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1 Introduction

Celestial holography asserts that the quantum gravity S-matrix is dual to a codimension

two conformal field theory (CFT) living on the celestial sphere. This paradigm puts the

symmetries of the theory front and center. Recognizing [1, 2] that the asymptotic symmetry

group of the theory [3, 4] is hidden in IR divergences and factorization theorems [5] in typical

presentations of scattering amplitudes has led to a fascinating convergence of tools from the

relativity [6–8] and amplitudes [9–19] communities.1 While the S-matrix can be used to

diagnose the physical relevance of a proposed symmetry extension, geometric tools have the

power to provide general statements that would be difficult to extract from perturbation

theory. This is particularly true when it comes to studying the spontaneous symmetry

breaking dynamics of these asymptotic symmetries. From a geometric viewpoint, this

amounts to classifying the representations of the proposed symmetries on the asymptotic data.

Within amplitudes, this amounts to understanding the so called ‘conformally soft sector’.

1For reviews see [20–22].
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To describe this sector, we must explain the nature of the holographic map [23–25]. The

subleading soft graviton theorem [9] is isomorphic to a stress tensor Ward identity [26, 27]

if the asymptotic particles are in boost, as opposed to momentum, eigenstates. For

massless particles, this change of basis can be done with a Mellin transform of the ener-

gies [24, 25, 28–30]. This exchanges the energy ω of each external particle for a conformal

dimension ∆ under the SL(2,C) Lorentz group. Encouragingly, this change of basis does not

spoil the existence of universal factorization properties originally found in the energetically

soft limit. Rather than appearing as different orders in a Laurent expansion around ω → 0,

these manifest themselves as poles at special values of ∆ ∈ 1
2Z and are referred to as

conformally soft theorems [12, 13, 31–34]. The operators dual to these conformally soft

modes are currents of the celestial CFT. A natural direction is to continue to build up the

holographic dictionary and apply CFT methods to celestial amplitudes with the hopes of

learning something new about scattering.

As with any adventure into unfamiliar territory the cartographer’s role is essential.

With this mindset, we examine the structure of global conformal multiplets in 2D celestial

CFT and perform a classification of all SL(2,C) primary descendants corresponding to

massless particles of spin s =
{

0, 1
2 , 1,

3
2 , 2
}

. This follows the spirit of [35] from the bootstrap

literature, and is inspired by recent work on celestial null states [36–43]. We will see that

even the simple case of global conformal multiplets reveals the power of symmetry to

organize conformally soft behavior, tying together questions about the vacuum structure

of asymptotically flat spacetimes, constraints on celestial amplitudes, and intrinsically 2D

descriptions of celestial CFT [44].

We find a nested structure of primary descendants which we refer to as the ‘celestial

diamond’. There are three variants that appear. The first corresponds to finite dimensional

SL(2,C) modules that descend from radiative primaries of 2D spin J = ±s and ∆ = 1−s−n

for n ∈ Z>. These correspond to poles in celestial OPEs and have recently been argued to

generate an infinite tower of symmetries which, however, yields no new constraints on the

S-matrix [43].

The second class of primary descendants corresponds to the most subleading conformally

soft theorems. They appear at J = ±s and ∆ = 1 − s for s ∈ 1
2Z>. They descend to their

own conformal shadows and correspond to degenerate zero-area celestial diamonds. These

primaries have no obvious asymptotic symmetry interpretation [45–49] but are responsible

for recursion relations sufficient to determine certain OPE coefficients [50].

The third variant arises for any half integer s ≥ 1 and involves a finite number of

non-degenerate celestial diamonds that correspond to universal conformally soft theorems

with associated conformal Goldstone and memory modes. The corresponding radiative

conformal primary wavefunctions appear at the left and right corners of these diamonds and

descend both to and from generalized conformal primary wavefunctions with |J | ≤ s. This

shows that the now-familiar conformally soft theorems are only part of the picture. They

get completed into modules which we will show in [44] include conformally soft dressing

modes and soft charge operators.

Our classification addresses a number of interesting puzzles. The first is a two-fold ques-

tion about the spectrum: is the scattering basis augmented 1) by modes with conformal di-
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mension off the principal series ∆ ∈ 1+iR and 2) by non-radiative modes which have J 6= ±s?
Question 1) was addressed in [51] where we showed that conformally soft radiative primaries

with ∆ /∈ 1 + iR (see [52]) can be expressed as contour integrals of the radiative data on the

principal series basis of [24]. Question 2) is motivated by the observation [53] that there are in-

teresting non-radiative conformal primary wavefunctions, both off-shell as well as exact bulk

solutions to Einstein’s equations. Here we find a home for generalized conformal primaries

as parents and descendants of conformally soft radiative primaries in celestial diamonds.

The second puzzle concerns the role of the 2D shadow transform in the conformal

basis. The generator of conformal symmetries requires taking a shadow of the ∆ = 0

conformally soft graviton [52]. This begs the existential question of when to shadow or not

to shadow [54, 55]. Here we show that celestial diamonds are closed under shadows: the

radiative wavefunctions at the left and right corner of finite-area celestial diamonds as well

as the two corners of zero-area celestial diamonds are related by a shadow transform. By

adding a generalized conformal primary at the top of finite-area diamonds, its descendants

include both the radiative primary and its shadow, so that one is never forced to smear the

2D operators. This gives new insight into a third puzzle: the soft theorems for each helicity

are not independent but rather are related to one another by the shadow transform [54].

We now see that this is simply a particular case of the second puzzle: both modes descend

from the same generalized primary.

Celestial diamonds thus offer a natural language for describing the conformally soft sec-

tor of celestial CFT and resolve various puzzles surrounding the conformal basis, shadows and

helicity degeneracies. They unify the nested primary descendants associated to soft charges

found in [36–42] with the finite dimensional modules of [43] and demonstrate how these rela-

tions extend to arbitrary spin. Our wavefunction-based approach provides a bulk picture of

what the external scattering states correspond to, a mechanical way to get results guaranteed

by representation theory, and lets us decouple what comes from dynamics versus kinematics.

The paper is organized as follows. In section 2 we set up our conventions and introduce

radiative and generalized conformal primary wavefunctions. In section 3 we perform a general

classification of SL(2,C) primary descendant operators in 2D CFTs and discuss quantization

and conformal shadows. We then classify all SL(2,C) primary descendants corresponding

to massless fields in celestial CFTs in section 4, introducing the celestial diamonds which

capture this nested submodule structure. Various appendices supplement our discussion

and include: a complementary construction of primary descendants via representation

theory (appendix A), details of the relation between SL(2,C) Lorentz generators and

celestial derivatives (appendix B) allowing for a wavefunction-based identification of primary

descendants (appendix C), and a review of the shadow transform of bulk wavefunctions in

the embedding space formalism (appendix D).

2 Bulk wavefunctions for primary operators

The 4D Lorentz group SO(1,3)≃ SL(2,C) acts as the global conformal group on the 2D

celestial sphere at null infinity. This allows us to recast scattering amplitudes of massless

spin-s particles labeled by their energy ω and a point (w, w̄) on the celestial sphere as

– 3 –
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celestial CFT correlators of operators O∆,J labeled by the SL(2,C) conformal dimension ∆

and spin J [23–25]

An(ωi,±si;wi, w̄i)
M7→
〈

n∏

i=1

Os,±
∆i,Ji

(wi, w̄i)

〉
. (2.1)

This can be achieved by performing a Mellin transform

M(.) =

∫ ∞

0

dω

ω
ω∆(·) (2.2)

in the energy of each external particle in the amplitude and amounts to a change of basis

for the external wavepackets being scattered. The amplitude on the left hand side of (2.1)

describes probabilities for scattering momentum-eigenstates. The transform (2.2) is gauge

equivalent to preparing wavepackets for spin-s particles that transform with definite (∆, J)

under an SL(2,C) transformation

Xµ 7→ Λµ
νX

ν , w 7→ aw + b

cw + d
, w̄ 7→ āw̄ + b̄

c̄w̄ + d̄
(2.3)

acting on the bulk pointXµ = (X0, X1, X2, X3) and boundary point (w, w̄) where ad−bc = 1

and Λµ
ν is the corresponding vector representation. These definite (∆, J) wavepackets known

as conformal primary wavefunctions Φs
∆,J are being scattered in the celestial amplitude on

the right hand side of (2.1) and will be the protagonists in this work. Given a 4D operator

Os(Xµ) of spin-s in the Heisenberg picture, we can define a 2D operator in the celestial

CFT by [51]

Os,±
∆,J(w, w̄) ≡ i(Os(Xµ),Φs

∆∗,−J(Xµ
∓;w, w̄)) (2.4)

using standard inner products (. , .) computed on a Cauchy slice in the bulk.2 The ±
on the operator indicates whether it corresponds to an in or an out state, and this

selection is achieved via a prescription for analytically continuing the wavefunction as

Xµ
± = Xµ ± iε{−1, 0, 0, 0}.

The goal of this section is to show how to construct these conformal primary wavefunc-

tions. They will appear in two forms: radiative conformal primary wavefunctions which

have J = ±s and generalized conformal primary wavefunctions which have |J | ≤ s; we

will discuss them in turn in sections 2.1 and 2.2. It will be convenient to summarize some

notation here. We will embed the celestial sphere into the R1,3 lightcone via the reference

direction

qµ = (1 + ww̄,w + w̄, i(w̄ − w), 1 − ww̄) , (2.5)

from which we obtain two natural polarization vectors
√

2ǫµw = ∂wq
µ and

√
2ǫµw̄ = ∂w̄q

µ.

From the three null vectors {qµ, ǫµw, ǫ
µ
w̄} and the spacetime vector Xµ we can construct a

null tetrad for Minkowski space [53]

lµ =
qµ

−q ·X , nµ =Xµ+
X2

2
lµ , mµ = ǫµw +(ǫw ·X)lµ , m̄µ = ǫµw̄ +(ǫw̄ ·X)lµ , (2.6)

2A standard choice for s = 0 is the Klein-Gordon inner product. The s = 1, 2 inner products were

computed in [51] where the operator O
s,±
∆,J

was denoted by Q∆,J .
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lµ nµ mµ m̄µ oα ōα̇ ια ῑα̇

∆ 0 0 0 0 0 0 0 0

J 0 0 +1 −1 +1
2 −1

2 −1
2 +1

2

Table 1. SL(2,C) quantum numbers for the tetrad and spin frame.

which satisfies the standard normalization conditions l · n = −1, m · m̄ = 1 while all other

inner products vanish. These will serve as natural building blocks for the wavefunctions

Φs
∆,J for s ∈ Z. For s ∈ 1

2Z we further decompose the tetrad into a spin frame

lαβ̇ = oαōβ̇ , nαβ̇ = ιαῑβ̇ , mαβ̇ = oαῑβ̇ , m̄αβ̇ = ιαōβ̇ (2.7)

where

oα =

√
2

q ·X

(
w̄

−1

)
, ια =

√
1

q ·X

(
X0 −X3 − w(X1 − iX2)

−X1 − iX2 + w(X0 +X3)

)
, (2.8)

and we fix the overall phase ambiguity by setting ōα̇ = (oα)∗ and ῑα̇ = (ια)∗ in the region

where q ·X > 0 and analytically continuing from there. The SL(2,C) quantum numbers of

these null tetrad and spin frame are summarized in table 1.

2.1 Radiative conformal primaries

In this section we review spin s =
{

0, 1
2 , 1,

3
2 , 2
}

conformal primary wavefunctions and their

shadow transforms as well as their conformally soft limits. We will omit vector and spinor

indices for notational convenience unless required.

Definition. A radiative conformal primary wavefunction is a wavefunction on R1,3 which

satisfies the linearized equations of motion for a massless spin-s particle in vacuum and

transforms under SL(2,C) as a 4D (spinor-)tensor field of spin-s and as a 2D conformal

primary of conformal dimension ∆ and spin J = ±s, namely

Φ∆,J

(
Λµ

νX
ν ;
aw+b

cw+d
,
āw̄+b̄

c̄w̄+d̄

)
= (cw+d)∆+J(c̄w̄+d̄)∆−JD(Λ)Φ∆,J(Xµ;w,w̄) , (2.9)

where D(Λ) is the 3+1D spin-s representation of the Lorentz algebra.

Conformal primary wavefunctions. The conformal primary wavefunction with spin

J = 0 and conformal dimension ∆ is given by

ϕ∆ =
1

(−q ·X)∆
. (2.10)

Using (2.10) together with the null tetrad (2.6) and spin frame (2.8) we can express all

other conformal primaries with spin as [24, 25, 53]

ψ∆,J=+ 1
2

= oϕ∆ , ψ̄∆,J=− 1
2

= ōϕ∆ ,

A∆,J=+1 = mϕ∆ , A∆,J=−1 = m̄ϕ∆ ,

χ∆,J=+ 3
2

= omϕ∆ , χ̄∆,J=− 3
2

= ōm̄ϕ∆ ,

h∆,J=+2 = mmϕ∆ , h∆,J=−2 = m̄m̄ϕ∆ .

(2.11)
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A∆,J=±1 χ∆,J=+ 3
2

h∆,J=±2

∆ 1 1
2 1 0

symmetry large U(1) large SUSY supertranslation shadow superrotation

Table 2. Goldstone modes of spontaneously broken asymptotic symmetries for 1 ≤ s ≤ 2.

ψ∆,J=+ 1
2

A∆,J=±1 χ∆,J=+ 3
2

h∆,J=±2

∆ 1
2 0 −1

2 -1

Table 3. Soft theorems without conformal Goldstones for 1

2
≤ s ≤ 2.

Note that the SL(2,C) spin J is identified with the 4D helicity ±s for these wavefunctions

which form a basis for radiative states when ∆ ∈ 1 + iR, also known as the principal

series [24]. From there one can analytically continue to the complex ∆ plane [51].

For special conformally soft values of ∆ ∈ 1
2Z the conformal primaries (2.11) correspond

to Goldstone modes of spontaneously broken asymptotic symmetries [24, 29, 52] whose

Ward identities are equivalent to (conformally) soft theorems [12, 13, 29, 31–34]. These

Goldstone modes are summarized in table 2. Furthermore, there exist soft theorems arising

from primaries which do not correspond to Goldstone modes in the conformal basis but

which are, nevertheless, related via the classical double copy or supersymmetry [53] to

primaries which do have an asymptotic symmetry interpretation. They are summarized in

table 3. We refer to [51–53, 56–58] for more detailed analyses of various aspects of these

primaries and their associated soft charges.

Conformal shadow primary wavefunctions. A shadow transformation takes the

conformal primary wavefunctions (2.10)–(2.11) to wavefunctions of flipped and shifted

conformal dimension and flipped SL(2,C) spin

Φ̃∆,J = ˜Φ2−∆,−J . (2.12)

The spin-0 conformal shadow primary of conformal dimension ∆ is given by [24]

ϕ̃∆ = (−X2)∆−1ϕ∆ , (2.13)

while the conformal primaries with spin get mapped to [24, 53, 56]3

ψ̃∆,J=− 1
2

= −(−X2)∆− 3
2

√
2ιϕ∆ , ψ̃∆,J=+ 1

2
= −(−X2)∆− 3

2

√
2ῑϕ∆ ,

Ã∆,J=−1 = −(−X2)∆−1m̄ϕ∆ , Ã∆,J=+1 = −(−X2)∆−1mϕ∆ ,

χ̃∆,J=− 3
2

= +(−X2)∆− 3
2

√
2ιm̄ϕ∆ , χ̃∆,J=+ 3

2
= +(−X2)∆− 3

2

√
2ῑmϕ∆ ,

h̃∆,J=−2 = +(−X2)∆−1m̄m̄ϕ∆ , h̃∆,J=+2 = +(−X2)∆−1mmϕ∆ .

(2.14)

3The shadow transform of 4D conformal primary wavefunctions Φ∆,J can be conveniently computed

using the embedding space formalism [24, 59]. See appendix D. As discussed in that appendix, we use a sign

convention that matches the 2D shadow [56, 57], in contrast to [24]. This will be particularly convenient for

shadow/descendancy relations that appear in section 4.
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Ã∆,J=±1 χ̃∆,J=− 3
2

h̃∆,J=±2

∆ 1 3
2 1 2

symmetry large U(1) large SUSY supertranslation superrotation

Table 4. Shadow Goldstone modes of spontaneously broken asymptotic symmetries for 1 ≤ s ≤ 2.

ψ̃∆,J=− 1
2

Ã∆,J=±1 χ̃∆,J=− 3
2

h̃∆,J=±2

∆ 3
2 2 5

2 3

Table 5. Soft theorems without conformal shadow Goldstones for 1

2
≤ s ≤ 2.

These conformal shadow primaries have conformal dimension ∆ and SL(2,C) spin J flipped

relative to the 4D helicity ±s. Under the shadow transform, radiative conformal primaries

with ∆ ∈ 1+iR get mapped to conformal shadow primaries with the same range of conformal

dimension which therefore also form a conformal basis [24]. Again we can analytically

continue to the complex ∆ plane. Tables 4 and 5 give the shadow transforms of tables 2 and 3.

The conformally soft primary wavefunctions of tables 2 to 5 will play an important role

in the discussion of SL(2,C) primary descendants where they will correspond to the left

and right corners of ‘celestial diamonds’. Their primary descendants will fill the bottom

corners. We adopt the notation G for the pure gauge primaries of tables 2 and 4, and g for

the further subleading conformally soft modes of tables 3 and 5.

Canonical pairings. With respect to a suitable inner product [24] radiative wavefunctions

with ∆ ∈ 1 + iR+ are canonically paired with radiative wavefunctions with ∆ ∈ 1 + iR−,

i.e. they have a δ-function normalizable inner product akin to that of plane waves which

they are Mellin transforms of [25]. This can be extended to the complex ∆ plane [51]. For

example, in the free theory, one can expand Heisenberg picture operators in terms of the

radiative data

Os(Xµ) =
∑

J=±s

∫
d2w

∫ 1+i∞

1−i∞
(−id∆)

[
N +

2−∆,sΦ2−∆,−J(Xµ
+;w, w̄)a∆,J(w, w̄)

+ N −
∆,sΦ∆,J(Xµ

−;w, w̄)a∆,J(w, w̄)†
]
.

(2.15)

Then the commutation relations of these modes are [51]

[
a∆,J(w, w̄), a∆′,J ′(w′, w̄′)†

]
= δJJ ′δ(2)(w − w′)δ(i(∆ + ∆′∗ − 2)) , (2.16)

for integer spin, and the anti-commutations relations with [·, ·] → {·, ·} for half-integer spin,

where the distribution δ reduces to the ordinary Dirac delta function for ∆,∆′ ∈ 1 + iR

on the principal series and such that for generic ∆ ∈ C and |J | = s, the operator (2.4)

generates the shift [
Os

∆,J(w, w̄), Os(Xµ)
]

= iΦ∆,J(Xµ
−;w, w̄) . (2.17)
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Effectively, [51] addressed the question of the completeness of the principal series for

radiative modes of the free theory. This question will need to be revisited once we introduce

generalized non-radiative primaries in the next section.

By tweaking the choice of in/out combinations or representation for the distribution

δ, one can also define pairings between conformally soft operators. These were explored

in [52, 60] for bosonic G modes and will be revisited for subleading G and g modes in [58].

Goldstone primaries of dimension ∆ ∈ 1
2Z are paired with memory primaries of dimension

2 − ∆. We will denote the canonical partners of the G modes by M and the canonical

partners of the g modes by m.

Logarithmic and distributional wavefunctions. An important subtlety arises for

wavefunctions with ∆ = 1 corresponding to the Goldstone modes for the leading soft

theorems in gauge theory and gravity: they degenerate with their ∆ = 1 shadows and are

thus naively missing a canonical partner. This was remedied in [52] by noticing a hidden

logarithmic branch of the solution space that is obtained from a combination of primaries

and their shadows in a careful limit, series expanding around ∆ → 1. This reveals the

existence of an additional logarithmic ∆ = 1 scalar primary [53]

lim
∆→1

∂∆(ϕ∆ − ϕ̃∆) = − log(−X2)ϕ1 ≡ ϕlog , (2.18)

as well as logarithmic ∆ = 1 vector and metric primaries [52]

Alog
1,+1 = mϕlog , hlog

1,±2 = mmϕlog , (2.19)

with similar expressions for J 7→ −J and m 7→ m̄. Note that this limit commutes with

all gauge conditions obeyed by the ∆ = 1 vector and metric Goldstone modes and their

shadows but, unlike them, the logarithmic modes (2.19) are no longer pure gauge.

Note that the ∆ = 1 degeneracy of the wavefunctions manifests itself in a degeneracy of

the soft theorems [61] — opposite helicity modes have soft theorems related by a conformal

shadow [54]. Besides this, soft theorems exhibit another degeneracy: between incoming and

outgoing soft modes. This degeneracy in the wavefunctions is not obvious after reinstating

the iε regulator. Combinations of incoming and outgoing logarithmic ∆ → 1 modes in the

limit ε → 0 have been used in [52] to define conformally soft spin-1 and spin-2 wavefunctions4

ACS
1,+1 = mϕCS , hCS

1,+2 = mmϕCS , (2.20)

and similarly for J 7→ −J and m 7→ m̄, with the conformally soft scalar introduced in [53]

ϕCS =
[
Θ(X2) + log(X2)(q ·X)δ(q ·X)

]
ϕ1 . (2.21)

Once the ε → 0 limit is taken, there are other wavefunctions which satisfy the Klein

Gordon equation almost everywhere (one can expect sources where the regulator was

4While the appearance of the logarithmic branch in the solutions space is tied to the degeneracy at

∆ = 1, for the other special values of ∆ corresponding to the conformally soft gravitino and the subleading

conformally soft graviton we can also take combinations of incoming and outgoing iε-regulated solutions.

Their relation to memory effects will be discussed in [58].
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avoiding a singularity). In the notation of [53] we have the scalar wavefunctions

ϕCS′ ≡ Θ(X2)ϕ1 , ϕCS′′ ≡ log(X2)δ(q ·X) , (2.22)

from which the corresponding vector and metric wavefunctions are obtained as above via

the classical double copy with the Kerr-Schild vectors m and m̄. It is worth emphasizing

that the CS′ and CS′′ wavefunctions individually no longer satisfy the source-free equations

of motion. These wavefunctions naturally fit in the framework of generalized conformal

primary wavefunctions introduced in [53] which we now review.

2.2 Generalized conformal primaries

In [53] we introduced a generalized notion of conformal primaries which have definite

SL(2,C) conformal dimensions ∆ and spins J which need not a priori satisfy the equations

of motion or the same gauge fixing as conformal primary wavefunctions and have |J | ≤ s.

The definitions given there can be succinctly written for arbitrary spin.5

Definition. A generalized conformal primary is a wavefunction on R1,3, which transforms

under SL(2,C) as a 2D conformal primary of conformal dimension ∆ and spin J , and a 4D

(spinor-) tensor field of spin-s, namely:

Φgen,s
∆,J

(
Λµ

νX
ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)∆+J(c̄w̄ + d̄)∆−JDs(Λ)Φgen,s

∆,J (Xµ;w, w̄) ,

(2.23)

where Ds(Λ) is the 3+1D spin-s representation of the Lorentz algebra.

We have already encountered generalized primaries above: the members of the tetrad

and spin frame correspond to generalized vectors and spinors, respectively, with (∆, J)

given in table 1. They are thus natural building blocks for generalized conformal primary

wavefunctions. Starting from the definition (2.23) there are many natural constraints one

can impose at each spin. The spin s = 0, 1, 2 examples were originally considered in [53].

Here we review those constructions and extend them to spin s = 1
2 ,

3
2 .

Generalized scalar. For the generalized conformal primary scalar D0(Λ) = 1. In the

following, we will consider analytic solutions, of the form

ϕgen
∆ = f(X2)ϕ∆ , (2.24)

which obey

2ϕgen = 4[(2 − ∆)f ′(X2) +X2f ′′(X2)]ϕ∆ . (2.25)

Demanding that this is zero for generic ∆ lands us on the radiative spin-0 conformal primary

wavefunction (2.10) and its shadow (2.13) for any ∆.

5See [62] for a spin-s construction for massive spinning bosons on the celestial sphere and [63, 64] for a

conformal primary basis for massive Dirac fermions.
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XµAµ ∇µAµ 2Aµ

Agen
∆,+1 0 0 4[(2 − ∆)f ′ +X2f ′′]mµϕ

∆

Agen
∆,0 [−f1 + X2

2 f2]ϕ∆ [−2f ′
1 + (3 − ∆)f2 +X2f ′

2]ϕ∆
{

4[(1 − ∆)f ′
1 +X2f ′′

1 + 1
2f2]lµ

+4[(3 − ∆)f ′
2 +X2f ′′

2 ]nµ

}
ϕ∆

Table 6. Various constraints one can impose on a generalized conformal primary vector.

Generalized Weyl spinor. For a left-handed generalized conformal primary Weyl spinor

D 1
2
(Λ) = M where M is the (1

2 , 0) representation of the Lorentz algebra. Generalized

primary spinors with |J | ≤ s = 1
2 take the form:

ψgen

∆, 1
2

= oϕgen
∆ , (2.26)

and

ψgen

∆,− 1
2

= ιϕgen
∆ . (2.27)

The Dirac equation reduces to the Weyl equation, and for analytic choices of ϕgen
∆ , of the

form (2.24), we get

σ̄µ∂µψ
gen

∆, 1
2

= −2
√

2f ′(X2)ῑϕ∆ , (2.28)

and

σ̄µ∂µψ
gen

∆,− 1
2

= −
√

2

[(
3

2
− ∆

)
f(X2) +X2f ′(X2)

]
ōϕ∆ . (2.29)

Setting these to zero lands us on the left-handed radiative spin- 1
2 conformal primary

wavefunction (2.11) and its shadow (2.14) for any ∆.

Generalized vector. For a generalized primary vector D1(Λ) = Λ. We constructed such

wavefunctions for integer spins |J | ≤ s = 1 in [53] as

Agen
∆,+1;µ = mµϕ

gen
∆ , (2.30)

and

Agen
∆,0;µ = lµϕ

gen,1
∆ + nµϕ

gen,2
∆ , (2.31)

while the opposite spin vectors are obtained by mµ 7→ m̄µ. In the following we will focus

on the analytic form (2.24) of the generalized scalar primaries, ϕgen
∆ = f(X2)ϕ∆ and

ϕgen,i
∆ ≡ fi(X

2)ϕ∆ for a priori arbitrary functions f and fi, and list in table 6 various

constraints one can impose on the form of these functions.

Enforcing all of these conditions simultaneously and demanding that ϕgen,i
∆ are analytic,

lands us on the following spectra:

∆ ∈ C, J = ±1, (2.32)

corresponding to the radiative solutions for which ∆ ∈ 1 + iR is a basis, as well as a discrete

set of solutions with

∆ = 2, J = 0. (2.33)
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Xµχµ ∇µχµ σ̄µχµ

χgen

∆,+ 3
2

0 0 0

χgen

∆,+ 1
2

[−f1 + X2

2 f2]oϕ∆ [−2f ′
1 + (5

2 − ∆)f2 +X2f ′
2 + f3]oϕ∆ [f3 − f2]

√
2ῑϕ∆

χgen

∆,− 1
2

[−f1 + X2

2 f2]ιϕ∆ [−2f ′
1 + (7

2 − ∆)f2 +X2f ′
2]ιϕ∆ [f1 − f3]

√
2ōϕ∆

χgen

∆,− 3
2

0 0 0

Table 7. Various constraints one can impose on a generalized conformal primary gravitino.

There are two such solutions, a G and M mode, at each of these (∆, J). For (2.32) the

two solutions for fixed ∆ are radiative spin-1 conformal primary wavefunctions (2.11) and

their shadows (2.14). The G and M wavefunctions for (2.33) will correspond to primary

descendants at the bottom corner of the celestial photon diamonds discussed in section 4.

Generalized gravitino. For a left-handed generalized conformal primary gravitino

D 3
2
(Λ) = M ⊗ Λ is the spinor-vector representation where M is the (1

2 , 0) representa-

tion of the Lorentz algebra. We can construct such wavefunctions for half-integer spins

|J | ≤ s = 3
2 . These are given by:

χgen

∆,+ 3
2

;µ
= mµoϕ

gen
∆ , (2.34)

χgen

∆,+ 1
2

;µ
= lµoϕ

gen,1
∆ + nµoϕ

gen,2
∆ +mµιϕ

gen,3
∆ , (2.35)

χgen

∆,− 1
2

;µ
= lµιϕ

gen,1
∆ + nµιϕ

gen,2
∆ + m̄µoϕ

gen,3
∆ , (2.36)

χgen

∆,− 3
2

;µ
= m̄µιϕ

gen
∆ . (2.37)

For analytic generalized scalar primaries, ϕgen
∆ ≡ f(X2)ϕ∆ and ϕgen,i

∆ ≡ fi(X
2)ϕ∆, table 7

gives the radial and harmonic gauge constraints one can impose on the generalized primary

gravitinos, while the Rarita-Schwinger equations reduce to

εµνρκσ̄ν∇ρχ
gen

∆,+ 3
2

;κ
= −2

√
2if ′mµῑϕ∆ ,

εµνρκσ̄ν∇ρχ
gen

∆,+ 1
2

;κ
= −

√
2i[2f ′

1 + (1
2 − ∆)f2 +X2f ′

2 − (3
2 − ∆)f3 −X2f ′

3]mµōϕ∆

−
√

2i[(5
2 − ∆)f3 +X2f ′

3]lµῑϕ∆ − 2
√

2if ′
3n

µῑϕ∆ ,

εµνρκσ̄ν∇ρχ
gen

∆,− 1
2

;κ
= −

√
2i[f1 + (1

2 − ∆)f3 +X2f ′
3]lµōϕ∆ +

√
2i[f2 − 2f ′

3]nµōϕ∆

−
√

2i[2f ′
1 + (5

2 − ∆)f2 +X2f ′
2 − 2f ′

3]m̄µῑϕ∆ ,

εµνρκσ̄ν∇ρχ
gen

∆,− 3
2

;κ
= −

√
2i[(3

2 − ∆)f +X2f ′]m̄µōϕ∆.

(2.38)

If we enforce all of these conditions simultaneously and demand that ϕgen,i
∆ are analytic,

we land on the following spectra:

∆ ∈ C, J = ±3

2
, (2.39)
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ηµνhµν Xµhµν ∇µhµν

hgen
∆,+2 0 0 0

hgen
∆,+1 0 [−f1 + X2

2 f2]mνϕ
∆ [−2f ′

1 + (4 − ∆)f2 +X2f ′
2]mνϕ

∆

hgen
∆,0 [−2f3 + 4f4]ϕ∆

{
[−f1 + X2

2 (f3 − f4)]lν
{

[−2f ′
1 + (2 − ∆)f3 +X2(f ′

3 − f ′
4) + ∆f4]lν

+[X2

2 f2 − (f3 − f4)]nν

}
ϕ∆ + [(4 − ∆)f2 +X2f ′

2 − 2(f ′
3 − f ′

4)]nν

}
ϕ∆

Table 8. Various constraints one can impose on a generalized conformal primary metric.

corresponding to the radiative solutions for which ∆ ∈ 1 + iR is a basis, as well as a discrete

set of solutions with

∆ =
5

2
, J = ±1

2
. (2.40)

There is one such left-handed solution at each of these (∆, J). For (2.39) these corre-

spond to the left-handed radiative spin- 3
2 conformal primary wavefunction (2.11) and its

shadow (2.14), while the G and M wavefunctions for (2.40) will correspond to primary

descendants at the bottom corner of the celestial gravitino diamonds discussed in section 4.

Generalized metric. For a generalized primary metric D2(Λ) = Λ ⊗ Λ. We will also

demand it is symmetric under exchange of the 3 + 1D indices. We can construct such

rank-two tensors for integer spins |J | ≤ s = 2. These are given by [53]:

hgen
∆,+2;µν = mµmνϕ

gen
∆ , (2.41)

hgen
∆,+1;µν = (lµmν +mµlν)ϕgen,1

∆ + (nµmν +mµnν)ϕgen,2
∆ , (2.42)

hgen
∆,0;µν = lµlνϕ

gen,1
∆ + nµnνϕ

gen,2
∆ + (lµnν + nµlν)ϕgen,3

∆ + ηµνϕ
gen,4
∆ , (2.43)

while the opposite spin metrics are obtained by mµ 7→ m̄µ. Focusing again on the analytic

form (2.24) of the generalized scalar primaries, ϕgen
∆ ≡ f(X2)ϕ∆ and ϕgen,i

∆ ≡ fi(X
2)ϕ∆, we

list in table 8 various gauge constraints one can impose on the generalized primary metrics.

The equations of motion can be evaluated using table 8 and

2hgen
∆,+2;µν = 4[(2−∆)f ′+X2f ′′]mµmνϕ

∆ ,

2hgen
∆,+1;µν = 4[(1−∆)f ′

1+X2f ′′
1 +f2](lµmν +mµlν)ϕ∆+4[(3−∆)f ′

2+X2f ′′
2 ](nµmν +mµnν)ϕ∆ ,

2hgen
∆,+0;µν = 4[−∆f ′

1+X2f ′′
1 +f3]lµlνϕ

∆+4[(4−∆)f ′
2+X2f ′′

2 ]nµnνϕ
∆

+4[f2+(2−∆)f ′
3+X2f ′′

3 ](lµnν +nµlν)ϕ∆+4[1
2f2+(2−∆)f ′

4+X2f ′′
4 ]ηµνϕ

∆ .

(2.44)

Enforcing all of these conditions simultaneously and demanding that ϕgen,i
∆ are analytic,

lands us on the following spectra:

∆ ∈ C, J = ±2, (2.45)

corresponding to the radiative solutions for which ∆ ∈ 1 + iR is a basis, as well as a discrete

set of solutions with

∆ = 3, J = {−1, 0, 1}. (2.46)
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There are two such solutions at each of these (∆, J). For (2.45) the two solutions for fixed ∆

are the radiative spin-2 conformal primary wavefunctions (2.11) and their shadows (2.14),

while the G and M wavefunctions for (2.46) will correspond to primary descendants at the

bottom corners of the celestial graviton diamonds discussed in section 4.

3 Global primary descendants in 2D CFT

In this section we classify global primary descendant operators for generic 2D CFTs. We will

then apply and adapt this classification to 4D wavefunctions transforming as 2D conformal

primaries in section 4.

Conditions for primary descendants. Consider an SL(2,C) primary state |h, h̄〉 which,

by definition, is annihilated by both L1 and L̄1. Often in the d = 2 CFT literature such

a state would be called quasi-primary. Its SL(2,C)-descendants are built by acting with

L−1 and L̄−1 an arbitrary number of times. A primary descendant is a state in this module

that is also annihilated by L1 and L̄1. Since the algebra is divided in two sets of mutually

commuting generators, we can examine the holomorphic and antiholomorphic descendants

separately. Let us focus on states of the form (L−1)k|h, h̄〉. Using

[L1, (L−1)k] = k(L−1)k−1(2L0 + k − 1) , (3.1)

we obtain

L1(L−1)k|h, h̄〉 = k(2h+ k − 1)(L−1)k−1|h, h̄〉 . (3.2)

Here we see that (L−1)k|h, h̄〉 is a primary descendant when h = 1−k
2 for k ∈ Z>. The

primary descendant has dimension h′ = 1+k
2 , which corresponds to a reflection of the weight

h → 1 − h. (3.3)

Repeating the same computation for the antiholomorphic algebra, one finds that (L̄−1)k̄|h, h̄〉
is a primary descendant when h̄ = 1−k̄

2 for k̄ ∈ Z>. This descendant has dimension h̄′ = 1+k̄
2 .

Let us now consider the case when both of these conditions are satisfied, namely

h =
1 − k

2
, h̄ =

1 − k̄

2
, (3.4)

where k, k̄ ∈ Z>. We then have a third primary descendant:

(L−1)k(L̄−1)k̄|h, h̄〉 (3.5)

with conformal weights (h′, h̄′) = 1
2(1 + k, 1 + k̄). As summarized in figure 1, the two

submodules intersect at the position of this primary descendant (3.5) forming a nested

structure that we shall refer to as ‘diamond’.
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|1−k
2 , 1−k̄

2 〉

(L̄−1)k̄

(L−1)k

(L̄−1)k̄|1−k
2 , 1−k̄

2 〉

(L−1)k (L−1)k|1−k
2 , 1−k̄

2 〉

(L̄−1)k̄

(L−1)k(L̄−1)k̄|1−k
2 , 1−k̄

2 〉

Figure 1. Diamond illustrating the nested submodule structure. The SL(2,C) module of the

primary | 1−k

2
, 1−k̄

2
〉 contains three submodules associated with primary descendant operators.

Type range level ∆ (∆′, |J ′|)
Ia n ∈ Z> n 1 − |J | − n (1 − |J |, |J | + n)

Ib n ∈ Z> 2|J | + n 1 − |J | − n (1 + |J |, |J | + n)

II n ∈ [1, 2|J | − 1] n 1 + |J | − n (1 + |J |, |J | − n)

III − 2|J | 1 − |J | (1 + |J |, |J |)

Table 9. Types of primary descendant operators. A spin J primary operator with conformal

dimension ∆ has a descendant which is also a primary in four circumstances. The level of the

descendant, its dimension ∆′ > ∆ and the absolute value of its spin J ′ are presented in the table.

Classification of primary descendants. Following the notations6 of [35], we classify

primary descendants into three types I, II, III which we define below. It will be convenient to

rephrase the above conditions for primary descendants in terms of ∆ = h+ h̄ and J = h− h̄.

In what follows O∆,±|J |(w, w̄) is a primary operator with dimension ∆ and spin ±|J |. Its

primary descendants have dimensions ∆′ and spin J ′. The types of primary descendant

operators are summarized in table 9.

Definition. A type I primary descendant is a primary descendant with spin greater — in

absolute value — than that of the primary it descended from, namely |J ′| > |J |. We further

divided the type I into two sub-types Ia and Ib, where the former is a descendant at level n,

6Let us draw attention to some differences between our definitions and those of [35]. In section 3.1 of [35]

states of types I, II, III were also defined (and used e.g. in [38]). Those definitions differ slightly because they

were considering primaries in the symmetric and traceless representation of SO(d) for CFT in d dimensions.

That classification was strictly speaking inherited from odd d and analytically continued to generic (even

non integer) d. In even d subtleties arise. Section 6 of [35] introduced a type V primary descendant which

exists only in even d and replaces the type III defined in odd d. What we call type III in the following is

actually the type V of [35]. Moreover the split of type I into the type Ia and type Ib defined here is a feature

of even dimensions.
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while the latter is a descendant at level 2|J | + n:

Ia ∂n
wO∆,+|J |, ∂n

w̄O∆,−|J |

Ib ∂
2|J |+n
w O∆,−|J |, ∂

2|J |+n
w̄ O∆,+|J |

∆ = 1 − |J | − n . (3.6)

When J = 0 the definition above is ambiguous, so we shall define type Ia being obtained

by holomorphic derivatives, and Ib by antiholomorphic ones. The relation between the

quantum numbers ∆, J of the primary and the ones ∆′, J ′ of the primary descendant is

summarized in table 9 and illustrated in figure 2a.

Definition. A type II primary descendant is a primary descendant with spin smaller — in

absolute value — than that of the primary it descended from, |J ′| < |J |,

II ∂n
w̄O∆,+|J |, ∂n

wO∆,−|J | ∆ = 1 + |J | − n , (3.7)

where n ∈ {1, . . . , 2|J | − 1} which implies 1 − |J | < ∆ < 1 + |J |. These primary descendants

only exists for |J | ≥ 1. The relation between the quantum numbers ∆, J of the primary

and the ones ∆′, J ′ of the primary descendant is summarized in table 9 and illustrated in

figure 2b.

Definition. A type III primary descendant is a primary descendant with the same spin —

in absolute value — as that of the primary it descended from, |J ′| = |J | > 0,

III ∂
2|J |
w̄ O∆,+|J |, ∂

2|J |
w O∆,−|J | ∆ = 1 − |J | . (3.8)

The descendant has its conformal spin flipped J ′ = −J with respect to the parent primary.

The relation between the quantum numbers ∆, J of the primary and the ones ∆′, J ′ of the

primary descendant is summarized in table 9 and illustrated in figure 3.

In appendix A we review how to find the primary descendants using techniques from

representation theory. There we will also show that primaries and primary descendants are

related through special reflections in weight space (Weyl reflections), as depicted in figure 2

and 3 for the case of integer spin. For half integer spins, the Z2 lattice gets shifted. Since

descendants have higher conformal dimension than their associated parent primary, the

relevant reflections map points at the top of the pictures to points at the bottom.

In figure 2a there are two possible reflections corresponding to type Ia and type Ib. In

figure 2b there are two disconnected grey regions depending on the sign of J . Points of the

same color in the two grey regions reflect to the same point at the bottom. We also notice

that the primary descendants of type Ia and Ib of figure 2a are exactly at the position of

the primaries in figure 2b. So when the condition for type I is satisfied, the full diamond of

figure 1 appears — indeed the condition for type I is equivalent to (3.4).

In figure 3 the (∆, J) of the primaries are located on the dashed diagonals and their

primary descendants (∆′, J ′) are obtained as a reflection with respect to the opposite

diagonal. Notice that the condition for type III can be also written as h = 1−k
2 , h̄ = 1

2 or

h̄ = 1−k̄
2 , h = 1

2 . This is in turn equal to (3.4) with k or k̄ equal to zero (even though k, k̄ were

defined to be in Z>). Indeed, comparing the figures 1 and 3, one notices that type III may

be formally obtained by shrinking to zero the area of the diamond, namely by taking kk̄ = 0.
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∆

J

p

pa
I

pb
I

(a) Type I

∆

J
p

p′

pII

(b) Type II

Figure 2. Primary descendants of type I and II. The dots define the integer lattice Z2 in the J-∆

plane. The origin is at (∆, J) = (1, 0). Dots in the grey regions correspond to primaries that have

primary descendants. The latter are obtained by reflecting across the dashed lines.

∆

J

p

pIII

Figure 3. Primary descendants of type III. The dots define the integer lattice Z2 in the J-∆ plane.

The origin of the lattice is placed at (∆, J) = (1, 0).

Shadows in the diamond. Looking at the weights appearing in the diamond in figure 1,

we see that antipodal points have shadow-related conformal dimensions and spins (indeed

the shadow transform implements a Weyl reflection of the weights). One natural question

is if these primary descendants are related by a shadow transform,

Õh,h̄(w, w̄) =
Kh,h̄

2π

∫
d2w′ Oh,h̄(w′, w̄′)

(w − w′)2−2h(w̄ − w̄′)2−2h̄
, (3.9)

where Kh,h̄ = 2 max{h, h̄} − 1 is a normalization constant [24]7 for which the shadow

wavefunctions (2.14) take a nice form and
˜̃Oh,h̄ = (−1)2(h−h̄)Oh,h̄. Indeed we can prove

that, given an operator O 1−k
2

, 1−k̄
2

at the top vertex of the diamond of figure 1, then its

7Note that this normalization differs from Kh,h̄ = Γ(2−2h̄)
Γ(2h−1)

used in [65].
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primary descendants of type Ia and Ib are related by a shadow transform as follows,

1

k̄!

˜(
∂k̄

w̄O 1−k
2

, 1−k̄
2

)
=

(−1)k

k!
∂k

wO 1−k
2

, 1−k̄
2

,
1

k!

˜(
∂k

wO 1−k
2

, 1−k̄
2

)
=

(−1)k̄

k̄!
∂k̄

w̄O 1−k
2

, 1−k̄
2

.

(3.10)

To obtain these relations we integrate by parts within the shadow integrand (3.9) and use

∂k̄
w̄′

(w̄′ − w̄)k̄−1

(w′ − w)k+1
= 2π(k̄ − 1)!

(−1)k

k!
∂k

w′δ(2)(w′ − w) , (3.11)

which follows from ∂z
1
z̄ = 2πδ(2)(z). With a similar demonstration one can prove that if

two primaries (not necessarily primary descendants) of the left and right corner of figure 2b

are related by shadow transform, then they must descend to the same primary descendant,8

namely

1

k̄!
∂k̄

w̄

(
˜O 1−k

2
, 1+k̄

2

)
=

(−1)k

k!
∂k

wO 1−k
2

, 1+k̄
2

,
1

k!
∂k

w

(
˜O 1+k

2
, 1−k̄

2

)
=

(−1)k̄

k̄!
∂k̄

w̄O 1+k
2

, 1−k̄
2

.

(3.12)

For type III the same shadow relations (3.11) and (3.12) hold (and degenerate to the same

relation) by setting either k = 0 or k̄ = 0.

Primary descendants vs null states. The discussion so far only relied on the SL(2,C)

algebra, and not on the prescription for the dual Hilbert space. Let us now look at how

different quantization choices affect whether or not primary descendants are null states. We

will contrast the standard 2D CFT prescription of radial quantization to the one inherited

by celestial CFTs from the 4D bulk.

In radial quantization of 2D Euclidean CFTs, the Hilbert space is spanned by states

|h, h̄〉 ≡ Oh,h̄(0)|0〉 (3.13)

in one to one correspondence with primary operators. These states are annihilated by L1

and L̄1. Conformal multiplets are obtained by acting with L−1 and L̄−1. Conjugation in

radial quantization is implemented by inversion

[O(w, w̄)]† = w−2h̄w̄−2hO(1/w̄, 1/w) (3.14)

and the out states are defined as

〈h, h̄| ≡ lim
w,w̄→0

w−2h̄w̄−2h〈0|O(1/w̄, 1/w). (3.15)

Using the definition of in and out states we can then compute norms as 〈h, h̄|h, h̄〉. In

reasonably well behaved CFTs (e.g. unitary and with discrete spectrum) one can choose a

8While the weights of the top and bottom corners seem to satisfy (h, h̄) 7→ (1 − h, 1 − h̄), the operators

are not related by a conformal shadow transformation. This is not surprising as descendants typically lose

information.
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basis of primary states which are unit-normalized. The prescription for radial quantization

implies the following Hermitian conjugation relations

L†
n = L−n , L̄†

n = L̄−n . (3.16)

The rules above can then be used to demonstrate that a primary descendant is orthogonal

to all primaries including itself. E.g. if we consider a primary |h2, h̄2〉 with h2 = 1−k
2 and

we compute the inner product of its level-k primary descendant with a generic primary

〈h1, h̄1|, we obtain,

〈h1, h̄1|
(
Lk

−1|h2, h̄2〉
)

=
(
〈h1, h̄1|L†

1

)
Lk−1

−1 |h2, h̄2〉 = 0 . (3.17)

The same equation for generic h2 implies arbitrary descendants are orthogonal to any

primary.

Meanwhile in and out-states in celestial CFTs are defined in terms of data at early and

late Cauchy slices in the 4D bulk. Single particle states can be defined as

|h, h̄, w, w̄〉 = Os,+
∆,J(w, w̄)|0〉 , 〈h, h̄, w, w̄| = 〈0|Os,−

∆∗,−J(w, w̄) , (3.18)

where Os,+
∆,J(w, w̄) was defined in (2.4). These states depend on a point on the sphere w, w̄

in addition to the conformal dimension and spin. Using (2.16), their inner product takes

the form

〈h, h̄, w, w̄|h′, h̄′, w′, w̄′〉 = δJJ ′δ(2)(w − w′)δ(i(∆ + ∆′∗ − 2)) . (3.19)

In appendix B we review the relation between performing Lorentz transformations of

the spacetime coordinates and SL(2,C) transformations of the reference direction (w, w̄).

Consider the single particle state with momentum pointing towards the north pole w, w̄ = 0.

The fact that massless states do not have continuous spin representations [36, 66] means

that they are annihilated by L1, L̄1

L1|h, h̄, 0, 0〉 = 0 , L̄1|h, h̄, 0, 0〉 = 0 . (3.20)

The generic w, w̄ is obtained by exponentiation of L−1 and L̄−1, or equivalently defining

primaries with respect to rotated generators. The state |h, h̄, 0, 0〉 is similar to the usual

primary states in a 2D CFT: it depends only on the weights h, h̄, it is annihilated by L1, L̄1,

the generators L0, L̄0 read off its weights, and L−1, L̄−1 create descendants. However the

inner product is not the same as the one in radial quantization.

In celestial CFTs we would like to keep the property that 4D scattering in-states are

conjugate to the out-states. Demanding that the representation of Poincaré on the bulk

Hilbert space is unitary forces on us the following conjugation relations (see appendix B)

L†
n = −L̄n (3.21)

which differ from the ones obtained in radial quantization (3.16). In particular the conjugate

of L−1 is not L1 but rather L̄−1. Thus we cannot use an equation of the form (3.17) to

prove that primary descendant states are orthogonal to all primaries. Indeed

〈h1, h̄1,w1, w̄1|
(
Lk

−1|h2, h̄2,w2, w̄2〉
)

= −
(
〈h1, h̄1,w1, w̄1|L̄†

−1

)
Lk−1

−1 |h2, h̄2,w2, w̄2〉 , (3.22)
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Type range level ∆ (∆′, |J ′|)
Ia n ∈ Z> n 1 − s− n (1 − s, s+ n)

Ib n ∈ Z> 2s+ n 1 − s− n (1 + s, s+ n)

II n ∈ [1, 2s− 1] n 1 + s− n (1 + s, s− n)

III − 2s 1 − s (1 + s, s)

Table 10. Primary descendants of radiative fields with |J | = s. We can only have non-zero

wavefunctions if |J ′| ≤ s, hence the type I descendants are trivially null. We thus see that all of the

nontrivial descendants of radiative primaries are at ∆′ = 1 + s.

is non-vanishing even when we take h2 = 1−k
2 and fix w2, w̄2 = 0. We thus see that, by using

the most conventional form of the inner product, celestial primary descendants need not

be null. Let us however stress that the classification of reducible modules and their shadow

relations is independent of the inner product, thus it is valid no matter how we define it.

A final observation is that it is possible to mimic radial quantization also in celestial

CFTs (see e.g. the discussion of [17]). Indeed, since the inner product (3.19) is delta

normalized, we can obtain a two-point function power-like behavior by taking a 2D shadow

transform of the out states.9 The standard form of the two point function automatically

gives rise to inner products, as in radial quantization, by sending the points to zero and

infinity. In terms of this inner product one would thus conclude that the primary descendant

states should actually be null. It is however still missing in the literature an argument which

would suggest that the shadowed inner product is the natural one from the 4D perspective.

We leave this question for future investigation.

4 Celestial diamonds

Making use of the general discussion of the previous section and the fact that all 4D

wavefunctions relevant to massless scattering of spin-s particles have {|J |, |J ′|} ≤ s, we

can now classify and construct all global conformal multiplets relevant in 2D celestial CFT

— namely, those for which radiative primaries appear in the SL(2,C) module. These are

organized into ‘celestial diamonds’. Radiative primaries can appear in two forms: either as

the parent primary (|J | = s), or as a primary descendant (|J ′| = s). We illustrate the two

cases in tables 10 and 11.

Starting from a radiative conformal primary wavefunction with (∆, J = ±s), the

abstract representation theoretic argument of the previous section determines the values

of (∆′, J ′) at which a primary descendant occurs. Upon taking the appropriate w and w̄

derivatives we are guaranteed to land on a wavefunction that satisfies the same equations of

motion and gauge fixing as the parent radiative primary. (See appendix C.1 for the explicit

form these descendants take.) Table 10 tells us where a primary descendant will occur.

9This idea has been floating around for a while, e.g. [54, 55]. For example, the norm (3.19) of any given

state is divergent but can be tamed using the shadow transform.
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Type range level (∆, J) ∆′

Ia n ∈ Z> n (1 − s, s− n) 1 − s+ n

Ib n ∈ Z> 2s− n (1 − s, s− n) 1 + s− n

III − 2s (1 − s, s) 1 + s

Table 11. Spectrum of primaries that can descend to radiative primary descendants with |J ′| = s.

We can only have non-zero wavefunctions if |J | ≤ s, which excludes the type II case. We see that

the only parents which descend to radiative primaries have ∆ = 1 − s.

For the case where a radiative primary is a primary descendent with (∆′, J ′ = ±s),
representation theory again determines the (∆, J) of the parent primary as illustrated in

table 11. However, now we are no longer guaranteed that the parent primary satisfies

the same gauge fixing and equations of motion as the radiative primary (and in general

they won’t) and, moreover, we need to verify that such a parent wavefunction can indeed

be constructed and transforms covariantly under SL(2,C). Parents of radiative conformal

primaries thus seem to correspond to states in celestial CFT that one has to add.

Let us summarize the group-theoretic predictions from tables 10 and 11 for the global

conformal multiplets in 2D celestial CFT. For fixed spin s there are two distinct loci in

the (∆, J) plane where we expect to find SL(2,C) primary descendants: 1) at (∆, J) =

(1 − s− n,±s) for n ∈ Z> we expect type I primary descendants which must be identically

zero since |J ′| > s; and 2) the square formed by the union of (∆, J) ∈ ([1 − s, . . . , 1 + s],±s)
and (∆, J) ∈ (1 ± s, [−s, . . . ,+s]) captures all non-vanishing primary descendants of type

I, II and III, as well as their parents, and forms the corners of a set of celestial diamonds.

We will now examine these two cases in turn.

4.1 Trivial null states

In celestial CFT, primary descendant wavefunctions of type I arising from radiative conformal

primaries Φ∆,J and Φ̃∆,J with |J | = s take the form

Ia
∂n

wΦ∆,+s, ∂
n
w̄Φ∆,−s

∂n
wΦ̃∆,+s, ∂

n
w̄Φ̃∆,−s

∆ = 1 − s− n , (4.1)

and

Ib
∂2s+n

w Φ∆,−s, ∂
2s+n
w̄ Φ∆,+s

∂2s+n
w Φ̃∆,−s, ∂

2s+n
w̄ Φ̃∆,+s

∆ = 1 − s− n , (4.2)

for n ∈ Z>. As in the general classification (3.6), when J = 0 we define type Ia primary

descendant wavefunctions via holomorphic derivatives and type Ib primary descendant wave-

functions via antiholomorphic derivatives. Notice that the type I primary descendants (4.1)

and (4.2) vanish identically, as can be checked directly from the 4D radiative wavefunctions

of section 2.1. For example, when J = 0 the conditions (4.1)–(4.2) give ∂n
w(−q ·X)n−1 = 0

for type Ia and ∂n
w̄(−q ·X)n−1 = 0 for Ib, which both trivially vanish since we are deriving
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×

×

×

×

×

×

×

Figure 4. Example type I module in celestial CFT. For a radiative state ( ) with ∆ = 1 − |J | − n

where n ∈ Z>, the predicted primary descendants and their descendants are identically zero (×).

The radiative primary ( ) and its descendants ( ) thus form an n(2|J | + n) dimensional vector space.

The axes intersect at (∆, J) = (1, 0).

n times a polynomial of order n− 1 in w and w̄. This is expected from the fact that there

are no generalized conformal primaries with spin |J ′| > s.

These vanishing wavefunctions correspond to states that are thus null in the trivial

sense. Indeed given a vanishing wavefunction, its associated 2D operator — obtained

through equation (2.4) — automatically vanishes. There are thus infinitely many modules

with type I null states in celestial CFT descending from radiative states with spin |J | = s

and conformal dimension ∆ ≤ 1 − |J | − n for n ∈ Z>. Since all their descendants vanish as

well, we are left with a finite dimensional representation. This is illustrated in an example in

figure 4. Starting from a radiative parent primary of spin |J | = s and conformal dimension

∆ = 1 − |J | −n for n ∈ Z> at the top, we have a total of (n− 1)(2|J | +n− 1) states arising

from SL(2,C) descendants. All but one corner of the resulting celestial diamond are null.

4.2 Primary descendants in celestial CFT

Besides the infinitely many celestial type I primary descendants of section 4.1 which give

rise to vanishing wavefunctions, there is a finite set of primary descendants of types I, II

and III which are not trivially null. These primary descendants and their parent primaries

form the corners of non-trivial celestial diamonds.

Finite-area celestial diamonds. In the general discussion of global primary descendants

of SL(2,C) in section 3 we alluded to a diamond structure in figure 1, where starting from a

conformal primary operator at the top of the diamond we may descend to primary operators

at the left, right and bottom corners for special values of the primary operator’s SL(2,C)

quantum numbers. In celestial CFT, it is most natural to center this discussion around

radiative solutions. We will now outline the general structure of celestial diamonds before

discussing the spin-s examples of interest in detail below.

Left and right corners. Radiative conformal primary wavefunctions Φ∆,J or Φ̃∆,J with

conformally soft SL(2,C) dimensions ∆ form the left (negative J) and right (positive

J) corners of the diamond structure in figure 1. There are two types of diamonds: a
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Goldstone (G) and a Memory (M) diamond. The left and right corners of the first

correspond to the wavefunctions in tables 2 and 4 of section 2.1 which are Goldstone modes

of spontaneously broken asymptotic symmetries whose Ward identities are equivalent to

(conformally) soft theorems. Their canonical partners related to memory effects form the

left and right corners of the second diamond. Moreover, from section 3 we know that the

left and right corners of each diamond are related by a conformal shadow transform. For

the leading soft theorem in gauge theory and gravity this relates opposite helicity Goldstone

modes and explains their degeneracy in soft theorems.

Bottom corners. Since radiative conformal primary wavefunctions at the left and right

corner of a given celestial diamond obey the shadow relation (3.12), it follows that they

must descend to the same primary descendant which is filling the bottom corner of that

diamond. From the definition (3.7), we see that these are type II primary descendants of

the form

II
∂n

w̄Φ∆,+s, ∂n
wΦ∆,−s

∂n
w̄Φ̃∆,+s, ∂n

wΦ̃∆,−s

∆ = 1 + s− n (4.3)

where |J | = s and n ∈ {1, . . . , 2s− 1} which implies 1 − s < ∆ < 1 + s and only exist for

s ≥ 1. As explained in section 3, type II primary descendants of radiative modes do not

vanish identically from the point of view of 4D bulk wavefunctions (though they fall off

faster than radiative order at null infinity away from isolated points). Instead they turn

out to be generalized conformal primaries that give contact term contributions to celestial

amplitudes. This can be seen from the fact that the soft theorems are meromorphic, and

when hit by a suitable amount of ∂w and ∂w̄ derivatives give rise to contact terms. In an

upcoming paper [44], we will show that the bottom corners of celestial diamonds define soft

operators in terms of which soft charges are most naturally expressed.10

Curiously, the special spectrum of (∆′, J ′) for type II primary descendants is precisely

predicted by the discussion in section 2.2. Recall that wavefunctions that descend from

radiative conformal primaries obey the same gauge conditions (since ∂w and ∂w̄ commute

with them) as the latter. The primary descendants filling the bottom corners thus precisely

correspond to the finite set of generalized primaries identified explicitly in section 2.2.

Top corners. Conformally soft primary wavefunctions turn out to be primary descendants

themselves and so we can complete the diamond structure at the top corners for each spin-s

case. These are given by another set of generalized conformal primary wavefunctions which

obey more relaxed gauge conditions than the radiative primary wavefunctions they descend

to. These parent primaries give rise to type I primary descendants given by

Ia ∂n
wΦgen,s

∆,+|J |, ∂n
w̄Φgen,s

∆,−|J |

Ib ∂
2|J |+n
w Φgen,s

∆,−|J |, ∂
2|J |+n
w̄ Φgen,s

∆,+|J |,
∆ = 1 − s , |J | = s− n (4.4)

10The authors of [38, 39] previously studied null states in celestial CFT whose decoupling was interpreted

as effectively reducing the number of polarization states of soft particle and found to be crucial in deriving

soft-theorems from the Ward identities of asymptotic symmetries. In our language these null states would

correspond to taking differences of primaries descending from the left and right corners of the diamond. The

connection between null states and soft charges was also discussed in [39].
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for n ∈ Z>0. Hence, the conformally soft radiative wavefunctions at the left and right

corners of the celestial diamonds are, respectively, primary descendants of type Ia and Ib.

Unlike for the bottom corners of celestial diamonds, the discussion of section 2.2 does

not identify the particular spectrum (∆′, J ′) or functional form for the wavefunctions at the

top corners. However the spectrum can be easily determined using table 10 and imposing

that their descendants are the known radiative primary descendants. With the relaxed

gauge fixing, there is an ambiguity in the parents which we will return to in section 4.3. In

the tables that follow we will pick convenient representatives of the parent primaries. In

upcoming work [44] we will show that the top corners of celestial diamonds are intimately

tied to conformal Faddeev-Kulish dressings which render celestial amplitudes infrared finite.

We now discuss the celestial diamonds for spin s = 1, 3
2 and 2 in turn, and comment on

the much simpler primary descendant structure for spin s = 0 and 1
2 below. Our results are

summarized in figure 9.

Photon diamonds. The celestial diamonds relevant for the leading conformally soft

theorem in gauge theory are summarized in figure 5. Table 12 gives the elements of the

Goldstone diamond, for which

AG
∆,J ;µ = ∇µΛ∆,J , (4.5)

while table 13 gives elements of the memory diamond. While we have picked the log mode

wavefunctions for table 13, one can replace them with the other conformally soft modes

described in section 2.

Left and right corners. The leading conformally soft photon theorem [12, 13, 31] arises

from the spin-1 conformal primary wavefunctions with ∆ = 1 and J = ±1. These are

canonically paired with memory modes of the same dimension and spin. The pairings with

various conformally soft modes have been examined in [52] and [18]. The operators selected

by the Goldstone modes generate Kac-Moody symmetries in the celestial CFT [67, 68].

Bottom corners. Both the left and right corners descend to the same ∆ = 2, J = 0

generalized primary which is a type II primary descendant

∂wA
G/M
1,−1 = A

gen,G/M
2,0 = ∂w̄A

G/M
1,+1 . (4.6)

Note that the above descendancy relations for the ∆ = 1 wavefunctions display the

degeneracy of the two helicities in the soft theorems [54]. In celestial correlators, descendants

of the radiative currents reduce to contact terms supported at the locations of other charged

operators.

Top corners. To complete the celestial diamonds relevant for the leading conformally soft

photon theorem, we augment the Hilbert space with a pair of (∆, J) = (0, 0) generalized

photons whose type I primary descendants at level 1 land us on the spin-1 radiative

wavefunctions

∂w̄A
gen,G/M
0,0 = A

G/M
1,−1 , ∂wA

gen,G/M
0,0 = A

G/M
1,+1 . (4.7)

These parent primaries need not obey the same gauge fixing as the other corners. While for

the Goldstone modes this is not a problem, for the memory mode it would be natural to
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Agen,G
0,0

Agen,G
2,0

AG
1,+1AG

1,−1

(a)

Agen,M
0,0

Agen,M
2,0

AM
1,+1AM

1,−1

(b)

Figure 5. Goldstone (a) and memory (b) diamonds for the leading soft photon theorem.

Corner ∆ J AG
∆,J Λ∆,J

Top 0 0 1√
2
lµ − 1√

2
logϕ−1

Left 1 −1 m̄µϕ
1 ∂w̄Λ0,0

Right 1 +1 mµϕ
1 ∂wΛ0,0

Bottom 2 0
√

2
(

X2

2 lµ + nµ

)
ϕ2 ∂w∂w̄Λ0,0

Table 12. Elements of the celestial diamond corresponding to large U(1) gauge symmetry.

Corner ∆ J Alog
∆,J

Top 0 0 1√
2
lµ log(X2)

Left 1 −1 m̄µ log(X2)ϕ1

Right 1 +1 mµ log(X2)ϕ1

Bottom 2 0
√

2
(

X2

2 lµ + nµ

)
log(X2)ϕ2

Table 13. Elements of the celestial diamond corresponding to electromagnetic memory.

ask whether one should allow this parent in the phase space. If not, then the Kac-Moody

currents are no longer primary descendants, just primaries. However, we can always define

this parent in terms of an appropriate Green’s function, as will be explored in [44]. We also

point out that one can create distributional solutions that formally satisfy all of the gauge

conditions and have isolated sources

Agen,CS′′

0,0;µ = 1√
2
qµlog(X2)δ(q ·X) , (4.8)

which we recognize as the electromagnetic analogue of the Aichelburg-Sexl ultraboost [53].

Gravitino diamonds. The celestial diamonds for the leading conformally soft gravitino

theorem are chiral and we focus here on the left-handed ones which are summarized in
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figure 6. Table 14 gives the elements of the Goldstone diamond, for which

χG
∆,J ;µ = ∇µλ∆,J . (4.9)

The physical interpretation of memory effects for fermionic modes is still an open question [69,

70], though we expect them to be related by supersymmetry to memory effects that are well

understood. The modes in table 14 are expected to be relevant based on their conformal

dimensions. Similar expressions can be obtained for the right-handed gravitinos and their

celestial diamonds.

Left and right corners. The conformally soft gravitino theorem [16] appears at ∆ = 1
2 .

The conformal shadow of this mode appears at ∆ = 3
2 . These are summarized in table 14.

Non-gauge modes with canonically paired conformal dimensions are given in table 15.

The operators selected by the Goldstone modes generate large supersymmetry transforma-

tions [56, 69, 70].

Bottom corners. For each diamond, the left and right corners descend to the same

generalized primary, at the levels expected for a type II primary descendant

∂wχ̃
G
3
2

,− 3
2

= χgen,G
5
2

,− 1
2

=
1

2!
∂2

w̄χ
G
1
2

,+ 3
2
, − 1

2!
∂2

wχ̃
M
1
2

,− 3
2

= χgen,M
5
2

,+ 1
2

= ∂w̄χ
M
3
2

,+ 3
2
. (4.10)

The relative minus sign arises from the shadow of fermions. Descendants of the radiative

currents reduce to contact terms in celestial correlators which we expect to correspond to a

soft charge.

Top corners. To complete the celestial diamond relevant for the conformally soft gravitino

theorem we augment the Hilbert space with a (∆, J) = (−1
2 ,+

1
2) generalized gravitino,

which is pure gauge, whose level 1 and level 2 primary descendants land us on the spin- 3
2

Goldstino wavefunctions with ∆ = 3
2 and ∆ = 1

2

1

2!
∂2

w̄χ
gen,G

− 1
2

,+ 1
2

= χ̃G
3
2

,− 3
2
, ∂wχ

gen,G

− 1
2

,+ 1
2

= χG
1
2

,+ 3
2
. (4.11)

We also add a (∆, J) = (−1
2 ,−1

2) generalized gravitino, which is not pure gauge, whose

level 1 and level 2 primary descendants land us on the spin- 3
2 conformally soft wavefunctions

with ∆ = 1
2 and ∆ = 3

2

∂w̄χ
gen,M

− 1
2

,− 1
2

= −χ̃M
1
2

,− 3
2
,

1

2!
∂2

wχ
gen,M

− 1
2

,− 1
2

= χM
3
2

,+ 3
2
. (4.12)

Leading graviton diamonds. The celestial diamonds corresponding to the leading confor-

mally soft graviton theorem are summarized in figure 7. Table 16 gives the elements of each

Goldstone diamond, for which

hG
∆,J ;µν = ∇µξ∆,J ;ν + ∇νξ∆,J ;µ = ∇µ∇νΛ∆,J , (4.13)

while table 17 gives elements of the memory diamond. While we have picked the log mode

wavefunctions for table 17, one can replace these with the other conformally soft modes

described in section 2.
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χ̃G
3
2

,− 3
2

χG
1
2

,+ 3
2

χgen,G
5
2

,− 1
2

χgen,G

− 1
2

,+ 1
2

(a)

χgen,M
5
2

,+ 1
2

−χ̃M
1
2

,− 3
2

χM
3
2

,+ 3
2

χgen,M

− 1
2

,− 1
2

(b)

Figure 6. Goldstone (a) and memory (b) diamonds for the leading soft gravitino theorem.

Corner ∆ J χG
∆,J λ∆,J

Top −1
2 +1

2
1√
2
olµϕ

− 1
2 − 1√

2
oϕ− 1

2 logϕ−1

Left 3
2 −3

2

√
2ιm̄µϕ

3
2

1
2!∂

2
w̄λ− 1

2
, 1

2

Right 1
2 +3

2 omµϕ
1
2 ∂wλ− 1

2
, 1

2

Bottom 5
2 −1

2 2
[(

X2

2 lµ + nµ

)
ι+ X2

2 om̄µ

]
ϕ

5
2

1
2!∂w∂

2
w̄λ− 1

2
, 1

2

Table 14. Elements of the celestial diamond corresponding to large supersymmetry.

Corner ∆ J χM
∆,J

Top −1
2 −1

2
2

X4 ιnµϕ
− 1

2

Left 1
2 −3

2

√
2

X2 ιm̄µϕ
1
2

Right 3
2 +3

2 omµϕ
3
2

Bottom 5
2 +1

2

√
2
[(

X2

2 lµ + nµ

)
o+ ιmµ

]
ϕ

5
2

Table 15. Elements of the celestial diamond corresponding to a supergravity memory effect.

Left and right corners. The leading conformally soft graviton theorem [32–34] arises from

the spin-2 conformal primary wavefunction with ∆ = 1 and J = ±2. These are canonically

paired with memory modes of the same dimension and spin. The pairings with various

conformally soft modes have been examined in [52] and [60]. The operators selected by the

Goldstone modes generate BMS supertranslations [52].
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hG
1,−2 hG

1,+2

hgen,G
−1,0

hgen,G
3,0

(a)

hM
1,−2 hM

1,+2

hgen,M
−1,0

hgen,M
3,0

(b)

Figure 7. Goldstone (a) and memory (b) diamonds for the leading soft graviton theorem.

Bottom corners. Both the left and right hand corners descend to the same ∆ = 3, J = 0

generalized primary which is a type II primary descendant

1

2!
∂2

wh
G/M
1,−2 = h

gen,G/M
3,0 =

1

2!
∂2

w̄h
G/M
1,+2 . (4.14)

Note that the above descendancy relations for the ∆ = 1 wavefunctions display the

degeneracy of the two helicities in the soft theorems [54]. In celestial correlators, descendants

of the radiative currents reduce to contact terms supported at the locations of other operators.

Top corners. To complete the celestial diamonds relevant for the leading conformally soft

graviton theorem, we augment the Hilbert space by a pair of (∆, J) = (−1, 0) generalized

gravitons whose descendants at level 2 land us on the spin-2 radiative wavefunctions

∂2
w̄h

gen,G/M
−1,0 = h

G/M
1,−2 , ∂2

wh
gen,G/M
−1,0 = h

G/M
1,+2 . (4.15)

These parents need not obey the same gauge fixing as the other corners. For the Goldstone

modes this is not a problem. For the memory mode it would be natural to ask whether one

should allow this parent in the phase space. Regardless, one can always define this parent

in terms of an appropriate Green’s function [44]. Note that one can create distributional

solutions that formally satisfy all of the gauge conditions and have isolated sources

hgen,CS′′

−1,0;µν = 1
4qµqν log(X2)δ(q ·X) (4.16)

which we recognize as the Aichelburg-Sexl ultraboost [53].

Subleading graviton diamonds. The celestial diamonds relevant for the subleading

soft graviton theorem are chiral, i.e. for the Goldstone and memory modes there are two

diamonds each with opposite self-duality property. The dark grey diamonds figure 8a)

and b) correspond to self-dual Goldstone and anti-self dual memory modes while the ones

– 27 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
2

Corner ∆ J hG
∆,J ξ∆,J Λ∆,J

Top −1 0 1
2 lµlνϕ

−1 −1
2 l

µϕ−1 logϕ−1 1
2ϕ

−1 logϕ−1

Left 1 −2 m̄µm̄νϕ
1 1

2!∂
2
wξ

µ
−1,0

1
2!∂

2
w̄Λ−1,0

Right 1 +2 mµmνϕ
1 1

2!∂
2
w̄ξ

µ
−1,0

1
2!∂

2
wΛ−1,0

Bottom 3 0 2
[(

X2

2

)2
lµlν + nµnν + X2

2 ηµν
1

(2!)2∂
2
w∂

2
w̄ξ

µ
−1,0

1
(2!)2∂

2
w∂

2
w̄Λ−1,0

+X2(lµnν + nµlν)
]
ϕ3

Table 16. Elements of the celestial diamond corresponding to supertranslation symmetry.

Corner ∆ J hlog
∆,J

Top −1 0 1
2 lµlν log(X2)ϕ−1

Left 1 −2 m̄µm̄ν log(X2)ϕ1

Right 1 +2 mµmν log(X2)ϕ1

Bottom 3 0 2
[(

X2

2

)2
lµlν + nµnν + X2

2 ηµν

+X2(lµnν + nµlν)
]

log(X2)ϕ3

Table 17. Elements of the celestial diamond corresponding to gravitational memory.

in light grey correspond to the opposite self-duality. Table 18 gives the elements of the

self-dual Goldstone diamond, for which

hG
∆,J ;µν = ∇µξ∆,J ;ν + ∇νξ∆,J ;µ (4.17)

while table 19 gives elements of the anti-self dual memory diamond.

Left and right corners. The subleading conformally soft graviton theorem arises from the

spin-2 conformal primary wavefunction with ∆ = 0 and J = ±2 which extends the BMS

group to Diff(S2) transformations while the shadow of this mode at ∆ = 2 corresponds to

superrotations [51]. The non-diffeo modes with canonically paired conformal dimensions

are given by the ∆ = 0 shadow gravitons and the ∆ = 2 gravitons. Their iε-regulated

combinations of in-coming and out-going modes will be addressed in [58].

Bottom corners. Within each diamond, the left and right corners descend to the same

generalized primaries at ∆ = 3, J = ±1, which are type II primary descendants, as follows

1

3!
∂3

wh
G/M
0,−2 = h

gen,G/M
3,+1 = −∂w̄h̃

G/M
2,+2 , − ∂wh̃

G/M
2,−2 = h

gen,G/M
3,−1 =

1

3!
∂3

w̄h
G/M
0,+2 . (4.18)

The explicit expression for the primary descendant h
gen,G/M
3,+1 is given in tables 18 and 19

from which the expressions for h
gen,G/M
3,−1 can be obtained by replacing J 7→ −J and m 7→ m̄.
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−h̃G
2,+2

hgen,G
3,+1

hG
0,+2

−h̃G
2,−2

hgen,G
3,−1

hG
0,−2

hgen,G
−1,−1 hgen,G

−1,+1

(a)

hM
2,+2

hgen,M
3,+1

−h̃M
0,+2

hM
2,−2

hgen,M
3,−1

−h̃M
0,−2

hgen,M
−1,−1 hgen,M

−1,+1

(b)

Figure 8. Goldstone (a) and memory (b) diamonds for the subleading soft graviton theorem.

In figure 8 the generalized metric h
gen,G/M
3,+1 fills the bottom corner of the dark grey diamonds,

while h
gen,G/M
3,−1 fills the bottom corner of the light grey diamonds.

Top corners. The Goldstone modes of spontaneously broken Virasoro and Diff(S2) su-

perrotation symmetry obey descendancy relations [29, 51] which hint at the existence of a

parent primary. Indeed, we find that we need to augment the Hilbert space with a pair

of generalized primary metrics with (∆, J) = (−1,±1). The level 1 and level 3 primary

descendants of the J = −1 generalized metric land us on the spin-2 wavefunction with

∆ = 0 and its shadow with ∆ = 2

∂w̄h
gen,G/M
−1,−1 = h

G/M
0,−2 ,

1

3!
∂3

wh
gen,G/M
−1,−1 = −h̃G/M

2,+2 . (4.19)

Similarly, the primary descendants of the J = +1 generalized metric land us on the opposite

helicity spin-2 wavefunctions

1

3!
∂3

w̄h
gen,G/M
−1,+1 = −h̃G/M

2,−2 , ∂wh
gen,G/M
−1,+1 = h

G/M
0,+2 . (4.20)

Zero-area celestial diamonds. From the general classification (3.8) it follows that there

are only two type III primary descendant wavefunctions for a given SL(2,C) spin J which is

flipped with respect to that of the primaries they descended from:

∂
2|J |
w̄ Φ∆,+|J |, ∂2|J |

w Φ∆,−|J | ∆ = 1 − |J | , (4.21)

and

∂
2|J |
w̄ Φ̃∆,+|J |, ∂2|J |

w Φ̃∆,−|J | ∆ = 1 − |J | . (4.22)

Type III radiative conformal primaries correspond to the wavefunctions of tables 3 and 5

in section 2.1 denoted by g which are not pure gauge but give rise to conformally soft

theorems, and the canonically paired wavefunctions labeled by m. The conformally soft
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Corner ∆ J hG
∆,J ξ∆,J

Top −1 −1 1
2
√

2
(lµm̄ν + m̄µlν)ϕ−1 − 1

2
√

2
m̄µϕ−1 logϕ−1

Left 0 −2 m̄µm̄ν ∂w̄ξ
µ
−1,−1

Right 2 +2 X2mµmνϕ
2 1

3!∂
3
wξ

µ
−1,−1

Bottom 3 +1
√

2X2
[

X2

2 (lµmν +mµlν) 1
3!∂

3
w∂w̄ξ

µ
−1,−1

+ (nµmν +mµnν)
]
ϕ3

Table 18. Elements of the celestial diamond corresponding to superrotation symmetry.

Corner ∆ J hM
∆,J

Top −1 −1 1
2
√

2X2 (lµm̄ν + m̄µlν)ϕ−1

Left 0 −2 1
X2 m̄µm̄ν

Right 2 +2 mµmνϕ
2

Bottom 3 +1
√

2
[

X2

2 (lµmν +mµlν)

+ (nµmν +mµnν)
]
ϕ3

Table 19. Elements of the celestial diamond corresponding to spin memory.

g wavefunctions m wavefunctions

∂w̄ψ 1
2

,+ 1
2

= −ψ̃ 3
2

,− 1
2

∂wψ 1
2

,− 1
2

= −ψ̃ 3
2

,+ 1
2

∂w̄ψ̃ 1
2

,+ 1
2

= ψ 3
2

,− 1
2

∂wψ̃ 1
2

,− 1
2

= ψ 3
2

,+ 1
2

1
2!∂

2
w̄A0,+1 = Ã2,−1

1
2!∂

2
wA0,−1 = Ã2,+1

1
2!∂

2
w̄Ã0,+1 = A2,−1

1
2!∂

2
wÃ0,−1 = A2,+1

1
3!∂

3
w̄χ− 1

2
,+ 3

2
= −χ̃ 5

2
,− 3

2

1
3!∂

3
wχ− 1

2
,− 3

2
= −χ̃ 5

2
,+ 3

2

1
3!∂

3
w̄χ̃− 1

2
,+ 3

2
= χ 5

2
,− 3

2

1
3!∂

3
wχ̃− 1

2
,− 3

2
= χ 5

2
,+ 3

2

1
4!∂

4
w̄h−1,+2 = h̃3,−2

1
4!∂

4
wh−1,−2 = h̃3,+2

1
4!∂

4
w̄h̃−1,+2 = h3,−2

1
4!∂

4
wh̃−1,−2 = h3,+2

Table 20. Type III primary descendant wavefunctions.

photino theorem [16, 56] arises from the spin- 1
2 primary with ∆ = 1

2 ; the spin-1 primary

with ∆ = 0 gives rise to the subleading conformally soft photon theorem [16, 32, 34, 57]

(see also [71, 72]); the subleading conformally soft gravitino theorem [16, 73] arises from

the spin-3
2 primary with ∆ = −1

2 ; the spin-2 primary with ∆ = −1 gives rise to the

subsubleading conformally soft graviton theorem [34]. Their primary descendants, as well

as those of their canonically paired wavefunctions, are summarized in table 20.

Type III primary descendant wavefunctions at level 2|J | are related to the ∆ = 1 − |J |
parent primaries they descended from via a conformal shadow transform. Hence, type III

primary descendant wavefunctions are not null in the trivial sense. Instead, they are null in

the same sense as type II: rather than vanishing identically, hitting the soft theorems with

the same 2|J | derivatives needed to land on the primary descendant yields a contact term
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contribution. Notice that primary descendant wavefunctions of type III correspond to a

degenerate limit of both type I and type II: the celestial diamond shrinks to zero area and,

because the primary descendant is the parent primary’s shadow, no generalized primaries

need to be introduced to complete the ‘diamond’. This assigns a special status to these

most subleading soft theorems.

4.3 Symmetries in celestial diamonds

We end this section with a discussion of our results, a few comments contrasting the nature

of the type I, II and III primary descendants of section 4.2 with the trivial null states of

section 4.1, and their relation to global primary descendants in standard CFTs.

Celestial primary descendants. Thus far we have focused on the corners of the diamond

which are primaries. For finite-area celestial diamonds, the radiative wavefunctions at the left

and right corners give rise to celestial currents generating spontaneously broken asymptotic

symmetries: large U(1) Kac-Moody symmetries (s = 1), large supersymmetries (s = 3
2),

supertranslations and superrotations (s = 2), related to the leading conformally soft photon

and gravitino theorems and the leading and subleading conformally soft graviton theorems,

respectively. The radiative conformal primaries at the top corners of the zero-area celestial

diamonds are associated to the most subleading universal soft theorems for s =
{

0, 1
2 , 1,

3
2 , 2
}

.

While they may lack an obvious asymptotic symmetry interpretation they are related via

the classical double copy or supersymmetry to the aforementioned primaries with symmetry

interpretations. There are finitely many wavefunctions of this type for a given spin as

discussed in section 4.2.

This is in contrast to the infinitely many radiative conformal primary wavefunctions of

section 4.1. These generate an infinite tower of symmetries which is, however, captured by

commutators of the symmetry generators associated to the finite- and zero-area celestial

diamonds so that they give no new constraints on the S-matrix [43]. Their type I primary

descendants are trivially null.

The type II primary descendants at the bottom corners of finite-area celestial diamonds

are given by non-vanishing generalized conformal primaries which satisfy the same equations

of motions and gauge fixings as their radiative parent primaries. The type III primary

descendants of zero-area celestial diamonds are special in the sense that they are radiative

primaries which are related by a shadow transform to their radiative parent primaries.

Zero-area celestial diamonds are thus completely described by radiative data. Completing

the diamond structure associated to the more leading soft theorems, on the other hand,

requires adding generalized conformal primaries at the top. Then, the radiative primaries

at the left and right corners are themselves primary descendants of type I.

Notice that this completion is ambiguous, due to the fact that some generalized

wavefunctions belong to the kernel of the derivative operators that define the left and right

corners. Let us illustrate this point for the example of the leading soft graviton diamond,

where the left and right corners are given by the radiative wavefunctions mµmνϕ
1 and

m̄µm̄νϕ
1 of table 16. The top wavefunction must be a linear combination of the generalized
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1

0J∆

(a)

3
2

1
2

J∆ −1
2

1
2

(b)

2

1

0

J∆ −1 0 1

(c)

5
2

3
2

1
2

−1
2

J∆ −3
2 −1

2
1
2

3
2

(d)

3

2

1

0

−1

J∆ −2 −1 0 1 2

(e)

−s 0

J

∆

s

1

1 − s

1 + s
II III

Ib

Ia

(f)

Figure 9. Celestial diamonds demonstrating non-

trivial primary descendants. Solid dots correspond

to radiative primaries while open dots and squares

correspond to generalized primaries. Skipped nodes

correspond to non-primary descendants. Subfigures

(a)-(e) cover the s = 0 through s = 2 examples in

half-integer steps. In each case the SL(2,C) spin J is

bounded by |J | ≤ s. Radiative states lie at J = ±s.
Operators corresponding to conformally soft dressings

lie at ∆ = 1 − s [44]. The structure for generic s is

summarized in subfigure (f). The most subleading

soft theorems correspond to zero-area diamonds which

appear as the diagonals in each subfigure. In integer

spin cases the leading soft theorems are non-chiral and

the celestial diamond then implies a relation between

soft theorems of opposite helicity.
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(a) (b)

Figure 10. Nested modules of the (a) leading and (b) subleading soft graviton.

conformal primary wavefunctions of ∆ = −1 and J = 0,
[
a1lµlν + a2

(
2

X2

)2

nµnν + a3
4

X2
(nµlν + lµnν) + a4

2

X2
ηµν

]
ϕ−1 , (4.23)

for arbitrary functions ai(X
2). The other requirement is that (4.23) must descend to the

radiative wavefunctions by applying ∂2
w and ∂2

w̄. This does not uniquely fix the linear

combination since all wavefunctions with a1 + a2 + 4a3 = 0 belong to the kernel of {∂2
w, ∂

2
w̄}.

Notice that the ambiguity in ascending from the left and right corners to the top corners

is proportional to the following kernels which are associated to global symmetries:11

s = 1 : {∂w, ∂w̄} ⇒ {1} U(1)

s = 3
2 : {∂w, ∂

2
w̄} ⇒ {1, w̄} supersymmetry

s = 2 : {∂2
w, ∂

2
w̄} ⇒ {1, w, w̄, ww̄} translations

{∂w, ∂
3
w̄} ⇒ {1, w̄, w̄2} rotations and boosts.

(4.24)

Similar expressions with w ↔ w̄ hold for the opposite chirality/helicity diamonds. Different

representatives of the top corners are thus related by the global symmetries of the associated

diamond. Once the top corners are added to the phase space, we get additional states. We

exemplify this for the leading and subleading soft graviton diamonds in figure 10 where the

extra states are encircled. The counting of these states matches that of the global Poincaré

symmetries which are written as finite dimensional modules in appendix C.2.

The type I primary descendants of the top corners in figure 10, i.e. the left and right

corners, are full-fledged conformal primary wavefunctions and thus not null, and neither

are their infinite tower of non-primary descendants ( ). Moreover, their type II primary

descendants, i.e. the bottom corners, give rise to contact terms in celestial amplitudes as do

their tower of descendants captured by the shaded SL(2,C) submodules in figure 10.

Relation to standard CFTs. Global primary descendants appear in standard CFTs as

descendants of special ‘protected’ operators. By ‘setting to zero’ the primary descendants

one defines shortening conditions which the protected operators must satisfy.

For example, any full-fledged CFT has a stress tensor Tww and its antiholomorphic

counterpart Tw̄w̄ with spin equal to |J | = 2 and dimension ∆ = 2. From (3.7) one finds that

11For the zero-area diamonds, the analogous ambiguity is fixed by the shadow relations between corners.
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they have a level-1 primary descendant of type II (3.7). These are set to zero generating

a shortening condition ∂w̄Tww = 0 = ∂wTw̄w̄. Similarly, conserved currents (and conserved

tensors of any spin) have primary descendants of type II at level 1. It is important to

stress that these shortening conditions should be understood as operator equations only

valid up to contact terms. Indeed, when inserted in correlation functions they define the

Ward identities which, upon appropriate contour integration, give charges associated to the

conserved operators. The identity operator is also a simple example of a protected operator

of J = 0 and ∆ = 0. It has two level 1 primary descendants of type Ia and Ib defined by (3.6)

which are fully shortening its multiplet since derivatives of the identity trivially vanish.

We see a similar behavior for our conformal primary wavefunctions. The primary

descendant wavefunctions of type I in section 4.1 are zero in the trivial sense, while the

type II primary descendants at the bottom corners of the finite-area celestial diamonds of

section 4.2 are not identically zero. It is thus consistent for these to select operators which

give contact terms in correlation functions, i.e. for their parents at the left and right corners to

be operators which satisfy conservation equations with non-trivial sources. The only novelty

(with respect to standard unitary CFTs) is that the conservation equations may involve

higher derivatives, namely that the primary descendants may appear at level higher than one.

The role of the top corners of the finite-area diamonds of section 4.2 is more subtle

since the type I primary descendants at the left and right corner are full-fledged operators

(they can be associated to states in the Hilbert space and do not just give contact terms

when inserted in a correlation function). At first sight this situation looks puzzling, but it

has a very simple CFT counterpart e.g. in the theory of a single free boson φ. In free boson

theory there are two currents ∂wφ and ∂w̄φ which correspond to the left and right corner

of the diamond. Their type II primary descendant at the bottom corner vanishes up to

contact terms, due to the equations of motion ∂w∂w̄φ = 0. One can further place the field

φ itself at the top of the diamond. This is possible because φ is not a well defined primary

operator, i.e. it cannot be associated to a state in the Hilbert space of the theory (so the

argument of equation (3.17) does not apply). However, the action of Ln on φ is the same

as on any other primary operator, so the conclusions of section 3 apply and formally one

can complete the diamond.

It is important to stress that in this example the top and bottom operators are

not associated to states in the Hilbert space. Nevertheless, they determine interesting

properties of the theory: the bottom corner defines the Ward identities (and thus the

charges) associated to the conserved currents at the left and right corner, and the top corner

contains information on the zero modes (and can be used to build vertex operators). In

upcoming work [44] we will further explore the role of the operators at top and bottom

corners of the celestial diamonds.
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A Representation theory of 2D CFTs

In section 3 we showed how to build the primary descendants for the 2D global conformal

algebra. Since the 2D case is very simple, we can classify the modules through a straightfor-

ward computation. On the other hand, for a generic algebra the computation may be much

more intricate and it may be useful to apply a more sophisticated mathematical technology

(for a nice review of the subject see the book [74]). An application of this technology to

conformal representation theory in generic dimensions was e.g. given in [35, 75]. In the

following we will use the notation of section 6 of [35] and we exemplify how this can be

applied to d = 2.

Conformal algebra in the Cartan-Weyl basis. Let us consider the conformal group

of a d dimensional Euclidean CFT. This is isomorphic to SO(d+1, 1). The generators of the

algebra are D,Pa,Ka, Jab (where Latin indices take the values 1, . . . d), which respectively

define infinitesimal dilatations, translations, special conformal transformations and SO(d)

rotations. Their respective Killing vectors are

kD = −ixa∂a , ka
P = −i∂a , ka

K = −i(2xaxb∂b−x2∂a) , kab
J = i(xa∂b−xb∂a) . (A.1)

The generators satisfy the following commutation relations

[D,Pa] = iPa , [Pa, Jbr] = i(ηabPr − ηarPb) ,

[D,Ka] = −iKa , [Ka, Jbr] = i(ηabKr − ηarKb) ,

[Ka, Pb] = 2i(ηabD − Jab) , [Jab, Jrs] = i(ηbrJas ± perm) .

(A.2)

A bosonic primary state can be written as |∆, b1 . . . bs〉, where ∆ is the conformal dimension

and the s indices correspond to an irreducible tensor of SO(d) (possibly with mixed symmetry

properties). In this tensor representation, the action of the generators is given by

D|∆, b1 . . . bs〉 = i∆|∆, b1 . . . bs〉 , Ka|∆, b1 . . . bs〉 = 0 , (A.3)

Jrs|∆, b1 . . . bs〉 =
s∑

k=1

[Σrs]bk
a |∆, b1 . . . bk−1 a bk+1 . . . bs〉 , (A.4)

where [Σrs]ba = i
(
δb

sηra − δb
rηsa

)
. The action of Pa creates descendants.

When d = 2 the algebra contains only 6 generators, K1,K2, P1, P2, D, J12. To write

them in the Cartan-Weyl basis we first define for a given vector va the following combinations

vw ≡ v1−iv2
2 and vw̄ ≡ v1+iv2

2 . We can then formulate the conformal algebra in a Cartan-Weyl

basis using the notation of [35]

Eα++ ≡ Kw = K1−iK2
2 ,

Eα+− ≡ Kw̄ = K1+iK2
2 ,

Eα−+ ≡ Pw = P1−iP2
2 ,

Eα−− ≡ Pw̄ = P1+iP2
2 ,

H0 ≡ iD ,

H1 ≡ 2i Jw̄w = J12 ,
(A.5)

where we have associated generators to the four roots α±± of so(1, 3), which are the following

2-dimensional vectors

α++ = (+1,+1) , α+− = (+1,−1) , α−+ = (−1,+1) , α−− = (−1,−1). (A.6)
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We further divide the root system Φ into two parts Φ = Φ+ ∪ Φ− where Φ+ ≡ {α++, α+−}
is the set of positive roots, while Φ− ≡ {α−+, α−−} is the set of negative roots. The

generators H0 and H1 commute among themselves and form the Cartan subalgebra. The

algebra in this basis satisfies the following commutation relations

[Hk, Eα] = (α)kEα , [Eα, E−α] =
2

〈α, α〉(α)kHk , (A.7)

where α are the root of so(4), (α)k denotes its k + 1-th coordinate and the angle brakets

define the standard scalar product 〈α, β〉 = (α)0(β)0 + (α)1(β)1. The algebra is now written

in a more convenient form, however in d = 2 a further simplification is possible. In particular,

we see that the rules in (A.7) give

[Eα+− , Eα−+ ] = H0 −H1 , [Eα++ , Eα−− ] = H0 +H1 . (A.8)

It is thus natural to rearrange the Cartan subalgebra in order to make manifest the presence

of two mutually commuting subalgebras, which are indeed expected since so(1, 3)C ∼=
sl(2,C) ⊕ sl(2,C). The following definition is the one which is most commonly used in

d = 2 CFTs,

L1 ≡ −iEα+− , L−1 ≡ −iEα−+ , L0 ≡ −H0 +H1

2
,

L̄1 ≡ −iEα++ , L̄−1 ≡ −iEα−− , L̄0 ≡ −H0 −H1

2
,

(A.9)

which correspond to the following Killing vectors

kLn = −wn+1∂w , kL̄n
= −w̄n+1∂w̄ . (A.10)

This redefinition of generators is also useful for embedding the global conformal algebra

into the Virasoro algebra

[Lm, Ln] = (m− n)Ln+m +
c

12
(m3 −m)δn+m,0 . (A.11)

Notice that in our case the central extension does not play any role since for m,n = −1, 0, 1

(m3 −m) is always zero.

Let us consider a primary tensor operator Oa1...aJ

∆ with J traceless and symmetric

indices and conformal dimension ∆. To see how the operators transform under the action

of the Cartan-Weyl algebra it is convenient to choose the directions w and w̄. The resulting

operators are

O∆,J(x) ≡ O∆,w...w(x) , O∆,−J(x) ≡ O∆,w̄...w̄(x) . (A.12)

It is important to stress that if we use a mixed set of w and w̄, the result vanishes because

of the tracelessness condition, e.g. 4Ow̄w = O11 + O22 = 0. Using (A.5) and (A.3)–(A.4), it

is easy to show that the states O∆,J(0)|0〉 and O∆,−J(0)|0〉 are annihilated by all positive

roots

Eα+±O∆,J(0)|0〉 = 0 , Eα+±O∆,−J(0)|0〉 = 0 . (A.13)
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Moreover, one can read off the weights by acting with the Cartan,

H0 O∆,J(0)|0〉 = −∆ O∆,J(0)|0〉 ,
H1 O∆,J(0)|0〉 = +J O∆,J(0)|0〉 ,
H0 O∆,−J(0)|0〉 = −∆ O∆,−J(0)|0〉 ,
H1 O∆,−J(0)|0〉 = −J O∆,−J(0)|0〉 .

(A.14)

We thus recognize that O∆,J (x) has dimension ∆ and spin J while O∆,−J (x) has dimension

∆ and spin −J . The choice of the sign of H0 is such that it measures −∆; this is the

convention used by mathematicians to define highest weight (instead of lowest weight)

representations. Usually in d = 2 we define holomorphic and antiholomorphic operators O
and Ō. These are exactly the same as the ones above, namely Oh,h̄ ≡ O∆,J , Oh,h̄ ≡ O∆,−J ,

where the labels h = ∆+J
2 , h̄ = ∆−J

2 are the eigenvalues with respect to the Cartan

generators L0, L̄0.

Simplicity of the modules. The concept of parabolic Verma modules plays a crucial

role in the study of representation theory of CFTd>2. Primary operators are defined to

be killed by the special conformal generators, and they are labelled by their conformal

dimensions and by their SO(d) spin. The fact that a primary state transforms under SO(d)

means that a given primary does not define a unique state, but a finite set of states that

transform as a finite dimensional representation, e.g. |Oa〉 = {|O1〉, . . . , |Od〉}. The positive

roots which need to annihilate |Oa〉 are not all positive roots of so(d+ 2), but only those

of so(d + 2) which do not belong to so(d). This construction makes the Verma modules

‘parabolic’. In practice one defines a parabolic subalgebra p which contains the Cartan. For

CFTd this takes the form p = so(2) ⊕ so(d). Primary states are annihilated by the set

of positive roots Ψ+ = Φ+/Φ+
p (namely Ka), where Φ+

p are the positive roots of p. The

parabolic module is defined by freely acting with the negative roots Ψ− = Φ−/Φ−
p (namely

P a) on the highest weight, e.g. {|Oa〉, Pa|Oa〉, P (b|Oa)〉, P bPa|Oa〉, . . . }.

The situation in d = 2 is much simpler since the Cartan subalgebra is so(2) ⊕ so(d = 2).

This means that Ψ+ = Φ+ and Ψ− = Φ−. In other words the modules are not parabolic. In

this case the criterion of simplicity of the modules is much simpler than for the parabolic

counterpart. In particular a Verma module M(λ) is simple if its weight λ = (−∆, J) is

antidominant, i.e. λ has to satisfy

2
〈λ+ ρ, α〉

〈α, α〉 /∈ Z> , ∀α ∈ Φ+ , (A.15)

where the Weyl vector ρ is defined as half the sum of the positive roots,12

ρ ≡ 1

2

∑

α∈Φ+

α = (1, 0) . (A.16)

12This criterion is not sufficient for the parabolic case: the antidominant condition for λ (here antidominance

is only with respect to the roots in Ψ+) need to be supplied by an extra condition on the character of the

modules called the Jantzen criterion, which is reviewed in section 6 of [35].
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We can exemplify this for our case. Given λ, we say that the module M(λ) is not simple if

one of the following two conditions is satisfied,

2
〈λ+ ρ, α++〉
〈α++, α++〉 = −∆ + J + 1 = n , (A.17)

2
〈λ+ ρ, α+−〉
〈α+−, α+−〉 = −∆ − J + 1 = n , (A.18)

where n = 1, 2, . . . . In other words we expect the presence of a primary descendant when a

primary O satisfies either or both of the following two requirements h = 1−n
2 , h̄ = 1−n̄

2 for

n, n̄ ∈ Z>, which is what we found in section 3. Finally we would like to find the weight

λ′ ≡ (−∆′, J ′) of the primary descendant when the module is not simple. λ′ can be obtained

from λ through a Weyl reflection. The Weyl reflections of a weight λ with respect to a root

α is defined as

sα · λ = λ− 2
〈λ+ ρ, α〉

〈α, α〉 α . (A.19)

In our case, when the condition (A.17) is valid the primary descendant is labelled by

λ′ = sα++ · λ. This means that given a primary with dimension ∆ = J + 1 − n and spin J

we get a primary descendant at ∆′ = J + 1 and spin J ′ = J − n. Similarly, when (A.18)

is satisfied, λ′ = sα+− · λ, which implies that the primary with dimension ∆ = 1 − J − n

and spin J has a primary descendant at ∆′ = 1 − J and spin J ′ = J + n. Notice that J

can be positive or negative. In the main text we rewrite the above conditions in terms

of the absolute value of the spin J . In this language there are three different types of

primary descendants depending on whether |J ′| increases, decreases or does not change

with respect to |J |. The two formulations are of course equivalent. In figures 2a, 2b, and 3

of the main text we show how the primaries and their associated primary descendants are

related through the Weyl reflections defined above.

Conformal characters. By looking at the weight λ and λ′ of the primary and its primary

descendant, it is easy to see that nested submodules can occur. The decomposition of the

modules into irreducible ones is studied through Kazhdan-Lusztig theory. The main tool in

this framework is the character. In the following we will not introduce Kazhdan-Lusztig

theory (for a review see [74] and [35, 75]), however we will exemplify how the character

contains the information about the decomposition of modules in CFTd=2.

In d = 2 the global conformal character chMh,h̄(q, q̄) associated to a module Mh,h̄

is simply written as the product of the holomorphic and antiholomorphic characters

chMh(q) ≡ qh/(1 − q),

chMh,h̄(q, q̄) = chMh(q) chMh̄(q̄) . (A.20)

Let us see what happens to the character when the associated module is not simple. When

h = 1−n
2 for n ∈ Z>, we expect that the module becomes reducible and that it should

contain a submodule with h = 1+n
2 . Indeed

chM 1−n
2

,h̄(q, q̄) = chL 1−n
2

(q)chMh̄(q̄) + chM 1+n
2

,h̄(q, q̄) , (A.21)
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where chLJ (q) ≡ ∑|J |
j=−|J | q

j . Notice that, for any n ∈ Z>, chL 1−n
2

(q) contains finitely many

terms and thus corresponds to a finite dimensional representation. However for generic h̄

(meaning h̄ 6= 1−n̄
2 ) the product chL 1−n

2
(q)chMh̄(q̄) does not. When h = 1−n

2 and h̄ = 1−n̄
2

we expect to see nested submodules. Indeed it is easy to check that

chM 1−n
2

, 1−n̄
2

(q, q̄) = chM 1−n
2

, 1+n̄
2

(q, q̄) + chM 1+n
2

, 1−n̄
2

(q, q̄) − chM 1+n
2

, 1+n̄
2

(q, q̄)

+ chL 1−n
2

(q)chL 1−n̄
2

(q̄) .
(A.22)

This is exactly the expression that we would have guessed: the module contains three nested

submodules which appear at the position of the primary descendants, while the remaining

piece is a product of two chL and corresponds to a finite dimensional representation.

B Celestial SL(2,C) transformations

In this appendix we discuss various aspects of global conformal symmetry. We derive

relations between SL(2,C) Lorentz generators and celestial derivatives ∂w and ∂w̄ satisfied

by conformal primary wavefunctions at points (w, w̄) on the celestial sphere.

We start by considering the generators Jµν
R1,3 of Lorentz transformations. We will

consider their action on the Hilbert space as well as on wavefunctions on the spacetime.

On the Hilbert space, we expect the representation for tensor states to be given by (A.4).

Meanwhile local operators in the bulk will transform via commutators with the Hilbert

space generators.13 Finite transformations can be obtained by exponentiating the generators

with parameters ω as follows U = exp( i
2ωµνJ

µν
R1,3). On the Hilbert space, we want this

representation to be unitary. Unitarity of U implies that the generators Jµν
R1,3 are Hermitian.

It can be also useful to rewrite Jµν
R1,3 in terms of the boosts ~K and rotations ~J as follows

Jµν
R1,3 =




0 K1 K2 K3

−K1 0 J3 −J2

−K2 −J3 0 J1

−K3 J2 −J1 0



. (B.1)

Meanwhile, it is known that one can embed the D − 2-dimensional conformal algebra into

the D-dimensional Lorentz one (e.g. see [77]). We choose the following embedding14

Jµν
C

=




0 −P1−KSCT
1

2 −P2−KSCT
2

2 D
P1−KSCT

1
2 0 J12

P1+KSCT
1

2
P2−KSCT

2
2 −J12 0

P2+KSCT
2

2

−D −P1+KSCT
1

2 −P2+KSCT
2

2 0



, (B.2)

where D,Pa,K
SCT
a , Jab are the generators of the conformal algebra introduced in appendix A.

It is thus natural to group 4D generators in a manner that reflects the conformal algebra

13The expected transformation rules only need to hold up to gauge equivalence within the quantum

theory [76]. The amplitudes themselves are gauge invariant, meaning the Mellin correlators only differ from

the ones created by preparing conformal primary states by the overall normalization.
14While the embedding is fairly rigid, it is not unique.
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in 2D,

L0 =
J3−iK3

2
, L−1 =

−J1+iJ2+iK1+K2

2
, L1 =

J1+iJ2−iK1+K2

2
,

L̄0 =
−J3−iK3

2
, L̄−1 =

J1+iJ2+iK1−K2

2
, L̄1 =

−J1+iJ2−iK1−K2

2
,

(B.3)

where the definition of Ln in terms of the conformal algebra is given in appendix A. Since

the generators Ki and Ji are taken to be Hermitian, we obtain the following conjugation

relations for the Ln,

L†
n = −L̄n , L̄†

n = −Ln (B.4)

as operators on the Hilbert space. These appeared in our discussions of primary descendants

versus null states in the main text.

We now want to relate these generators on the 4D Hilbert space to our descendancy

relations. We can do so using the transformation properties of the conformal primary

wavefunctions used to prepare the external scattering states.

Conformal primary wavefunctions Φ∆,J(Xµ;w, w̄) are covariant under the transfor-

mation

Φ∆,J

(
Λµ

νX
ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)2h(c̄w̄ + d̄)2h̄D(Λ)Φ∆,J(Xµ;w, w̄) , (B.5)

comprised of an SL(2,C) Möbius transformation acting on the reference point (w, w̄) on

the celestial sphere and a Lorentz transformation with Λµ
ν in the corresponding vector

representation of SO(3, 1) ≃ SL(2,C) and D(Λ) the representation appropriate for the

4D indices of Φ∆,J . Here h = 1
2(∆ + J) and h̄ = 1

2(∆ − J). Since the wavefunctions

transform covariantly, a 4D transformation acts in the opposite way of its respective 2D

transformation, namely

(Jµν
R1,3 + Jµν

C
)Φ∆,J(Xσ;w, w̄) = 0 (B.6)

where now Jµν
R1,3 is realized via a Lie derivative on the corresponding tensor field,15 and

similarly for Jµν
C

acting on a function of (w, w̄) with definite weights.16

It is instructive to check explicitly how this happens. In doing so, we will be able to

show that the generators in (B.3) act on the Hilbert space inherited from 4D like one would

expect in a 2D CFT. To do so we start by writing Λµν in terms of the SL(2,C) parameters

(see [79]),

Λµν =
1

2




−(aā+ bb̄+ cc̄+ dd̄) −(ab̄+ āb+ c̄d+ cd̄) −i(ab̄− āb+ cd̄− c̄d) aā− bb̄+ cc̄− dd̄

ac̄+ āc+ bd̄+ b̄d ad̄+ ād+ bc̄+ b̄c i(ad̄− ād− bc̄+ b̄c) −ac̄− āc+ bd̄+ b̄d

i(−ac̄+ āc− bd̄+ db̄) i(−ad̄+ ād− bc̄+ b̄c) ad̄+ ād− bc̄− b̄c i(ac̄− āc− bd̄+ b̄d

−aā− bb̄+ cc̄+ dd̄ −ab̄− āb+ cd̄+ c̄d i(−ab̄+ āb+ cd̄− c̄d) aā− bb̄− cc̄+ dd̄



. (B.7)

For infinitesimal transformations Λ takes the form Λµν ≈ ηµν + ωµν where ω are written

in terms of SL(2,C) parameters. The form of ω also defines the linear combination of the

15The transformations Λµ
νXν and D(Λ) appearing on the left and right sides of (B.5) are both captured by

a Lie derivative of the corresponding tensor field along the respective spacetime boost or rotation vector field.
16See, for instance, the weighted scalars of [78].
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4D generators responsible for the transformation as f(Λσ
ρX

ρ) ≈ (1 + i
2ωµνJ

µν
R1,3)f(Xσ). We

proceed by considering infinitesimal transformations around

a = 1 , b = 0 , c = 0 , d = 1 , and ā = 1 , b̄ = 0 , c̄ = 0 , d̄ = 1 , (B.8)

which obey ad− bc = 1 and ād̄− b̄c̄ = 1, independently transforming the left (un-barred)

and right (barred) sectors (where implicitly we have complexified SL(2,C) to SL(2,C)×
SL(2,C)). We focus on the left sector here while the right sector is analogous.

Let us start with the infinitesimal transformation

a = 1 − ǫ

2
, b = 0 , c = 0 , d = 1 +

ǫ

2
, (B.9)

which, at leading order in ǫ, yields

Λµν = ηµν − i

2




0 0 0 −iǫ
0 0 ǫ 0

0 −ǫ 0 0

+iǫ 0 0 0



, w 7→ w − ǫw . (B.10)

The transformation (B.5) can then be expressed as

(
J3 − iK3

2
− w∂w − h

)
Φ∆,J = 0 . (B.11)

Repeating the same computation for the infinitesimal transformation

a = 1 , b = −ǫ , c = 0 , d = 1 , (B.12)

for which

Λµν = ηµν − i

2




0 iǫ ǫ 0

−iǫ 0 0 −iǫ
−ǫ 0 0 −ǫ
0 iǫ ǫ 0



, w 7→ w − ǫ , (B.13)

yields (−J1 + iJ2 + iK1 +K2

2
− ∂w

)
Φ∆,J = 0 . (B.14)

Finally, the infinitesimal transformation

a = 1 , b = 0 , c = ǫ , d = 1 , (B.15)

gives

Λµν = ηµν − i

2




0 −iǫ ǫ 0

iǫ 0 0 −iǫ
−ǫ 0 0 ǫ

0 iǫ −ǫ 0



, w 7→ w − ǫw2 . (B.16)

This yields (−iK1 +K2 + J1 + iJ2

2
− w2∂w − 2hw

)
Φ∆,J = 0 . (B.17)

Similar expressions exist for the barred quantities, taking the complex conjugates of the

differential operators appearing above.
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We can now use (B.6) to show that the operators Li defined in (B.3) transform the

operators (2.4) as expected for a local operator in a 2D CFT. In the limit where the bulk

operators are described by a quantum field theory, under consideration here, we expect

local operators to transform as follows

[Jµν
H ,O(X)] = −LJµν

R1,3
O(X). (B.18)

For gauge fields, this equality needs to hold only up to gauge transformations [76]. With

this, equation (B.6) and the definition (2.4), we find

[Jµν
H ,Os,±

∆,J(w, w̄)] = i([Jµν
H , Os(Xµ)],Φs

∆∗,−J(Xµ
∓;w, w̄))

= −i(LJµν

R1,3
Os(Xµ),Φs

∆∗,−J(Xµ
∓;w, w̄))

= i(Os(Xµ),LJµν

R1,3
Φs

∆∗,−J(Xµ
∓;w, w̄))

= −i(Os(Xµ),LJµν
C

Φs
∆∗,−J(Xµ

∓;w, w̄))

= −LJµν
C

i(Os(Xµ),Φs
∆∗,−J(Xµ

∓;w, w̄)) .

(B.19)

The first line uses the fact that generator can be defined on the Cauchy slice where the

inner product is taken, the second uses Lorentz invariance of the inner product to move

the 4D Lie derivative to the wavefunction. Equation (B.19) tells us that the Hilbert space

generators transform the O∆,J like one would expect for a local operator in a 2D CFT. In

particular, our wavefunction computations above now tell us that ∂w and ∂w̄ descendants

indeed correspond to acting on states in the Hilbert space with L−1 and L̄−1, as used in

section 3.

C Celestial multiplets

With the connection between the ∂w and ∂w̄ descendants established, we will now turn to

the wavefunctions and demonstrate how to use the tetrad and spin frame to identify primary

descendants of the radiative modes in section C.1. We can proceed similarly with vector

fields on the spacetime and illustrate in section C.2 how the Poincaré and 4D conformal

generators descend from primaries.

Useful wavefunction formulae. We collect here a list of relations between conformal

primaries and the null tetrad and spin frame in terms of which they are constructed involving

spacetime and celestial CFT derivatives.

Spacetime derivatives. The members of the tetrad satisfy

∂µlν = lµlν , ∂µnν = ηµν + nµlν , ∂µmν = mµlν , ∂µm̄ν = m̄µlν , (C.1)

yielding 2lµ = 0, 2nµ = 2lµ, 2mµ = 0, 2m̄µ = 0 and

X · l = −1 , X · n =
X2

2
, X ·m = 0 , X · m̄ = 0 . (C.2)
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For the elements of the spin frame we have

∂µo =
1

2
lµo , ∂µι =

1

2
lµι+

1√
2
σµō , (C.3)

implying 2o = 0 and 2ι = 0.

Celestial CFT derivatives. Derivatives of the tetrad vectors obey the following relations

∂n
wlµ = 2

n
2 n!(ǫw ·X)n−1ϕnmµ ,

∂n
wnµ =

X2

2
∂n

wlµ ,

∂n
wmµ = (ǫw ·X)∂n

wlµ ,

∂n
wm̄µ =

{
2

1
2ϕ1 (vµ − (ǫw ·X)m̄µ) n = 1

X2

2 (ǫw ·X)−1∂n
wlµ , n > 1

,

(C.4)

where we defined the quantity

vµ =
X2

2
lµ + nµ . (C.5)

Similar expressions as the ones above are obtained for w ↔ w̄ and m ↔ m̄. The elements

of the spin frame satisfy

∂n
wo = 2

n
2 π− 1

2 Γ(n+ 1
2)(ǫw ·X)noϕn ,

∂n
w̄o = 2

n
2 π− 1

2 Γ(n+ 1
2)(ǫw̄ ·X)noϕn − 2

n
2 n(1

2)n−1(ǫw̄ ·X)n−1νϕn− 1
2 ,

(C.6)

where we introduced ν = i(1, 0), and from which the corresponding expressions for ι are

obtained due to the commutativity of Xµ with the {w, w̄} derivatives.

C.1 Wavefunction descendants

In this section, we identify primary descendants of radiative fields starting from the explicit

form of the conformal primary wavefunctions. This complements the algebraic approach of

the previous section in a manner that reflects the methods used in section 4. We stick to

the integer spin cases for brevity, while the half-integer cases follow from similar arguments.

Descendants of radiative primaries. The conformal primary scalar obeys the relation

∂n
wϕ

∆ = 2
n
2 (∆)n(ǫw ·X)nϕ∆+n . (C.7)

To compute descendants of spinning primaries let us introduce an arbitrary reference

direction Zµ so that we automatically enforce symmetry and can simplify our notation.

This yields

∂n
w

[
(Z ·m)sϕ∆

]
= 2

n
2 (s+ ∆)n(Z ·m)sϕ∆+n(ǫw ·X)n . (C.8)

Since taking derivatives with respect to {w, w̄} commutes with X2 this relation also holds

for the corresponding shadow primary. Next, we have

∂n
w

[
(Z · m̄)sϕ∆

]
= 2

n
2 ϕ∆+n(ǫw ·X)n




s∑

k,ℓ=0

C∆,s,n(k, ℓ)(Z · m̄)s−k−ℓ
(
Z · v
ǫw ·X

)k (
X2 Z ·m

(ǫw ·X)2

)ℓ

 .

(C.9)
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We can take a derivative of both sides to determine a recursion relation for the coefficients

C∆,s,n+1(k, ℓ) = (∆ + n− s+ k + 2ℓ)C∆,s,n(k, ℓ)

+ (s− k − ℓ+ 1)C∆,s,n(k − 1, ℓ) + (k + 1)C∆,s,n(k + 1, ℓ− 1) .
(C.10)

Then, starting from

C∆,s,0(k, ℓ) = δk,0δℓ,0 (C.11)

we can iterate up for any n > 0. We find

C∆,s,n(k, ℓ) = (s+ 1 − k − ℓ)k+ℓ(∆ − s+ k + 2ℓ)n−k−2ℓ
(2ℓ− 1)!! n!

k!(2ℓ)!(n− k − 2ℓ)!
. (C.12)

By verifying that this expression satisfies the initial conditions (C.11) and the recur-

sion (C.10), we have a proof by induction. Expressing everything in terms of Gamma

functions, we have

C∆,s,n(k, ℓ) =
2ℓ

√
π

Γ(∆+n−s)Γ(s+1)Γ(n+1)Γ(ℓ+ 1
2)

Γ(k+1)Γ(2ℓ+1)Γ(s+1−k−ℓ)Γ(n−k−2ℓ+1)Γ(∆−s+k+2ℓ)
. (C.13)

The right hand side only has support when k, 2ℓ ≤ n. So long as k, s, ℓ are positive integers,

we can drop the limit in the sum.

Now, the only terms which transform with definite conformal weight are those with

k + 2ℓ = n . (C.14)

Because we are also only summing over k, ℓ ≤ s, we can set up a finite system of equations

that must be satisfied if we want a descendant at level n. For instance, if we want a primary at

level 1 we would need the ℓ = 0, k = 0 term to vanish which requires ∆ = s. If we want a pri-

mary at level 2, we would need the k = 0, ℓ = 0 and k = 1, ℓ = 0 terms to vanish which gives

(∆ − s)(1 + ∆ − s) = 0, s(1 + ∆ − s) = 0 . (C.15)

Hence, there is a level 2 primary descendant at ∆ = s− 1 or we have one at s = 0,∆ = 0

but this is the trivial kind. We can summarize this nicely. For fixed ∆, s one can only have

a primary descendant if

(n− k − 2ℓ)C∆,s,n(k, ℓ) = 0 (C.16)

for all integer k, n ≥ 0 (where we only need to check for k, 2ℓ ≤ n). This is consistent with

the results of section 3.

The complex conjugate of these expressions gives us a tower of ∂w̄ derivatives on all of

the radiative wavefunctions. One can then work out a similar set of recursions relations for

mixed derivatives. From the complex conjugate of (C.8) we have

∂p
w̄

[
(Z · m̄)sϕ∆

]
= 2

p

2 (s+ ∆)p(Z · m̄)sϕ∆+p(ǫw̄ ·X)p (C.17)

so that from (C.9) we have

∂n
w∂

p
w̄

[
(Z · m̄)sϕ∆

]
= 2

n
2

+ p

2 (s+ ∆)pϕ
∆+n+p(ǫw̄ ·X)p(ǫw ·X)n

×



s∑

k,ℓ=0

C∆+p,s,n(k, ℓ)(Z · m̄)s−k−ℓ
(
Z · v
ǫw ·X

)k (
X2 Z ·m

(ǫw ·X)2

)ℓ



(C.18)
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with the same coefficients C as above in (C.12). From this example, we see that there are

no extra primary descendants than what we have from ∂n
w or ∂p

w̄ acting separately. One has

factors of (ǫw̄ ·X) hanging around unless p = 0 and then that reduces to the same system

of equations as above for C. The other way we can get a primary is if the coefficient out

front vanishes and that is the same as the primary descendants we find from (C.8).

C.2 Generators of (conformal) isometries

In this section, we move away from w = w̄ = 0 and present a set of covariant vector

fields which respect the SL(2,C) submodule structure of the celestial diamonds discussed in

section 4.2.

Poincaré generators as SL(2,C) modules. We would like to find a vector field repre-

sentation of the Poincaré algebra [80]17

[pi,j , pk,l] = 0 ,

[ℓn, pk,l] =

(
1

2
n− k

)
pn+k,l ,

[ℓ̄n, pk,l] =

(
1

2
n− l

)
pk,n+l ,

[ℓm, ℓn] = (m− n)ℓm+n ,

[ℓ̄m, ℓ̄n] = (m− n)ℓ̄m+n ,

[ℓ̄m, ℓn] = 0 ,

(C.19)

via SL(2,C) descendants of vector fields with definite conformal dimension and spin which

match those of the circled nodes in figure 10. The top node corresponds to an SL(2,C)

primary which we can construct from the tetrad (2.6) while the other encircled nodes

correspond to ∂w and ∂w̄ descendants:

ℓ−1 = αϕ−1m̄µ∂µ , ℓ̄−1 = αϕ−1mµ∂µ ,

ℓ0 =
1

2
√

2α
∂wℓ−1 , ℓ̄0 =

1

2
√

2α
∂w̄ ℓ̄−1 ,

ℓ1 =
1

4α2
∂2

wℓ−1 , ℓ̄1 =
1

4α2
∂2

w̄ ℓ̄−1 ,

(C.20)

and
p− 1

2
,− 1

2
= βϕ−1lµ∂µ ,

p 1
2

,− 1
2

=
1√
2α
∂wp− 1

2
,− 1

2
,

p− 1
2

, 1
2

=
1√
2α
∂w̄p− 1

2
,− 1

2
,

p 1
2

, 1
2

=
1

2α2
∂w̄∂wp− 1

2
,− 1

2
.

(C.21)

17We will modify our notation to avoid confusion with the Poincaré generators that appear elsewhere in

this paper as well as the representation of this algebra in celestial amplitudes in [11, 15].
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Moreover, we note that further descendants vanishes

∂3
wℓ−1 = ∂w̄ℓ−1 = 0 , ∂3

w̄ ℓ̄−1 = ∂w ℓ̄−1 = 0 , ∂2
wp− 1

2
,− 1

2
= ∂2

w̄p− 1
2

,− 1
2

= 0 . (C.22)

Here α and β are real constants which we can fix as follows. The choice α = 1√
2

is most

natural from the point of view that the w representation of SL(2,C)

[∂w, w
2∂w] = 2w∂w (C.23)

is being used to step between Lorentz generators

∂wℓ−1 = 2ℓ0 . (C.24)

Choosing β = 1 reduces p− 1
2

,− 1
2

to the generator for spacetime translations along qµ. One

can use the derivative relations given in appendix C to explicitly evaluate the descendant

vector fields appearing here.

Bulk conformal generators as SL(2,C) modules. It is worth pointing out that we

can extend the above results to reproduce the conformal algebra in 4D. We first observe

that the vector fields

k− 1
2

,− 1
2

= ϕ−1nµ∂µ ,

k 1
2

,− 1
2

= ∂wk− 1
2

,− 1
2
,

k− 1
2

, 1
2

= ∂w̄k− 1
2

,− 1
2
,

k 1
2

, 1
2

= ∂w̄∂wk− 1
2

,− 1
2
.

(C.25)

obey an algebra isomorphic to that of the Pij , namely

[ki,j , kk,l] = 0 ,

[ℓn, kk,l] =

(
1

2
n− k

)
kn+k,l ,

[ℓ̄n, kk,l] =

(
1

2
n− l

)
kk,n+l .

(C.26)

Upon adding the generator

D = Xµ∂µ , (C.27)

we complete the 4D conformal algebra

[D, pk,l] = −pk,l ,

[D, kk,l] = kk,l ,

[pi,j , kk,l] = 2((i− k)(j − l)D + (i− k)ℓj+l + (j − l)ℓ̄i+k) ,

(C.28)

so that the ki,j are the special conformal generators.
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D Embedding space formalism

The embedding space formalism (see e.g. [81]) is a convenient tool in CFTs. The idea is to

make D-dimensional global conformal group SO(D + 1, 1) act linearly by uplifting local

insertions from Rd to q ∈ R1,d. In particular each point in physical space corresponds to

a light ray in the null cone q2 = 0. Interestingly, the embedding space is a very natural

language for celestial CFTs since R1,d is the space where the scattering takes place. In

what follows we review how to define the wavefunctions and the shadow transforms in the

embedding space and what is their relation with the physical space counterparts.

Wavefunctions in the embedding space. Let us consider wavefunctions Φ(X; q) de-

pending on a point Xµ ∈ R1,3 and a generic null vector qµ ∈ R1,3. These wavefunctions are

correctly uplifted to the embedding space if Φ(X; q) satisfies the following conditions:

1. Homogeneous in q: Φ(X;αq)µ1...µ|J|ν1...ν|J|
= α−∆Φ(X; q)µ1...µ|J|ν1...ν|J|

.

2. Transverse: Φ(X; q)µ1...µ|J|ν1...ν|J|
qνi = 0.

3. Traceless: Φ(X; q)µ1...µ|J|ν1...ν|J|
ηνiνj = 0.

4. Φ(X; q)µ1...µ|J|ν1...ν|J|
∼ Φ(X; q)µ1...µ|J|ν1...ν|J|

+ qνiΦ′(X; q)µ1...µ|J|;ν1...νi−1νi+1...ν|J|
.

For our purposes we further consider wavefunctions which are symmetric in the µi and νi

indices separately. In embedding space the spin s = 0, 1, 2 radial wavefunctions Φ(X; q) are

given by the following bulk-to-boundary propagators

Φ(X; q) =
1

(−q ·X)∆
,

Φµ1ν1(X; q) =
(−q ·X)ηµ1ν1 + qµ1Xν1

(−q ·X)∆+1
,

Φµ1µ2ν1ν2(X; q) =
[(−q ·X)ηµ1ν1 + qµ1Xν1 ][(−q ·X)ηµ2ν2 + qµ2Xν2 ]

(−q ·X)∆+2
.

(D.1)

To project down to the 2D physical space, we typically parametrize the null cone via

qµ(~w) = (1 + |~w|2, 2~w, 1 − |~w|2) (D.2)

the so-called ‘Poincaré section’. In order to fully project the 4D wavefunctions we must also

project the νi indices, so that it transforms as a 2D conformal primary in the symmetric

traceless rank-|J | representation of SO(2) with conformal dimension ∆. The result is the

usual wavefunction

Φµ1...µ|J|a1...a|J|
(Xµ; ~w) ≡ Φµ1...µ|J|ν1...ν|J|

(Xµ; q(~w))

|J |∏

i=1

∂ai
qµi(~w) , (D.3)

where ∂aq
µ = 2(wa, δab,−wa).
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Shadow transform. In 2D it is often convenient to use complex coordinates in physical

space. In this section we show how to relate the shadow transform in embedding space to

the one in complex coordinates.

Let us consider a local operator Oν1...ν|J|
(q) with dimension ∆ and spin J defined in

the embedding space. We can define its shadow transform directly in the embedding space

using [59]

Õν1...ν|J|
(q) =

K∆,J

2π

∫
d4q′ δ(q′2)θ(q′0)

Vol GL(1,R)+

∏|J |
n=1[δρn

νn
(−1

2q ·q′)+ 1
2q

′
νn
qρn ]

(−1
2q ·q′)2−∆+|J | Oρ1...ρ|J|

(q′) , (D.4)

where the integral is restricted to the positive null cone which passes through the origin

in R1,3 and we quotient by the connected component of the identity GL(1,R)+ ⊂ GL(1,R)

to render it finite. The normalization K∆,J will be determined below to match the 2D

normalization chosen in (3.9).

We can eliminate the factor of Vol GL(1,R)+ by choosing a section of the null cone,

which we will take to be (D.2). We further project the indices to 2D using

Oa1...a|J|
(~w) =

|J |∏

i=1

∂ai
qµi(~w)Oµ1...µ|J|

(q(~w)) . (D.5)

We then recover the standard expression for the 2D shadow transform [82–86]

Õa1...a|J|
(~w) =

K∆,J

2π

∫
d2 ~w′ 1

|~w − ~w′|2(2−∆)
Ia1...a|J|,b1,...b|J|

(~w − ~w′)Ob1...b|J|(~w′) , (D.6)

where Ia1...a|J|,b1,...b|J|
(~w− ~w′) is the inversion tensor for symmetric traceless tensors obtained

from the symmetrized product of |J | inversion tensors

Iab(~w − ~w′) = ηab − 2
(wa − w′

a)(wb − w′
b)

|~w − ~w′|2 . (D.7)

Note that integral in (D.6) is divergent unless ∆ < 1 but can be extended to more general ∆

by analytic continuation so that under conformal transformations (D.6) defines a conformal

primary operator in the symmetric traceless rank-|J | representation of SO(2) of conformal

dimension 2 − ∆ [86].

Let us now return to complex coordinates (w, w̄) ∈ R2 used throughout this paper

which are convenient to work with in 2D CFT. We start again from (D.6) and use

xa = (w, w̄) , xa = ηabx
b =

1

2
(w̄, w) , x2 = xaxa = ww̄ , ηab =

(
0 1/2

1/2 0

)
, (D.8)

to express the inversion tensor Iab(~x) = ηab − 2xaxb

x2 as [87]

Iww(~x− ~x′) = −1

2

w̄ − w̄′

w − w′ , Iw̄w̄(~x− ~x′) = −1

2

w − w′

w̄ − w̄′ , Iww̄ = Iw̄w = 0 . (D.9)
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As an example we focus on spin J = 1 (generalizations are straightforward) and we rewrite

the shadow transform (D.6) as follows

Õw̄(w, w̄) =
K∆,J=1

2π

∫
d2w′ Iw̄w̄(w − w′, w̄ − w̄′)

[(w − w′)(w̄ − w̄′)](2−∆)
Ow̄(w′, w̄′)

= −K∆,J=1

2π

∫
d2w′ Ow(w′, w̄′)

(w − w′)2(1−h)(w̄ − w̄′)2(1−h̄)
,

(D.10)

where we used Ow̄ = ηw̄wOw = 2Ow and the fact that Ow has J = h− h̄ = +1. The result

matches (3.9) up to a minus sign in the normalization. Similarly for higher spin J we have

to use products of J terms of the form Iw̄w̄, which give an extra factor of (−1)J . We thus

conclude that (3.9) matches (D.6) if (recall that here we are only considering integer J)

K∆,J = (−1)JKhh̄ . (D.11)

In the main body of the paper we normalize (3.9) as Kh,h̄ = 2max{h, h̄} − 1. We thus

get an extra sign in the 4D conformal primary wavefunctions of spin s = 1 in (2.14) (and

similarly for s = 1
2) as compared to [24].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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