon clouds which restore the conserva-
tion laws by setting all large gauge charges (except the global one14) to zero. Large gauge
charge is not carried by any finite number of photons so these states necessarily contain
a divergent number of photons near ω = 0. Shortcomings of the FK states, which have
hindered their general usage, are that they both do not span the Hilbert space of physical
states and are overcomplete on the subspace they do span. These shortcomings are dis-
cussed and remedied below. The large family of IR-safe FK dressings of the (massless or
massive) single particle state |pk, Qk〉 of charge eQk and momentum pkµ are written

Wk[f ]|pk, Qk〉, (3.24)

where

Wk[f ] = exp
[
−eQk

∫
d3~q

(2π)3
f(~q)
2q0

(
pk · ε∗α

pk · q
aα(~q)− pk · εα

pk · q
a†α(~q)

)]
(3.25)

and f(~q) is any function which obeys

f(0) = 1. (3.26)

We use here the standard plane-wave mode decomposition for the field operator Â

Âµ(x) = e

∫
d3~q

(2π)3
1

2q0

[
ε∗αµ aα(~q)eiq·x + εαµa

†
α(~q)e−iq·x

]
, (3.27)

with conventions given in the appendix. Parameterizing both q and the polarization vectors
ε± by (ω, z, z̄) as in (A.1) and (A.5), the dressing may be written

Wk[f ] = exp
[
− eQk√

2(2π)3

∫ ∞
0

dω

∫
d2zf(ω, z, z̄)

(
∂z̄ ln(pk · q̂)

(
a+(ω, z, z̄)− a†−(ω, z, z̄)

)
+∂z ln(pk · q̂)

(
a−(ω, z, z̄)− a†+(ω, z, z̄)

))]
.

(3.28)

3.3.2 Goldstone dressing

Consider the special choice of dressing

f(~q) = 1, (3.29)

for which the ω integral in (3.28) reduces to ∆ = 1 Mellin transforms of a± and a†±. In
this subsection we show that Wk[1] then becomes an exponential of the Goldstone mode Φ
discussed earlier. FK did not consider f(~q) = 1 because finiteness of energy requires f → 0
for |~q| → ∞. Such a constraint is not relevant in a conformal basis.

14For brevity we restrict the following discussion to the incoming states with zero net global charge. A
very similar treatment applies to the more general case.
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We first review the conformal Goldstone wavefunction and its canonical pairing with
the soft mode [56]. The conserved Klein-Gordon norm for spin-1 massless fields

(A,A′) = −i
∫

Σ
dΣµ

[
AνF ′∗µν −A′∗νFµν

]
(3.30)

is often easily evaluated when the Cauchy slice Σ is taken to be I+ or I−. This norm pairs
ingoing or outgoing positive-helicity conformal primary wavefunctions of weight (h, h̄) =
(1 + iλ

2 ,
iλ
2 ) for λ real but nonzero with themselves.15 Several special things happen at

λ = 0 [56].16 The weight (1, 0) wavefunction obtained in the limit λ → 0, is denoted
AG
µ (x;w, w̄) and referred to as the Goldstone wave function. It is real, has vanishing norm,

and is pure gauge. Moreover the same mode is obtained from the limit of either ingoing
or outgoing modes. Since there is only one mode, at first the canonical partner seems to
be missing. However explicit analysis of the Maxwell equation for (h, h̄) = (1, 0) reveals
the appearance of a second ‘conformally soft’ solution, denoted ACS

µ (w, w̄) which is the
canonical partner of AG

µ (z, z̄):

(ACS(z, z̄), AG(w, w̄)) = 2πi
e2 δ

(2)(z − w). (3.31)

ACS can be constructed as a limiting difference of modes near λ = 0 and is not pure gauge.
It describes a certain radiative shock wave moving along the light cone of the origin [56].
The explicit wavefunctions are17

AG
µ (x;w, w̄) = 1

e2∂µ

[
−x · ∂w̄q̂(w, w̄)

x · q̂(w, w̄)

]
, (3.32)

ACS
µ (x;w, w̄) = − e

2

4πΘ(x2)AG
µ (x;w, w̄). (3.33)

The mode of the field operator Â

Jz =
(
Â, AG(z, z̄)

)
(3.34)

is the conformally soft photon current.18 Its Ward identities are the conformally soft
photon theorem. Jz generates, but is invariant under, large gauge transformations. A
second current, which shifts under large gauge transformations and is referred to as the
Goldstone current, is defined by

Sz =
(
Â, ACS(z, z̄)

)
. (3.35)

15A similar discussion applies to the negative-helicity weight (h, h̄) = ( iλ2 , 1+ iλ
2 ) which will be suppressed

here for brevity.
16We omit in the following discussion yet another pair of currents associated to large magnetic gauge

symmetry [53, 58] which complexify Jz and Sz.
17These conformally soft wavefunctions defined here are solutions to Maxwell’s equations and differ from

the ones in [56] by a logarithmic term which doesn’t affect our analysis and is dropped here.
18Note that because the pairing (3.31) is off-diagonal, Jz is multiplied by the wavefunction ACS in the

expansion of the field operator Â.
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Defining the plane wave solutions

A±,Pµ;w (x;ω,w, w̄) = ε+
µ (w, w̄)e±iωq̂(w,w̄)·x, (3.36)

A±,Pµ;w̄ (x;ω,w, w̄) = ε−µ (w, w̄)e±iωq̂(w,w̄)·x, (3.37)

one has (
A±,Pw̄ , ACS(z, z̄)

)
= ∓ 1√

2ω
(2π)δ(2)(z − w),(

A±,Pw , ACS(z, z̄)
)

= ± 1√
2ω(z − w)2 .

(3.38)

Using these relations the Goldstone current is expressed in plane wave creation and anni-
hilation operators as

Sz = − e√
2(2π)2

∫ ∞
0

dω

[
a+(ω, z, z̄)− a†−(ω, z, z̄)

−
∫
d2w

2π
1

(z − w)2

(
a−(ω,w, w̄)− a†+(ω,w, w̄)

)]
.

(3.39)

It is straightforward to show that ∂zSz̄ = ∂z̄Sz and S†z̄ = −Sz. It follows that the hermitian
Goldstone boson Φ defined by

Sz = i∂zΦ (3.40)

has the explicit expression

Φ(z, z̄) = ie√
2(2π)2

∫ ∞
0

dω

∫
d2w

2π

[ 1
z̄ − w̄

(
a+(ω,w, w̄)− a†−(ω,w, w̄)

)
+ 1
z − w

(
a−(ω,w, w̄)− a†+(ω,w, w̄)

)]
.

(3.41)

Then, for the special conformal choice f(~q) = 1, after integration-by-parts (3.28) becomes

Wk[1] = exp
[

eQk√
2(2π)3

∫
d2z ln [pk · q̂(z, z̄)]

×
∫ ∞

0
dω
[
∂z̄
(
a+(ω, z, z̄)− a†−(ω, z, z̄)

)
+ ∂z

(
a−(ω, z, z̄)− a†+(ω, z, z̄)

)]]
= exp

[
−iQk

∫
d2z

2π ln [pk · q̂(z, z̄)] ∂z∂z̄Φ
]

= exp
[
−iQk

∫
d2z G2(pk; z, z̄)Φ(z, z̄)

]
, (3.42)

where G2 is the bulk-to-boundary propagator on the hyperbola H3 given in [53]. (3.42)
is the Hermitian conjugate of the Goldstone boson dressing of momentum-space massive
charged particles discussed in [53]. Hence we have shown that conformal FK dressings are
Goldstone boson insertions.
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In the ultrarelativistic (or massless) limit, pk approaches a boundary point (zk, z̄k),
G2 → δ(2)(z − zk) and

Wk → e−iQkΦ(zk,z̄k). (3.43)

This is the hermitian conjugate of the operator appearing in (3.10). The conformal weight
of this primary operator is IR divergent and governed by the cusp anomalous dimension
as follows from (3.9) and discussed in [53]. One finds (hk, h̄k) = (−αQ2

k
2 ,−αQ2

k
2 ).

We close this subsection with several comments. This exact choice of dressing (3.29)
was already used as an example in the discussion of IR divergences in [43]. Since it is
conformal primary, it does not have finite energy and would not have been considered
by Faddeev and Kulish. However the conformal primary condition neatly eliminates the
unwanted ambiguity in the choice of the dressing function f(~q) which inevitably appears
if a finite energy condition is imposed.

Finally we note that Wk[1] can alternately be expressed as a Wilson line of the form

W = exp
[
−i
∫
d4x Âµj

µ
]
, (3.44)

where the source is a charged particle of momentum pk coming from the origin

jµ(x) = −Qk
∫ ∞

0
dτ e−ετpµkδ

(4)(xν − pνkτ), (3.45)

where ε → 0 is a regulator. Inserting the mode expansion (3.27) and doing the integrals,
(3.44) becomes

Wk = exp
[
−eQk

∫
d3~q

(2π)3
1

2q0

(
pk · ε∗α

pk · q
aα(~q)− pk · εα

pk · q
a†α(~q)

)]
, (3.46)

which agrees with (3.25) for f(~q) = 1. The relation between Wilson lines and FK dressings
was discussed in reference [59].

3.3.3 IR-finite celestial amplitudes

In the previous subsection, we showed that a specific unique choice of FK dressing for
a charged particle in a momentum eigenstate could be identified with dressing by the
Goldstone mode Φ for large gauge transformations.

To complete the story, we now adapt these dressings for charged particles in a conformal
rather than momentum basis, and show that the complete dressed state is a conformal
primary. We consider here only the simpler case of massless charges, hoping to return
elsewhere to the more physical massive case. pk is then null and the dressing localizes to
a point (zk, z̄k) on the celestial sphere as in (3.43). The transformation from momentum
space to a conformal basis involves only the energy ωk of the particle, and does not touch
the dressing. Hence the dressing trivially still factorizes in a conformal basis. Infrared-
finite celestial amplitudes between massless charged particles are obtained by dressing the
representative operators O∆k

(zk, z̄k) with (3.43). However we must address the question
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of normal ordering. The OPE (i.e. collinear singularity) of the original operator O and its
dressing is, according to (3.9) and (3.10) [53] (dropping the k subscript)

: e−iQΦ(z,z̄) :: O∆(w, w̄) :∼ |z − w|2αQ2 : e−iQΦ(w,w̄)O∆(w, w̄) : . (3.47)

We therefore define the dressed operator Ô by

Ô∆+αQ2(w, w̄) = lim
z→w
|z − w|−2αQ2 : e−iQΦ(z,z̄) :: O∆(w, w̄) : . (3.48)

Ô has no OPEs with the Goldstone boson Φ or Jz. This factorization of correlation
functions into a current algebra and “parafermionic” piece is familiar in 2D CFT. IR finite
celestial amplitudes are then simply

Adressed = 〈Ô∆1(z1, z̄1) · · · Ô∆n(zn, z̄n)〉. (3.49)

The dressed amplitudes differ from the undressed ones by extra terms arising from the
Goldstone boson current algebra. Because the exponents in (3.10) and (3.43) differ by a
sign, these exactly cancel the factor of Asoft. Hence we conclude

Adressed = Ahard. (3.50)

3.3.4 Completeness

The original basis of states discussed by Faddeev and Kulish is overcomplete because states
with different dressings f(~q) are not orthogonal. One cannot make the dressed state a
momentum eigenstate and there is no canonical choice of f(~q). This makes it hard for
example to study unitarity. We have seen that in a conformal basis, in contrast, there is a
canonical choice of dressed state which is a conformal primary. Restricting to such states
eliminates the awkward overcompleteness of the FK states.

A second problem with FK states is that they are incomplete. All the large gauge
charges, except for the one global charge, vanish for every FK state. This is more or less
the defining property of the FK state. In the classical limit, this means that the leading
( 1
r2 ) radial component of the electric field is constant at infinity (i.e. I+

− ). This condition is
violated for a generic configuration of incoming charges: for example an incoming colliding
e+e− pair with no incoming photons. Of course, given any incoming set of charges, one can
add a radiative electromagnetic field with arbitrarily small energy fine-tuned to make the
leading field constant at infinity. But this is a highly nonlocal, fine-tuned procedure and
does not correspond to any realistic physical situation such as in e+e− collisions. Certainly
a complete basis should include states corresponding to incoming charged particles with
no incoming radiation. These cannot be FK states.

Another way to say it is that the restriction to FK states does not properly cluster:
two very widely separated non-FK states, each with non-constant leading radial electric
field at large distances, can combine to make an FK state.

A more complete and physically realistic set of IR-safe scattering amplitudes which
are not fine-tuned or nonlocal were constructed in [43, 57]. When an undressed charged
particle scatters off of its incoming trajectory, it produces a beam of photons which emerge
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at the point on the sphere at I+ antipodal to the one from which the particle emerged in
the far past. Large gauge charge conservation — i.e. the soft photon theorem — requires
the outgoing beam to have the same soft poles that would appear in an FK dressing
of the incoming particle. In other words, if the FK dressing is not added by hand to
the incoming charge, it automatically appears as a photon beam in the outgoing state.
Scattering amplitudes that are consistent with this requirement are IR finite and those
that are not vanish [43, 57]. There is no need to impose the unphysical requirement that
all charged particles are dressed or equivalently that all large gauge charges vanish.

IR finiteness can be achieved by putting the required cloud of FK photons in either the
in or the out state. In celestial amplitudes, we find the f = 1 dressing is an exponential of
the Goldstone mode which can be equivalently described as either a limit of an ingoing or an
outgoing cloud in the absence of other soft insertions. Hence, for a conformal primary cloud,
the scattering amplitudes are the same whether it is taken to be incoming or outgoing: both
are given by Ahard.

Our discussion so far omits an important generalization: we are also interested in
scattering for which some of the external particles are soft such as insertions of Jz. In that
case the soft part of the amplitude involves more than (3.10) and there are corrections
to (3.50) which we have not worked out in a conformal basis. Jz insertions are needed
for example to describe the memory effect and distinguish between incoming and outgoing
clouds of Goldstone modes. (In the undressed formulae, with an explicit IR cutoff, these
are given by an IR-safe ratio of amplitudes with and without insertions of Jz [25].) We
leave this generalization and a complete prescription for an IR-finite and unitary S-matrix
to future work.

3.3.5 Gravity

In this subsection we sketch the straightforward (if more complicated) extension of these
results to gravity. More details of identities used in the following appear in [55] where the
soft S-matrix for gravity was rewritten in celestial form.

FK dressed states in gravity take the general form

|~pk〉dressed = eRk[f ]|~pk〉, (3.51)

where

Rk[f ] =−κ2

∫
d3~q

(2π)3
f(~q)
2q0

pµkp
ν
k

pk ·q

(
ε∗αµνaα(~q)−εαµνa†α(~q)

)
= κηkωk

2(2π)3

∫
dωd2zf(ω,z, z̄)

×
((z−zk)
z̄− z̄k

(a+(ω,z, z̄)−a†−(ω,z, z̄))+ (z̄− z̄k)
z−zk

(a−(ω,z, z̄)−a†+(ω,z, z̄))
)
.

(3.52)

Here κ =
√

32πG, f(0) = 1 and the mode decomposition of the field operator is

ĥµν(x) = κ

2

∫
d3~q

(2π)3
1

2q0

[
ε∗αµν(~q)aα(~q)eiq·x + εαµν(~q)a†α(~q)e−iq·x

]
. (3.53)
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Expressions for the polarization tensors ε±µν are given in the appendix (A.6). The pure
gauge weight (−1

2 ,
3
2) Goldstone wavefunctions are [56]

hG
µν = lim

∆→1
h∆
µν = ∂µξν + ∂νξµ, ξµ ≡

1
κ2∂

2
z̄ [q̂µ log(−q̂ · x)]. (3.54)

The (−1
2 ,

3
2) conformally soft modes are

hCS
µν (x;w, w̄) = κ2

8πh
G
µν(x;w, w̄)Θ(x2), (3.55)

and describe radiative shock waves along the light cone of the origin x2 = 0. One finds
these are canonically paired

(hCS(w, w̄), hG(w′, w̄′)) = −8πi
κ2 δ

(2)(w − w′) (3.56)

with respect to the conserved inner product ( , ) for hµν given in [56]. In analogy with the
gauge theory case the supertranslation current is constructed from

(
ĥ, hG(z, z̄)

)
, while the

Goldstone mode C is defined by

i∂2
wC(w, w̄) = (ĥ, hCS)

= κ

2(2π)2

∫ ∞
0

dω

(
a†−(ω,w, w̄)− a+(ω,w, w̄)

+
∫
d2z

π

z̄ − w̄
(z − w)3

(
a†+(ω, z, z̄)− a−(ω, z, z̄)

))
.

(3.57)

After some algebra we find that, acting on a particle state of momentum pk,

eRk[1] = e−iηkωkC(zk,z̄k). (3.58)

This shows that the special case of FK dressing f = 1 is, as for QED, equivalent to the
exponentiated Goldstone boson, but with the prefactor of the charge Qk traded for the
energy ωk. After transforming to the conformal basis, the dressing becomes an insertion
of the operator e−iPkC(zk,z̄k) appearing in Asoft in equation (3.23). One then finds, as for
the QED case, the amplitudes

Adressed = Ahard (3.59)

again define IR-safe scattering amplitudes.
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A Conventions

Null four-momenta are parametrized as

pµi = ηiωiq̂
µ(zi, z̄i), (A.1)

where ωi is positive and real, ηi = ±1 for outgoing/incoming particles and

q̂µ(z, z̄) =
(
1 + zz̄, z + z̄,−i(z − z̄), 1− zz̄

)
. (A.2)

This parametrization can be derived from the spinor helicity variables (1.1) presented in
the introduction by taking

pµ = σµα̇αpαα̇, σµα̇α = σ1(1, σi)σ1. (A.3)

Momenta parametrized as in (A.1) obey

pi · pj = −2ηiηjωiωjzij z̄ij . (A.4)

Polarization vectors for positive and negative helicity photons are given by

εµ+ = 1√
2
∂z q̂

µ(z, z̄), εµ− = 1√
2
∂z̄ q̂

µ(z, z̄), (A.5)

and polarization tensors for positive and negative helicity gravitons are constructed from
polarization vector for photons in the following way

εµν± = εµ±ε
ν
±. (A.6)

Here we employ the following mode expansion for the photon field operator

Âµ(x) = e

∫
d3~q

(2π)3
1

2q0

[
ε∗αµ aα(~q)eiq·x + εαµa

†
α(~q)e−iq·x

]
(A.7)

and graviton field operator

ĥµν(x) = κ

2

∫
d3~q

(2π)3
1

2q0

[
ε∗αµνaα(~q)eiq·x + εαµνa

†
α(~q)e−iq·x

]
. (A.8)

The creation and annihilation modes for both obey[
aα(~q), a†β(~k)

]
= δαβ(2π)3(2q0)δ(3)(~q − ~k). (A.9)

Focussing on 2→ 2 scattering processes, we take

η1 = η2 = −η3 = −η4 = −1, (A.10)

and obtain the following expressions for the Mandelstam invariants

s = −(p1 + p2)2 = 4ω1ω2z12z̄12,

t = −(p1 + p3)2 = −4ω1ω3z13z̄13,

u = −s− t = −(p2 + p3)2 = −4ω2ω3z23z̄23.

(A.11)
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A 2→ 2 scattering amplitude of massless particles in momentum space can always be put
in the general form

A(p1, p2, p3, p4) = H(zi, z̄i)M(s, t)δ(4)
( 4∑
i=1

pi
)
. (A.12)

Here, H is a kinematical factor

H(zi, z̄i) =
∏
i<j

(
ηiηj
〈ij〉
[ij]

) 1
2 ( 1

3 s−si−sj)

=
∏
i<j

(
zij z̄

−1
ij

) 1
2 ( 1

3 s−si−sj) , s =
4∑
i=1

si,

(A.13)

which accounts for the non-trivial action of the Lorentz group on states of helicity si
massless particles. The dynamical content of the amplitude is captured by M(s, t). For
example, a massless scalar amplitude has H = 1, while for −− → ++ graviton scattering

H(zi, z̄i) = 〈12〉2[34]2

[12]2〈34〉2 = z2
12z̄

2
34

z̄2
12z

2
34
. (A.14)

We can similarly disentangle kinematic and dynamic contributions to a generic 4-point
celestial amplitude (suppressing helicity labels)

A(∆i, zi, z̄i) =
( 4∏
i=1

∫ ∞
0

dωi
ωi

ω∆i
i

)
A(p1, p2, p3, p4) (A.15)

by making a change of variables from ωi to (ω, σ2, σ3, σ4) where

s = ω2, σi = ωi/ω. (A.16)

The measure transforms as
4∏
i=1

∫ ∞
0

dωi
ωi

= 2
∫ ∞

0

dω

ω

4∏
i=2

∫ ∞
0

dσi
σi
, (A.17)

and the momentum-conserving delta function included in A can be put in the form

δ(4)
( 4∑
i=1

pi

)
= δ (z− z̄)

4ω4

√
z (1−z)

z23z̄23z24z̄24z34z̄34
δ

σ2−
1
2

√
z (1−z)z34z̄34
z23z̄23z24z̄24


×δ

(
σ3−

1
2

√
1−z
z

z24z̄24
z34z̄34z23z̄23

)
δ

(
σ4−

1
2

√
z

1−z
z23z̄23

z24z̄24z34z̄34

)
,

(A.18)

where the cross ratio z defined in (1.6) lies in the range 0 < z < 1 for this channel.
On the support of the delta function, in these new variables, the Mandelstam invariants

simplify to
s = ω2, t = −zω2, u = −(1− z)ω2. (A.19)
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Finally, performing the σi integrals, the celestial 4-point amplitude can be written in
the form

A(∆i, zi, z̄i) = XA(β, z), (A.20)

where X is the kinematic factor

X =
(∏
i<j

z
h
3−hi−hj
ij z̄

h̄
3−h̄i−h̄j
ij

)
δ(z − z̄)2−β−2 |z(1− z)|

1
6 (β+4) . (A.21)

In the above, hi (h̄i) are the standard left and right conformal weights

hi = 1
2(∆i + si), h̄i = 1

2(∆i − si), (A.22)

and their sums are denoted by h and h̄, respectively. A(β, z) is explicitly related to the
matrix element M by

A(β, z) =
∫ ∞

0

dω

ω
ωβM(ω2,−zω2), (A.23)

and therefore represents the dynamical content of four-point celestial amplitudes.
Writing the −− → ++ momentum space four-graviton scattering amplitude in Ein-

stein gravity at tree-level in the form

A(pi) = −〈12〉2[34]2

[12]2〈34〉2
Gs3

t(t+ s)δ
(4)
( 4∑
k=1

pk
)
, (A.24)

we readily obtain its celestial representation

A(∆i, zi, z̄i) = X

∫ ∞
0

dω

ω
ωβ

Gω2

z(1− z) . (A.25)
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