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Abstract

The aim of these Lectures is to provide a brief overview of the subject of asymptotic
symmetries of gauge and gravity theories in asymptotically flat spacetimes as background
material for celestial holography.
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1 General considerations
This review is intended to provide background material for the study of celestial holography for
asymptotically flat spacetimes. Recent reviews on celestial holography can be found in [1, 2].
Complementary reviews on asymptotic symmetries include [3–5].
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1.1 Defining the asymptotic symmetry group
Let us start by asking what are the theories of interest where an asymptotic symmetry group can
be defined. First, we need to specify the kinematics: a spacetime with either or both asymptotic
boundaries and finite boundaries. In these lectures we will mainly consider Minkowski spacetimes
and asymptotically flat spacetimes when gravity is present. Second, the bulk dynamics is specified
by a class of Lagrangians that are assumed to exist but which can be nonunique due to field
redefinitions or dualities. Particular classes of Lagrangians are “gauge theories”, i.e. Lagrangians
that admit non-trivial Noether identities among their equations of motion. Because of Noether’s
second theorem, it is equivalent to the statement that there exist local variations of the fields
that keep the Lagrangian invariant up to boundary terms. Note that because of dualities, a class
of Lagrangians describing the same theory might contain gauge theories and non-gauge theories.
We will be interested in formulations that are gauge theories because of the presence of local
gauge transformations with associated locally constructed canonical charges (in non-gauge theory
formulations they would be nonlocal). Third, the “boundary dynamics” or boundary conditions
need to be specified. They are required at spatial and null boundaries in order to define the
variational principle. In addition, consistency needs to be enforced between distinct boundaries at
their intersecting “corners”.

There exists several frameworks to describe boundary conditions of gauge theories. The main
ones are the Hamiltonian formalism [6–8], the Lagrangian formalism [9–11] and the Hamilton-
Jacobi formalism [12]. There are also two distinct approaches to formulate boundary conditions:
in one of them, one fixes the gauge, which needs to be by definition associated with zero canonical
charges, otherwise one would miss canonical charges! This has the advantage of allowing efficient
computations. This is the approach used by Bondi, van den Burg, Metzner and Sachs at null
infinity for asymptotically flat spacetimes [13, 14] (additional missed charges were found later
on [15, 16]). Alternatively, one only writes geometrical expressions valid in any gauge but with
background structures, as done by Penrose at null infinity in asymptotically flat spacetimes [17], see
also [18–20]. An intermediate approach is to formulate boundary conditions in specific coordinates,
but which still admit gauge redundancies, e.g. the derivation [21] for asymptotically anti-de Sitter
spacetimes. In all cases, the asymptotic symmetry group is defined as the quotient of the group of
residual gauge transformations modulo the group of trivial gauge transformations,

Asymptotic Symmetry Group =
Group of residual gauge transformations
Group of trivial gauge transformations . (1)

Here trivial means that the gauge transformation is associated to a vanishing canonical charge.
The asymptotic symmetry group is equivalently defined as the group of global symmetries of the
class of theories given the set of boundary conditions.

There are however some loopholes in the definitions above that we need to address. First,
equivalent theories might admit distinct gauge groups. Let us take examples. Einstein gravity or
the theory of the interacting spin 2 massless field admits many formulations. One of them is the
metric formulation with field gµν and with the diffeomorphism group as gauge group. Another
formulation is the Cartan formulation with fields eµa , Γa

bµ with diffeomorphisms and local Lorentz
transformations as gauge transformations. In that particular case, the local Lorentz transforma-
tions are not associated to further charges [22] but that requires a computation! In the (linear)
spin 1 case or electromagnetism, the standard Lagrangian formulation is the gauge potential for-
mulation in terms of the gauge potential Aµ and associated field strength Fµν = 2∂[µAν]. There is
however a dual gauge potential formulation obtained from expressing the Hodge dual of the field
strength Gµν ≡ 1

2ϵµναβF
αβ , which is closed outside sources as a result of Maxwell’s equations. It

implies that it can be locally written as the total derivative a dual gauge field, Gµν = 2∂[µBν].
The gauge group acts on Aµ as δAµ = ∂µϕ where ϕ = ϕ(xµ) is arbitrary while the dual gauge
group acts on Bµ as δBµ = ∂µψ where ψ(xµ) is arbitrary. As it turns out, the constant gauge
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parameter ϕ(xµ) = ϕ is canonically associated with the electric monopole charge while the con-
stant gauge parameter ψ(xµ) = ψ is canonically associated with the magnetic monopole charge.
For the spin 0 field, the standard Lagrangian formulation is in terms of a scalar field which admits
a global shift symmetry of the kinetic term, but the theory admits a dual formulation in terms of
an antisymmetric 2-form. The Lagrangian admits the equivalent forms [23]

L = ∂µϕ∂µϕ = ZµZ
µ +Bαβϵ

αβµν∂µZν =
1

4
∂[αBµν]∂

αBµν . (2)

The first and third forms are obtained by solving the second form for Bαβ or Zµ, respectively. The
dual gauge group acts on Bµν as either adding an exact form δBµν = ∂[µCν] or more generally as
adding a closed form δBµν = αµν , ∂[ααµν] = 0.

The second loophole is that gauge fixing might discard gauge transformations associated with
non-trivial charges. For example, in 3d gravity, Fefferman-Graham gauge in asymptotically anti-de
Sitter spacetime discards non-trivial gauge transformations [24]. In 4d gravity, Bondi gauge and
harmonic gauge lead to distinct classes of canonical charges, see e.g. [25]. We can resolve these two
loopholes by stating that the asymptotic symmetry group of a class of theories is the union of the
asymptotic symmetry groups of each formulation of that theory. This enforces that the asymptotic
symmetry group is invariant under field redefinitions and gauge choices.

1.2 Determining the asymptotic symmetry group
Finding the asymptotic symmetry group of a class of theories is often stated as “the art of finding
consistent boundary conditions”1. If one defines too restrictive boundary conditions, some phys-
ically important solutions will be discarded. If one defines too large boundary conditions, some
important quantities such as the energy will not be defined (but note that many infinities could
also be removed using suitable renormalization schemes). In the middle of these uninteresting or
unphysical boundaries conditions lies a non-linear zoo of possible interesting boundary conditions.

In order to give more details, some formalism is required. We will denote the fields of one
formulation of the class of theories as Φi = {ϕ,Aµ, gµν , . . . }. The Lagrangian density will be
denoted as L[Φi]. Gauge transformations as δλΦi = Ri

λ[Φ] where the gauge transformation pa-
rameters are λ = λα(Φi(xµ), xµ). They form an algebra given by δλ1

δλ2
Φi− (1 ↔ 2) = Ri

[λ1,λ2]
[ϕ],

[λ1, λ2]
α = Cα

βγ(λ
β
1 , λ

γ
2) + δλ1λ

α
2 − δλ2λ

α
1 . We mainly follow the notation of [4, 11,26].

A field symmetry around a given field configuration Φi is a gauge parameter λα such that its
associated gauge transformation vanishes on-shell: δλΦ

i = Ri
λ[Φ] = 0. For example, a Killing

vector of a spacetime in gravity, or the constant gauge parameter λ = 1 in electromagnetism. Such
field symmetries form a group, the exact symmetry group. Exact symmetries only occur for very
restricted classes of configurations in interacting theories, e.g. only stationary solutions, or they
occur for very restricted classes of theories, e.g. topological theories such as 3d gravity. The group
of field symmetries of the maximally symmetric solution is typically used as a benchmark: the
asymptotic symmetry group is usually defined such that it contains the exact symmetry group of
the maximally symmetric solution [27] even though they are motivated exceptions [28].

Gauge theories obey the Generalized Noether Theorem for field symmetries [29]. Take any
physical theory described by a Lagrangian density which admits field symmetries. It exists a
bijection between

• the equivalence class of gauge parameters λ(xµ) that are field symmetries, i.e. such that the
variations of all fields Φi vanish on shell (δλΦi ≈ 0). Two gauge parameters are equivalent if
they are equal on-shell;

1This can be attributed at least to Marc Henneaux.
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• The equivalence class of (n−2)-forms k that are closed on-shell (dk ≈ 0). Two (n−2)-forms
are equivalent if they differ on-shell by dl where l is a (n− 3)-form.

The infinitesimal surface charge k can be derived algorithmically from the Lagrangian up to a
remaining boundary ambiguity to be fixed by other considerations, see later on. One first defines
the presymplectic potential Θ from the variation of the Lagrangian as [30]

δL =
δL

δΦi
δΦi + dΘ[δΦi; Φi]. (3)

All derivatives acting on the fields Φi are integrated by parts in order to define Θ. One then defines
the presymplectic structure

ω[δ1Φ, δ2Φ;Φ] = δ1Θ[δ2Φ;Φ]− δ2Θ[δ1Φ;Φ]. (4)

It is a two-form in field space and n − 1 form in spacetime. The infinitesimal canonical surface
charge is then obtained from the definition

ω[δλΦ, δΦ;Φ
i] = dkλ[δΦ;Φ] + EOM (5)

where the last term on right-hand side is proportional to the equations of motion. An exact field
symmetry δλΦi = 0 leads to a conserved n− 2 form dkλ[δΦ;Φ] = 0.

Let us now discuss the remaining boundary ambiguity. One can add a boundary Lagrangian
to the action as S =

∫
dnxL[Φ] +

∫
dn−1xLB [Φ;Ψ], which typically depend upon background

structures Ψ such as the normal to the boundary. We will denote with a L subscript the bulk
Lagrangian contribution and with a B subscript the boundary contribution. This boundary action
is associated with the choice of boundary conditions. This boundary action leads to a shift of
the presymplectic potential and presymplectic structure by a boundary term as Θ = ΘL − dΘB

and ω = ωL − dωB [31–35]. In turn, this leads to the shift of the infinitesimal surface charge as
kλ = kLλ [δΦ;Φ] − ωB [δλΨ; δΨ;Ψ]. For exact field symmetries we have δλΦi = δλΨ

i = 0 and the
boundary contribution vanishes. However, for asymptotic symmetries it might contribute, even by
an infinite amount in the case where the boundary Lagrangian is chosen to renormalize the infinite
variation of the action at the boundary.

The prime examples of correspondence between exact field symmetries and conserved surface
charges are the case of global U(1) symmetry in electromagnetism and Killing vectors in Einstein
gravity. The constant U(1) gauge transformation is associated with the electric charge Q =∫
S
⋆F [A] written in form notation, while the constant dual U(1) gauge transformation is associated

with the magnetic monopole charge P =
∫
S
F [A]. In these cases the surface charge one-form kλ is

an exact variation over the field space, kλ = δ(⋆Fλ) or kλ = δ(Fλ) where λ = 1. In gravity, the
energy E and angular momentum J can be written as

E, J =

∫
S

Kξ[gµν ], Kξ[gµν ] =

∫ g

ḡ

kξ[δgµν ; gµν ] (6)

where, explicitly, [30]

Kξ[gµν ] =
(dn−2x)µν

8πG

[√
−gDµξν −

√
−ḡD̄µξν +

∫ g

ḡ

√
−gξµ(Dαδgνα −Dνδgαα)

]
. (7)

Let us now discuss asymptotic symmetries at asymptotic or finite boundaries. One can distin-
guish two categories of boundary conditions:

1. Asymptotically closed boundary conditions are defined as boundary conditions with no en-
ergy flux. For example, spatial infinity in asymptotically flat spacetimes by definition cannot
be reached by any finite energy [36]. The asymptotic boundary of anti-de Sitter can be
reached by finite energy but standard boundary conditions do not allow a flux through the
boundary [27,37]. Another example is null infinity in three-dimensional Einstein gravity.
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2. Asymptotically open boundary conditions are defined as boundary conditions with a flux of
energy through the boundary (either ingoing or outgoing). The prime example is null infinity
in the presence of massless matter or gravity [13, 38]. Another example is “leaky” anti-de
Sitter spacetime which needs to be glued to an exterior geometry [39].

Let us first discuss the case of closed boundaries. The standard definition of an asymptotic sym-
metry is as follows. One requires that δΦi = Ri

λ[Φ] → 0 in a suitable way towards the boundary
and that the associated surface charge Qλ be finite and conserved. The asymptotic symmetry
group is then defined as the quotient (1). The associated charges then form an algebra [8, 11,26]

{Qλ1 , Qλ2}[Φ] = Q[λ1,λ2][Φ− Φ̄] +Kλ1,λ2 [Φ̄] (8)

under the Peierls bracket [40] where Kλ1,λ2
[Φ̄] is the central extension that only depends upon the

reference background Φ̄i with respect to which the surface charges are defined. The requirement
of fall-off δΦi = Ri

λ[Φ] → 0 is now often waived in favor of just requiring the charges to be finite
and conserved, which is what is ultimately physical.

In the second case of open boundary conditions, the infinitesimal surface charges kλ[δΦ;Φ]
are not integrable in the sense that δkλ[δΦ;Φ] 6= 0. They can be split into an integrable and a
non-integrable part as δKλ[Φ] + Ξλ[δΦ;Φ] [15, 41] but a prescription is then required to uniquely
identify the integrable part with the final surface charge [42]. This prescription has been related
to boundary conditions and associated boundary actions in [35]. The charges Qλ =

∫
S
Kλ are

required to be finite (allowing a renormalization procedure using counterterms). They also obey
an algebra [41,43]. We will now turn to the description of explicit cases.

2 Celestial asymptotic symmetry groups
The asymptotic boundary of Minkowski spacetime in n dimensions consists of five parts: future
and past null infinities I±, future and past timelike infinities: Euclidean AdSn−1 or EAdSn−1

(with degenerate n− 2 sphere at r = 0 in standard coordinates) usually denoted i±, and spacelike
infinity: dSn−1 or i0 (with smallest sphere at t = 0 in standard coordinates). Near I+ we use
retarded coordinates (u, r, xA) and near I− we use advanced coordinates (v, r, xA), where r is the
radial coordinate, u = t − r is retarded time while v = t + r is advanced time. For n = 4, xA
are coordinates on S2, that can be taken to be the complex stereographic coordinates (z, z̄) with
z = eiϕ tan θ

2 , z̄ = z∗. We define I± as the limit as r → ∞ with (u, xA) or (v, xA) fixed. In these
charts the metric takes the form

ds2 = −du2 − 2dudr + r2γABdx
AdxB ; (9)

ds2 = −dv2 + 2dvdr + r2γABdx
AdxB , (10)

where γAB is the Sn−2 round metric. Following [44], we also define the boundaries of I+ to be the
spheres I+

± defined as the limit u→ ±∞ taken after r → ∞ and similarly we define the boundaries
of I− to be I−

± defined as the limit v → ±∞ taken after r → ∞, see Figure 1.
The retarded and advanced coordinates are not appropriate to describe i0 and i±. For these

boundaries we employ a hyperbolic slicing of Minkowski spacetime [37, 47]. Near i0 we introduce
coordinates (τ, ρ, xA) where t = ρ sinh τ and r = R + ρ cosh τ , for large R, with i0 being defined
as the ρ → ∞ limit. Near i± we introduce coordinates (τ̂ , ρ̂, xA) where t = ±T + τ̂ cosh ρ̂ and
r = τ̂ sinh ρ̂, for large T , and then i± are defined as the surfaces τ̂ → ±∞. In these two charts the
metric reads, respectively, as

ds2 = dρ2 + ρ2
(
−dτ2 + cosh2 τ γABdx

AdxB
)
+O(ρ), (11)

ds2 = −dτ̂2 + τ̂2
(
dρ̂2 + sinh2 ρ̂ γABdx

AdxB
)
+O(τ̂). (12)
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Figure 1: Penrose diagrams of Minkowski spacetime. On the left: Penrose diagram with sample
light cone. Vertical curves have constant t while horizontal curves have constant r in standard
Minkowski coordinates. The n − 2 angular dimensions are suppressed. On the right: Massive
particles travel from i− to i+, whereas massless particles travel at 45o incident angle between
I− and I+. Advanced (v = t + r) and retarded u = t − r coordinates (together with angular
coordinates) span the boundaries I− and I+, respectively. [45, 46]

Let us end with a general remark on the space of fields in Minkowski spacetime. In Minkowski
spacetime in spacetime dimension d ≥ 4, the infrared structure of any propagating field at each
asymptotic boundary can be decomposed in terms of multipole moments which appear at higher
and higher subleading orders in the expansion from each boundary. In that sense, there is an
infinite amount of holographic fields dual to a propagating field in Minkowski spacetime. This is
very different than in anti-de Sitter spacetime where only two holographic fields (the “source field”
and its “vacuum expectation value”) appear in the radial expansion from the boundary [48].

2.1 4d QED - U(1) Kac-Moody

We now consider QED by first looking only at the gauge potential Aµ. We work in the gauge
fixing approach and gauge fix to radial gauge and boundary temporal gauge:

Ar = 0, Au|I+ = 0. (13)

A gauge transformation has the form δλAµ = e2∂µλ and it preserves radial gauge when λ = λ(xA).
In solution space, at I+

± , the field configuration is pure gauge A±
A(x

B) = e2∂Aϕ
+
±(x

B) and the gauge
invariant difference ϕ++(xA)−ϕ+−(xA) characterizes the electric memory effect [49,50]. The only field
left undetermined from Fµν is ϕ+−(xA) and it transforms inhomogeneously under non-trivial gauge
transformations, δλϕ+−(xA) = λ(xA), which allows its identification as the Goldstone boson of the
spontaneously broken large gauge symmetry [51]. There is a dual analogue to this construction.

After using the definition of the canonical charge and the field equations, the Noether charge
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Q+
λ associated to the gauge transformation with parameter λ is

Q+
λ =

1

e2

∫
I+
−

√
γd2zλFru (14)

=

∫
S2

√
γd2zλDCDC(ϕ+ − ϕ−)︸ ︷︷ ︸

Soft/Memory Part

+

∫
I+

du
√
γd2zλju︸ ︷︷ ︸

Hard Part

, (15)

where ju is a possible massless U(1) current sourced by charged matter. Since this contribution
admits a finite charge it is called the “hard” part. The first term has not monopole charge because
when λ = 1 the integrand is a total derivative and the integral vanishes from Stokes’ theorem.
Yet, there is a non-trivial contribution for arbitrary λ which is sourced by ϕ+ − ϕ−, also sourcing
the electric memory effect. For this reason it is called the soft or memory part. The associated
asymptotic symmetry algebra is abelian {Q+

λ , Q
+
λ′} = 0.

We can do the same analysis on I−. It relates to the one we have outlined above at I+

after imposing junction conditions at spatial infinity. One requires that ϕ+−(xA) be antipodally
matched to the corresponding ϕ−+(xA) and that the asymptotic symmetries preserve this matching.
The antipodal matching is necessary for the scattering problem to be well-defined and Lorentz
invariant [51] and it has been verified in the Liénard-Wiechert solution [3]. It can also be understood
directly from a Hamiltonian analysis from twisted parity conditions at the constant t surface at
r → ∞ (also known as spatial infinity i0) [52] or from a Lagrangian analysis from the behavior of
waves on the boundary dS3 [53] .

We illustrate the inclusion of massive fields with a massive charged scalar φ. The field equations
are ∇νFµν = Jµ and (−DµD

µ+m2)φ = 0 where Jµ = ieφ(Dµφ)
∗+ c.c. and Dµφ = ∂µφ− ieAµφ.

In this case the relevant Cauchy surface is Σ+ = I+ ∪ i+, with i+ represented as Euclidean AdS3

via the hyperbolic slicing, and with ∂i+ matched with I+
+ locally at each angle xA [47]. In order

to have consistency between I+ and i+ radial gauge is not convenient and we instead gauge fix to
Lorenz gauge ∇µAµ = 0. Residual gauge transformations δλ̃Aµ = e2∂µλ̃ and δλ̃φ = iλ̃φ are now
constrained by □λ̃ = 0.

At I+ the gauge parameter λ̃ still asymptotes to a function λ(xA) of the angles while at i+ it
asymptotes to a function λH(ρ, xA) on EAdS3 constrained, by the residual gauge condition □λ̃ = 0
and by compatibility with the value of λ̃ at I+, to be a solution of the problem

∆λH = 0, lim
ρ→∞

λH(ρ, xA) = λ(xA), (16)

where ∆ is the Laplacian on EAdS3 and its coordinates are defined with ρ→ ∞ reaching ∂i+ [47].
This problem is solved by a scalar bulk-to-boundary propagator applied to λ(xA) in a manner
analogue to the AdS3 propagator [48,54].

The Noether charge that follows from the covariant phase space procedure still has the same
expression given in Eq. (14) as a surface integral over ∂Σ+ = I+

− . However, when rewritten as a
codimension 1 integral over Σ+ we have a new contribution from the massive field at i+: [47, 55]

Q+
λ =

∫
S2

√
γd2zλDCDC(ϕ+ − ϕ−)︸ ︷︷ ︸

Soft/Memory Part

+

∫
I+

du
√
γd2zλju︸ ︷︷ ︸

Hard Massless Part

+

∫
i+
dρdΩ

√
qλHjτ︸ ︷︷ ︸

Hard Massive Part

, (17)

where λH is implicitly written in terms of λ(xA) through the bulk-to-boundary propagator [3,47].
We close this discussion with a comment on an alternative set of asymptotic symmetries in

QED known as multipole symmetries. In this case the gauge parameter is of the form λℓm(r, xA) =
rℓYℓm(xA) and the surface charges Q+

ℓ,m for an electrostatic field are the electric multipole moments
[56]. The asymptotic symmetry algebra is again a U(1) Kac-Moody algebra.
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2.2 3d flat gravity - BMS3

Three-dimensional asymptotically flat gravity is trivial in the sense that there is no propagating
degree of freedom and no black hole, according to Ida’s theorem [57]. Yet, it is non-trivial in the
sense of boundary dynamics or asymptotic symmetries: one can still define boundary conditions
such that the asymptotic symmetry group is non-trivial. In addition, while there is no Newtonian
attractive potential in 3d gravity, there are still spinning massive particles that are defined as
conical defects, with a time twist in the presence of angular momentum.

Let us review this asymptotic structure in the gauge fixing approach and in the Lagrangian
formalism for the metric field gµν . The action is the Einstein-Hilbert action. We will first define
the space of solutions at null infinity in Newmann-Unti gauge or, equivalently, as we will show, in
Bondi gauge, and derive the asymptotic symmetry charge algebra for given boundary conditions.
We will then investigate spatial infinity and derive boundary conditions that are consistent with
the antipodal identification of the symmetry groups between I+ and I−.

We denote the spacetime coordinates as (u, r, ϕ). In the following, µ, ν will stand for spacetime
indices while A,B will stand for sphere indices. We impose the so-called Newman-Unti gauge
condition

grr = grϕ = 0, gru = −1. (18)

As we will see in a moment, the imposition of boundary conditions will result in gϕϕ = r2 and the
radial coordinate will also equal the luminosity distance in the sense of [14] and the gauge fixing
will be equivalent to Bondi gauge.

Consistently with the inclusion of Minkowski spacetime and spinning conical defects, we impose
the following boundary conditions [58]

guu = O(r0), guA = O(r0), gϕϕ = O(r). (19)

We will need to check whether the conserved quantities will be finite given these boundary condi-
tions.Given this gauge choice and boundary conditions, the most general form of a metric solving
Einstein’s equation can be written as follows [15,59]

ds2 = Θ(ϕ)du2 − 2dudr + 2
[
Ξ(ϕ) +

u

2
∂ϕΘ(ϕ)

]
dudϕ+ r2dϕ2. (20)

The phase space of the theory is then the set of all such metrics parameterized by the 2 functions Θ
and Ξ on the circle. The residual symmetries preserving the gauge choice and boundary conditions
can be deduced from the condition

Lξgµν(Θ,Ξ) = gµν(Θ + δξΘ,Ξ + δξΞ)− gµν(Θ,Ξ), (21)

which is imposed at linear order in the vector ξµ. It implies in particular Lξgrµ = 0. The general
solution to Eq. (21) is then

ξµ∂µ :


ξu = T (ϕ) + u∂ϕR(ϕ);

ξr = −r∂ϕR(ϕ) + ∂2ϕT + u∂3ϕR(ϕ)− 1
r (∂ϕT + u∂2ϕR)(Ξ + u

2∂ϕΘ);

ξϕ = R(ϕ)− 1
r∂ϕT − u

r ∂
2
ϕR(ϕ).

(22)

Here, the supertranslations are generated by T and superrotations by R. If we define the modes
by,

Pm = ξ(T = eimϕ, R = 0), Jm = ξ(T = 0, R = eimϕ), (23)
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it is easy to see that we get the following asymptotic algebra under the standard Lie bracket [60]

i [Pm, Pn] = 0, (24)
i [Jm, Jn] = (m− n)Jm+n, (25)
i [Jm, Pn] = (m− n)Pm+n. (26)

In fact, the algebra can even be promoted to be exact at any r given the exact form (22) but the
Lie bracket [ξ, η] needs to be enhanced to the adjusted Lie bracket [ξ, η]∗ = [ξ, η]− δξη+ δηξ which
takes into account the field dependence (here in Ξ(ϕ), Θ(ϕ)) of the vector fields [15].

The action of the vector fields can be understood as transformations directly on the solution
space using (21) from which we get,

δT,RΘ = R∂ϕΘ+ 2Θ∂ϕR− 2∂3ϕR, (27)

δT,RΞ = R∂ϕΞ + 2Ξ∂ϕR+
1

2
T∂ϕΘ+Θ∂ϕT − ∂3ϕT. (28)

By virtue of (27), Θ belongs to the coadjoint representation of Diff(S1). The above equations
simplify when written in terms of simpler fields. With insight [61], we define the superrotation
field Ψ(ϕ), which is invariant under supertranslations and transforms under superrotations as,

δT,RΨ = R∂ϕΨ+ ∂ϕR. (29)

This implies that Θ = (∂ϕΨ)
2−2∂2ϕΨ+8GMe2Ψ, which gives it the form of a Liouville stress tensor.

The parameter M is exactly the charge conjugate to P0 = ∂t. For Ψ = 0, we have Θ0 = 8GM
and M , which corresponds to the total conical defect, cannot be generated by a diffeomorphism.
Similarly, for the other transformation, we can introduce a supertranslation field C, from which
we define Ξ as

Ξ = Θ∂ϕC − ∂3ϕC + 4GJe2Ψ +
1

2
∂ϕΘC. (30)

This along with the previous equation fixes the transformation of the C field as,

δT,RC = T +R∂ϕC − C∂ϕR. (31)

Like M , the zero mode Ξ0 = 4GJ is recognized after computing the charges as determined by the
angular momentum J conjugate to −∂ϕ. As a summary, the field space is now parameterized by
the supertranslation field C(ϕ), the superrotation field Ψ(ϕ), and the zero modes J and M .

Given the symmetry algebra, we can find the corresponding generalized Noether charges and
compute the corresponding algebra. The expression of the charge (6) with convention ϵurϕ = 1
gives

Pn =
1

16πG

∫ 2π

0

dϕ (Θ(ϕ) + 1) einϕ, (32)

Jn =
1

8πG

∫ 2π

0

dϕΞ(ϕ) einϕ. (33)

Using the bracket algebra defined as [Qξ, Qξ′ ] = δξ′Qξ and the transformation laws (29)-(31), we
get the following charge algebra [58]

i [Pm,Pn] = 0,

i [Jm,Jn] = (m− n)Jm+n, (34)

i [Jm,Pn] = (m− n)Pm+n +
1

4G
m(m2 − 1)δm+n,0,

9



where we now have a central extension. This is due to the third derivative terms in the transfor-
mation of Θ and Ξ in (27), (28). In 3 dimensions, the angular momentum is dimensionless while
the momentum has dimension inverse length. The central has therefore dimension inverse length.
Only the generators corresponding to the exact Killing generators of the Poincare algebra iso(2, 1)
generated by P0,P−1,P1, J−1,J0,J1 do not have a central extension. In the quantum theory,
i times the Peierls bracket i[_,_] is the quantum commutator. The above algebra can also be
obtained from a Inönü-Wigner contraction of the Virasoro × Virasoro algebra [27] that arises as
the symmetry group for asymptotically anti-de Sitter spacetimes [58] .

To complete the story, we investigate the asymptotic region of spatial infinity. While there is
considerable physical justification for the antipodal map that relates the BMS group BMS+ at I+

to the BMS group BMS− at I− [44], it is interesting to see whether one can derive this map from
a fundamental perspective. Spatial infinity is the place to look at since it is bounded by I+

− the
past boundary of I+ and I−

+ the future boundary of I−. Hyperbolic gauge is reached using the
gauge fixing conditions

gρρ = 1, gρτ = gρϕ = 0. (35)

The boundary conditions specifying the set of asymptotically flat spacetimes at spatial infinity are

gττ = O(ρ2), gτϕ = O(ρ2), gϕϕ = O(ρ2). (36)

In particular, the Minkowski metric is ds2 = dρ2 + ρ2
(
−dτ2 + cosh2 τ dϕ2

)
, with the usual

Minkowski time and radius is given by r = sinh τ, r = ρ cosh τ . The general exact solution in
this gauge can be written down as

ds2 = dρ2 +
(
ρ2h

(0)
ab + ρh

(1)
ab + h

(2)
ab

)
dxadxb, (37)

where the entire metric can be reconstructed from two holographic ingredients (this is specific
to 3d gravity!): the boundary metric h(0)ab and the boundary stress-tensor T ab (a, b running over
boundary coordinates) as

h
(1)
ab = Tab − h

(0)
ab h

(0)
cd T

cd, h
(2)
ab =

1

4
h(1)ac h

cd
(0)h

(1)
db . (38)

Einstein’s equations imply that the boundary metric is locally dS2 with boundary Ricci scalar
R(0) = 2, and that the stress-tensor is conserved DaT

ab = 0. Here Da is the boundary covariant
derivative with respect to h(0)ab and indices are raised with the inverse boundary metric hab(0). The
trace of the stress-tensor is not fixed, contrary to the analogous Fefferman-Graham expansion in
AdS3 [62].

To have a well-defined variational principle (and obtain integrable charges) however, one needs
to impose additional boundary conditions which are chosen as [63]

h
(0)
++ = h

(0)
−− = 0, T+− = 0. (39)

where we defined the boundary lightcone coordinates x± = τ ± ϕ. The most general boundary
metric is then given by,

ds2(0) = − 2∆2∂+X
+∂−X

−

cos (∆(X+ +X−)) + 1
dx+dx−, (40)

where X+ = X+(x+) and X− = X−(x−) are chiral functions and ∆ is the conical defect in the
boundary de Sitter space. We also have that 0 < ∆ ≤ 1 where ∆ = 1 is equivalent to the absence
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of defect. After computing the change of coordinates to Bondi gauge, one observes that preserving
asymptotic flatness at the future and path null infinities in the sense of (19) requires the following
identification of the fields

X−(x) =
π

∆
−X+

( π
∆

− x
)
+

2π

∆
k, ∀x, (41)

where k ∈ Z labels disjoint BMS orbits. The metric is then given by

ds2 = dρ2 + 2h
(0)
+−

(
ρdx+ +

Ξ−(x
−)

2h
(0)
+−

dx−

)(
ρdx− +

Ξ+(x
+)

2h
(0)
+−

dx+

)
. (42)

At this point the phase space is characterised by 3 independent null boundary fields X+(x+),
Ξ+(x

+), Ξ−(x−). However only a particular combination of Ξ± appears in the charges which
implies that Ξ− can be considered pure gauge. The fields at spatial infinity are finally related to
the fields on null infinity in Bondi gauge in the following way,

Ξ(ϕ) =
1

2

[
Ξ+

( π

2∆
+ ϕ

)
− Ξ−

( π

2∆
− ϕ

)]
, (43)

Θ(ϕ) = (∂ϕΨ(ϕ))
2 − 2∂2ϕΨ(ϕ)−∆2e2Ψ(ϕ), (44)

where eΨ(ϕ) ≡ ∂ϕX
+
(

π
2∆ + ϕ

)
. The BMS3 algebra is therefore realised at spatial infinity. The

antipodal map between I+
− and I−

+ in the absence of defect, ∆ = 1, follows from the fact that
null fields such as X+(x+), Ξ±(x

±) propagate on dS2 from ϕ to ϕ+ π from the past to future of
dS2 [63].

2.3 4d flat gravity - BMS4 and more
The motivation is study asymptotically flat spacetimes in 3+1 dimensions is obvious. It describes
the physics of localized objects and events in gravity below cosmological scales. Many approaches
have been developed over the years, especially since the sixties, to study such classes of spacetimes
and many recent developments took place following in particular the seminal works of Barnich-
Troessaert [64] and Strominger [44].

Contrary to 3 dimensions, asymptotically flat spacetimes in 4 dimensions admit 2 polarisation
modes of gravitational waves, attractive gravitational potentials and black holes. Such classes of
spacetimes cannot be written in an exact form and expansions close to boundaries are required.
We will follow here the gauge fixing approach within the Lagrangian formalism for the metric field.

Let us first consider future null infinity. We introduce retarded spherical coordinates (u, r, θ, ϕ)
and impose the following boundary conditions,

guu = O(r0), gAB = O(r2),
√
det(gAB) = r2

√
det(q̄AB) +O(r1), (45)

where q̄AB is the unit sphere metric. The last condition on the determinant can be further relaxed,
which leads to additional Weyl asymptotic symmetries [65], but we shall not consider such an
extension here. Consistently with Einstein’s equations, a diffeomorphism exists [33] such that
gAB = r2q̄AB + O(r) which is the standard asymptotically flat coordinate system. However, it is
instructive to consider the more general set of coordinates (45) precisely because the diffeomorphism
reducing the metric to standard form is non-trivial in the sense that it is associated with non-
vanishing charges and flux-balance laws.

Assuming these boundary conditions and past stationarity, i.e. the absence of any gravitational
radiation past a fixed retarded time u = −T , future null infinity is asymptotically simple in the
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sense of Penrose [17], and can be charted by a large class of coordinate systems that admit an
expansion in terms of inverse radial powers [66]. We will work with the following gauge choice,

grr = 0 = grA, gru = −1, (46)

which is called Newman-Unti gauge. This is equivalent [67] to another gauge choice that is com-
monly used, called Bondi gauge where the last condition gru = −1 is replaced by,

∂r

(
det(gab)
r4

)
= 0. (47)

The asymptotic solution to Einstein’s equation with these boundary conditions and this gauge
choice is then given by [13–15]

ds2 = − R̊
2
du2 − 2dudr + r2qABdx

AdxB (48)

+
2m

r
du2 + rCABdx

AdxB + . . . (49)

+
1

r

4

3
NAdudx

A + . . . (50)

where R̊ is the 2d curvature associated to the metric on the 2-sphere qAB , m is called the Bondi
mass aspect, and the NA is called the angular momentum aspect. The CAB is a symmetric
traceless tensor called the shear, which contains the 2 polarization modes of the gravitational
waves at leading order in the asymptotically flat region at null infinity. It is not fixed by Einstein’s
equations in the expansion around null infinity and is rather fixed by the source producing the
radiation [68–71]. The Bondi news is given by NAB = d

duCAB = ĊAB . Any metric of the sphere
qAB can be written as a Weyl transformation combined with a 2-diffeomorphism xa 7→ Ga(xb)
applied on the complex plane metric γab as qAB = e−Φ∂AG

a∂BG
bγab. Imposing the last boundary

condition (45) fixes Φ in terms of det(q̄AB) and Ga. We call Φ the superboost field. The 2d Ricci
scalar of qAB is then given by R̊ = DADAΦ where DA is the covariant derivative compatible with
the metric qAB . For a 2d metric, the analogue of the Weyl tensor is the trace-free part of the
Liouville stress-tensor built from Φ that we name Nvac

AB = [ 12DAΦDBΦ − DADBΦ]
TF and which

corresponds up to a trace to the Geroch tensor [36]. In standard coordinates where qAB = q̄AB ,
this tensor vanishes: Nvac

AB = 0.
The residual gauge transformations that obey Lξgrµ = 0 and the boundary conditions (45) are

parameterized by 3 functions on the celestial sphere,

T (θ, ϕ), RA(θ, ϕ), A = θ, ϕ. (51)

Here T corresponds to supertranslations and RA is associated to super-Lorentz2 transformations.
Since the charges associated with these residual transformations are finite (after necessarily non-
covariant [72] renormalization [33] in the case of super-Lorentz charges), all residual transforma-
tions are asymptotic symmetries [15, 41, 47, 64]. In the following we will consider the classical
asymptotic symmetry group where all functions are regular over the sphere such that the associ-
ated charges are finite. Punctures are necessary in the quantized theory and poles in stereographic
coordinates z = cot θ

2e
iϕ and z̄ = cot θ

2e
−iϕ are then allowed3.

2In most of the literature these are called superrotations. We find however convenient to denote the divergence-
free (DARA = 0) generators as superrotations and the curl-free generators (ϵAB∂ARB = 0) as superboosts which
generalize the rotations and boosts, respectively.

3The restriction to holomorphic and anti-holomorphic functions for the super-Lorentz transformations is often
considered, as in the original work [64] or in [73]. Non-holomorphic functions are required for the correspondence
between subleading soft theorems and super-Lorentz transformations [16]. Relationships between Diff(S2) and the
Virasoro×Virasoro algebra have been established using so-called shadow transforms [74]. The higher dimensional
generalization to Diff(Sn−2) is natural while there is no known generalization of the group of holomorphic and
anti-holomorphic super-Lorentz transformations.
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The supertranslation vector fields are given by,

ξ(T ) ≡ T (θ, ϕ)∂u +
1

2
DADAT∂r −

1

r
∂AT∂A + . . . , (52)

where dotes indicate subleading terms in r that enforce the gauge fixing conditions. These vector
fields form an abelian ideal of the full BMS4 algebra to be detailed below. Their associated Noether
charge is the Bondi mass aspect with a correction, M(u, xA) = m(u, xA) + 1

8CAB(u, x
A)NAB

vac (x
A)

[13, 38]

QT (u) =

∫
S2

d2ΩT (xA)M(u, xA), (53)

where the measure over the sphere is d2Ω =
√

det(q̄AB)d
2x. The four lowest harmonics of T

correspond to the four translations, which are associated with the four lowest harmonics of m: the
l = 0 harmonic corresponds to a time translation, while the l = 1 modes correspond to spatial
translations. For Minkowski, the constraint equations on m and NA obtained from Einstein’s
equations fix M = 0.

The (super-)Lorentz vector fields are given by,

ξ(R) ≡
(
RA − u

2r
DADBR

B +O
(

1

r2

))
∂A +

1

2
uDAR

A∂u +

(
−1

2
(r + u)DAR

A +O
(
1

r

))
∂r,

(54)

where RA in general can be decomposed as RA = ϵAB∂Bϕ+∂
Aψ, with the first term corresponding

to (super)rotations and the second term corresponding to (super)boosts. After renormalization
and a choice of prescription, their associated Noether charge is the Bondi angular momentum
aspect NA(u, x

A) plus a given correction:

QR(u) =

∫
S2

d2ΩRA(xA) NA(u, x
A), (55)

where NA = NA+ . . . . There are several conventions for defining NA from the metric, and several
nonequivalent prescriptions for defining the correction to NA in the literature at fixed finite u,
see [39, 41, 65, 70, 75–77]. The 6 lowest harmonics give the usual Lorentz charges - the angular
momenta and center-of-mass.

The (generalized) BMS algebra of the vector fields (52)-(54) reads as

[ξ(T1), ξ(T2)]∗ = 0,

[ξ(R1), ξ(T2)]∗ = ξ(T̂ ), T̂ = RA
1 ∂AT2 −

1

2
DAR

A
1 T2,

[ξ(R1), ξ(R2)]∗ = ξ(R̂), R̂A = RB
1 ∂BR

A
2 −RB

2 ∂BR
A
1 ,

(56)

where [ξ, η]∗ = [ξ, η]− δξη + δηξ is the adjusted Lie bracket [15]. This BMS algebra is represented
at the level of the charges Qξ but with a non-standard Peierls bracket due to the non-conservation
of these charges along u [39, 41, 43, 78]. In particular, the bracket {QT=∂u , Qξ} is equivalent to
the flux-balance laws that dictate the u evolution of the Bondi mass and angular momentum
aspects [67], which follow from Einstein’s equations in Bondi or Newmann-Unti gauge.

What we have seen so far is the symmetry at I+ and it is clear that there is a similar story
at I− when analysed in advanced coordinates (v, r, θ, ϕ). In order to define scattering from I− to
I+, it is necessary to define junction conditions between the fields at I− and I+ at spatial infinity.
Strominger proposed to relate antipodally (on the 2-sphere) the charges at I+

− and the charges at
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I−
+ in accordance with CPT and Lorentz invariance [44]. For the charges with lowest harmonics

this can also be justified from consistency with the boosted Kerr black hole4. For the restricted
BMS group without super-Lorentz transformations, boundary conditions were found using the
Hamiltonian framework at spatial infinity which implements this antipodal map [79, 80]. When
the generalized BMS group can act, the boundary conditions at I+

± are given by

CAB = (u+ C±)N
vac
AB − 2DADBC± + qABD

EDEC± + o(u0),

NAB = Nvac
AB + o(u−1),

(57)

as u → ±∞ where M(θ, ϕ) = C+(θ, ϕ) − C−(θ, ϕ) is the supertranslation-invariant displacement
memory field which sources the displacement memory effect [81]. These boundary conditions can be
derived from the BMS orbit of Minkowski spacetime (i.e. the metric resulting from a general finite
BMS diffeomorphism acted on Minkowski) whose Riemann-flat metric takes the exact form [82–84]

ds2 = − R̊
2
du2 − 2drdu+ (r2qAB + rCvac

AB +
1

8
Cvac

CDC
CD
vac qAB)dx

AdxB +DBCvac
ABdx

Adu. (58)

Here the vacuum shear is given by Cvac
AB = (u+C)Nvac

AB−2DADBC+qABD
CDCC. The field C(xA)

is either C±(x
A) depending on whether one considers the initial or final vacuum. This is the 4d

analogue of the 3d metric (20). Transitions between vacua are generated in general relativity by
gravitational wave radiation.

The leading and subleading soft graviton theorems are essentially the Ward identities of the
BMS symmetries. One defines the total fluxes at I+ as

F+
ξ = Qξ|I+

+
−Qξ|I+

−
=

∫ +∞

−∞
du∂uQξ. (59)

The fluxes are similarly defined at I−. The quantization of the identities “F+
ξ = the antipodal

map of F−
ξ ” are the leading and subleading soft graviton theorems, up to a switch from position

basis to momentum basis [3]. Choosing the prescription N̄A = NA − u∂AM̄ + 1
4CABDCC

BC +
3
32∂A(CBCC

BC) where NA is defined as in [41], the BMS flux algebra is given by [39,77]

{F+
ξ(T1)

, F+
ξ(T2)

} = 0,

{F+
ξ(R1)

, F+
ξ(T2)

} = F+

ξ(T̂ )
, T̂ = RA

1 ∂AT2 −
1

2
DAR

A
1 T2,

{F+
ξ(R1)

, F+
ξ(R2)

} = F+

ξ(R̂)
, R̂A = RB

1 ∂BR
A
2 −RB

2 ∂BR
A
1 ,

(60)

where {, } is the standard Peierls bracket, which faithfully reproduces the BMS algebra of vector
fields (56). Choosing the other prescription N̄A = NA − u∂AM̄ where NA is defined as in [41]
leads instead to the well-established geometrical definition of the angular momentum Qξ(R=∂ϕ)

[41, 42,68,85–87], see [88] for a discussion.
Other gauges for asymptotically flat spacetimes at null infinity lead to alternative residual gauge

transformations, which can be associated to distinct charges. In harmonic gauge, several alternative
charges have been proposed: it was shown that the subleading soft graviton theorems are associated
with particular residual symmetries in harmonic gauge that crudely behave as ξA ∼ uRA(θ, ϕ)+. . .
[89]. It was also shown that the two infinite sets of canonical multipole moments [68] are associated
with two other subsets of residual gauge transformations in harmonic gauge, after a renormalization
procedure and a prescription [25]. Magnetically dual BMS supertranslations have also been defined

4[Strominger, private communication]
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[90–92] which however might be trivial in the sense of associated with vanishing charges for standard
asymptotically flat spacetimes [93]. At the time of finishing these lecture notes, a consistent large
set of symmetries, GL(∞,R), was found for asymptotically flat spacetimes at null infinity [94,95]
based on the structure of the infinite set of soft theorems. However, it is not clear how to obtain
this global symmetry group as asymptotic symmetry group. It seems that several coordinate
systems and dualities will be required to exhaust all possible charges of gravity in asymptotically
flat spacetimes in order to find the largest possible asymptotic symmetry group.

2.4 4d scalar field - dual U(1) Kac-Moody
The role of asymptotic symmetries for scalar fields is an interesting story. Scalar fields, similarly to
QED and gravity, admit soft theorems in which a scattering amplitude with an external massless
scalar whose energy is taken to zero can be written as a soft factor times the scattering amplitude
without the soft scalar. Correspondingly, they admit classically an infinite number of conserved
charges whose Ward identities reproduce the soft theorems [96]. While the standard formulation of
scalar fields do not admit gauge freedom, and therefore asymptotic symmetries, dual formulations
do admit asymptotic symmetries associated to local conserved charges [23,97,98]. This case justifies
the definition of the asymptotic symmetry group as the union of the asymptotic symmetries of all
formulations of the same theory related by dualities.

As a definite example, we consider the model [23] of a massless scalar field ϕ coupled to a
massive scalar χ described be the Lagrangian density

L = −1

2
(∂ϕ)2 − 1

2
(∂χ)2 − 1

2
m2χ2 +

g

2
ϕχ2. (61)

The equations of motion following from this Lagrangian are

□ϕ = −g
2
χ2, □χ−m2χ = −gϕχ. (62)

The metric is the Minkowski metric in retarded spherical coordinates ds2 = −du2 − 2dudr +
r2qABdx

AdxB . The massive scalar reaches the future timelike boundary i+ modelled as EAdS+
3

while the massless scalar reaches the null boundary I+. A combined analysis of both boundaries
is therefore required. At I+, the asymptotic fall-off conditions are given by

ϕ(u, r, xA) =
φ(u, xA)

r
+O(r−2), φ±(x

A) := lim
u→±∞

φ(u, xA). (63)

The boundary EAdS+
3 is obtained as τ → ∞ in the hyperbolic foliation of Minkowski ds2 =

−dτ2 + τ2
(

dρ2

1+ρ2 + ρ2qABdx
AdxB

)
. The fall-off conditions are given by

−g
2
χ2 =

j(ρ, xA)

τ3
+O(τ−4), (64)

ϕ =
ϕi+(ρ, x

A)

τ
+O(τ−2). (65)

The field equations (62) imply at leading order in the limit τ → ∞ that □(
ϕi+ (ρ,xA)

τ ) = j(ρ,xA)
τ3 .

The junction condition between EAdS+
3 and I+ can be written as

ϕ(ρ→ ∞, xA) = φ+(x
A). (66)

The value φ+(x
A) can then be computed from a 3d-2d bulk-to-boundary propagator sourced

by the boundary current j(ρ, xA) [23]: φ+(x
A) = 1

4π

∫
i+
d3Y j(Y )

Y ·x . Here xµ = (1, xA), Y µ =
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(
√
1 + ρ2, ρyA) is a representation of points on i+, defined so that Y 2 = 1, with d3Y the measure

on i+.
In terms of these quantities the Noether charge one may guess from the scalar soft theorem

is [96]

Q+
λ = 4π

∫
I+
−

λ(xA)φ−(x
A) (67)

= −4π

∫
I+

λ(xA)∂uφ(u, x
A)︸ ︷︷ ︸

Soft Part

+

∫
S2

d2Sλ(xA)

∫
i+
d3Y

j(y)

Y (y) · x︸ ︷︷ ︸
Hard Part

. (68)

As in the electromagnetic and gravitational case, the charge has both a soft and a hard part.
A completely analogous construction can be carried out on I− ∪ i− and compatibility between

the two boundaries, ensuring charge conservation, follows from an antipodal identification of the
scalar field near i0, namely ϕ|I+

−
(x̂) = ϕ|I−

+
(−x̂) [96] where x̂ is the unit normal to the celestial

sphere.
Let us now discuss how one can more fundamentally define this charge by promoting it as a

Noether charge associated with asymptotic symmetries after employing a duality [23]. On the one
hand, a massless scalar such as ϕ is dual to a 2-form gauge field B with field strength H = dB
related to ϕ as H = ⋆dϕ, in terms of which the massless scalar free action is written as

SB = −1

2
dϕ ∧ ⋆dϕ = −1

2
H ∧ ⋆H, H := dB. (69)

The massive field χ on the other hand is replaced by a collection of massive point particle worldlines
interacting with H

Spp + Sint = −m
∑
i

∫
dτi +

g

12m

∑
i

dτi

∫ τi

dτ ′
dxµ

dτ ′
εµνρσHνρσ(xi(τ

′)). (70)

The resulting action is therefore S = SB + Spp + Sint and since it depends just on H it has a
gauge symmetry δαB = α with any closed form dα = 0. Using H = dB = ⋆dϕ one directly obtains
α ∧ ⋆H = d(ϕ α).

The Noether charge following from this symmetry is evaluated from the covariant phase space
algorithm to be

Q+
α =

∫
I+
−

ϕα =

∫
I+

α ∧ ⋆H︸ ︷︷ ︸
Soft Part

+

∫
i+
α ∧ ⋆H︸ ︷︷ ︸

Hard Part

. (71)

If the 2-form α is not proportional to the S2 volume form the charge vanishes and the gauge
transformation is trivial. The non-trivial gauge transformations are of the form α = λ(xA)ϵ where
ϵ is the S2 volume form and therefore the covariant phase space formalism applied in this manner
really recovers the charge (67) guessed from the scalar soft theorem. Since all charges mutually
commute under the Peierls bracket (because δλH = 0), the algebra is abelian: it is a U(1) Kac-
Moody algebra, {Qλ, Qλ′} = 0.

3 Frontiers in gravity
3.1 Higher dimensions
Asymptotically flat spacetimes in dimensions higher than 4 are not obvious generalizations of the
cases d = 3, 4. First, there is a qualitative distinction between even and odd spacetime dimensions
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which can be simply explained as follows. Massless fields reaching future null infinity are governed
by the retarded Green function which is a solution to

∂2tG−
d∑
i

∂2iG = δ(t− t0)δ(r⃗ − r⃗0). (72)

In even dimensions, the retarded Green function takes the form G(t, r) = 1
4π

(
− 1

2πr∂r
) d−3

2
(∂(t−r)

r

)
which can be expanded for large radius as a polynomial expansion in r. Instead, in odd dimensions,
the retarded Green function takes the form G(t, r) = θ(t)

2π

(
− 1

2πr∂r
) d

2−1( θ(t−r)√
t2−r2

)
which admits non-

analytic half-integer fall-off in r in the large r limit [99]. Penrose’s conformal methods that are based
on analyticity at null infinity are therefore inapplicable in odd spacetime dimensions. Asymptotic
analyses can still be performed using the gauge-fixing approach where explicit coordinates allow
to treat even non-analytic asymptotic behavior.

The asymptotic symmetry group of asymptotically flat spacetimes at null infinity in even d > 4
has been first obtained to be the Poincaré group and nothing else using conformal compactification
techniques [100–103]. However, a closer analysis revealed further structure.

A noticeable feature of higher dimensional gravity is that the Newtonian potential falls off as
r3−d at null infinity in the limit r → ∞ while the radiation falls off much slower as r1− d

2 . Only
in d = 4 these two fall-off conditions agree but in higher dimensions, the radiation is leading.
The asymptotic symmetries are not associated with the radiative fall-off, but instead with the
Newtonian fall-off.

The standard translations are given by ξ = T (xA)∂u+. . . where T (xA) = 1 for time translations
and T obeys (∆ + d − 2)T (xA) = 0 for spatial translations where ∆ = DAD

A is the Laplacian.
The charges associated with these asymptotic symmetries are the finite momenta. The Bondi
mass aspect can be defined in Bondi gauge as the following component of the Weyl tensor at
I+: m = rCruru. The supermomentum charges or supermomenta are then defined as Qξ =∫
S
dΩm(u, xA)T (xA) where T (xA) is an arbitary function over the sphere. Quite naturally, one

can promote these charges as Noether charge associated with supertranslations of the form ξ =
T (xA)∂u + . . . [58, 104,105].

Another development arises from the displacement memory effect [106–108]. The leading dis-
placement memory also appears at the same order r3−d as the Newtonian order which is again
lower than radiative orders r1− d

2 for d > 4 contrary to d = 4. One can identify a component of
the metric in the radial expansion close to I+ in harmonic gauge lets say φ such that the leading
displacement memory is sourced by the difference between the future and past values of the field
at null infinity: M = φ|I+

+
− φ|I+

−
. By definition of memory, i.e. a transition between two vacua,

there exists a gauge transformation such that δξφ|I+
+
= δξφ|I+

−
since in a given asymptotic vacuum,

the field φ is pure gauge while the source of the memory M is gauge invariant. After analysis,
this gauge transformation reads in harmonic gauge as ξ = r4−d∆(∆ + d − 2)T (xA)∂u + . . . . It
is in a sense a subleading supertranslation. Its associated charge is vanishing as Qξ = O(r4−d)
and subleading supertranslations are therefore not asymptotic symmetries in the standard sense
of being associated with finite charges.

The status of super-Lorentz transformations in higher dimensions is murkier. The natural
candidate as super-Lorentz group is Diff(Sd−2). The angular momentum in the Myers-Perry black
hole solution (the generalization to higher dimensions of the Kerr black hole) appears at order r2−d

[109]. After renormalization, we expect that one can define finite surface charges associated with
generators ξ = RA(xB)∂A + . . . of the form Qξ =

∫
dΩNA(u, x

B)RA(xB) [110–112]. Subleading
memory effects have not yet been studied.

Asymptotic symmetries and charges of scalars theories, Maxwell theory, Einstein gravity and
linear higher spin fields were further studied in both even and odd dimensions in [110,111,113–117].
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3.2 Supersymmetric extensions
Given the occurrence of infinite dimensional symmetry groups as bosonic asymptotic symmetry
groups, it is very natural to ask what the supersymmetric extensions of these groups are and which
of these extensions are realized as asymptotic symmetry groups of supersymmetric gauge and
gravity theories. The motivation comes essentially from the fact that all known exact holographic
dualities involve a high level of supersymmetry. Finding supersymmetric extensions of the BMS
group brings celestial holography closer to achieving its goals. We will restrict our comments only
on the cases of gravity in 3 and 4 dimensions.

3.2.1 N = 1 super-BMS3 from N = 1 3d supergravity

Extended N > 1 BMS3 algebras have been formulated and have been realized within extended
supergravities at future (or past) null infinity. The N = 1 super-BMS3 algebra realized in terms
of surface charges under the Peierls bracket is the union of its bosonic part [58] which we already
discussed in Eq. (34),

i{Pm,Pn} = 0;

i{Jm,Jn} = (m− n)Jm+n +
c1
12
m3δm+n,0, c1 = 0;

i{Jm,Pn} = (m− n)Pm+n +
c2
12
m3δm+n,0, c2 =

3

G
,

(73)

and its fermionic part (Qn is Grassmann odd) [118–120]

i{Pm,Qn} = 0,

i{Jm,Qn} = (
m

2
− n)Qm+n,

{Qm,Qn} = Pm+n +
c2
6
m2δm+n,0, c2 =

3

G
.

(74)

It is realized as asymptotic symmetry group of the simplest theory of 3d supergravity [120]. Larger
supersymmetric extensions have been considered in [121–131].

3.2.2 N = 1 super-BMS4 from N = 1 4d supergravity

We discussed the BMS4 asymptotic symmetry algebra of asymptotically flat spacetimes at future
(or past) null infinity in Section 2.3. We now extend the smooth supertranslations and the Diff(S2)
super-Lorentz generators to arbitrary functions of the stereographic coordinates z, z̄ which include
poles on the sphere. We then consider the subalgabra where the super-Lorentz generators are
restricted to meromorphic and anti-meromorphic functions such that T = T (z, z̄) but Rz = Rz(z)
and Rz̄ = Rz̄(z̄). The asymptotic symmetry vector fields depending upon these generators can be
extended in modes as

Pk,l = zk+
1
2 z̄l+

1
2 ∂u + . . . , lm = −zm+1∂z + . . . , l̄m = −z̄m+1∂z̄ + . . . , (75)

where the dots are tuned such that the vectors preserve Bondi gauge and k, l,m ∈ Z. They obey
the so-called extended BMS4 algebra [64]

[lm, ln] = (m− n)lm+n, [l̄m, l̄n] = (m− n)l̄m+n,

[lm, Pk,l] = (
1

2
m− k)Pm+k,l, [l̄m, Pk,l] = (

1

2
m− l)Pk,m+l,

[lm, l̄n] = 0, [Pk,l, Po,p] = 0.

(76)
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One can supplement this bosonic algebra with the following fermionic part in terms of the Grassman
odd generators Gm, Ḡm, m ∈ Z to obtain the graded Lie algebra known as the N = 1 super-BMS4

algebra

{Gm, Ḡn} = Pm,n, {Gm, Gn} = {Ḡm, Ḡn} = 0 [Lm, Ḡn] = [L̄m, Gn] = 0,

[Pk,l, Gn] = [Pk,l, Ḡm] = 0, [Lm, Gk] = (
1

2
m− k)Gm+k, [L̄m, Ḡl] = (

1

2
m− l)Ḡm+l.

(77)

Such algebra is realized as asymptotic symmetry algebra of N = 1 supergravity at null infinity
[104, 132–134]. Its subalgebra without super-Lorentz generators but Lorentz generators (m,n =
−1, 0, 1; k, l ∈ Z) can also be realized at spatial infinity [135]. Note that another inequivalent
extension of the BMS4 algebra with only four fermionic generators also exists [104,136].
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