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1 Introduction

In recent years, a new understanding of asymptotic symmetries in quantum field theory
and quantum gravity for asymptotically flat spacetimes has been developed, starting with
a connection to soft theorems obeyed by scattering amplitudes [1–3]. This led to a renewed
effort to understand holography in asymptotically flat spacetimes, particularly in 4D, based
on the interpretation of scattering amplitudes as 2D CFT correlation functions on the
celestial sphere, as reviewed in [4–7]. A recent discussion of how this picture of a 2D CFT
relates to an expected 3D holographic dual of 4D physics can be found in [8].

The soft tower of asymptotic symmetries [9–12] can be organised in a particularly
elegant manner in the self-dual — i.e. positive-helicity — sectors of 4D Yang-Mills theory
and gravity [13]. In [14], it was shown that the soft tower in self-dual gravity can be
arranged into the w1+∞ algebra (more precisely, into a wedge subalgebra of w1+∞). Since
this algebra is related to the behaviour of amplitudes in a collinear limit, and this behaviour
is unaltered at loop level in the self-dual sector, the conclusion extends to quantum self-
dual gravity [15]. A celestial realisation of the w1+∞ algebra was presented in [16], based
on the twistor space encoding of self-dual gravity. See also [17–24] for related work.

In this paper, we show how the formulations of the self-dual theories in light-cone
gauge — arguably their simplest spacetime formulations — illuminate the appearance of
the w1+∞ algebra, as well as that of its natural deformation, the W1+∞ algebra. The latter
reveals a connection to the chiral higher-spin theories developed in [25–27].

Our aproach reveals a strong connection between celestial operator-product expansions
(OPEs) and the topic of the double copy, which relates most notably Yang-Mills theory
and gravity, but extends to a wide range of theories. The double copy has received much
attention over the past decade or so, mainly due to its applications, from the structure
of superstring perturbation theory to the calculation of observables in gravitational wave
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physics; see e.g. [28–31] for recent reviews, and [32–41] for works motivated by celestial
holography. The self-dual theories provide the simplest known setting for the double copy,
by manifestly obeying the symmetry known as colour-kinematic duality [42, 43]. As we
will see, this is closely related to the chirality of the celestial OPEs, and to the (classical)
integrability of the chiral sector. The associativity of the OPEs, which implies the Jacobi
relation for the structure constants, is also related to the appearance of Jacobi relations in
the colour-kinematics duality, as we will see in examples.

The paper is organised follows. We start by giving a brief introduction to the spacetime
formulations of self-dual Yang-Mills theory and self-dual gravity in light-cone gauge in
section 2. In the following sections, we discuss the relation between celestial chiral OPEs
and the double copy structure of the self-dual theories. In section 3, we show how the
first copy of the self-dual kinematic algebra underlying the colour-kinematics duality is
related to the chirality of the OPEs, while the second copy (present in the gravity case) is
related via a soft expansion to the w1+∞ algebra. We also discuss in that section a Moyal
deformation of self-dual gravity, which leads to the W1+∞ algebra, and its connection to
higher-spin theories. In section 4, we describe the role of the first copy of the self-dual
kinematic algebra in the classical integrability of the chiral theories, from the point of
view of vanishing tree-level scattering amplitudes. Finally, we briefly discuss the results in
section 5, with an eye to assessing the role of the w1+∞ algebra beyond the self-dual sector.

Note: shortly after the first arXiv version of this paper, two papers appeared which have
some overlap [44, 45].

2 Self-dual theories in light-cone gauge

Self-dual Yang-Mills theory (SDYM) and self-dual gravity (SDG) admit well-known formu-
lations in light-cone gauge that, while breaking manifest Lorentz invariance, are based only
on the physical degrees of freedom. Let us work with light-cone coordinates (u, v, w, w̄),
such that the wave operator is � = ∂u∂v − ∂w∂w̄ . The action for SDYM can be written
as [46] (see also [47–49])

SSDYM(Ψ, Ψ̄) =
∫
d4x tr Ψ̄

(
�Ψ + i[∂uΨ, ∂wΨ]

)
, (2.1)

where Ψ and Ψ̄ correspond to the positive and negative helicity degrees of freedom. The
role of Ψ̄ in the action is that of a Lagrange multiplier. The analogous action for SDG
is [50]

SSDG(φ, φ̄) =
∫
d4x φ̄

(
�φ+ {∂uφ, ∂wφ}

)
, (2.2)

which makes use of a Poisson bracket on the null plane (u,w),

{f, g} := ∂uf ∂wg − ∂wf ∂ug . (2.3)

The Lagrange multiplier φ̄ enforces Plebański’s second heavenly equation [51].
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A comment for the reader unfamiliar with these actions: the interaction terms appear
to have too many derivatives because, to tidy up the expressions, the helicity fields are
chosen to be related to the relevant components of the gauge field and the graviton as

(A, Ā) = (∂uΨ, ∂−1
u Ψ̄) and (h, h̄) = (∂2

uφ, ∂
−2
u φ̄) . (2.4)

One of the obvious similarities between the two actions is the analogy between the
colour Lie bracket in (2.1) and the Poisson bracket in (2.2). This similarity becomes even
more striking when we consider the momentum-space Feynman rules:

• Propagator (+−): i

k2 δ
ab.

• Cubic vertex (+ +−):

VSDYM = X(k1, k2) fa1a2a3 , VSDG = X(k1, k2)2 , (2.5)

where1

X(k1, k2) := k1wk2u − k1uk2w = −X(k2, k1) . (2.6)

These kinematic objects are the structure constants of the Lie algebra

{eik1·x, eik2·x} = X(k1, k2) ei(k1+k2)·x . (2.7)

We can also write this algebra in terms of the Hamiltonian vector fields

Lk := {ei k·x, ·} = i ei k·x(ku∂w − kw∂u) = ei k·x ku ε
+ · ∂ (2.8)

as
[Lk1 , Lk2 ] = X(k1, k2)Lk1+k2 . (2.9)

These vector fields generate area-preserving (i.e. unit-Jacobian) diffeomorphisms in the
(u,w) plane, and ε+(k) denotes a positive-helicity polarisation vector, defined whether or
not k is on-shell.

Notice that each of the 3-point vertices in (2.5) has two sets of structure constants:
the kinematic structure constant times the colour structure constant in SDYM, and two
copies of the kinematic structure constant in SDG. As described in [42, 43], this feature of
the self-dual theories is a remarkably simple example of the BCJ colour-kinematics duality
in Yang-Mills theory and the associated double copy to gravity [28, 52]. In general, the
kinematic algebra underlying the colour-kinematics duality is much more sophisticated
than its restriction to the self-dual sector, and does not admit a simple 3-point-vertex-type
interpretation; see e.g. [53–56] for recent studies.

1To actually compute scattering amplitudes, it is often convenient to keep track of the choice of light-cone
using the spinor-helicity formalism. Following the notation of [43], we can write X(k1, k2) = 〈η|k1k2|η〉,
where |η〉[η| is the null vector defining the light-cone gauge. Moreover, a rescaling factor is required for
each ± helicity external gluon or graviton in the amplitude, equal to 〈ηi〉∓2 or 〈ηi〉∓4, respectively. These
rules reduce to the ones in the main text if the spinor choices to be seen in (3.1) are followed, together with
|η〉 = (0, 1), so that we have 〈ηi〉2 = 1.
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SDYM and SDG are well-defined sectors of the complete 4D Yang-Mills theory and
general relativity, obtained by restricting the interactions to the (++−) vertex. The usual
actions for the full theories have a (++−) vertex, a (+−−) vertex, and higher-point vertices
of the type (+ + · · · − −). In the standard Yang-Mills action, the only higher-point vertex
is the 4-point vertex (+ + −−). At tree level, the self-dual sector corresponds to helicity
configurations where all external particles but one have positive helicity, in a convention
where all external particles are defined as incoming (the momentum in the external legs goes
into a Feynman diagram). The associated tree-level scattering amplitudes vanish, which
is a sign of the classical integrability of the self-dual theories [49].2 The idea is that no
amplitude can be consistent with the infinite tower of symmetries underlying integrability.
This is broken by quantum effects, which give rise to non-vanishing one-loop amplitudes,
though the quantum self-dual theories are still very simple. It is not possible to draw a
Feynman diagram with more than one loop using the Feynman rules above, which means
that the self-dual theories are one-loop exact. Moreover, one-loop diagrams require all
external particles to have positive helicity. This is the self-dual sector of the full theories at
loop level. The one-loop all-positive-helicity amplitudes turn out to be rational functions
of the external kinematic data [57, 58]. So the self-dual theories may be considered to be
the simplest 4D theories with non-trivial amplitudes. It is important to notice, though,
that self-dual Yang-Mills fields and metrics are complex in (1,3) spacetime signature; the
theories are clearly not parity invariant. Another common point of view is to consider real
self-dual fields in (2,2) signature.

The structure of the chiral higher-spin theories studied in [25–27, 59], which we aim
to explore in future work, is closely related to that of SDYM and SDG. Similarly to these,
the formulation in light-cone gauge is particularly simple, but they also admit a covariant
description [60–63].

3 Celestial chiral OPEs

The main idea of celestial holography is that 4D scattering amplitudes should be thought of
as correlation functions in a 2D conformal field theory living on the celestial sphere [64–67].
The OPE of two operators in this celestial theory is determined by the collinear limit of
scattering amplitudes [68, 69], as suggested by the figure.

 

While a basis of boost eigenstates is more appropriate to reveal the celestial conformal
properties of scattering amplitudes, we will use in this paper momentum eigenstates. This

2The exception is the 3-pt amplitude, which in (1,3) spacetime signature has support only in complexified
kinematics, but plays an important role in on-shell methods.
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choice connects more directly to common concepts in the amplitudes literature, which we
want to make use of.

We parametrise the momenta of on-shell gluons or gravitons as

kAȦ = λAλ̃Ȧ , λA = (1, z) , λ̃Ȧ = (ku, kw) , z = kw̄
ku

= kv
kw

, (3.1)

where z is a holomorphic coordinate on the celestial sphere. Notice that we used the scaling
freedom (λA 7→ τλA , λ̃Ȧ 7→ τ−1λ̃Ȧ) to treat the two spinors differently. In particular, we
have λ̃Ȧ = ku(1, z̄). With this choice, for on-shell momenta k1 and k2, we obtain

X(k1, k2) = εȦḂ λ̃1 Ȧ λ̃2 Ḃ =: [12] , (3.2)

and
s12 := (k1 + k2)2 = (z1 − z2) [12] . (3.3)

We now consider a ‘holomorphic collinear limit’ by taking z1 → z2.3 In this limit, the
scattering amplitude is dominated by the pole 1/s12, whose residue is generically a sum
(over on-shell states exchanged) of products of two subamplitudes: a 3-point subamplitude
involving particles 1 and 2, and a subamplitude involving the remaining external particles.
In both Yang-Mills theory and general relativity, if we take particles 1 and 2 to have positive
helicity, then the 3-point subamplitude is associated to the vertex (++−). The translation
into celestial holography determines the OPEs of operators associated to positive-helicity
scattering states.4 For positive-helicity gluons in Yang-Mills theory, we have5

Oa1
+ (k1) Oa2

+ (k2) ∼ X(k1, k2) fa1a2a3

s12
Oa3

+ (k1 + k2) = fa1a2a3

z1 − z2
Oa3

+ (k1 + k2) , (3.4)

while for positive-helicity gravitons in general relativity, we have

O+(k1) O+(k2) ∼ X(k1, k2)2

s12
O+(k1 + k2) = X(k1, k2)

z1 − z2
O+(k1 + k2) . (3.5)

We normalised the operators in analogy with the redefinition (2.4), which makes the ex-
pressions tidier. The (+ + −) vertex appears in the self-dual sector (2.5), which is the
reason why we are able to express these particular OPEs of the full theories in terms of the
vertex of the self-dual theories. So, while the chiral OPEs above are embedded in the full

3It is helpful to consider an analytic continuation in this context, allowing z and z̄ to be independent. In
fact, unlike (1,3) spacetime signature, (2,2) signature admits real independent z and z̄, and also admits real
self-dual gauge fields and metrics, making it a common setting to study self-dual theories. The counterpart
of the celestial sphere is a celestial torus.

4The reason why the positive-helicity OPEs in the main text correspond to the (+ + −) vertex is that
the operators on the right-hand side of the OPE are ‘outgoing’ with respect to the 3-pt vertex and have,
therefore, negative helicity when see as incoming, which is our convention for the vertex.

5One may ask how to think about the operators in these OPEs. We may pragmatically follow the
approach of [68]: if it is true that correlation functions of operators in a two-dimensional celestial CFT
reproduce 4D scattering amplitudes, then the OPEs must take this form dictated by the collinear limit of
the amplitudes. Alternatively, one may be able to construct explicit representations for the operators as in
the twistor space approach of [16].
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theories (which have additional OPEs), considering the self-dual sector suffices to study
the properties of these particular OPEs.6

It is important to notice that the chiral OPEs above share the structure of the colour-
kinematics duality in the (++−) vertex seen in (2.5). The chirality of the OPE, i.e. the fact
that we have poles 1/(z1 − z2), is a consequence of the ‘left structure constant’ X(k1, k2)
appearing in both Yang-Mills theory and gravity. The ‘right structure constant’, namely
fa1a2a3 for Yang-Mills theory and X(k1, k2) for gravity, is identified with the structure
constant of the OPE. Since the ‘right structure constants’ obviously satisfy Jacobi identities,
the OPE is associative at tree level.

3.1 From the kinematic algebra to w1+∞ via soft expansion

Following the preceding discussion, we note that

O+(k1) O+(k2) ∼ X(k1, k2)
z1 − z2

O+(k1 + k2) (3.6)

is a celestial chiral algebra version of the spacetime Lie algebra (2.7), which we also ex-
pressed as (2.9) in terms of the commutator of vector fields Lk = {eik·x, · }.

In the following, we consider the soft expansion of (3.6), first looking at the analogous
soft expansion of (2.7). In our choice of kinematics (3.1), the soft limit k → 0 corresponds
to λ̃ = (ku, kw) → (0, 0); at fixed z, this requires (kv, kw̄) → (0, 0) with fixed kw̄/ku =
kv/kw = z. We have, therefore, the expansion

ei k·x =
∞∑

a,b=0

(iku)a
a!

(ikw)b
b! ea,b , ea,b = (u+ zw̄)a(w + zv)b . (3.7)

The counterpart of the kinematic algebra (2.7) in terms of the ‘soft mode generators’ ea,b is

{ea,b , ec,d} = (ad− bc) ea+c−1,b+d−1 . (3.8)

Alternatively, we can express this algebra in terms of the commutator of vector fields
{ea,b, · }. This is precisely the wedge subalgebra of the Lie algebra w1+∞, where the ‘wedge’
refers to the restriction a, b ≥ 0. We can also rewrite this exactly as in ref. [14]:

[wpm , wqn ] =
(
m(q − 1)− n(p− 1)

)
wp+q−2
m+n , (3.9)

using wpm = {1
2 ep−1+m, p−1−m , · } . The wedge condition is now |m| ≤ p− 1.

From the correspondence between (2.7) and (3.6), we can read off that the soft expan-
sion at fixed z,

O+(k) =
∞∑

a,b=0

(iku)a
a!

(ikw)b
b! $a,b(z) , (3.10)

leads to
$a,b(z1)$c,d(z2) ∼ ad− bc

z1 − z2
$a+c−1,b+d−1(z2) . (3.11)

6Notice that the (+ + −) vertex also gives rise to a chiral OPE for mixed helicities in the self-dual
theories, e.g. O+(k1)O−(k2) ∼ X(k1,k2)

z1−z2
O−(k1 + k2). In the full theories, however, the mixed-helicity

OPE is not chiral, because it contains also an anti-chiral part, i.e. a contribution from the (−−+) vertex.
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This is a particularly simple derivation of the appearance of the w1+∞ algebra in SDG.
We do not claim that this is an essentially new derivation: the relation between w1+∞ and
area-preserving diffeomorphisms has a long history [70, 71], and the connection to SDG
has been explored before, e.g. in the context of twistor theory [72–76], as recently reviewed
in [16]. In that reference, an explicit celestial realisation of w1+∞ based on twistor space was
presented. Our spacetime perspective is helpful for some purposes, such as the connection
to the colour-kinematics duality as typically expressed in momentum space, which we will
further elaborate on.

We expect that the role of the w1+∞ algebra in the full gravity theory is a counterpart
of the role of the kinematic algebra associated to the (+ +−) vertex: it rules the self-dual
sector of the theory, and also some kinematic limits of the full theory that highlight this
vertex as in the collinear limit considered above, but the structure of the full theory is
much more intricate. In fact, we believe that an indication of the sophistication of the
full theory is the difficulty in understanding the general kinematic algebra underlying the
colour-kinematics duality, which generalises (2.9) beyond the self-dual sector. We will make
a few more comments on this point in the Discussion section.

3.2 Moyal-deformed self-dual gravity, W1+∞ and chiral higher spins

A deformation of SDG by higher-derivative interactions that preserves its classical inte-
grability was introduced in [77]; see also [78]. The double copy structure of the deformed
theory was described recently in [79]. It appears that this deformation has received little
attention, so we will also discuss here its physical interpretation, and find a connection to
chiral higher-spin theories.

The deformation is based on substituting the Poisson bracket (2.3),

{f, g} = f
↔
P g ,

↔
P =

←
∂ u
→
∂w −

←
∂w
→
∂ u , (3.12)

by the Moyal bracket

{f, g}M := 1
2α(f ? g − g ? f) = 1

α
f sinh(α

↔
P ) g , (3.13)

which is based on the Moyal star product with deformation parameter α,

f ? g := f exp
(
α
↔
P

)
g . (3.14)

We have
f ? g

α→0−→ fg and {f, g}M α→0−→ {f, g} . (3.15)

In full detail,

{f, g}M =
∞∑
s=0

α2s

(2s+ 1)!

2s+1∑
j=0

(−1)j
(

2s+ 1
j

)
(∂2s+1−j
u ∂jwf)(∂2s+1−j

w ∂ju g). (3.16)

Since the star product is associative, the Moyal bracket satisfies the Jacobi relation, and
therefore defines a Lie algebra. In fact, the Moyal bracket is the most general bracket one
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can write down for a Lie algebra of functions of two variables [80]. In our case, those two
variables are u and w, since v and w̄ are passive coordinates with respect to this algebraic
structure.

The Moyal deformation of SDG has action

SMoyal-SDG(φ, φ̄) =
∫
d4x φ̄

(
�φ+ {∂uφ, ∂wφ}M

)
. (3.17)

The 3-pt vertex is now

VMoyal-SDG = X(k1, k2)XM (k1, k2) , (3.18)

where the deformed structure constant arises from

{eik1·x, eik2·x}M = XM (k1, k2) ei(k1+k2)·x , (3.19)

and is given by
XM (k1, k2) = 1

α
sinh

(
αX(k1, k2)

)
. (3.20)

One can also define the object

LMk := {ei k·x, ·}M = ei k·x

α
sinh

(
αku ε

+ · ∂
) (3.21)

such that7

[LMk1 , L
M
k2 ] = XM (k1, k2)LMk1+k2 . (3.22)

The physical content of this theory has a standard interpretation of describing SDG
on a non-commutative background, where the non-commutativity is restricted to the null
plane (u,w).8 That is the context in which it is studied e.g. in [78], which belongs to a body
of work that was motivated by the appearance of non-commutativity in M/string theory
(see [81, 82] for reviews). In this standard interpretation, the effect of non-commutativity
corresponds to the addition of Lorentz-breaking higher-derivative corrections to the spin-2
Lorentz-invariant theory of SDG.

Here, we want to propose an additional interpretation of the equations of Moyal-
deformed self-dual gravity, that connects it to a theory of higher spins. The first clues are
in the two Lie algebras at play in (3.18). The ‘left algebra’ is generated by Lk and carries
spin 1, since Lk ∼ ε+ · ∂. The ‘right algebra’ is generated by LMk and carries contributions
from a tower of odd spins, each ∼ (ε+·∂)spin, all of which have fixed coefficient with respect
to the spin 1 contribution. This suggests that the double copy between the two algebras
can be associated to a constrained chiral higher-spin theory with even spins ≥ 2. By

7To verify this formula, it is convenient to use the identity

sinh(A · ∂) eB·x = sinh(A ·B) eB·x cosh(A · ∂) + cosh(A ·B) eB·x sinh(A · ∂) .

8This choice of non-commutativity plane is very relevant, leading to simplified equations in light-cone
gauge, because the plane (u,w) can be highlighted as a gauge choice in SDG, as we saw earlier.
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constrained, we mean that there are no more degrees of freedom than in SDG, since the
higher spins are fixed by the graviton.9

Such an interpretation of the theory is consistent with the general picture of chiral
higher-spin theories [25–27], reviewed recently in [83]. The vertex (3.18) is expanded for a
small deformation as

VMoyal-SDG = 1
α2

∑
σ≥1

(
αX(k1, k2)

)2σ
(2σ − 1)! . (3.23)

We can compare this to the chiral higher-spin (chs) vertices, written with our conventions as

Vchs = 1
α2

(
αX(k1, k2)

)h1+h2+h3

(h1 + h2 + h3 − 1)! , (3.24)

where the hi are the helicities of the incoming particles.10 The helicities are such that
h1+h2+h3 is positive and, due to Bose symmetry, even. This suggests that Moyal-deformed
SDG may be obtained by identifying all the helicity fields with the graviton fields of the
same helicity. The vertex (3.23) has contributions from all the vertices (3.24) compatible
with this. This interpretation is not without puzzling features. One important question
is that Moyal-deformed SDG is not Lorentz invariant,11 and yet its vertices are clearly
associated to those of chiral higher-spin theories, which are Lorentz invariant (though not
manifestly so in light-cone gauge, just like SDG). Another question is that while Moyal-
deformed SDG has derivative corrections to unbounded order, chiral higher-spin theories
obey a notion of locality [27]. We leave a more detailed investigation of the relation between
Moyal deformations and chiral higher-spin theories for future work. Our discussion here is
closely related to comments in [59], where a version of (3.22) appears as equation (3.44),
and in [84], where a non-local non-Lorentz-invariant ‘amplitude’ obtained by summing
over higher-spin 3-point amplitudes for all helicities is considered. The connection to chiral
higher-spin theories highlights one feature: it is presumably impossible to construct a local
parity-invariant extension of Moyal-deformed SDG (in contrast with undeformed SDG,
whose parity-invariant version is general relativity). It is possible to construct interacting
massless higher-spin theories in flat spacetime, but the examples exhibit limitations, e.g. the
higher-spin theory of [25–27] is chiral, and has vanishing tree-level scattering amplitudes.12

Chiral higher-spin theories have been mentioned recently in the celestial literature in
connection with chiral OPEs [23]. It was checked in examples related to effective field the-
ories that the chiral higher-spin vertices are consistent with OPE associativity. This work

9Notice that the generators EMk := ei k·x

2α exp
(
αku ε

+ · ∂
)
, which include all spins, lead to the same

structure constants as (3.21). However, the former generators are singular as α → 0. Nevertheless, this
may indicate that the spin content of a higher-spin interpretation of Moyal-deformed SDG is not unique.
Indeed, the chiral higher-spin theories [25–27] to be mentioned admit various versions/truncations, e.g. all
spins versus excluding odd spins.

10We take the higher-spin helicity fields to be redefined analogously to (2.4).
11Recalling footnote 1, for a spin 2 field the external helicity factors are 〈ηi〉∓4. Given the form of the

vertex (3.23), this makes it impossible to eliminate the dependence of the amplitude on the gauge reference
spinor |η〉; it only works for the term σ = 1 corresponding to SDG.

12See [85–87] for some loop-level studies of chiral higher-spin theories. In the cases studied in these works,
it is argued that the loop amplitudes vanish based on a regularisation of the infinite number of degrees of
freedom.
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built on refs. [17, 19], which considered deformations of celestial OPEs and of the algebra
w1+∞ in the context of non-minimal couplings. It was found in [19] that an algebra with
some features analogous toW1+∞ arises when introducing non-minimal couplings, and that
the OPE Jacobi identity in the cases studied dictates that interactions between gravitons
and additional fields (e.g. scalar) must be included. These deformations are distinct from
the Moyal-deformed SDG considered here, which, as we will show in the following, is pre-
cisely related to (the wedge subalgebra of) W1+∞. It is clear that there is more to explore,
and it would be interesting to study the relation between these deformations, and to unveil
the full picture of chiral higher-spin theories from a celestial perspective. It would also
be interesting to investigate the relation between the results of [23] concerning vanishing
amplitudes and the discussion in the next section.

Let us now investigate the counterpart of w1+∞ in the Moyal-deformed SDG. For that,
we consider the soft expansion coefficients defined in (3.7) as generators of the deformed
Lie algebra. From (3.16), we obtain

{ea,b , ec,d}M

=
∑
s≥0

α2s

(2s+ 1)!

2s+1∑
j=0

(−1)j
(

2s+ 1
j

)
[a]2s+1−j [b]j [c]j [d]2s+1−j ea+c−1−2s,b+d−1−2s .

(3.25)

In this expression, [a]n = a!/(a − n)! is the descending Pochhammer symbol, defined to
vanish for n > a so that the sum over s is truncated. The analogues of (3.6) and (3.11)
are, therefore,

O+(k1) O+(k2) ∼ XM (k1, k2)
z1 − z2

O+(k1 + k2) (3.26)

and

$a,b(z1)$c,d(z2) ∼ 1
z1 − z2

×

∑
s≥0

α2s

(2s+ 1)!

2s+1∑
j=0

(−1)j
(

2s+ 1
j

)
[a]2s+1−j [b]j [c]j [d]2s+1−j $a+c−1−2s,b+d−1−2s(z2) .

(3.27)

The deformed Lie algebra associated to the soft generators is now the wedge subalgebra
of W1+∞, not of w1+∞. Without going into a lengthy discussion, we will briefly describe
the relation to the algebra W1+∞ as introduced in [88–90] and reviewed in [91, 92]. To
compare with those results, we start by naively identifying the generators V i

m there to
{1

2 ei+1+m, i+1−m , · }M , and we also drop the central terms, which are eliminated by the
wedge condition, translated now into |m| ≤ i + 1. If we do this, there is still a difference
between the structure constants: the numerical coefficients φij2s appearing in [90] are sub-
stituted by 1 in (3.25). In fact, the latter expression corresponds to the case 1 without the
φ’s described in [93]. As shown starting from eq. (21) of that reference, there is a formal
linear transformation of the generators that relates the two distinct sets of structure con-
stants, involving an invertible matrix related to the coefficients φij2s. This equivalence was
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originally established by extending the set of generators on each side to include all integer
values of i, whereas for both W1+∞ and (3.25) we have the restriction i ≥ −1. Imposing
the wedge condition |m| ≤ i + 1, however, is sufficient to restrict to i ≥ −1 on both sides
of the equivalence. Hence, the wedge subalgebra of W1+∞ is identified with the wedge
subalgebra in (3.25), the generators being related by the linear transformation described
in [93].13

There had been recent speculation that the algebra W1+∞ may appear in SDG at the
quantum level, being a ‘quantisation’ of w1+∞. Their counterparts, the Moyal bracket
and the Poisson bracket, are also related by a quantisation. However, the 2D quantisation
of the algebra is not the same as the quantisation of the 4D spacetime field theory and,
therefore, not the same as the quantisation of the 2D celestial theory, at least not in an
obvious sense. Indeed, we discussed in this section the appearance of W1+∞ in a purely
classical deformation of SDG, given in light-cone gauge by higher-derivative corrections.
These corrections appear to be unrelated to spacetime quantum effects. The results in [15]
highlight the point we are making: it was found that w1+∞ persists undeformed at loop
level in the celestial OPE of the quantum undeformed SDG.14

4 Chiral OPEs and integrability

In this section, we wish to highlight the role of the kinematic algebra (2.9) in the classical
integrability of the theories discussed here, from the perspective of scattering amplitudes.
The point is that the kinematic algebra ensures the vanishing of the tree-level amplitudes,
and we will see how this works.

Let us consider a generic chiral celestial OPE of the form

OI(k1)OJ(k2) ∼ CIJ
K

z1 − z2
OK(k1 + k2) . (4.1)

For SDYM, we have CIJK = fa1a2a3 ; for SGD, we have CIJK = X(k1, k2); and for Moyal-
deformed SDG, we have CIJK = XM (k1, k2). We are considering theories of massless
particles, with kinematics described as in the beginning of section 2. We can, therefore,
write

OI(k1)OJ(k2) ∼ X(k1, k2)CIJK
s12

OK(k1 + k2) . (4.2)

Suppose that such a chiral system of OPEs fully determines the theory. This is the
case for the three examples mentioned, which have only the vertex (+ + −). Yang-Mills
theory and gravity beyond the self-dual sector possess non-chiral OPEs, and therefore are
not in the purely chiral class that we consider here.15 The chiral class has a double copy

13This paragraph was improved with respect to the first arXiv version of the paper regarding the impor-
tance of the wedge condition, which was rightly emphasised in [44].

14After the first arXiv version of this paper, ref. [94] proposed that the Moyal deformation of self-dual
gravity can also be seen as a T T̄ deformation.

15Recall footnote 6. We will mention in the Discussion section that there are parity-asymmetric ways
of constructing full Yang-Mills theory and gravity that look chiral, but nonetheless have crucial non-chiral
elements.
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structure where the left copy is associated to X(k1, k2) and the right copy is associated
to CIJ

K .16 In the examples of SDYM and (Moyal-)SDG, the OPE written as (4.2) is
directly associated to the 3-point vertex in an off-shell formulation of the theories which
has no higher-point vertices, but this identification is too restrictive in general.17 We are
assuming associativity of the OPE, at least at tree level as our argument applies to the
classical theory. Associativity implies that the objects CIJK are constrained by the OPE
Jacobi relations, which are identified in the simple examples of self-dual theories as BCJ-
type Jacobi relations. More generally, at least naively, the latter appear to be a stronger
condition due to the collinear kinematic restriction in the OPE. It would be important
to clarify this point, but for now we will proceed in the assumption that the BCJ Jacobi
relations can be satisfied in some representation of the ‘right copy theory’ associated to
CIJ

K , which is a condition for the KLT formula [95] below to hold.
The idea now is that, for the cases of the chiral class discussed in the previous para-

graph, the n-point tree amplitudes can be computed from the KLT formula associated to
the double copy:

An =
∑

ρ,ρ′∈Sn−3

Aleft(1, ρ, n− 1, n) SKLT[ρ|ρ′] Aright(1, ρ′, n, n− 1) . (4.3)

Here, the sums are over all permutations of the set of particles excluding {1, n − 1, n};
SKLT is the momentum kernel, whose components are polynomials of order n − 3 in the
Mandelstam variables; Aleft(· · · ) are the partial amplitudes with the prescribed ordering
of the external legs, built with X(k1, k2) as a vertex; and Ãright(· · · ) are, analogously, the
partial amplitudes built from the ‘right algebra’ associated to CIJK .

The details of the KLT formula are not very important here. What matters is that the
partial amplitudes Aleft(· · · ) built from the kinematic algebra X(k1, k2) all vanish, leading
to the vanishing of the tree amplitude An. For instance, at 4 points, there are two diagrams
contributing to Aleft(1, 2, 3, 4), and it is easily checked using momentum conservation that
this partial amplitude vanishes:

X(k1, k2)X(k3, k4)
s12

+ X(k2, k3)X(k4, k1)
s23

= 0 . (4.4)

The proof that these partial tree amplitudes vanish at any multiplicity18 is a basic result
in the amplitudes literature, which can be obtained in various ways, e.g. using Feynman
diagrams with a smart gauge choice, using the Berends-Giele recursion, or using the super-
symmetric Ward identities; see e.g. ref. [96]. This proof holds for generic kinematics, not

16In the standard terminology of the double copy, the left copy is SDYM. The double copy decomposition
of SDYM itself is that the left copy is SDYM and the right copy is the bi-adjoint scalar theory, which has
two colour-type Lie algebras. The double copy procedure ‘eats up’ one copy of colour from each of the left
and right copies, leading to SDYM.

17For instance, CIJK could be associated to the full kinematic algebra, instead of the self-dual restriction
CIJ

K = X(k1, k2) occurring in SDG. In that case, we are dealing with a sector of the 4D Einstein-dilaton-
B-field gravity that, by the arguments in this section, has vanishing amplitudes and is, therefore, expected
to be classically integrable.

18With the caveat of footnote 2.
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for special (complexified) kinematic configurations where the amplitudes have support on
sij = 0 due to holomorphic collinearity (λi all equal) as discussed in [97]; see e.g. [84] for
a recent higher-spin example of this feature.

The argument presented in this section, already made implicitly to some extent in [79],
is a scattering amplitudes version of how the Ward conjecture [98] works. The conjecture
states that all classically integrable systems are some ‘reduction’ of SDYM, which in our
language is represented by the fact that the left copy in the double copy is the self-dual
kinematic algebra (2.9).

5 Discussion

In this paper, we drew a connection between the double copy, especially its formulation in
terms of the BCJ colour-kinematics duality, and the structure of the celestial chiral OPEs.
The double copy decomposition of these OPEs is as follows: the ‘left copy’ comes from the
implicit area-preserving diffeomorphism algebra arising solely from the OPE chirality; the
‘right copy’ comes from the structure constants of the OPE, which at least in the examples
considered were identified with BCJ-type structure constants of a colour/kinematic algebra.

We showed that this connection between the double copy and the celestial OPEs pro-
vides an interpretation of the classical integrability of theories fully determined by chiral
OPEs, namely a scattering amplitudes version of the Ward conjecture.

Our investigations were partly motivated by the celestial appearance of (the wedge
subalgebra of) w1+∞ following refs. [13, 14]. We discussed how this algebra arises straight-
forwardly from the soft expansion of the self-dual kinematic algebra appearing in the ‘right
copy’ of the double copy decomposition of self-dual gravity. This point of view is a space-
time counterpart to old and recent work that describes self-dual gravity in twistor space [16].
Following the same approach, we described the deformation of w1+∞ intoW1+∞ associated
to a Moyal deformation of self-dual gravity. It would be good to connect this result to those
of [17, 19, 23], and more generally, to understand the space of consistent deformations and
its relevance.

One important question is what role w1+∞ plays in the full theory, i.e. beyond the
self-dual sector. It may be worth it to put this question into the more general context of
‘chiral’ and ‘non-chiral’ approaches to scattering amplitudes in four spacetime dimensions.
The following is by no means an exhaustive survey, but it may benefit some readers less
familiar with these topics.

• Non-chiral (parity-symmetric) approaches: the chiral and anti-chiral sectors appear
on equal footing. This is the case for the standard Yang-Mills theory and gravity
Lagrangians, where we have both the (+,+,−) and the (−,−,+) vertices, comple-
mented by higher-point vertices required by gauge invariance. The ‘distance’ from
the chiral/anti-chiral sectors may be measured by the number of vertices beyond that
sector required by a given object, say an amplitude with certain helicities. This is re-
lated to the notion of MHV degree or (next-to)k-MHV, where MHV (maximal-helicity
violating) amplitudes are the simplest, and at tree level should be thought of as the
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next-to-self-dual amplitudes sector (the first non-vanishing), where each diagram re-
quires one non-(+,+,−) vertex. For instance, the colour-kinematics duality for the
MHV sector essentially inherits the self-dual kinematic algebra [42, 43]. Generically,
the further an object is from both the chiral and anti-chiral sectors, the more com-
plicated it is. This holds irrespective of the formulation, say irrespective of the use
of vertices, as in the BCFW recursion relation, where the basic building blocks are
the two types of 3-point amplitude [99, 100]. An approach that provides a beautiful
symmetric splitting between the chiral and anti-chiral sectors of amplitudes is the
4D ambitwistor string [101], but the explicit construction of the complete amplitude
is still not straightforward, due to the sum over solutions to the polarised scattering
equations. Polarised or not, the 4D scattering equations become harder to solve as
the MHV and MHV degrees grow [102–104]. Fortunately, solving them explicitly is
not necessary when studying certain properties of the amplitudes.

• Chiral approaches: the theories are formulated in an ‘almost chiral’ manner, where
a systematic expansion away from the chiral sector is achieved by the introduction
of non-chiral elements. A basic example is the CSW recursion [105] born out of
twistor string theory [97]. Here, ‘MHV vertices’ are added to the self-dual theory to
provide non-vanishing tree amplitudes of any MHV degree desired [106]; the more of
these vertices are used, the higher the MHV degree, and the more complicated is the
result. Various twistor space approaches, naturally tuned to the self-dual sector, fall
into this class; see [16, 21, 107] for recent examples. For instance, in the case of [21],
the tree-level amplitudes are computed as a type of form factor, where the external
particles are represented by elements of a celestial chiral OPE, and the operator in
the form factor is analogous to the CSW MHV vertices. A very different instance of
chirality arises in the ambitwistor string [108], even in the 4D case mentioned above.
This is the chirality of the worldsheet model (in contrast with conventional string
theory). Here too, the worldsheet model is chiral except for the insertion of vertex
operators which introduce localised non-chirality, and which are associated to the
scattering equations.

The preceding discussions in this paper suggest that the importance of the algebra
w1+∞ in the chiral sector does not extend straightforwardly to the full celestial theory,
because there is a price to pay as one deviates from this classically integrable sector. We
saw that this algebra results from the soft expansion of the self-dual kinematic algebra,
which explains the colour-kinematics duality in the self-dual sector but not in general. MHV
amplitudes inherit much of the structure of the self-dual theory, and the self-dual kinematic
algebra still explains the colour-kinematics duality in this next-to-self-dual sector. For these
and other reasons, it is natural to investigate the role of w1+∞ starting from the MHV
sector. However, the difficulty in finding a fully satisfactory description of the complete
BCJ kinematic algebra (beyond MHV) is probably a good measure of the sophistication
required of a parent algebra of w1+∞ that applies to the full theory. In fact, it is not
inconceivable that the answer to both questions is the same in some form.
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