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1 Introduction

The perturbative S-matrix of quantum field theories can have many interesting properties
and relations. If we take these relations to reflect some fundamental property of the respec-
tive QFTs, we expect them to survive in some form after a change of basis in the Hilbert
space. The S-matrix is usually computed in a basis of plane waves for external particles due
to its simplicity, but other bases might be more useful in answering certain questions. In [1–
4] it was argued that a basis of external particles transforming as conformal primaries on
the sphere at the null boundary of Minkowski space is the most appropriate one to study a
potential holographic CFT living on this sphere. Amplitudes with conformal wavefunctions
as external states were dubbed celestial amplitudes. These can be obtained from ampli-
tudes computed in the usual plane wave basis by a Mellin transform. This has the effect of
mixing the UV and the IR. Yet universal properties of amplitudes, such as soft limits and
IR factorization [1, 5–16], survive this change of basis albeit in a different guise. Recently,
it was shown in [17] that relations between the S-matrices of Yang-Mills and gravity known
as the double copy also survives this change of basis, at least up to four point amplitudes.
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While an all-multiplicity proof could be found using the methods employed in [17],
which relied on position space Feynman rules, they soon become cumbersome. From our
experience with the tree-level amplitudes in the usual plane wave basis we know that there
should be more compact descriptions of the S-matrix. For certain classes of celestial ampli-
tudes in four dimensions all-multiplicity formulas already exist in the literature: tree-level
Yang-Mills MHV and NMHV amplitudes were computed in [18]. These computations are
done by performing Mellin transforms on the energies of the external particles which, while
doable for some low point amplitudes including loop [16, 19] and string [20] amplitudes,
become highly involved for generic amplitudes. CFT inspired methods have also been
used to holographically constrain MHV amplitudes [21, 22] and it might be that further
understanding of the celestial OPEs [13, 23–25] will lead to better methods.

Here we choose to use a true and tested method to generate compact expressions for
massless S-matrices, the ambitwistor string [26]. This is a worldsheet theory from which
the CHY formulas [27, 28] can be obtained as correlation functions of vertex operators in a
chiral CFT. These are a generalization of the original Berkovits-Witten twistor string [29,
30]. Being string theories, the sum over Feynman diagrams is replaced by an integral
over the moduli space of punctured spheres providing a very compact representation of
the tree-level S-matrix. A Mellin transform of the CHY formula was used in [8] to study
celestial soft theorems, but the Mellin integrations were not carried out explicitly. Here we
carry those out explicitly and check it against a first principles derivation of it using the
ambitwistor string with vertex operators in the conformal basis. This gives a framework
for celestial massless S-matrices making use of the celestial scattering equations in analogy
with the usual CHY formula. The amplitudes are written as operators acting on the Mellin
transform of a scalar contact vertex which we carry out explicitly in terms of generalized
hypergeometric functions.

Another important feature of the CHY formulas and the ambitwistor string is that the
double copy relation between Yang-Mills and gravity amplitudes is made manifest. The
double copy is a procedure to obtain gravitational amplitudes from a “square” of Yang-Mills
amplitudes [31]. While in the ambitwistor string the double copy amounts to a substitution
rule, using traditional methods it relies on kinematical numerators satisfying the so-called
color-kinematics duality [32], that is, they obey relations analogous to Jacobi identities
among color factors. Using the formulas computed using the ambitwistor string for celestial
amplitudes we show that tree-level celestial Yang-Mills and gravity amplitudes are related
by a double copy, generalizing the procedure given for low points in [17]. Moreover, by inter-
preting the numerators given by the ambitwistor string as cohomology classes in a general-
ization of twisted cohomology, we can uplift the results of [33] to the celestial case. In doing
this we find a natural generalization of color-kinematics duality to celestial amplitudes and
show how to obtain color-kinematical dual celestial numerators from the ambitwistor string.

An extra motivation to study celestial amplitudes is as a toy model for understanding
double copy and color-kinematics duality for amplitudes around curved backgrounds. Low
multiplicity amplitudes have been computed for plane wave backgrounds in [34–36] and
shown to have a double copy structure, with some higher point results recently given
in [37–39]. But computations still relied heavily on the leftover momentum conservation
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and special properties of plane wave backgrounds. Ambitwistor string computations have
also provided new formulas for amplitudes in AdS spacetimes [40, 41] which have a structure
very close to the one we find for celestial amplitudes. We would like to find a notion of
double copy that can be more easily generalized to curved spaces and valid for a larger
class of spacetimes including asymptotically AdS spacetimes.

Summary of results.

• We compute compact, n-point formulas for tree-level celestial amplitudes of biadjoint
scalars, gluons and gravitons. They are given in a universal form as operator-valued
numerators acting on the Mellin transform of the scalar contact vertex. Analogous
to the case with external plane waves we can represent the amplitudes either as a
sum over trivalent graphs (3.19), or as integrals over the moduli space of n-punctured
Riemann surfaces localized to the operator-valued celestial scattering equations (3.10).

• As a consequence of the computation given above, we prove that the celestial double
copy introduced in [17] is valid for amplitudes at all multiplicities.

• We introduce a generalization of twisted cohomology to operator-valued twisted forms
which are the relevant objects in the CHY formulas for celestial amplitudes. We
use this, together with a straightforward generalization of the results in [33], to
define color-kinematics duality for celestial amplitudes and show how to obtain color-
kinematical dual numerators from the ambitwistor string numerators.

This paper is organized as follows: we start in section 2 by reviewing some facts
about celestial amplitudes, CHY formulas, double copy and twisted homology to make
this paper more self-contained. The reader familiar with these topics can safely skip these
sections. Section 3 contains the formulas for celestial amplitudes with explanations about
its constituents. Next, in section 4, we introduce the ambitwistor model and go through the
calculation used to obtain the formulas introduced previously. In section 5 we introduce
a generalization of the twisted cohomology to operator-valued forms, give a definition of
color-kinematics duality for celestial amplitudes and show how numerators obtained from
the ambitwistor string naturally obey this duality. We finish with some discussion about
this framework and possible further generalizations in section 6.

2 Review

In order to make this paper self-contained we quickly review in this section some background
on recent technology used in the study of amplitudes. We keep the reviews short and
focused on what is needed in the rest of the paper. In subsection 2.1 we review some facts
about celestial amplitudes, in subsection 2.2 CHY formulas and the scattering equations
are introduced. In subsection 2.3 we recall the basics of color-kinematics duality, and in
subsection 2.4 we review how the CHY formulas and double copy are to be interpreted in
light of twisted cohomology on the moduli space of punctured Riemann spheres.
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2.1 Celestial amplitudes

Celestial amplitudes are obtained by Mellin transforming the usual momentum space am-
plitudes to make manifest their transformations under the conformal group of the celestial
sphere at null infinity I +. This is essentially a change of basis [3] on the Fock space from
the plane wave basis into a basis of conformal primary wavefunctions.1

Let X be a point in R1,d+1, with D := d + 2, and denote the massless scalar plane
wave as eisωq·X where ω denotes its energy, q ∈ Sd is a direction on the celestial sphere,
and s = ±1 denotes if the particle is outgoing or incoming. The scalar conformal primary
wavefunction is obtained by Mellin transforming the energy ω,

φs∆(X; q) =M(eisωq·X−εω) =
∫ ∞

0

dω
ω
ω∆ eisωq·X−εω = (−i s)∆ Γ(∆)

(−q ·X − i s ε)∆ , (2.1)

giving an external wavefunction that lives on the celestial sphere with a new quantum num-
ber: the conformal dimension ∆. Conformal wavefunctions for external gluons and gravi-
tons also exist but here we will work directly with the Mellin transform of the plane waves,

aa,s
µ,∆ = Ta εµ φ

s
∆(X; q) hsµν,∆ = εµ ε̃ν φ

s
∆(X; q) , (2.2)

which are given in terms of the scalar wavefunctions, the color generators Ta, and polar-
izations εµ, ε̃µ that only depend on qµ [4]. These wavefunctions transform as conformal
primaries up to gauge transformations [3]. Wavefunctions for massive particles have also
been worked out [42, 43] but we won’t have anything to say about massive particles. Am-
plitudes are in principle computed using (2.1) and (2.2) as external wavefunctions, but it
is more convenient to simply Mellin transform the usual amplitudes computed with plane
waves. A celestial amplitude is formally given by

A({∆i, qi, si}) =
∫
Rn+

n∏
i=1

dωi
ωi

ω∆i
i A({ωi, qi, si}) . (2.3)

Explicitly carrying out the Mellin transforms can quickly become unwieldy as the number
of external particles increases. In the following section we’ll introduce the CHY represen-
tation of amplitudes which gives a very compact formula for massless n-point amplitudes.

2.2 CHY formulas

The CHY formulas present the D-dimensional, tree-level massless S-matrix of several quan-
tum field theories [27, 28, 44] as an integral formula. A generic CHY formula is written as

An = δD
(

n∑
i

ki

)∫
M0,n

dnz
vol SL(2,C) I({k, ε, z}) Ĩ({k, ε̃, z})

∏′

i

δ̄(Ei) . (2.4)

The integral is taken over the moduli space of n-punctured Riemann spheresM0,n which
carries an action of the group SL(2,C) denoted by the factor of 1/vol SL(2,C) in the

1There’s evidence that more states than the ones obtained from the Mellin transform are necessary to
describe the quantum theory on I , see [23].
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measure. Concretely, this implies we can fix the position of any 3 punctures, for ex-
ample {z1, z2, z3}, removing the associated differentials dzi and introducing the Jacobian
(z1 − z2)(z2 − z3)(z3 − z1) in the integral. The final result is invariant under the choice
of which particles are fixed. The numerators I (Ĩ) are rational functions of the external
data {k, ε, ε̃}, couplings g and coordinates zi on M0,n. Different choices of numerators
correspond to different choices of theories. For example, taking

I = Ĩ = PTn = Tr(Ta1Ta2 · · ·Tan)
(z1 − z2)(z2 − z3) · · · (zn − z1) + perm. (2.5)

gives the S-matrix for a cubic biadjoint scalar. Another interesting numerator is the re-
duced Pfaffian,

Pf′Ψn = 2 (−1)i+j

(zi − zj)
Pf (Ψij

ij) , (2.6)

with Pf the Pfaffian of the 2n× 2n matrix,

Ψ =
(
A −CT

C B

)
, (2.7)

with two lines and two columns removed, denoted by Ψij
ij . Its components are given by the

matrices

Aij =


ki · kj
zi − zj

i 6= j

0 i = j

, Bij =


εi · εj
zi − zj

i 6= j

0 i = j
, Cij =


εi · kj
zi − zj

i 6= j

−
∑
l 6=i

εi · kl
zi − zl

i = j
. (2.8)

Taking I = Pf′Ψn and Ĩ = PTn as numerators the CHY formula gives the S-matrix for
external gluons in Yang-Mills. Using a Pfaffian for both, I = Pf′Ψ(k, ε) and Ĩ = Pf′Ψ(k, ε̃),
gives the S-matrix for gravitational amplitudes in NS-NS gravity.

The universality of the CHY representation is due to the presence of the scattering
equations Ei [45], which are the last ingredient of (2.4) to be explained. They appear
as the arguments of the delta functions in

∏′
i δ̄(Ei). These delta functions are taken

as holomorphic delta functions, that is δ̄(Ei) = ∂̄zi
1
Ei
, effectively fixing the contour of

integration to the solutions of the scattering equations. The symbol
∏′ means that delta

functions for three equations should be omitted from the product and another Jacobian of
the form (zi−zj)(zj−zk)(zk−zi) should be added. The scattering equations themselves are

Ei =
∑
j 6=i

ki · kj
zi − zj

. (2.9)

The delta functions impose them as constraints on the zi’s, completely localizing the inte-
gration overM0,n. There are generically (n−3)! points inM0,n which solve the scattering
equations. Denoting the solutions of the scattering equations by σi, the amplitudes above
can be written as

An = δD
(

n∑
i=1

ki

) (n−3)!∑
i=1

I Ĩ
Φ

∣∣∣∣∣
σi

(2.10)

with Φ = det ∂jEi, the Jacobian coming from the n− 3 independent delta functions.2

2The worldsheet Jacobian in the definition of
∏′ ensures invariance under the choice of which scattering

equations are imposed.
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γs γt γu

+ + = 0

Figure 1. Graphs related by BCJ moves.

In the CHY formulas the sum over trivalent graphs is replaced by the fully localized
integral over M0,n, making manifest properties which are hard to see from the Feynman
diagrammatic expansion. CHY formulas also exist for many theories beyond the ones
reviewed above [44, 46]; many can be seen as originating from an unconventional string
theory, called the ambitwistor string [26, 47]. The advantage of having a worldsheet the-
ory like the ambitwistor string is the ease of generalizations to other settings, e.g. higher
loops [48–53] and curved backgrounds [35, 54–58], which in turns leads to new formulas for
amplitudes in these settings. In section 4 we’ll show how CHY-like formulas for celestial
amplitudes originate from the ambitwistor string.

2.3 Color-kinematics duality and double copy

The original double copy [31] is a prescription to obtain gravitational amplitudes from
suitable squares of Yang-Mills amplitudes. There are now many pairs of theories known
to have amplitudes related by a double copy prescription, as well as several proposals for
double copy of non-linear solutions. See [59] for a recent review of the field. Here we’ll
present the aspects of the original double copy which we’ll need in the rest of the paper.
Given a tree-level Yang-Mills amplitude it can be represented as a sum over trivalent graphs
by opening up four point interactions in the Feynman diagrams,

AYM
n = δD

(
n∑
i=1

ki

)∑
γ∈Γ

cγ nγ∏
e∈γ Pe

. (2.11)

Here Γ is the set of trivalent graphs, cγ are color numerators carrying the gauge group
information, nγ are kinematical numerators which are polynomials in the external momenta
and polarizations, and Pe are the propagators associated to each edge e of the graph
γ. Color numerators corresponding to graphs which differ only by BCJ moves on some
subgraph, see figure 1, obey identities inherited from the usual Jacobi identity,

cγs + cγt + cγu = 0 . (2.12)

If the four point vertices are opened up appropriately then, at tree-level, kinematical numer-
ators can always be found such that they satisfy identities analogous to the ones satisfied
by the color numerators. That is they satisfy the Jacobi-like relation,

nγs + nγt + nγu = 0 . (2.13)
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These kind of numerators are called color-kinematical dual numerators [32]. Substituting
in (2.11) the color numerators by a set of color-kinematical dual numerators ñγ (obtained
from nγ by replacing ε with ε̃) yields another amplitude,

AG
n = δD

(
n∑
i=1

ki

)∑
γ∈Γ

nγ ñγ∏
e∈γ Pe

, (2.14)

which turns out to be a gravitational amplitude. The requirement that numerators obey
color-kinematics duality ensures that (2.14) is invariant under linear diffeomorphisms. This
is the double copy prescription.

The CHY formulas reviewed in the previous section also have a double copy structure.
There, the analogue of color numerators is the Parke-Taylor factor PT and the analogue
of kinematical numerators is the Pfaffian Pf′Ψ. The sum over trivalent graphs is replaced
by an integral over the moduli space and double copy becomes a simple substitution rule.
Color-kinematics seems to be disconnected from the double copy in this case, but they turn
out to be intimately related through twisted cohomology on M0,n. We review this in the
following subsection.

2.4 Twisted cohomology

The ingredients in the CHY formula have an interesting interpretation in terms of a co-
homological theory on the moduli space of punctured Riemann spheres M0,n. Here we’ll
quickly go over the relevant details of the constructions in [33, 60] that we’ll generalize in
section 5. Proofs of the statements presented below, as well as details of the computations
in the context of amplitudes can be found in [33, 60, 61]. Other mathematical details can
be found in the original mathematical literature [62–65].

We start by defining a meromorphic one-form inM0,n using the scattering equations:

ω =
∑′

i

Ei dzi , Ei =
∑
j 6=i

ki · kj
zij

, (2.15)

where the prime in
∑′ denotes that three points have been fixed to account for the SL(2,C)

invariance. Using momentum conservation one can show that the form (2.15) doesn’t
depend on which three points were fixed and that it only has simple poles along the
boundaries ofM0,n. With this in hand we define the twisted de Rham operators

∇± = d± ω . (2.16)

Both are flat connections [∇±,∇±] = 0 on certain line bundles L and its dual L∨ overM0,n
called local systems. Sections of L (L∨) are given by functions on M0,n that are locally
covariantly constant in ∇+ (∇−). The operator ∇+ acts naturally on Ω•(M0,n,L), the
complex of differential forms onM0,n with coefficients in L, and squares to zero (∇+)2 = 0.
We use it to define twisted cohomology groups,

H•(M0,n,L) = Im ∇+
Ker ∇+

. (2.17)
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Generically, i.e. for generic momenta, the only non-vanishing group is the middle-
dimensional one Hn−3(M0,n,L) with (n− 3)! independent generators. There is an analo-
gous construction for cohomology groups with values on L∨ which we omit.

Taking dµ a top holomorphic form onM0,n, the numerators ϕ+ = I dµ and ϕ− = Ĩ dµ
can be interpreted as elements of the twisted cohomology groups ϕ+ ∈ Hn−3(M0,n,L) and
ϕ− ∈ Hn−3(M0,n,L∨). Moreover, amplitudes in the CHY formalism can be interpreted as
a bilinear pairing between these cohomology groups:

An = 〈ϕ+|ϕ−〉 = δD
(

n∑
i=1

ki

) (n−3)!∑
i=1

I Ĩ
Φ

∣∣∣∣∣
σi

, (2.18)

giving the intersection number of ϕ+ and ϕ−.
An alternative evaluation of this pairing can be given where the contours around the

scattering equations are deformed, picking up contributions only from the boundaries of
M0,n. A codimension 1 boundary is reached when the n-punctured sphere degenerates into
a nodal surface given by two punctured spheres connected by a node. Higher codimension
boundaries are reached with further dengenerations of these spheres into surfaces with
more nodes. The deepest boundaries arise when all that is left is a nodal surface composed
of spheres with three marked points. These spheres are connected through these marked
points in such a way that no closed cycle can be drawn that passes through the nodal points.
That is, the nodal surface resembles a tree-graph with only trivalent vertices. In fact, one
can label these deepest boundaries by trivalent trees whose punctures are distributed along
the external edges. Different boundaries correspond to different assignments of labels for
the external punctures.

The end result is that the contour given by the scattering equations can be deformed
to pick contributions from the deepest boundaries of the moduli space. This presents the
amplitude as a sum over the boundaries ofM0,n labelled by trivalent graphs,

An = δD
(

n∑
i=1

ki

)∑
γ∈Γ

(ϕ+)γ (ϕ−)γ
Pγ

. (2.19)

In this expression,
(ϕ±)γ = Res

vγ
ϕ± (2.20)

are residues of the top meromorphic forms ϕ± along the boundary divisor vγ labelled by the
trivalent graph γ. This representation is similar to the field theory one (2.11) and (2.14)
but here the numerators are guaranteed to obey color-kinematics due to global residue
theorems onM0,n as explained in [33].3

The general argument can be summarized as follows: take a triple of trivalent graphs
γs, γt, γu differing only on a subgraph connecting four edges as shown in figure 1. These
three divisors can be seen as arising from the same corner ofM0,n where a four-punctured
sphere degenerates as one of its punctures, z, approaches one of the other three punctures,

3The fact that CHY numerators produce BCJ-satisfying numerators was already shown in the orginal
work [28] (see also [66, 67] for explicit constructions).
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zs
zt

zu

z

Figure 2. Neighborhood of the three degenerations related by BCJ moves.

zs, zt, zu, generating the three boundary divisors associated to the trivalent graphs γs, γt, γu,
see figure 2. We model the neighborhood of these degenerations by a thrice-punctured
sphere Σ3 with coordinate z and the three marked points zs, zt, zu fixed to some values
using the SL(2,C) symmetry. Near these degenerations the differential form ϕ+ restricts
to a 1-form on Σ3 with poles along the marked points. Kinematical numerators are given
by residues of this form

nγa = Res
z=za

ϕ+ , a ∈ {s, t, u} . (2.21)

and are related by a linear identity due to the global residue theorem on Σ3,

nγs + nγt + nγu = 0 . (2.22)

While this argument would work for any regular differential forms on M0,n, only forms
which are elements of the twisted cohomology groups actually generate field theory am-
plitudes. Moreover, many simplifications occur by choosing good representatives for these
cohomologies.

3 Celestial scattering equations

The CHY formulas reviewed in the previous section have a natural celestial analogue.
These are most straightforwardly — if somewhat formally — derived by directly Mellin
transforming the momentum space expressions. We start this section by performing these
Mellin transforms and writing down explicit formulas for celestial amplitudes. These take
the form of Gelfand A-hypergeometric functions in all dimensions, now governed by the
celestial scattering equations. Some example computations are also provided.

– 9 –
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3.1 Amplitude formulas

The n-point celestial amplitude can be written down as a Mellin transform of the momen-
tum space formula (2.4) [8],

An =
∫
M0,n

dnz
vol SL(2,C)

∫
Rn+

n∏
j=1

dωj
ωj

ω
∆j

j

∏′

i

δ̄

(∑
j 6=i

si sj ωi ωj qi · qj
zi − zj

)

×I({g, s ω q, ε, z}) Ĩ({g, s ω q, ε̃, z}) δD
(

n∑
i=1

si ωi qi

)
. (3.1)

The primary trick to simplify this is to perform as many ωj-integrals as possible against
the momentum conserving delta function. We can already do this at the level of (3.1), but
we will find it much more illuminating to first manipulate it a bit.

For this we make use of the momentum generators in Mellin variables. The action of
the momentum operator Pµ on a function A(k) of null momentum kµ = s ω qµ is given by
a trivial multiplication

Pµ ·A(k) = kµA(k) . (3.2)

Its action on the Mellin transform of A(k) is then easily expressed as

Pµ ·
∫
R+

dω
ω
ω∆A(k) = s qµ

∫ ∞
0

dω
ω
ω∆+1A(k) = s qµ e∂∆

∫ ∞
0

dω
ω
ω∆A(k) . (3.3)

This dictates the definition of the celestial translation symmetry generators [68],

Kµ := s qµ e∂∆ , (3.4)

which are operator-valued null vectors, K2
i = 0. Momentum conservation is then equivalent

to invariance under the diagonal translation generator, that is, n-point celestial amplitudes
should be annihilated by

n∑
i=1
Kµi =

n∑
i=1

si q
µ
i e∂∆i . (3.5)

Indeed, acting with this on (3.1) produces a factor of
∑
i si ωi q

µ
i inside the Mellin transforms

which vanishes by momentum conservation. So, at least whenever the Mellin transforms
converge (or are understood distributionally), celestial amplitudes are invariant under di-
agonal translations.

Hence we can make the formal replacements,

ωi 7→ e∂∆i , ki 7→ Ki , (3.6)

inside the scattering equations and the CHY integrands. By converting them into operators
we can take these objects outside the Mellin integrals. Moreover, the various Ki’s clearly
commute with each other and there is no operator ordering ambiguity. We thus find the
following expression,

An =
∫
M0,n

dnz
vol SL(2,C)

∏′

i

δ̄(Ei) I({g,K, ε, z}) Ĩ({g,K, ε̃, z}) Sn({∆, q, s}) , (3.7)
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J
H
E
P
0
5
(
2
0
2
1
)
1
5
7

having defined the celestial scattering equations,

Ei :=
∑
j 6=i

Ki · Kj
zi − zj

, (3.8)

and the Mellin transformed n-point contact diagram,

Sn :=
∫
Rn+

n∏
j=1

dωj
ωj

ω
∆j

j δD
(

n∑
i=1

si ωi qi

)
. (3.9)

Rigorously speaking, replacements like (3.6) are supposed to be made inside analytic func-
tions. In section 4, we will justify performing these replacements inside the delta functions
δ̄(Ei) by deriving it from the ambitwistor worldsheet CFT.
Sn is the contribution of a φn contact term to the n-point celestial amplitude of a

theory of massless scalars φ. In appendix A we explicitly evaluate these contact diagrams
for arbitrary multiplicity and dimension, citing here only the final expression for the celestial
CHY formulas,

An =
∫
M0,n

dnz
vol SL(2,C)

∏′

i

δ̄(Ei) I({g,K, ε, z}) Ĩ({g,K, ε̃, z})

×Fn({∆, q, s})
∫ ∞

0

dω
ω
ω
∑

i
∆i−D . (3.10)

In particular, the replacement (3.6) applied to the Parke-Taylor factor (2.5) and the Pfaf-
fian (2.6) provides the celestial equivalent of kinematical numerators in (3.7) for biadjoint
scalar, Yang-Mills and gravity celestial amplitudes. Using the celestial scattering equations,
these take the form of operator-valued numerators acting on the same universal function

Fn({∆, q, s})
∫ ∞

0

dω
ω
ω
∑

i
∆i−D . (3.11)

The function Fn({∆, q, s}) takes different forms depending on whether n > D or n ≤ D.

n > D. In this case, there are more ωj integrals than momentum conserving delta func-
tions. This allows us to perform D of the Mellin integrals — say those over ω1, . . . , ωD —
and the rest simplify to

Fn({∆, q, s}) = 1
u

∏
l,r

Θ(ulr)

×
∫

[0,1]n−D

∏
r

dξr
ξr

ξ∆r
r

∏
l

(∑
r′

ulr′ ξr′

)∆l−1
δ

(
1−

∑
r′′

ξr′′

)
. (3.12)

Here, the various indices run over l = 1, 2, . . . , D while r, r′, r′′ = D + 1, . . . , n. The
coefficients u and ulr in the integrand can be expressed in terms of D ×D minors of the
D × n matrix (qµ1 , q

µ
2 , . . . , q

µ
n) of celestial positions. Define the determinants,

(i1 i2 . . . iD) := εµ1µ2...µD q
µ1
i1
qµ2
i2
· · · qµDiD , (3.13)
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where εµ1µ2...µD is the D-dimensional Levi Civita symbol. Then we can express them quite
compactly as

u = |(1 2 . . . D)| , ulr = −sl sr
(1 2 . . . l − 1 r l + 1 . . . D)

(1 2 . . . D) . (3.14)

The Heaviside step functions constrain the ulr to be positive. The integrals over the ξr’s
produce Aomoto-Gelfand hypergeometric functions over the Grassmannian Gr(n − D,n)
(or equivalently on Gr(D,n)) [69, 70]. Such integrals were first identified in the context of
celestial amplitudes in [18].

n ≤ D. In this case, the result is distributional with D − n+ 1 leftover delta functions,

Fn({∆, q, s}) = δD−n+1
(∑

l

sl uln ql + sn qn

) 1
u

∏
l

Θ(uln)u∆l−1
ln . (3.15)

Here, l = 1, 2, . . . , n − 1. The spacetime index µ has also been partitioned into two sets:
µ = (r, a), where r = 0, 1, . . . , D−n while a = D−n+1, . . . , D−1. Then we have localized
the Mellin integrals on the delta functions imposing

∑
i si ωi q

a
i = 0 by solving for the ωl in

terms of ωn. The various coefficients in the above expression are

u = |(1 2 . . . n− 1)| , uln = −sl sn
(1 2 . . . l − 1 n l + 1 . . . n− 1)

(1 2 . . . n− 1) , (3.16)

where the determinants (i1 i2 . . . in−1) are now (n− 1)× (n− 1) minors of the (n− 1)× n
matrix (qa1 , qa2 , . . . , qan). Again, these coefficients satisfy positivity constraints uln > 0 for
all l. The remaining delta functions impose momentum conservation in the “transverse”
D−n+1 dimensions. The result is still Lorentz invariant, the Mellin transforms themselves
preserve the symmetry but in performing them explicitly, non-Lorentz covariant choices
had to be made.

We also remark that the leftover Mellin integral over ω in (3.10) is generically diver-
gent. An interpretation of such integrals was given in [71] in terms of “generalized delta
functions”, allowing one to declare∫ ∞

0

dω
ω
ω
∑

i
∆i−D ≡ 2π δ

(
i
(∑

i

∆i −D
))

. (3.17)

Formally, we see for instance from (3.15) that we indeed need the condition
∑
i ∆i = D to

hold so that it has conformal weight ∆n in qµn. If the final amplitude is finite or marginally
convergent, this awkwardness gets resolved by the application of the Ki’s on Sn as this
shifts the conformal weights appropriately. We discuss such shifts below.

Let us now study some salient features of our formulas. First note that the various
scattering equations Ei trivially commute since the Ki commute. Moreover, even though
momentum conservation is absent, they are still SL(2,C) invariant when acting on trans-
lation invariant objects. This is a consequence of the fact that the residue of any Ei at
zi =∞ is given by

Res
zi=∞

Ei dzi = Ki ·
n∑
j=1
Kj , (3.18)
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were we used K2
i = 0. This residue is proportional to the diagonal translation generator

which annihilates the contact diagram.
Having evaluated the Mellin transform of Sn, we can use (3.10) to solve the scattering

equations and obtain the celestial S-matrix of a variety of theories. Since the operators
Ki formally behave as commuting numbers, the scattering equations are solved by the
same algebraic expressions coming from the (n − 3)! solutions in momentum space. The
worldsheet path integral implements a sum over all of these solutions and generates trivalent
graphs γ contributing to the n-point amplitude. The resulting celestial amplitude has the
following general structure,

An =
∑
γ∈Γ

Nγ Ñγ∏
e∈γ Pe

· Sn . (3.19)

Each internal edge e of a graph γ now comes with an operator-valued propagator denomi-
nator,

Pe =
(∑
i∈e
Ki

)2

= 2
∑
i,j∈e

si sj qi · qj e∂∆i+ ∂∆j . (3.20)

The numerators Nγ and Ñγ are also theory dependent operators given by residues of the
CHY numerators I and Ĩ analogous to eq. (2.20), see also section 5, which act on the
celestial contact amplitude.

For n > D, one can take these operators inside the Mellin integrals in Sn. For i = r,
one straightforwardly replaces e∂∆r 7→ ξr, while for i = l one replaces e∂∆l 7→

∑
r ulr ξr

as expected. Simultaneously, one also needs to appropriately shift
∑
i ∆i occurring in the

distributional factor (3.17), and this is most easily seen by working through the examples
given in the next subsection. The resulting integrals yield Gelfand A-hypergeometric func-
tions [72, 73]. Similarly, for n ≤ D, one can replace factors e∂∆l 7→ uln and e∂∆n 7→ 1, while
again shifting

∑
i ∆i appropriately.

3.2 Examples

To illustrate our methods, we work out some examples of biadjoint scalar amplitudes in
different dimensions. Generalizing to gluons and gravitons is computationally tedious but
straightforward.

4 points. In this case, we only have one scattering equation. We choose to fix the three
points z1, z2, z3 so that the remaining scattering equation corresponds to z4:

E4 ≡
K4 · K1
z41

+ K4 · K2
z42

+ K4 · K3
z43

= 0 . (3.21)

Fixing the global conformal symmetry also introduces a Faddeev-Popov determinant
(z12z23z31)2 into the worldsheet integrals, where zij := zi − zj . Using 2πi δ̄(Ei) = ∂̄i(1/Ei),
we then need to evaluate

A4 =
∮
E4=0

dz4
2πi E4

z2
12 z

2
23 z

2
31 I Ĩ · S4 . (3.22)
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For convenience, we take the fixed points to be z1 = 0, z2 = 1, z3 → ∞. As ex-
plained before, since the Ki’s commute, we can formally solve the scattering equations as
in momentum space. We find

K4 · K1
z4

+ K4 · K2
z4 − 1 = 0 =⇒ z4 = z∗4 = K1 · K4

K4 · (K1 +K2) . (3.23)

More precisely, this makes sense via its action z∗4 ·S4 on the contact diagram which produces
an ordinary number. To obtain particular amplitudes we can insert various different nu-
merators. For example, we can compute the biadjoint scalar amplitude in the color ordering
(1234|1234). This is done by substituting the (color-stripped) Parke-Taylor factors,

1
z12 z23 z34 z41

· 1
z12 z23 z34 z41

, (3.24)

for I Ĩ. Using
∑4
i=1Ki · S4 = 0, one easily finds

A4(1234|1234) = −
( 1
K1 · K2

+ 1
K1 · K4

)
S4

= −
(
s1 s2

e−(∂∆1+ ∂∆2 )

q1 · q2
+ s1 s4

e−(∂∆1+ ∂∆4 )

q1 · q4

)
S4 .

(3.25)

Clearly, all that the derivatives do is shift some of the weights by −1. This phenomenon is
also clear from the perspective of the plane wave basis. There the propagator denominators
contain factors of ωi’s which induce precisely these shifts.

Eq. (3.25) can be further simplified on each channel. When D < 4, using (3.12)
and (3.17), the s-channel contribution becomes

s1 s2
e−(∂∆1+ ∂∆2 )

q1 · q2
S4 = 2π δ

(
i
( 4∑
i=1

∆i −D − 2
))

s1 s2
q1 · q2

×F4(∆1 − 1, q1, s1; ∆2 − 1, q2, s2; ∆3, q3, s3; ∆4, q4, s4) , (3.26)

with F4 containing a Gr(4 −D,D) Aomoto-Gelfand hypergeometric integral. More inter-
esting is the case D ≥ 4. Here, one finds

s1 s2
e−(∂∆1+ ∂∆2 )

q1 · q2
S4 = 2π δ

(
i
( 4∑
i=1

∆i −D − 2
))

s1 s2
q1 · q2

×δD−3
( 3∑
l=1

sl ul4 ql + s4 q4

)
u34
u

3∏
l=1

Θ(ul4)u∆l−2
l4 . (3.27)

Other channels contribute similar terms.

Propagators at higher points. At n points, each Feynman diagram of the cubic bi-
adjoint scalar theory comes with n − 3 propagators and trivial numerators. Clearly, each
propagator denominator induces a shift

∑
i ∆i 7→

∑
i ∆i − 2 in the Mellin integral (3.17).

Altogether, we find a factor,

δ

(
i
( n∑
i=1

∆i −D − 2 (n− 3)
))

, (3.28)
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in the final amplitude. With D = d + 2, the on-shell phase space of massless particles
in R1,D−1 is spanned by conformal basis states on the principal continuous series ∆i ∈
d
2 + iR [3]. So the distribution (3.28) is a true delta function precisely for d = 4, i.e., in
six dimensions. It is curious to note that D = 6 is precisely the dimension in which the
biadjoint scalar theory is a classical CFT.4 In general, we will have propagator denominators
acting on the celestial contact diagram. As a simple example, consider the action of a single
propagator acting on Sn for n > D,

1
(
∑
i∈eKi)2 · Sn , (3.29)

for an internal edge e of a Feynman graph. When n > D, Fn from (3.12) changes to

1
u

∏
l,r

Θ(ulr)
∫

[0,1]n−D

∏
r

dξr
ξr
ξ∆r
r

∏
l

(∑
r′

ulr′ ξr′

)∆l−1
δ

(
1−
∑
r′′

ξr′′

)
(3.30)

×

∑
l,l′∈e

slsl′ ql ·ql′
∑
r,r′

ulrul′r′ ξrξr′+2
∑
l,r∈e

slsrql ·qr
∑
r′

ulr′ ξrξr′+
∑
r,r′∈e

srsr′ qr ·qr′ ξrξr′

−1

.

Due to the new quadratic polynomial in the integrand, the result now produces a Gelfand
A-hypergeometric function [72, 73].

Every propagator is taken care of by insertion of such quadratic polynomials. We
may also find the insertion of higher degree polynomials through the numerators in gluon
and graviton amplitudes, which are also handled by the same theory of hypergeometric
integrals. Similar integrals have also recently occurred in the physics of loop level Feynman
integrals [74] as well as stringy canonical forms [75].

4 Ambitwistor strings

4.1 Models

In this section, we derive our worldsheet formulas for celestial amplitudes using am-
bitwistor string theories [26]. These are chiral string theories with target the space of null
geodesics in Minkowski space. The worldsheet action of a large class of such models takes
the general form,

S = 1
2π

∫
Σ
Pµ∂̄X

µ − µT − eH + Smatter . (4.1)

Here, Xµ and Pµ are fields of conformal weight (0, 0) and (1, 0) respectively on the string
worldsheet Σ, and Smatter is the action of a pair of auxiliary worldsheet CFTs. T denotes
the weight (2, 0) stress tensor, while µ and e are weight (−1, 1) Beltrami differentials
gauging the constraints T = 0 and H := P 2/2 = 0 respectively. The latter generates the
gauge symmetry

δXµ = αPµ , δPµ = 0 , δe = ∂̄α , (4.2)
4Similarly, it is known from [4] that Mellin transforms of gluon amplitudes are marginally convergent

precisely for D = 4: the dimension in which Yang-Mills is classically a CFT.
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where α is a weight (1, 0) vector field on Σ. Thus, the constraint P 2 = 0 and associated
gauge redundancy X ∼ X + αP reduce our target space to the space of null geodesics:
ambitwistor space.

The choice of matter action Smatter gives rise to amplitudes of a variety of theories:

Biadjoint scalar : Smatter = Sg + Sg̃ , (4.3)

Yang-Mills : Smatter = Sg + 1
2π

∫
Σ

1
2 ψµ∂̄ψ

µ − χψµPµ , (4.4)

Gravity : Smatter = 1
2π

∫
Σ

1
2 ψµ∂̄ψ

µ + 1
2 ψ̃µ∂̄ψ̃

µ − χψµPµ − χ̃ ψ̃µPµ . (4.5)

Sg and Sg̃ denote actions of current algebra CFTs corresponding to Lie algebras g and g̃.
We will denote their weight (1, 0) currents as ja and ̃ã respectively. In the Yang-Mills and
gravitational cases, the fields ψµ, ψ̃µ both denote weight (1

2 , 0) worldsheet fermions, while
χ and χ̃ are weight (−1

2 , 1) fermionic Lagrange multipliers gauging fermionic worldsheet
symmetries akin to supersymmetry. Worldsheet correlators of the current algebra systems
give rise to the Parke-Taylor type numerators (2.5), while those of the fermions produce
the Pfaffian type numerators (2.6).

Since both the XP system and matter actions are free CFTs, it is easy to find their
fundamental OPEs. In the former case, one finds

Xµ(z)Pν(w) ∼ δµν
z − w

. (4.6)

Similarly, the fermionic OPEs read,

ψµ(z)ψν(w) ∼ ηµν

z − w
, ψ̃µ(z) ψ̃ν(w) ∼ ηµν

z − w
. (4.7)

Lastly, the current algebra OPEs are the standard ones,

ja(z) jb(w) ∼ fabc

z − w
, ̃ã(z) ̃b̃(w) ∼ f ãb̃c̃

z − w
, (4.8)

where fabc and f ãb̃c̃ are the structure constants of g and g̃ respectively. The levels of the cur-
rent algebras can be non-zero, producing multi-trace amplitudes, but since we’re only going
to be interested in the single trace contributions we omit terms proportional to the level.

As in standard string theory, on gauge fixing we will also add ghost fields for each of
the gauge symmetries. For the bosonic symmetries generated by T and H, one adds two
bc ghost systems consisting of fermionic ghosts b, b̃ with weights (2, 0) and c, c̃ with weights
(−1, 0). For the supersymmetries generated by ψ · P and ψ̃ · P , one adds βγ systems with
bosonic ghosts β, β̃ of weights (3

2 , 0) and γ, γ̃ of weights (−1
2 , 0). These fields also have the

well-known OPEs,
b(z) c(w) ∼ 1

z − w
, b̃(z) c̃(w) ∼ 1

z − w
, (4.9)

and
β(z) γ(w) ∼ 1

z − w
, β̃(z) γ̃(w) ∼ 1

z − w
. (4.10)
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The expression for the BRST operator will vary depending on the matter content of the
ambitwistor string. For the tree models we discuss, biadjoint scalar, Yang-Mills and gravity,
their BRST operators square to zero with appropriate choices of dimensions and current
algebra level. When setting up the model we implicitly assume to be working with choices
that render the BRST charge nilpotent, but our final expressions after all the worldsheet
calculations have been performed are actually valid in any spacetime dimension. They
are after all, tree-level amplitudes of field theories, which are the same independent of the
spacetime dimension. More details on the BRST charges can be found in [26].

Next, we construct vertex operators for these theories in the conformal primary basis
of states. It is easiest to start with the biadjoint scalar states. Their fixed vertex operators
are given by

Vi = c c̃ j · T ̃ · T̃φi(X) , (4.11)

where i is a particle label and φi(X) ≡ φsi∆i
(X; qi) denotes the scalar conformal primary

wavefunctions of (2.1). Generators of the Lie algebras g and g̃ are denoted by Ta and T̃ã

respectively. Integrated vertex operators are obtained form the usual descent procedure.
Similarly, the fixed vertex operator of a conformal primary gluon external state in

Yang-Mills is
V −1
i = c c̃ δ(γ) j · T εi · ψ φi(X) , (4.12)

where the superscript −1 stands for picture number. To construct the corresponding
picture number 0 vertex operator, we descend by computing the OPE of V −1

i with the
picture changing operator Υ = δ(β)ψ · P . Using (4.6) and the scalar wavefunction (2.1),
it is easily seen that

Pµ(z)φi(X(w)) ∼ Ki µ φi(X(w))
z − w

. (4.13)

Such OPEs are the means by which the celestial translation generators Ki µ = si qi µ e∂∆i

of (3.4) will enter our analysis. They act on the wavefunctions to their right. This produces
the picture number 0 vertex operators,

V 0
i = c c̃ j · T (εi · P + εi · ψKi · ψ)φi(X) . (4.14)

A similar analysis holds for gravitons, yielding the conformal basis vertex operators,

V −1,−1
i = c c̃ δ(γ) δ(γ̃) εi · ψ εi · ψ̃ φi(X) , (4.15)

at picture number −1, and

V 0,0
i = c c̃ (εi · P + εi · ψKi · ψ)

(
ε̃i · P + ε̃i · ψ̃Ki · ψ̃

)
φi(X) , (4.16)

at picture number 0. We reiterate that, just like ordinary momenta, the Ki’s commute
with each other and there is no ordering ambiguity here. BRST closure of these operators
follows immediately from the conformal primary representatives being on-shell.
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4.2 Worldsheet correlators

We start this section by computing the correlators of the biadjoint scalar vertex opera-
tors (4.11) in detail and deriving the celestial scattering equations. After this we give the
generalization to Yang-Mills and gravity.

To compute n-particle amplitudes we quantize these models on a n-punctured Riemann
sphere with punctures located at z1, . . . , zn. We work in conformal gauge µ = 0 and also
gauge fix e to be an element of the (n − 3)-dimensional Dolbeault cohomology group
H0,1(Σ, TΣ(z1 + · · ·+ zn)). The gauge freedom (4.2) is precisely the freedom in choosing a
representative of its cohomology class. Explicitly, we pick the gauge fixing condition,

e =
n∑
i=4

ri ei , (4.17)

having chosen the punctures z4, . . . , zn as our moduli without loss of generality. The {ei} de-
note a standard basis of this cohomology group. They act against quadratic differentials like
H by picking 2πi times their residues at the zi. So for instance we will find an insertion of

exp
(
− 1

2π

∫
Σ
eH

)
= exp

(
−i

n∑
i=4

ri Res
z=zi

H(z)
)

(4.18)

inside the path integral for any correlator, coming from the action (4.1). The ri provide
n− 3 moduli that are left to be integrated over after the gauge fixing.

The gauge fixed action of the biadjoint scalar ambitwistor string is given by

S = 1
2π

∫
Σ
P · ∂̄X + b ∂̄c+ b̃ ∂̄c̃+ Sg + Sg̃ . (4.19)

Using this action, the n-particle celestial amplitude is computed by the correlator,

An =
∫

Γ⊂T ∗M0,n

dn−3z dn−3r

〈
e−

1
2π

∫
Σ eH

n∏
i=4

Bi B̃i

n∏
j=1

Vj

〉
, (4.20)

where the integral is performed over an appropriate middle-dimensional contour Γ in
T ∗M0,n [76].5 In this expression, we have inserted a product of n − 3 picture changing
operators,

Bi = 1
2π

∫
Σ
ei b , B̃i = 1

2π

∫
Σ
ei b̃ , (4.21)

needed to soak up fermionic zero modes and produce the measure on M0.n. Their OPEs
with fixed vertex operators produce integrated vertex operators corresponding to a choice
of n−3 zi’s. The other three puncture locations z1, z2, z3 have been fixed using the residual
SL(2,C) symmetry.

One computes the products of Bi and B̃i with Vi using the OPEs (4.9) to find

Bi B̃i · Vi = j · T ̃ · T̃φi(X(zi)) . (4.22)
5The exact definition of this contour will not be needed in what follows.
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This strips off the c and c̃ ghosts from n − 3 of the vertex operators, and correlators of
the remaining ghost zero modes produce a factor of (z12z23z31)2 that can be accommo-
dated by inserting a factor of 1/vol SL(2,C)2 in the sense of Faddeev-Popov. Next, the
current algebra correlators generate a pair of Parke-Taylor numerators PTn and P̃Tn of
the form (2.5) (P̃Tn contains traces over products of T̃ãi). We throw out the multitrace
terms since we’re interested only in amplitudes where Yang-Mills states are exchanged. All
these simplifications leave us with a correlator of the XP CFT,

An =
∫

Γ

dnz dnr
vol SL(2,C)2 PTn P̃Tn

〈
e−

1
2π

∫
Σ eH

n∏
j=1

φi(X(zi))
〉
XP

. (4.23)

We evaluate the last correlator by utilizing the OPE (4.13) computed before.
It is easily shown that H(z) = 1

2P
2(z) acts on a product of scalar wavefunctions φi(X)

by the OPE,

H(z)
n∏
i=1

φi(X(zi)) ∼
∑
j

∑
k 6=j

Kj · Kk
(z − zj)(z − zk)

n∏
i=1

φi(X(zi)) . (4.24)

As a result, on performing the XP path integral, H(z) is frozen to its “classical” value,

H(z) =
∑
i

∑
j 6=i

Ki · Kj
(z − zi)(z − zj)

. (4.25)

Note that the double poles dropped out in this computation due to K2
i = 0. Finally, the

exponential e−
1

2π

∫
Σ eH can be brought outside the correlator. Using (4.18), the r-integrals

subsequently give rise to the n− 3 scattering equations,∫ dnr
vol SL(2,C) exp

(
−i

n∑
i=4

ri Res
z=zi

H(z)
)

=
∏′

i

δ̄(Ei) , (4.26)

where
Res
z=zi

∑
i

∑
j 6=i

Ki · Kj
(z − zi)(z − zj)

=
∑
j 6=i

Ki · Kj
zi − zj

≡ Ei . (4.27)

This justifies the replacements ωi 7→ e∂∆i done within the scattering equations in section 3.
The result is a top-form integrated overM0,n.

The remaining correlator over the XP system contains only the insertion
∏
i φi(X(zi)).

Performing the path integral over Pµ imposes its equation of motion following from the
gauge fixed action (4.19), ∂̄Xµ = 0. On Σ = CP1, this reduces the path integral over Xµ

to an integral over its constant zero mode. Denoting this zero mode again by Xµ, we find〈
n∏
i=1

φi(X(zi))
〉
XP

=
∫
R1,D−1

dDX
n∏
i=1

φi(X) ≡ Sn . (4.28)

This is precisely the scalar contact celestial amplitude of (3.9), as can be seen by expressing
the scalar conformal primary wavefunctions in terms of momentum eigenstates via (2.1).
We thus arrive at the CHY formula for celestial amplitudes of the biadjoint scalar theory,

An =
∫
M0,n

dnz
vol SL(2,C)

∏′

i

δ̄(Ei) PTn P̃Tn Sn({∆, q, s}) . (4.29)
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Translation invariance of Sn and commutativity of the Ki’s guarantees permutation invari-
ance of the scattering equations, so all choices of n− 3 scattering equations are equivalent.

An analogous story holds for Yang-Mills and gravitational amplitudes. For instance,
in the former case we need to compute a correlator of the form,

An =
∫

Γ⊂T ∗M0,n

dn−3z dn−3r

〈
e−

1
2π

∫
Σ eH

n∏
i=4

Bi B̃i V
−1

1 V −1
2

n∏
j=3

V 0
j

〉
, (4.30)

having chosen to insert picture number −1 vertex operators for particles 1 and 2 without
loss of generality. The path integrals over the fermionic ghosts is done as usual and we
pull out the insertion of e−

1
2π

∫
Σ eH from the correlator as before leading to the celestial

scattering equations. The path integral over the currents ja generates a single Parke-Taylor
factor plus multitrace terms we once again ignore. This leaves the correlators of the XP
and ψ systems along with the βγ ghosts to be performed,

〈δ(γ(z1)) δ(γ(z2))〉βγ

〈
n∏
i=3

(εi · P + εi · ψKi · ψ)(zi)
n∏
j=1

φi(X(zj))
〉
XPψ

. (4.31)

Following [26], these yield a Pfaffian-type numerator (2.6), now containing the operators
Ki in place of ordinary momenta ki. The final result is the formula,

An =
∫
M0,n

dnz
vol SL(2,C)

∏′

i

δ̄(Ei) PTn Pf ′Ψn({ε,K}) Sn({∆, q, s}) , (4.32)

encoding gluon celestial amplitudes in arbitrary dimensions.
For gravity, the only new ingredient is the replacement of the current algebra system

with a second fermionic system. The correlator of interest is given by

An =
∫

Γ⊂T ∗M0,n

dn−3z dn−3r

〈
e−

1
2π

∫
Σ eH

n∏
i=4

Bi B̃i V
−1,−1

1 V −1,−1
2

n∏
j=3

V 0,0
j

〉
. (4.33)

Using the same calculations as above it reduces to the graviton celestial amplitude formula

An =
∫
M0,n

dnz
vol SL(2,C)

∏′

i

δ̄(Ei) Pf ′Ψn({ε,K}) Pf ′Ψn({ε̃,K}) Sn({∆, q, s}) . (4.34)

There are two unifying features of all these formulas. The first is the presence of the same
contact amplitude Sn and celestial scattering equations governing the three expressions.
The second is the manifest double copy structure at the level of the CHY integrands
given by a simple replacement rule. In the next section, we return to this point with the
machinery of twisted cohomology as applied to these operator-valued integrands.

5 Celestial color-kinematics duality

We have seen in the previous section how the celestial versions of the CHY formulas still
manifest a double copy structure for the operator-valued numerators. This can either
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be stated as a substitution rule for ambitwistor integrands or in terms of their residues
and trivalent graphs. In the latter method, gauge invariance of the double copied am-
plitude is not manifest even though we know it is gauge invariant by construction. As
reviewed in section 2 gauge invariance of the double copied amplitude is guaranteed if the
kinematical numerators obey color-kinematics duality. We show below that an analogous
requirement holds for the operator-valued numerators of celestial amplitudes obtained from
the ambitwistor string. The proof will closely follow [33] by recasting the operator-valued
numerators as elements of a generalized twisted cohomology.

Let Cn denote the configuration space for the celestial data {∆i, qi, si} of n-particle
celestial amplitudes. The operators Ki defined in (3.4) map smooth functions on Cn
to themselves by shifting their conformal dimensions. These operators are not deriva-
tions as they don’t satisfy Leibniz rule, but they are linear and commute with each
other. Denote the C∞(Cn)-algebra generated by the Ki’s by C. It forms a subalgebra of
Hom(C∞(Cn), C∞(Cn)). Even though translation invariance is not manifest it is still a sym-
metry of celestial amplitudes, so our operators Ki will only ever act on functions S satisfying

n∑
i=1
KiS = 0 . (5.1)

Without loss of generality, we quotient C by the ideal generated by
∑
iKi to define

K := C/〈
∑

i
Ki〉 (5.2)

as the reduced kinematical space where celestial amplitudes live. In what follows, we
will treat the operator-algebras C and K as infinite-dimensional vector spaces spanned by
monomials in Ki’s.

With some abuse of notation, we also denote by K the infinite-dimensional trivial vector
bundleM0,n ×K. In analogy with the usual twisted cohomology, we define the twisted de
Rham operators

∇± = d± ω , (5.3)

with d the exterior derivative onM0,n and the connection one-form built out of the celestial
scattering equations,

ω =
∑′

i

Ei dzi , Ei =
∑
j 6=i

Ki · Kj
zij

. (5.4)

The operator-valued connections ∇+ and ∇− act via straightforward multiplication on
forms valued in K, denoted by Ω•(M0,n,K).6 We also formally define the line bundles L

and L∨ whose sections are K-valued functions on M0,n.7 The connections ∇± square to
zero so we use them to define twisted de Rham cohomologies with coefficients in L and L∨,
denoted by H•(M0,n,L) and H•(M0,n,L

∨).
6The images of

∑
i
Ki under ∇± are again in 〈

∑
i
Ki〉 since the Ki operators multiply as usual, commute

with each other and with d.
7More precisely, L and L∨ are local systems given by an abelian operator-valued representation of

π(M0,n). We leave the study of analytic aspects of these definitions to future work.
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The operators Ki, viewed as elements of K, obey the same algebraic identities as the
usual momenta for plane waves ki. That is, they are null, commute with each other and
obey a “momentum conservation” identity. Due to this, the analysis in [33, 60] carries over
to the celestial case with the appropriate substitutions. Let ϕ± be two K-valued meromor-
phic top forms onM0,n with singularities only along its boundary divisor. Take these to also
obey ∇±ϕ± = 0 so that they are representatives of cohomology classes in Hn−3(M0,n,L)
and Hn−3(M0,n,L

∨). Explicit examples are the ambitwistor numerators (2.5) and (2.6)
with the replacement ki 7→ Ki, multiplied by the top holomorphic form dµ onM0,n.

We define intersection numbers 〈ϕ+|ϕ−〉 in analogy with [60] but in our case this pairing
is not a number but an operator. There are two common ways to compute these intersection
numbers: one is given by the CHY formulas, as a moduli space integral localized to the
solutions of the scattering equations; the other by evaluating the paired forms ϕ± near the
highest codimension boundaries of M0,n

8 labelled by trivalent graphs. The first method
recovers the formula (3.10) for numerators ϕ+ = I dµ and ϕ− = Ĩ dµ. The latter gives the
amplitude as a sum over trivalent graphs γ,

〈ϕ+|ϕ−〉 =
∑
γ∈Γ

Resvγ (ϕ+) Resvγ (ϕ−)∏
e∈γ Pe

, (5.5)

with edges denoted by e. Residues are taken along the boundary divisor vγ associated to
the trivalent graph γ. Each edge has an associated denominator Pe = (

∑
i∈eKi)2 analogous

to propagators acting as inverse operators. This is nothing other than eq. (3.19) which was
obtained by deforming the contours prescribed by the scattering equations.

With the framework introduced above it is straightforward to adapt the arguments
of [33] to show how color-kinematics is implemented for celestial amplitudes. The set up
is analogous to section 2.4. Take a triple of trivalent graphs γs, γt, γu differing only on
a subgraph connecting four edges as shown in figure 1. The boundary divisors for these
graphs arise from a four-punctured sphere degenerating as one of its punctures z approaches
one of the other punctures zs, zt, zu. The neighborhood of this degeneration is modelled by
a sphere with three punctures, Σ3, with coordinate z and fixed marked points zs, zt, zu, see
figure 2. Take ϕM as a K-valued 1-form on Σ3 with poles along the marked points. The
operator-valued numerators,

Nγa = Res
z=za

ϕM , a ∈ {s, t, u} , (5.6)

are then related by a linear identity due to the global residue theorem on Σ3,

Nγs +Nγt +Nγu = 0 , (5.7)

valid in K, i.e. the sum of operators on the left vanishes precisely when it acts on trans-
lationally invariant functions. In C, that is, before taking the quotient, the statement of

8Explicitly, this requires a finding a compactly supported cohomological representative of one of the
forms ϕ±. This coincides with the formula obtained by deforming the contours given by the scattering
equations.
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color-kinematics duality is

Nγs +Nγt +Nγu = O ·
n∑
i=1
Ki, (5.8)

for some operator Oµ ∈ C.
As an example, we illustrate (5.8) for the four-point Yang-Mills amplitude. The

operator-valued numerators are easily read off from their momentum space counterparts.
We have

Ns = [ε1 · ε2 (K1 −K2)µ + 2 ε1 · K2 ε
µ
2 − 2 ε2 · K1 ε

µ
1 ] ηµν

× [ε3 · ε4 (K4 −K3)ν − 2 ε3 · K4 ε
ν
4 + 2 ε4 · K3 ε

ν
3 ]

− (ε1 · ε3 ε2 · ε4 − ε1 · ε4 ε2 · ε3) (K1 · K2 +K3 · K4) (5.9)

for the s-channel. Other channels are obtained from permutations of this: Nt by exchanging
2↔ 3 with an overall minus sign, and Nu by the permutation (2, 3, 4)→ (4, 2, 3). Making
use of q2

i = εi · qi = 0, these three numerators are easily shown to obey

Ns +Nt +Nu = (Rµ1234 +Rµ1342 +Rµ1423)
4∑
i=1
Ki µ ∈ 〈

∑
i

Ki〉 , (5.10)

where

Rµijkl = 2
(
ενi ε

µ
j − ε

ν
j ε

µ
i

)
(Kk −Kl)ν + 2

(
ενk ε

µ
l − ε

ν
l ε

µ
k

)
(Ki −Kj)ν ∈ C . (5.11)

As claimed, the kinematic Jacobi identity is violated only up to something proportional to
the diagonal translation generators.

With this we have shown that numerators given by Resvγ (ϕ±) satisfy the celestial
color-kinematics duality and (5.5) makes manifest the celestial double copy structure for
any number of external particles extending the results of [17].

6 Discussion

Ambitwistor strings are important tools for the study of flat space holography as they
provide a framework to study celestial amplitudes to any multiplicity and in several di-
mensions. This is exemplified by our all-multiplicity expressions (3.10), (3.12) and (3.15)
which allowed us to generalize the computations of [18] to general dimensions and polariza-
tions. In fact, we showed that for multiplicities with n > D, amplitudes in D dimensions
can be uniformly expressed in terms of Gelfand A-hypergeometric functions. For n ≤ D, we
found distributional expressions with (D−n+ 1)-dimensional delta functions coming from
residual momentum conservation. We also observed that the Mellin transforms of biad-
joint scalar amplitudes are marginally convergent in D = 6, just as the Yang-Mills ones in
D = 4 [4]. These happen to be the dimensions in which the classical theories are conformal.

There are also worldsheet models specialized to D = 4 with target space I that have
been shown to compute Yang-Mills and gravity amplitudes in the plane wave basis [77, 78].
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These models are adapted to the spinor-helicity formalism and might be better adapted to
the study of a conjectural 2d CFT on I . It would be interesting to understand how the
computational methods we used above can be adapted to this case, and to compute the
celestial amplitudes in these D = 4 models.

Beyond explicit expressions for the n-point celestial amplitudes, our worldsheet formu-
las have provided a new outlook on their double copy. Celestial color-kinematics duality
and double copy depend on two properties of the amplitudes: kinematical numerators can
be represented as operators acting on external kinematics, that is, acting only on quanti-
ties at the boundary of spacetime; and that total derivatives can also be characterized as
operators acting only on the external kinematics. The latter is simply the statement that
amplitudes are translation invariant in the celestial case even if not manifestly so.

These properties might be expected to hold only in the simpler case of flat spacetime.
But we know of at least one case where they also hold for amplitudes in a curved back-
ground, namely, AdS. The works [40, 41] used the ambitwistor string to write CHY-like
formulas for amplitudes in AdS spacetimes. These have similar structure to the celestial
ones, with kinematical numerators and the scattering equations acting as operators on the
scalar contact vertex. These amplitudes are not translation invariant. Instead, the decou-
pling of total derivatives on the scalar contact diagram can be identified with a quotient
by the ideal of diagonal conformal transformations in analogy with the celestial case. We
then expect that a similar notion of color-kinematics duality holds for AdS with kinematical
numerators obeying a relation like (5.8) up to some symmetry of the space of external data.

Double copy in AdS can also be expected to hold in a similar fashion to the celestial
double copy. To show this we must first find the appropriate CHY numerators taking into
account that some terms which naively look like non-zero contributions might decouple
on top of the scattering equations. To characterize such terms a generalization of twisted
cohomology analogous to the one we defined for celestial amplitudes would be very useful.
We expect that several acceptable numerators could be found using insights from the
ambitwistor string together with an interpretation of these numerators as a generalized
twisted cohomology.

An interesting question is whether the framework introduced above holds for loop
amplitudes. There are a couple of ambitwistor formulas for loop amplitudes [48, 50],
the most successful being the ones based on nodal surfaces [49, 51–53]. The latter can
be generalized to the celestial case making use of our replacement rule (3.6) to extract
numerators in front of the Mellin transform of a scalar quantity. The outstanding issue
is that the loop-level scattering equations and the numerators can depend on the loop
momentum which we’d rather not have in a purely celestial description. If one goes back to
position space Feynman diagrams this problem is absent since we can leave all the internal
propagators in their position space representation. Numerators that don’t depend on loop
momentum can still be pulled out in front as operators acting on a scalar loop diagram, but
now there is a proliferation of different topologies coming from the loop diagrams. It would
be interesting to see if there is a way to encode the effect of loop momentum in the numer-
ators in terms of operators acting on the external variables. Perhaps, some insight could
be gained from explicit Mellin transforms giving loop-level celestial amplitudes [16, 19, 79].
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A Mellin transform of the contact diagram

In this appendix we evaluate the celestial n-point contact diagram

Sn =
∫
Rn+

n∏
i=1

dωi
ωi

ω∆i
i δD

( n∑
j=1

sj ωj qj

)
. (A.1)

There are two cases to consider: n > D and n ≤ D. In the former case, we will find the
structure of Aomoto-Gelfand hypergeometric integrals which also appear in four dimen-
sions [18]. In the latter case, we will be able to perform all the Mellin integrals and the
result will be distributional due to leftover delta functions.

a) n > D. We begin by solving the delta functions for ωl, l = 1, 2, . . . , D, in terms of
ωr, r = D+ 1, . . . , n, and the other variables. To do this, we use Cramer’s rule. Define the
determinants

(i1 i2 . . . iD) := εµ1µ2...µD q
µ1
i1
qµ2
i2
· · · qµDiD , (A.2)

where εµ1µ2...µD stands for the D-dimensional Levi Civita symbol. Then first write∑
l

sl ωl q
µ
l = −

∑
r

sr ωr q
µ
r . (A.3)

Contracting both sides with εµµ1µ2...µ̂l...µD q
µ1
1 qµ2

2 · · · q̂
µl
l · · · q

µD
D (where a hat denotes omis-

sion), we can solve for ωl to find

ωl =
∑
r

ulr ωr , ulr = −sl sr
(1 2 . . . l − 1 r l + 1 . . . D)

(1 2 . . . D) . (A.4)

Note that demanding ωl > 0 for all ωr > 0 restricts all the coefficients ulr to be positive.
Accounting for this using heaviside step functions, along with a Jacobian u = |(1 2 . . . D)|
coming from solving the delta functions, our integral turns into

Sn =
∫
Rn+

n∏
i=1

dωi
ωi

ω∆i
i

1
u

∏
l

{
δ

(
ωl −

∑
r′

ulr′ ωr′

)∏
r

Θ(ulr)
}

= 1
u

∏
l,r

Θ(ulr)
∫
Rn−D+

∏
r

dωr
ωr

ω∆r
r

∏
l

(∑
r′

ulr′ ωr′

)∆l−1

.

(A.5)

The leftover integral has the standard form of an Euler-type integral.
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To perform the ωr integrals, define new integration variables ω :=
∑
r ωr along with

ξr := ωr/ω. Doing this, we find

Sn = 1
u

∏
l,r

Θ(ulr)
∫ ∞

0

dω
ω
ω
∑

i
∆i−D

×
∫

[0,1]n−D

∏
r

dξr
ξr

ξ∆r
r

∏
l

(∑
r′

ulr′ ξr′

)∆l−1

δ

(
1−

∑
r′′

ξr′′

)
. (A.6)

The integral over ω is divergent but is usually interpreted as a distribution [71]. Note that
the degree of divergence will change on application of the Ki operators in the scattering
equations and kinematical numerators. The integral over the ξr’s has the structure of an
Aomoto-Gelfand hypergeometric function.

b) n ≤ D. In this case, the delta functions can be used to perform all the Mellin trans-
forms. To do this, we solve for ωl, l = 1, . . . , n − 1, in terms of ωn. Divide the spacetime
index µ into two sets: µ = (r, a), where r = 0, 1, . . . , D−n while a = D−n+ 1, . . . , D− 1.
We solve the last n− 1 momentum conservation constraints,

∑
l

sl ωl q
a
l = −sn ωn qan , (A.7)

for the ωl. This yields

ωl = uln ωn , uln = −sl sn
(1 2 . . . l − 1 n l + 1 . . . n− 1)

(1 2 . . . n− 1) , (A.8)

where the determinants (i1 i2 . . . in−1) are now defined as

(i1 i2 . . . in−1) := εa1a2...an−1 q
a1
i1
qa2
i2
· · · qan−1

in−1
, (A.9)

with εa1a2...an−1 the (n − 1)-dimensional Levi Civita symbol. Again, these solutions are
supplemented by the constraints uln > 0 for all l.

Renaming ωn ≡ ω, we find the expression

Sn = δD−n+1
(∑

l

sl uln ql + sn qn

) 1
u

∏
l

Θ(uln)u∆l−1
ln

∫ ∞
0

dω
ω
ω
∑

i
∆i−D , (A.10)

where the Jacobian is now u = |(1 2 . . . n − 1)|. The remaining delta functions constrain
the qri for r = 0, 1, . . . , D − n.
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