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1 Introduction

In the past few decades ever more sophisticated methods have been developed to probe
properties of quantum and gravitational systems. Key in this endeavor are scattering
amplitudes whose remarkable simplicity and hidden structure, emerging after extensive
calculations, fuel the search for new conceptual formulations. The prospect that physical
theories can be strongly constrained using general principles alone, and sometimes even solved
or bootstrapped, raises the hope for a non-perturbative understanding of the S-matrix. The
other major tool that has emerged is holography which offers a non-perturbative definition
of bulk quantum-gravitational physics through a conjectured duality with a quantum field
theory at the boundary of the spacetime.

A concrete realization of the holographic principle is achieved in asymptotically Anti-de
Sitter (AdS) spacetimes whose dual conformal field theory (CFT) lives on the timelike
co-dimension one boundary, but it is far from obvious if it applies to more general spacetimes.
Asymptotically flat (AF) four-dimensional spacetimes are a good approximation to many
physical processes in the universe. The S-matrix, which is the basic observable in such
spacetimes, has an obvious holographic flavor in that it is defined by a set of on-shell data
at the asymptotic boundary of the spacetime. Upon a change of basis from asymptotic mo-
mentum to boost eigenstates, scattering amplitudes in four spacetime dimensions transform
as conformal correlators [1–5] on the asymptotic two-sphere at the conformal boundary of
the AF spacetime where the Lorentz group acts as the Euclidean global conformal group. In
a quantum theory of gravity the latter gets enhanced to the full local conformal group [6–8].

These insights have led to the celestial holography proposal which pursues a potential
duality between quantum gravity in AF spacetimes and a celestial conformal field theory
(CCFT) on the co-dimension two celestial sphere. A number of entries in the celestial
holography dictionary have by now been established, though primarily for flat space
scattering amplitudes1 and with a focus on the CCFT properties of scattering processes
involving massless particles such as identifying the celestial avatars of asymptotic symmetries,
soft theorems and other universal aspects of the S-matrix.2 A litmus test of celestial
holography is whether it can account for non-perturbative physics such as the formation
and evaporation of black holes from the perspective of the boundary theory. This is a
highly challenging open question. A much simpler problem, yet a crucial stepping stone, is
to describe non-trivial AF backgrounds in CCFT and their effects on celestial scattering
amplitudes. In this work we take some intitial steps in this direction. Along the way, we will
draw attention to expectations from AdS/CFT and differences that arise in AF spacetimes.

Focusing on the scattering of massless probe particles, a Mellin transform in the external
particle energies takes momentum space amplitudes prepared with plane waves to celestial
amplitudes which are prepared with conformal primary wavefunctions [18]. The primary
operators appearing in these CCFT correlators [4] can be constructed from an “extrapolate”
dictionary that maps bulk fields to boundary operators [19, 20]. This resonates with the
way boundary correlators in AdS/CFT are extracted from bulk correlators that are pushed

1Some exceptions are discussed in the recent works [9–12].
2See the recent reviews and lecture notes [13–17] and the references therein.
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to the timelike AdS boundary [21–23]. In fact, one of the key ingredients of the AdS/CFT
correspondence is the relation between the gravitational partition function in the bulk and
the generating functional of correlation functions for the theory on the boundary [24, 25]
which agrees with the extrapolate dictionary in AdS/CFT [26]. Semi-classically, this implies
that the gravitational path integral for a curved (asymptotically) AdS geometry localizes to
the on-shell action contribution. This motivates us to look for the same principle for the
S-matrix in AF spacetimes.3 We will see that tree-level celestial correlators can indeed be
viewed as being generated by the boundary on-shell action evaluated at null infinity, albeit
with some caveats which we discuss.

Another way to utilize insights from AdS/CFT arises as follows. In a hyperbolic slicing
of Minkowski space [1] the standard AdS/CFT dictionary can be applied on each slice and
thus gives insight into celestial holography in flat space [3, 28]. For certain curved AF
geometries one would expect that, at least asymptotically, a similar slicing would exist. We
will show that this is indeed the case for Schwarzschild and Kerr black holes, that is, there
exists an asymptotic Euclidean AdS3/CFT2 structure. One might hope to exploit it to
learn about the celestial CFT dual to bulk black holes in AF spacetimes, but we will leave
this interesting question for future work.

The main focus of this work is to study celestial correlators for a class of non-trivial
AF spacetimes, their infrared and ultraviolet properties, as well as their interpretation
as standard CFT correlators. We will consider backgrounds which admit a Kerr-Schild
description, though our formalism will apply more generally whenever an S-matrix on the
background exists. Kerr-Schild geometries have many convenient features, for example they
linearise the Einstein equations and they naturally provide examples of the classical double
copy [29].4 This provides a natural method to relate solutions of the Maxwell equations to
those of Einstein gravity and we will consider scattering in both the electromagnetic and
gravitational backgrounds.

Our approach will be to first compute the two-point, or 1→ 1, scattering amplitude
of probe scalars in the leading Born approximation using the standard basis of momentum
eigenstates.5 Such amplitudes would be trivial in empty space but on curved geometries
they encode information about the background solution and the couplings of the scalar field.
We then recast these amplitudes in the basis of conformal boost eigenstates. Unlike their flat
space counterparts, celestial two-point correlators on backgrounds exist at generic operator
positions and have other desirable features which we discuss. Perhaps most interestingly,
in the case where the background itself has an interpretation of being generated by a con-
formal primary operator, the celestial two-point correlators have exactly the form of CFT
three-point functions computed in the standard vacuum with the non-trivial background
encoded in the third operator.

3Here we focus on scalars and gauge fields minimally coupled to gravity, while for pure gravity this
question has been addressed in the early 90s [27]; we are grateful to A. Laddha for pointing out this work.

4See [30] for a discussion of Kerr-Schild geometries, while a recent review of the classical double copy can
be found in [31].

5Going beyond the semiclassical approximation poses interesting but complicated challenges. For example,
non-perturbative quantum effects at short distances like particle production can become relevant [32–34],
and it is not clear how a quantum S-matrix can be defined even for general AF backgrounds.
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In addition to providing an arena for extending the flat space holographic description,
scattering on non-trivial asymptotically flat backgrounds is of practical interest in the
study of gravitational radiation. In this context, backgrounds which admit a point-particle
description, such as some black hole solutions, are of particular interest. Particle-like
backgrounds can be generated by classical three-point “amplitudes” with the off-shell
coherent emission of one messenger particle — a photon or a graviton. They can be
explicitly obtained via the classical limit of the in-in expectation value of the relevant
quantum field in an on-shell state. This can be done through the KMOC formalism [35–37]
by using wavefunctions which are peaked around the value of the classical momentum in the
~→ 0 limit.6 Particle-like backgrounds we consider are the Coulomb potential of a point
charge, its gravitational analogue given by the Schwarzschild metric and their ultraboost
limits given by electromagnetic and gravitational shockwaves.

A related map between amplitudes and gravitational backgrounds occurs in the eikonal
limit. In [38] ’t Hooft showed that the Aichelburg-Sexl shockwave solution [39] can be used
to compute the scattering of high-energy, gravitationally interacting scalar particles. In a
frame where one of the particles is moving slowly the other can be viewed as generating the
shockwave background and the 2→ 2 scattering amplitude can be computed semi-classically
from the 1 → 1 amplitude in the non-trivial background. Generalisations of ’t Hooft’s
result were considered in [40–44]. In [45] it was shown that the semi-classical two-point
amplitude for scalar fields on any stationary, linearized spacetime has the form of an eikonal
amplitude and proposed a general relation which they tested for linearized Schwarzschild and
Kerr geometries. Recently, an analogue of the eikonal limit for amplitudes in the celestial
basis and its relation with celestial two-point functions in a shockwave background was
considered [46]. To describe the scattering of massless particles with spin it is necessary to
construct the spinning analogue of the Aichelburg-Sexl shockwave. A well known method for
constructing a spinning solution from a non-spinning solution, most notably the Kerr metric
from Schwarzschild, is the Newman-Janis transformation [47]. An analogous transformation
can be applied to the Aichelburg-Sexl shockwave [48] to produce what we will refer to as
the spinning gravitational shockwave.7 One interesting feature of amplitudes on spinning
geometries is that the Mellin transform has improved UV convergence properties which are
possibly due to the finite-size effects of the spin.

Going beyond the leading order for the 1→ 1 amplitude and treating the background
non-perturbatively requires exactly solving the wave equation. While the full result for
general geometries is beyond our means, the computation can be organised as a sum over
arbitrary interactions with the background. In the eikonal limit, where the momentum
transferred to the probe is small and which captures the infrared divergent part of the
amplitude, the expression can be resummed into an exponential. This exponentiation
is familiar from the study of infrared divergences in scattering amplitudes, long known
in QED [50] and gravity [51], and provides a unique window into the non-perturbative

6Henceforth we work in units where ~ = c = 1, keeping G or κ =
√

32πG, and use (−,+,+,+) signature.
7The resulting metric is that found by [49] as a result of boosting the Kerr metric along the direction

of its spin. However its interpretation as due to a localised source is dubious at best. We are grateful to
T. Adamo and A. Cristofoli for discussions on this point.
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low-energy dynamics of the theory. This allows one to address the issue of what are the
correct asymptotic states in the presence of long-range interactions: the Faddeev-Kulish
coherent state dressing [52, 53] guarantees the definition of a proper infrared finite S-matrix
for such theories in four dimensions [52, 54]. In addition, the simplicity of the result calls
for an explanation in terms of (asymptotic) symmetries of the theory: remarkably, the
celestial holography proposal makes this manifest [53, 55–57], and CCFT models for the
soft dynamics have been proposed [3, 20, 58–62]. We can then ask the same questions for
AF backgrounds: can we understand the full CCFT description of the IR dynamics? How
can we define infrared-finite correlators on backgrounds? In this work, we will address these
questions for the simplest observable: the two-point function on point-like backgrounds.

This paper is organized as follows. In section 2 we study wave scattering on classical
backgrounds. We focus on two-point amplitudes for massless scalars in Kerr-Schild back-
grounds that correspond to static and spinning sources both in gauge theory in section 2.1
and gravity in section 2.2. We connect our results for two-point amplitudes on classical
particle-like backgrounds to the eikonal limit of four-point tree-level amplitudes in section 2.3.
In section 3 we recast these results in CCFT. We compute the corresponding celestial
two-point amplitudes for the various backgrounds in sections 3.1–3.4 and discuss their soft
limits in section 3.5. For shockwave backgrounds we show in section 3.6 that the celestial
amplitudes can be interpreted as three-point correlation functions between two massless
asymptotic states and a conformal primary shockwave operator. In section 4 we show
that the boundary on-shell action localizes on the effective source in momentum-space and,
similarly to AdS/CFT, gives the generating functional for the two-point amplitudes. Finally
in section 5, we extend the conformal Faddeev-Kulish dressings of single particle states to
dressings for particle-like backgrounds. In appendix A and B, we extend the computation
of amplitudes and the derivation of the on-shell action localization to the scattering of
massless spinning fields on gauge and gravitational backgrounds. In appendix C we derive
an asymptotic hyperbolic slicing representation for Schwarzschild and Kerr geometries,
which provides some evidence for the presence of a conformal structure near the boundary
of these AF geometries.

2 Wave scattering on backgrounds

To study wave scattering on classical backgrounds we use the method of Boulware and
Brown [63].8 This amounts to solving the classical equations of motion in the presence
of a source. The classical fields then serve as the generating functional of the tree-graph
approximation to the corresponding quantum field theory.

Consider the generating functional W [J ] ≡ −i logZ[J ] for connected correlation func-
tions defined by

Z[J ] =
∫
DΦei(S[Φ]+JΦ), (2.1)

where Φ denotes the relevant dynamical field. The nth functional derivative of W [J ]
with respect to J yields the n-point correlator and amplitudes are computed via the LSZ

8See [64] for a nice review.
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procedure. In the ~ → 0 limit the path integral is dominated by the classical solutions
Φcl[J ] of the equations of motion and we find the relation

Φcl[J ] = δW [J ]
δJ

. (2.2)

The n-point connected correlator is thus obtained by differentiating the classical solution
n− 1 times with respect to the source.

We will be interested in scattering massless particles off various gauge and gravity
backgrounds with a particle-like interpretation. The equations of motion are solved in
momentum space order-by-order in perturbation theory

Φ̄cl(p) =
∞∑
n=0

Φ̄(n)
cl (p), (2.3)

where Φ̄(n)
cl is of order n in the coupling and we use the conventions for the Fourier transform

Φcl(x) =
∫

d4p

(2π)4 e
ip·xΦ̄cl(p) , Φ̄cl(p) =

∫
d4xe−ip·xΦcl(x) . (2.4)

The n-point amplitude is given by

An(p1, . . . , pn) = in
n∏
k=1

( lim
p2
k
→0

p2
k)

δ

δJ(p1) . . .
δ

δJ(pn−1)Φ̄cl(−pn)
∣∣∣∣
J=0

. (2.5)

In the following we will focus on two-point amplitudes of massless particles in backgrounds
of Kerr-Schild type. In gravity these take the form

gµν(x) = ηµν + hµν(x), hµν(x) = kµkνV (x), (2.6)

while in gauge theory
Aµ(x) = kµV (x). (2.7)

The scalar function V satisfies the free wave equation ηµν∂µ∂νV (x) = 0 and the Kerr-Schild
vector kµ is null and geodesic

ηµνk
µkν = 0 = gµνk

µkν , kµ∂µkν = 0 = kµ∇µkν . (2.8)

Backgrounds that are of Kerr-Schild type include the Schwarzschild and Kerr black holes as
well as their ultraboosted limits, the Aichelburg-Sexl and spinning shockwave metrics. They
can be obtained via the classical double copy of the gauge theory backgrounds corresponding
to the Coulomb field of static and spinning point charges and their ultraboosted limits.

We now derive the two-point amplitudes on gauge and gravitational Kerr-Schild
backgrounds focusing on scattering minimally coupled complex massless scalars, while the
generalization to spinning probes is detailed in appendix A.

– 5 –
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2.1 Scattering on Kerr-Schild gauge theory backgrounds

The wave equation for a complex scalar field φ(x) in scalar QED in the presence of a source
J(x) is

ηµνDµDνφ(x) = J(x), (2.9)

with the gauge covariant derivative Dµ = ∂µ − ieAµ. To solve

ηµν∂µ∂νφ− 2ieAµ∂µφ− ie∂µAµφ− e2AµA
µφ = J (2.10)

we recast it in terms of a wave equation with an effective source

ηµν∂µ∂νφ = Jeff , Jeff ≡ J + 2ieAµ∂µφ+ ie∂µA
µφ+ e2AµA

µφ . (2.11)

Then we go to Fourier space and we work perturbatively in the coupling e

− p2φ̄(p) = J̄(p)− e
∫

d4p′

(2π)4 Ā
µ(p− p′)(pµ + p′µ)φ̄(p′) +O(e2). (2.12)

At leading order this is solved by φ̄(0)(p) = − J̄(p)
p2 while at subleading order

φ̄(1)(p) = e

p2

∫
d4p′

(2π)4 Ā
µ(p− p′)(pµ + p′µ)φ̄(0)(p′). (2.13)

The two-point amplitude for real potentials, up to order O(e) is

A2(p1, p2) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2
δφ̄(−p2)
δJ̄(p1)

= (2π)4 lim
p2

1→0
lim
p2

2→0
p2

1δ
(4)(p1 + p2) + e(p1 − p2)µĀµ(p1 + p2).

(2.14)

In the following we compute

A(1)
2 (p1, p2) = e(p1 − p2)µĀµ(p1 + p2) (2.15)

for various Kerr-Schild backgrounds.

2.1.1 Coulomb

We consider the Coulomb field of a static point charge

Aµ(x) = V (x)kµ , V (x) = Q

4πr (2.16)

with Kerr-Schild vector

kµ = uµ − nµ , uµ = (−1, 0, 0, 0) , nµ = ∂µr . (2.17)

Noting that nµ = r∂µ log r we can express the gauge potential as

Aµ(x) = Q

4πruµ + ∂µΛ , (2.18)

– 6 –
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where Λ = Q
4π log r, and henceforth drop the total derivative term since it does not contribute

to the amplitude. The gauge potential in momentum-space is given by

Āµ(p) = 2πQ
p2 δ(p · u)uµ, (2.19)

where we used ∫
d3~x

ei~p·~x

r
= 4π
|~p|2

, (2.20)

regulating the integral by e−µr as µ→ 0. This yields the two-point amplitude

A(1)
2 (p1, p2) = 4πeQ(p1 · u)δ((p1 + p2) · u)

(p1 + p2)2 . (2.21)

2.1.2
√
Kerr

The gauge field corresponding to a spinning charged particle, and which is the single copy
of the Kerr solutions [29], is given by9

Aµ(x) = V (x)kµ , V (x) = Q

4π
r̃

Σ , (2.22)

with Kerr-Schild vector

kµ = uµ − ñµ , uµ = (−1, 0, 0, 0) , ñµ = Σ
2r̃ ∂µ log(r̃2 + a2) + uλελµρσ

rρaσ

r̃2 + a2 . (2.23)

In terms of oblate spheroidal coordinates (r̃, θ̃, φ) defined by x+ iy =
√
r̃2 + a2 sin θ̃eiφ and

z = r̃ cos θ̃ we have Σ = r̃2 + a2 cos2 θ̃ and r̃ is defined through

x2 + y2

r̃2 + a2 + z2

r̃2 = 1 . (2.24)

Furthermore, we have rµ = 1
2∂µr

2 and we take the covariant spin vector aµ = (0, 0, 0, a).
The gauge potential can then be expressed as

Aµ(x) = Q

4π
r̃

Σ

(
uµ − uλελµρσ

rρaσ

r̃2 + a2

)
+ ∂µΛ , (2.25)

where Λ = Q
8π log(r̃2 + a2).

To compute the Fourier transformed potential we again drop the pure gauge term and
make use of the identities r̃

Σ = cos(~a · ~∇)1
r and r̃

Σ
~r×~a
r̃2+a2 = ~a× ~∇ sin(~a·~∇)

(~a·~∇)
1
r . This yields

Āµ(p) = 2πQ
p2 δ(p · u)

[
uµ cosh(a · p) + iuνενµαβa

αpβ
sinh(a · p)

(a · p)

]
. (2.26)

The leading non-trivial term in the two-point amplitude is

A(1)
2 (p1, p2) = 4πeQδ((p1 + p2) · u)

(p1 + p2)2

[
(p1 · u) cosh(a · (p1 + p2))

− iεµναβuµaνpα1 p
β
2

sinh(a · (p1 + p2))
a · (p1 + p2))

]
.

(2.27)

9Here we follow the rewriting of the Kerr metric in [65].
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2.1.3 Electromagnetic shockwave

The gauge field corresponding to an ultra-boosted point charge is given by

Aµ(x) = V (x)kµ , V (x) = − Q4π log(x2)δ(k · x) . (2.28)

Without loss of generality we take kµ = uµ = (−1, 0, 0, 1) so that we can write log(x2)δ(k ·
x) = log

(
(x1)2 + (x2)2) δ(x0 − x3). In momentum-space the gauge potential becomes

Āµ(p) = 2πQ
p2 δ(p0 − p3)uµ. (2.29)

To obtain this expression we changed variables (x1, x2) = ρ(cosϕ, sinϕ) and used∫ ∞
0

dρρ log ρJ0

(
ρ
√

(p1)2 + (p2)2
)

= −1
(p1)2 + (p2)2 (2.30)

Note that the ρ integral can be solved from the integral over the product of (modified)
Bessel functions∫ ∞

0
dρρK0(bρ)J0(cρ) = 1

b2 + c2 , Re(b) > 0, Re(c) > 0, Im(b) = 0, Im(c) ≤ 0 (2.31)

in an expansion near 0 < |z| � 1 where K0(z) ∼ − log z
2 − γE with γE denoting the Euler-

Mascheroni constant. From b = 2µe−γE with µ� 1 the leading O(µ0) term in (2.31) is −1
c2

which equates to (2.30). A generalization of this argument will be useful for the spinning
case below. The two-point amplitude in the electromagnetic shockwave background is

A(1)
2 (p1, p2) = −4πeQp

−
1 δ(p

−
1 + p−2 )

(p1 + p2)2 , (2.32)

where we used null coordinates p± = 1
2(p0 ± p3).

2.1.4 Spinning electromagnetic shockwave

Ultra-boosting the
√
Kerr solution along its axis of rotation produces a spinning shockwave

geometry that is of the Kerr-Schild form [49]. The single copy produces an electromagnetic
spinning shockwave and is given by

Aµ(x) = V (x)kµ , V (x) = − Q4π log(x2 − a2)δ(k · x) , (2.33)

where a is the spin parameter and again we take kµ = uµ = (−1, 0, 0, 1). A slightly more
involved calculation than in the non-spinning case gives

Āµ(p) = π2Q
ia

|p|
H

(2)
−1 (a|p|)δ(p0 − p3)uµ, (2.34)

in terms of a Hankel function where |p| ≡
√
p2. To arrive at this result we follow the same

arguments as above changing to polar coordinates, replacing the logarithm by the modified
Bessel function, computing the integral∫ ∞

0
dρρK0

(
b
√
ρ2−a2

)
J0(cρ)(ρ2−a2)−µ/2 = π

2 e
iπ/2 a√

b2+c2
H

(2)
−1

(
a
√
b2+c2

)
, (2.35)

– 8 –
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for Re(µ) < 1, a > 0, b > 0, c > 0, and expanding the result with b = 2µe−γE up to O(µ0).
The two-point amplitude in the spinning electromagnetic shockwave background is

A(1)
2 (p1, p2) = −2π2eQiaH

(2)
−1 (a|p1 + p2|)

p−1 δ(p
−
1 + p−2 )

|p1 + p2|
. (2.36)

Note that iπ
2
a
|p|H

(2)
−1 (a|p|) → 1

p2 as a → 0. Thus in the limit a → 0 we recover the
non-spinning result (2.32).

2.2 Scattering on Kerr-Schild gravity backgrounds

The wave equation for a complex scalar field φ(x) minimally coupled to gravity and in the
presence of a source J(x) is10

1√
−g

∂µ(
√
−ggµν∂νφ(x)) = J(x) . (2.37)

Quite generally, we can study this equation perturbatively about the flat background where
the metric is gµν = ηµν +hµν with hµν taken to be small. The wave equation can be written
in terms of an effective source,

ηµν∂µ∂νφ = Jeff , Jeff ≡ J + hµν∂µ∂νφ+ ∂µh
µν∂νφ− gµν∂µ log(

√
−g)∂νφ . (2.38)

The wave equation becomes, to linear order in the metric perturbation,

ηµν∂µ∂νφ = J + hµν∂µ∂νφ+ ∂µ(hµν − 1
2h

λ
λη

µν)∂νφ (2.39)

where all indices are raised using the flat metric. We again solve this equation by going to
Fourier space and working perturbatively in the background perturbation. The equation of
motion can be written as

− p2φ̄(p) = J̄(p)−
∫

d4p′

(2π)4 h̄
µν(p− p′)

[
pµp
′
ν − 1

2ηµν(p · p′ − p′2)
]
φ̄(p′), (2.40)

so that at zeroth order we have φ̄(0)(p) = − J̄(p)
p2 while at linear order we get

φ̄(1)(p) = 1
p2

∫
d4p′

(2π)4 h̄
µν(p− p′)

[
pµp
′
ν − 1

2ηµν(p · p′ − p′2)
]
φ̄(0)(p′). (2.41)

The two-point amplitude up to linear order in the perturbation is

M2(p1, p2) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2
δφ̄(−p2)
δJ̄(p1)

= (2π)4 lim
p2

1→0
lim
p2

2→0
p2

1δ
(4)(p1 + p2)

−
[
(p1)µ(p2)ν − 1

2ηµν(p1 · p2)
]
h̄µν(p1 + p2) .

(2.42)

10In principle we could include additional couplings, for example to the scalar curvature,
√
−gRφ2, but

we set these to zero for simplicity.

– 9 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
3

The amplitude

M(1)
2 (p1, p2) = −

[
(p1)µ(p2)ν − 1

2ηµν(p1 · p2)
]
h̄µν(p1 + p2) (2.43)

is invariant under linearized diffeomorphisms of the background, h̄µν(p)→ h̄µν(p) + p(µξν),
as can be seen by substitution and use of the on-shell momentum conditions. We will be
interested in computing (2.43) in various Kerr-Schild backgrounds for which

hµν(x) = kµkνV (x), (2.44)

which implies that gµν = ηµν − kµkνV and
√
−g = 1 so that the wave equations simplifies

and (2.39) is in fact exact. Nonetheless, we still take the perturbation to be small in solving
for the scalar field and the two-point function is given by (2.43), though with the trace
term vanishing due to k2 = 0.

2.2.1 Schwarzschild

We first consider scattering in the Schwarzschild geometry which in Kerr-Schild form is
given by

hµν(x) = V (x)kµkν , V (x) = 2GM
r

. (2.45)

The Kerr-Schild vector

kµ = uµ − nµ , uµ = (−1, 0, 0, 0) , nµ = ∂µr (2.46)

is the same as in the Coulomb case. This allows us to write [65]11

hµν(x) = 4GM
r

(
uµuν −

1
2u

2ηµν

)
+ 2∂(µξν) , (2.47)

where ξµ = −GM
[
log(r2)uµ + nµ

]
and we can drop the pure diffeomorphism term hence-

forth. The Fourier transformed gravitational potential is

h̄µν(p) = 32π2GM

p2 δ(p · u)
(
uµuν −

1
2u

2ηµν

)
, (2.48)

where we used again (2.20). Thus the two-point amplitude is

M(1)
2 (p1, p2) = 32π2GM(p1 · u)2 δ((p1 + p2) · u)

(p1 + p2)2 . (2.49)

2.2.2 Kerr

The Kerr geometry can also be written in Kerr-Schild form

hµν = V (x)kµkν , V (x) = 2GM r̃

Σ , (2.50)

with the same Kerr-Schild vector

kµ =uµ−ñµ , uµ = (−1,0,0,0) , ñµ = Σ
2r̃ ∂µ log(r̃2+a2)+uλελµρσ

rρaσ

r̃2+a2 , (2.51)

11Our conventions are A(aBb) = 1
2 (AaBb +AbBa).
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as for its electromagnetic analogue. Again we take aµ = (0, 0, 0, a). One can then show [65]
that the gravitational potential can be expressed as

hµν(x) = 4GM r̃

Σ

(
uµuν −

1
2u

2ηµν + u(µεν)λρσu
λ rρaσ

r̃2 + a2

)
+ 2∂(µξν) , (2.52)

where ξµ = −GM
[
log(r̃2 + a2)uµ + ñµ

]
, and we can drop the linearised diffeomorphism

since it will drop out of the amplitude at the order to which we work. We use the same
identities as in the electromagnetic case to obtain the Fourier transformed gravitational
potential

h̄µν(p) = 32π2GM

p2 δ(u · p)
[(
uµuν −

1
2u

2ηµν

)
cosh(a · p)− iu(µεν)λρσu

λaρpσ
sinh(a · p)
a · p

]
.

(2.53)
The two-point amplitude is thus found to be

M(1)
2 (p1, p2) = 32π2GM

δ((p1 + p2) · u)
(p1 + p2)2 (p1 · u)

[
(p1 · u) cosh(a · (p1 + p2))

− iεµναβuµaνpα1 p
β
2

sinh(a · (p1 + p2))
a · (p1 + p2)

]
.

(2.54)

2.2.3 Gravitational shockwave

The Aichelburg-Sexl geometry describing the gravitational field of an ultra-relativistic black
hole or a massless particle is

hµν = V (x)kµkν , V (x) = −4GP+ log(x2)δ(k · x) , (2.55)

where we take kµ = uµ = (−1, 0, 0, 1) and P+ is the lightcone energy of the shockwave.
Following the same steps as in the gauge theory case we find

h̄µν(p) = 32π2GP+

p2 δ(p0 − p3)uµuν (2.56)

so that the two-point amplitude is

M(1)
2 (p1, p2) = −64π2GP+ p

−
1 p
−
2 δ(p

−
1 + p−2 )

(p1 + p2)2 . (2.57)

2.2.4 Spinning gravitational shockwave

As previously described, ultra-boosting the
√
Kerr solution along its axis of rotation produces

a spinning shockwave geometry [49]. This geometry shares some features, though it is
different, than gyraton metric describing the spinning analog of a highly boosted spinning
particle or beam of radiation with angular momentum [66, 67]. As we will later see, for our
purposes it is the fact that it corresponds to a conformal primary operator that is most
important. The spinning shockwave metric is

hµν(x) = V (x)kµkν , V (x) = −4GP+ log(x2 − a2)δ(k · x) , (2.58)
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Figure 1. Equivalence between point-particle backgrounds and the 3-pt function with an off-shell
coherent emission.

and we take again kµ = uµ(−1, 0, 0, 1). In momentum-space the gravitational potential
becomes

h̄µν(p) = 16GP+π3 ia

|p|
H

(2)
−1 (a|p|)δ(p0 − p3)uµuν . (2.59)

The two-point amplitude is

M(1)
2 (p1, p2) = −32π3GP+iaH

(2)
−1 (a|p1 + p2|)

p−1 p
−
2 δ(p

−
1 + p−2 )

|p1 + p2|
, (2.60)

where for a→ 0 we recover the non-spinning result (2.57).

2.3 Particle-like backgrounds and the classical amplitude matching

Particle-like backgrounds arise from considering some kinematic limit of a Lorentz-invariant
field theory particle description in flat space. They can be generated by classical three-point
“amplitudes” with the off-shell coherent emission of one messenger particle, a photon or a
graviton as figuratively shown in figure 1.

We can define particle-like backgrounds from the in-in expectation value

Ψparticle-like
I (x) ≡ 〈ψ|S†Ψ̂I(x)S|ψ〉

∣∣∣
~→0

, Ψ̂I = φ̂, Âµ, ĥµν , (2.61)

where S is the flat space S-matrix in the theory, Ψ̂I(x) represents the field operator which
contains both on-shell and off-shell contributions in Lorentzian signature and

|ψ〉 =
∫
dΦ(p)ψu(p) |p〉 (2.62)

is the on-shell external particle state smeared with an appropriate wavefunction ψu(p)
peaked along the classical trajectory of 4-velocity uµ [35, 36]. An equivalent procedure
consists in matching amplitudes with effective classical sources in the ~→ 0 limit [68].

When considering wave scattering on classical point-like backgrounds, we can construct
a map from the four-point amplitude12 to the two-point function on the background. This is
illustrated in figure 2. At leading order in the coupling, this procedure is entirely equivalent
to the matching with the eikonal four-point tree-level amplitude described in a recent
work [45], and indeed we will check explicitly in the following the consistency of such

12In general, the scattering of a wave on a background may require considering higher-point amplitudes
but we are interested here in the leading connected amplitude contribution. For classical wave scattering,
this can be made explicit by using coherent states [69] and in such case only the four-point amplitude
contributes at all orders.

– 12 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
3

Figure 2. Equivalence between wave scattering on point-particle backgrounds and the four-point
function, where the background is effectively identified with the classical limit of the dark gray
interaction vertex of the four-point amplitude.

an approach with our solutions of the wave equation in the leading Born approximation.
Nevertheless, our prescription would differ at higher orders in perturbation theory because
in holography we want to also include the quantum terms in the wave scattering.13

We illustrate the matching between eikonal four-point amplitudes in gauge theory and
gravity and two-point amplitudes on classical backgrounds for the non-spinning examples
considered in the previous section. The Coulomb and electromagnetic shockwave solutions
are both special cases of potentials sourced by point-like charge, with trajectory yµ(τ) and
four-velocity uµ = dyµ/dτ corresponding to a current jµ(x) = −Q

∫
dτ uµ(τ)δ(4)(x − y).

The resulting two-point amplitude is

A(1)
2 (p1, p2) = eQ

∫
dτ

(p1 − p2) · u
(p1 + p2)2 e−i(p1+p2)·y (2.63)

which for uniform motion, yµ = τuµ with uµ constant, gives

A(1)
2 (p1, p2) = 2πeQ(p1 − p2) · u

(p1 + p2)2 δ((p1 + p2) · u) (2.64)

This describes both the Coulomb, uµ = (1, 0, 0, 0), and electromagnetic shockwave, uµ =
(1, 0, 0, 1), cases. Similarly, we can view the Schwarzschild and Aichelburg-Sexl geometries
as being sourced by point-like charges. The harmonic-gauge, linearized Einstein equations
can be written as

�hµν = −κ
2

2 PµναβT
αβ (2.65)

where we have introduced the perturbative coupling κ =
√

32πG and Pµναβ = δ(µ
(αδν)

β) −
1/2ηµνηαβ is the flat space trace-reverser. The stress-tensor can be written to this order, [71,
72],14 in an effective, skeleton, form with support along a world-line yµ(τ)

Tµν =
∫
dτ T̂ µνδ(4)(x− y) (2.66)

with T̂ µν a differential operator given in terms of the moments of Tµν and depending
on fields defined along the particle world-line. For the case of uniform, spinless motion

13See [70] for an explicit calculation of these type of (long-range) quantum contributions at one loop.
14See also the MPD approach to extended bodies in General Relativity [73–77].
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T̂ µν = r0u
µuν , with r0 and uµ constant, the two-point amplitude is

M(1)
2 (p1, p2) = −32π2Gr0

(p1 · u)(p2 · u)δ((p1 + p2) · u)
(p1 + p2)2 . (2.67)

The Schwarzschild geometry corresponds to uµ = (1, 0, 0, 0), r0 = M and the Aichelburg-Sexl
background to uµ = (1, 0, 0, 1) with r0 = P+ the shockwave light-cone energy.

Following the derivation in [45, 78], at leading order in the coupling we can identify
point-particle backgrounds with a particular choice of the kinematics for the point-particle
entering in the four-point eikonal amplitude. We can therefore match the tree-level two-point
function in the Born approximation with the tree-level classical eikonal amplitude where the
momentum-conserving delta function is stripped off. For the Coulomb and Schwarzschild
backgrounds, corresponding to uµ = (1, 0, 0, 0), the two-point amplitudes of massless scalars
with momenta p1, p2 can be expressed in terms of the stripped eikonal four-point amplitudes

A(1)
2 (p1, p2) = 2πδ((p1 + p2) · u)

4M A(1),eik
4,EM (s, t)

∣∣∣
PµA=PµB=Pµ

,

M(1)
2 (p1, p2) = 2πδ((p1 + p2) · u)

4M M(1),eik
4,GR (s, t)

∣∣∣
PµA=PµB=Pµ

,

(2.68)

where the momenta Pµ = Muµ of the massive scalars are identified with the background.
The matching (2.68) is achieved in the eikonal limit −t� s,

s = −(p1 + P )2 , t = −(p1 + p2)2 , (2.69)

which corresponds exactly to the classical limit for the leading order wave scattering on
a point-like background. The amplitudes involving the electromagnetic and gravitational
shockwave backgrounds, corresponding to uµ = (1, 0, 0, 1), become

A(1)
2 (p1, p2) = 2πδ((p1 + p2) · u)

2P+
A

A(1),eik
4,EM (s, t)

∣∣∣
PµA=PµB=Pµ

,

M(1)
2 (p1, p2) = 2πδ((p1 + p2) · u)

2P+
A

M(1),eik
4,GR (s, t)

∣∣∣
PµA=PµB=Pµ

.

(2.70)

where in this case Pµ = P+
A q

µ with P+
A = 1

2(P 0
A + P 3

A).
For all the spinless point-particle backgrounds discussed earlier this identification can be

pushed to higher orders, including the quantum long-range effects for the wave scattering as
described in the introduction. For their classically spinning counterpart, the correspondence
is an open question beyond leading order except for low-spin wave scattering.15

15While for the wave scattering of minimally coupled massless scalar fields there is evidence that the
Compton four-point amplitude captures correctly the classical physics of Kerr, this is not the case for
the scattering of higher-spin massless fields on top of such background [79, 80]. Therefore such classically
spinning backgrounds can be considered as point-like only for some applications, for example like the scalar
wave scattering considered in this paper. It would be nice to understand how to generalize the amplitude
approach to correctly describe the physics of Kerr black holes, perhaps by extending the worldsheet proposal
of [81]. A similar conclusion is valid for other spinning backgrounds such as the gyraton and other charged
spinning backgrounds, but this hasn’t been verified explicitly to date.
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3 Celestial wave scattering on backgrounds

Can we give a holographic interpretation for scattering on non-trivial backgrounds with flat
asymptotics? In celestial holography the basic observables are celestial amplitudes whose
asymptotic states are in a boost basis rather than a momentum basis. They contain the
same information as the momentum-space S-matrix but make SL(2,C) Lorentz symmetry
instead of translation symmetry manifest. General curved backgrounds break these global
symmetries of the S-matrix. For the particle-like backgrounds discussed in section 3 all
two-point amplitudes can, however, be related to Lorentz invariant four-point amplitudes
which can, in turn, be expressed as (flat space) celestial amplitudes. These compute overlaps
between asymptotic past and future states with definite boost weight rather than energy
which we now briefly review.

Focusing on massless particles, we parametrize their on-shell momenta p2
i = 0 as

pµi = ηiωiq
µ
i (zi, z̄i) (3.1)

where ηi = −1 (ηi = +1) for incoming (outgoing) particles, ωi are the particle frequencies
and the null vector qi is directed towards a point (zi, z̄i) on the celestial sphere16

qµi = (1 + |zi|2, zi + z̄i, i(z̄i − zi), 1− |zi|2) (3.2)

where |zi|2 ≡ ziz̄i and we define zij ≡ zi − zj . Given a momentum-space amplitude
An(p1, . . . , pn) we obtain the corresponding celestial amplitude by a Mellin transform with
respect to the external particle frequencies [4]

Ãn(∆1, q1, . . . ,∆n, qn) :=
n∏
i=1

(∫ ∞
0

dωiω
∆i−1
i

)
An(p1, . . . , pn) , (3.3)

and we will henceforth omit the dependence on the qi in the argument of the celestial am-
plitude to avoid cumbersome notation. This transformation prepares scattering amplitudes
with conformal primary wavefunctions

φη∆(x; q) ≡
∫ ∞

0
dωω∆−1eiηωq·x−εω = (−iη)∆Γ(∆)

(−q · x− iηε)∆ (3.4)

rather than plane waves as the asymptotic wavefunctions. This recasts four-dimensional
scattering amplitudes as two-dimensional correlation functions on the celestial sphere17

Ãn(∆1, . . . ,∆n) = 〈Oη1
∆1

(z1, z̄1) . . .Oηn∆n
(zn, z̄n)〉CCFT . (3.5)

For special values of the conformal dimensions ∆ ∈ 1− Z>0 celestial operators become
conformally soft [82], and when inserted into celestial amplitudes they give rise to the
celestial analogue of soft factorization theorems [83–89]. These can in turn can be interpreted
as CCFT Ward identities for asymptotic symmetries in gauge theory and gravity in
asymptotically flat space [3, 19, 82, 90, 91]. The semi-infinite tower of conformally soft

16Strictly speaking this parametrization flattens the sphere to a plane.
17We omit here the SL(2,C) spin J since we are only considering J = 0.
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operators is organized in CCFT multiplets [92] and obeys interesting holographic symmetry
algebras [93–95].

The goal of this section is to directly express the two-particle scattering on the back-
ground as CCFT observables. This amounts to Mellin transforming the momentum-space
amplitudes A(1)

2 (p1, p2) and M(1)
2 (p1, p2) considered in section 2 in the external frequen-

cies ω1, ω2 to the celestial amplitudes Ã(1)
2 (∆1,∆2) and M̃(1)

2 (∆1,∆2). In the following
sections 3.1–3.4 we compute celestial amplitudes for two massless scalars scattering off the
Kerr-Schild backgrounds discussed in section 2. We consider in section 3.5 their conformally
soft limits. In section 3.6 we show that for shockwave backgrounds the celestial two-point
amplitudes can be interpreted as standard CFT three-point functions of two massless
asymptotic states and a conformal primary shockwave operator.

3.1 Coulomb and Schwarzschild

We consider massless scalars with momenta parametrized as in (3.1) and take particle one to
be incoming (η1 = −1) and particle two to be outgoing (η2 = +1). Their celestial two-point
amplitude in the Coulomb background is

Ã(1)
2,Coulomb(∆1,∆2) = πeQ

1
|z12|2

(
1 + |z1|2

1 + |z2|2

)∆2−1

I(∆1 + ∆2 − 2), (3.6)

while in the Schwarzschild geometry it is given by

M̃(1)
2,Schwarzschild(∆1,∆2) = 8π2GM

1
|z12|2

(1+|z2|2)
(

1+|z1|2

1+|z2|2

)∆2

I(∆1+∆2−1) . (3.7)

Here we have defined the integral

I(s) ≡
∫ ∞

0
dωωs−1 , (3.8)

which we may regard as a generalized distribution I(s) ≡ 2πδ(is) defined in [19] that
reduces to the ordinary Dirac delta function I(s) = 2πδ(Im(s)) when Re(s) = 0.

When the conformal dimensions of the massless scalars are on the principal continuous
series of the Lorentz group, that is ∆i ∈ 1 + iλi with λi ∈ R, the integral I(∆1 + ∆2 − 2) =
δ(λ1 + λ2) can be interpreted as a distribution. Thus scattering massless scalars in a
Coulomb potential leads to a well-defined celestial amplitude (3.6). In general, Mellin
transforms of momentum-space amplitudes are not convergent even in flat space, and so
it comes as no surprise that neither is the integral in (3.7). Indeed, the extra factor of
p0

2 = ω2(1 + |z2|2) in the gravitational amplitude results in a shift in conformal dimension
∆2 → ∆2 + 1 in (3.7) compared to the Coulomb background (3.6). This spoils the marginal
convergence of (3.8) when ∆i ∈ 1 + iR for the Schwarzschild geometry.

Note that while we have picked a specific reference direction uµ = (1, 0, 0, 0) for the
backgrounds we can easily generalize the celestial two-point amplitudes to any constant
timelike uµ. This is achieved by replacing 1 + |zi|2 → qi · u in (3.6) and (3.7). What is
striking is the dependence on the relative separation of the celestial coordinates zij . Unlike
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celestial (low-point) amplitudes in flat space which have kinematic delta functions in the
zij , celestial two-point amplitudes in the Coulomb and Schwarzschild backgrounds have
power-law behavior! We will return to this point in section 3.6.

3.2 Shockwaves

The ultra-boosted Coulomb and Schwarzschild backgrounds have the factors of p0
i in the

scalar two-point amplitudes replaced by p−i = 1
2(p0 − p3). In the parametrization (3.1) this

amounts to 1 + |zi|2 → |zi|2. The celestial two-point amplitude for scattering massless
scalars in the electromagnetic shockwave background is

Ã(1)
2,shockwave(∆1,∆2) = πeQ

1
|z12|2

(
|z1|2

|z2|2

)∆2−1

I(∆1 + ∆2 − 2), (3.9)

while in the Aichelburg-Sexl geometry we find

M̃(1)
2,shockwave(∆1,∆2) = 16π2GP+ 1

|z12|2
|z2|2

(
|z1|2

|z2|2

)∆2

I(∆1 + ∆2 − 1), (3.10)

with the integrals I(s) defined in (3.8). Thus we also get a well-defined celestial two-point
amplitude in the background of an electromagnetic shockwave, which has distributional
support when the conformal dimensions lie on the principal continuous series. The two-
point amplitude in the gravitational shockwave background has again shifted conformal
dimensions. By replacing |zi|2 → 1

2qi · k we can generalize these celestial correlators from
kµ = (1, 0, 0, 1) to any constant null direction of the shockwave backgrounds.

3.3 Spinning shockwaves

Celestial wave scattering on backgrounds with classical spin yields several new features.
Defining the integral

I ′(s) ≡ iπα1+s
∫ ∞

0
dωωsH

(2)
−1 (2αω) , (3.11)

we can express the amplitude for massless scalars scattering on the spinning electromagnetic
shockwave as

Ã(1)
2,spinwave(∆1,∆2) = πeQ

a2−∆1−∆2

|z12|∆1+∆2

(
|z1|2

|z2|2

)∆2−∆1
2

I ′(∆1 + ∆2 − 2) , (3.12)

while for the spinning shockwave metric we have

M̃(1)
2,spinwave(∆1,∆2) = 16π2GP+ a1−∆1−∆2

|z12|∆1+∆2+1 |z2|2
(
|z1|2

|z2|2

)∆2−∆1+1
2

I ′(∆1 + ∆2 − 1) .

(3.13)
For the integral in (3.11) we have α = a|z12| |z1||z2| and thus, with Re(α) ≥ 0 and Im(α) = 0,
we obtain

I ′(s) = − iπ2
Γ(1 + s/2)
Γ(1− s/2) (1 + i cot(πs/2)) , 0 < Re(s) < 1

2 . (3.14)

– 17 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
3

This result is quite remarkable. Celestial two-point amplitudes on spinning elec-
tromagnetic shockwave backgrounds have support away from the principal series unlike
their non-spinning counterparts.18 Moreover, while for the non-spinning gravitational
backgrounds the Mellin integral diverges, we find well-defined celestial amplitudes in the
spinning shockwave geometry! We attribute this to the fact that the classical spinning
solution provides a finite size a, and therefore the UV behaviour of the scattering amplitude
is better than what we would expect from the scattering of higher-spin particles [96].

3.4
√
Kerr and Kerr

The celestial two-point amplitude in the background of a spinning charge is

Ã(1)
2,
√
Kerr

(∆1,∆2) = πeQ
a2−∆1−∆2

|z12|2

(
1 + |z1|2

1 + |z2|2

)∆2−1 (1 + |z2|2)∆1+∆2−2

[2(|z1|2 − |z2|2)]∆1+∆2−2

×
[
I ′′even(∆1 + ∆2 − 2)− z1z̄2 − z2z̄1

|z1|2 − |z2|2
I ′′odd(∆1 + ∆2 − 2)

]
,

(3.15)

while in the Kerr geometry it is given by

M̃(1)
2,Kerr(∆1,∆2) = 8π2GM

a1−∆1−∆2

|z12|2

(
1 + |z1|2

1 + |z2|2

)∆2 (1 + |z2|2)∆1+∆2

[2(|z1|2 − |z2|2)]∆1+∆2−1

×
[
I ′′even(∆1 + ∆2 − 1)− z1z̄2 − z2z̄1

|z1|2 − |z2|2
I ′′odd(∆1 + ∆2 − 1)

]
.

(3.16)

Here we are again considering aµ = (0, 0, 0, a) and we defined the integrals

I ′′even(s) ≡ αs
∫ ∞

0
dωωs−1 cosh(αω) , I ′′odd(s) ≡ αs

∫ ∞
0

dωωs−1 sinh(αω) , (3.17)

where α = 2a |z1|
2−|z2|2

1+|z2|2 . These integrals are well-defined only for imaginary spin parameter a,
or Re(α) = 0, for which we find

I ′′even(s) = is cos
(
πs

2

)
Γ(s) , I ′′odd(s) = is sin

(
πs

2

)
Γ(s) , 0 < Re(s) < 1 . (3.18)

We then analytically continue the final result for the celestial amplitudes to real value of
a. Remarkably, the Mellin transform gives a well-defined celestial amplitude with support
away from the principal series both in gauge theory and gravity.

It is worth commenting here on the relation with the spinning shock-wave results. While
the original

√
Kerr and Kerr metrics are related to the electromagnetic and gravitational

spinning shockwaves by an infinite boost along the direction of aµ [49], it is unclear how such
a boost limit is encoded in the two-point amplitude discussed above. As we will see later in
section 3.6, it is expected that we need a combination of conformal primaries to represent
massive background solutions while a single operator is sufficient for shockwave metrics.

18Strictly speaking the principal series ∆i = 1 + iR is not included in the range of the integral in (3.11).
Nevertheless, we can analytically continue the result. In the s → 0 limit we recover the behavior of the
amplitude in the non-spinning shockwave background.
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3.5 Conformally soft limits

Let us discuss the behavior of celestial two-point amplitudes on particle-like backgrounds
in the conformally soft limit. In the momentum basis this corresponds to probing the
backgounds by low-energy scatterers. Taking the soft limit ω1 → 0 in the momentum-space
amplitudes implies also ω2 → 0 by momentum-conservation. Energetically soft limits of
momentum-space amplitudes map to poles in celestial amplitudes. To see this note that
the Mellin integral up to some cut-off ω � ω∗ takes the form∫ ω∗

0
dωωs−1 = ωs∗

s
, Re(s) > 0 . (3.19)

Let’s first look at the static amplitudes

Ã(1)
2 (∆1,∆2) = πeQ

1
|z12|2

(
q1 · u
q2 · u

)∆2−1
I(∆1 + ∆2 − 2) ,

M̃(1)
2 (∆1,∆2) = 8π2Gr0

1
|z12|2

(q2 · u)
(
q1 · u
q2 · u

)∆2

I(∆1 + ∆2 − 1) ,
(3.20)

corresponding to Coulomb and Schwarzschild (with r0 = M) for constant time-like uµ and
to their ultraboost limits for light-like uµ (with r0 = P+, the lightcone energy, for the
Aichelburg-Sexl shockwave). The energetically soft limit maps to a pole at ∆1 + ∆2 = 2
such that

lim
∆1+∆2→2

(∆1 + ∆2 − 2)Ã(1)
2 (∆1,∆2) = lim

∆1+∆2→2
πeQ

1
|z12|2

(
q1 · u
q2 · u

)∆2−∆1
2

. (3.21)

For the Schwarzschild and Aichelburg-Sexl geometry we have s = ∆1 + ∆2 − 1 so that the
energetically soft limit maps to a pole at ∆1 + ∆2 = 1 and we get

lim
∆1+∆2→1

(∆1+∆2−1)M̃(1)
2 (∆1,∆2) = lim

∆1+∆2→1
8π2Gr0

(q2 ·u)
|z12|2

(
q1 ·u
q2 ·u

)∆2−∆1+1
2

. (3.22)

The same behavior is obtained for the Kerr and spinning shockwave backgrounds. In
particular from (3.12) and (3.13) we see that in these “simultaneous” conformally soft limits
the dependence on the spin drops out! This can be traced back to the spin and the energy
appearing in the combination (aω)s.

3.6 Celestial shockwave correlators

Finally, let us return to the question raised at the beginning of this section. Can we
extend the map between bulk scattering processes and celestial CFT correlators beyond
flat spacetimes? Non-trivial backgrounds such as the ones considered in this work explicitly
break Lorentz symmetry. Nevertheless, the electromagnetic and gravitational shockwave
backgrounds do so in a very mild manner, and in fact can themselves be interpreted as
conformal primary backgrounds. Interestingly, we can use them to construct celestial
correlators that transform covariantly under SL(2,C) and are free of the kinematic delta
functions that celestial low-point amplitudes in flat space are plagued by. In the case of
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gravity, this requires an analytic continuation off the principal series ∆ ∈ 1 + iR which
renders the divergent Mellin integrals finite.

From the perspective of the celestial CFT, the electromagnetic shockwave corresponds
to a generalised conformal primary vector of ∆ = 0, J = 0, while the gravitational shockwave
is a generalised conformal primary metric of ∆ = −1, J = 0 [97]. Consequently, we can view
the propagator of massless scalars in a shockwave background as a three-point function of
two conformal asymptotic states and a shockwave primary in the celestial CFT.

To make this explicit consider the three-point function for two massless scalars and an
off-shell photon of momentum p,

A3;µ(p1, p2, p) = e(2π)4δ(4)(p1 + p2 + p)(p1µ − p2µ) . (3.23)

This quantity is essentially the momentum space form factor, 〈p1| j̄µ(p) |p2〉 of the electro-
magnetic current jµ = ie(φ∂µφ∗ − φ∗∂µφ). To go from the on-shell plane-wave momentum
eigenstates for the scalars to conformal primary wavefunctions we simply carry out the
Mellin transform, while to deal with the off-shell plane-wave basis we make use of the fact
that the electromagnetic shockwave wavefunction can be written as [97]

Asw
0,0;µ(x; q) = −qµ log(x2)δ(q · x)

= 8π2qµ

∫
d4p

(2π)4
δ(p · q)
p2 eip·x .

(3.24)

Thus, defining a shockwave null vector qsw with components

qµsw = (1 + |zsw|2, zsw + z̄sw, i(z̄sw − zsw), 1− |zsw|2) , (3.25)

we find for the transformed amplitude

Ã3(∆1,∆2,∆sw = 0) ≡ 2
(2π)2

∫
dω1dω2ω

∆1−1
1 ω∆2−1

2

∫
d4p

δ(p · qsw)
p2 qsw · A3(p1, p2, p)

= e(2π)3δ(i(∆1 + ∆2 − 2))
|z12|∆1+∆2 |z1sw|∆1−∆2 |z2sw|∆2−∆1

(3.26)

where zisw ≡ zi − zsw and δ reduces to the ordinary Dirac delta function for ∆i ∈ 1 + iR.
We see that the coordinate dependence is simply that of standard two-dimensional CFTs
consistent with ∆sw = 0! This amplitude also agrees, up to a factor of the background
charge, with the two-point function in the shockwave background which can be seen upon
substituting (3.25) into the generalized version of (3.9). Thus we see that, in celestial
coordinates, two-point functions in the shockwave background can be interpreted as three-
point correlation functions between two asymptotic states and a shockwave operator.

Repeating the argument for the gravitational case we write the shockwave metric
as19 [97]

hsw−1,0;µν(x, q) = −1
κ
qµqν log(x2)δ(q · x)

= 8π2 1
κ
qµqν

∫
d4p

(2π)4
δ(p · q)
p2 eip·x

(3.27)

19Since we are now computing the quantum amplitude with perturbative expansion gµν = ηµν + κhµν we
have to divide by κ in (3.27).
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and so transform the three-point amplitude for two massless scalars and an off-shell
graviton20

M3;µν(p1, p2, p) = −κ(2π)4δ(4)(p1 + p2 − p)
[
p1µp2ν − 1

2ηµν(p1 · p2)
]

(3.28)

into the celestial three-point function

M̃3(∆1,∆2,∆sw =−1)≡ 2
(2π)2

∫
dω1dω2ω

∆1−1
1 ω∆2−1

2

∫
d4p

δ(p·qsw)
p2 qµswq

ν
swM3;µν(p1,p2,p)

= (2π)2I(∆1+∆2−2)
|z12|2|z1sw|−2∆2 |z2sw|2∆2−2 . (3.29)

This quantity does not have the form of a CFT correlator and suffers from the usual
divergence for operators on the principle series. However, if we continue away from these
values such that Re(∆1 + ∆2) = 1, we can write this as

M̃3(∆1,∆2,∆sw = −1) = (2π)3δ(i(∆1 + ∆2 − 1))
|z12|∆1+∆2+1|z1sw|∆1−∆2−1|z2sw|∆2−∆1−1 (3.30)

which has the correct coordinate dependence. This agrees, up to a factor of the background
charge which in this case is the light-cone energy, with the two-point function (3.10) in the
Aichelburg-Sexl geometry.

The case of spinning shockwaves is particularly interesting as the transformation to the
celestial basis is well-defined even in the gravitational case. The conformal vector primary
and conformal metric primary are related to the off-shell plane wave basis by the transform

Assw
0,0;µ(X, q) = qµφ

ssw(X, q), hssw−1,0;µ(X, q) = qµqνφ
ssw(X, q), (3.31)

with

φssw(X, q) = −δ(q ·X) log(X2 − a2) = 4π3ia

∫
d4p

δ(p · q)
|p|

H
(2)
−1 (a|p|)eip·X . (3.32)

Following similar steps as before, and defining a null vector qssw parameterised by complex
parameters zssw, we find the celestial three-point functions

Ã3(∆1,∆2,∆ssw = 0) = e(2π)2a2−∆1−∆2I ′(∆1 + ∆2 − 2)
|z12|∆1+∆2 |z1ssw|∆1−∆2 |z2ssw|∆2−∆1

(3.33)

for the electromagnetic spinning shockwave and

M̃3(∆1,∆2,∆ssw = −1) = r0(2π)2a1−∆1−∆2I ′(∆1 + ∆2 − 1)
|z12|∆1+∆2+1|z1ssw|∆1−∆2−1|z2ssw|∆2−∆1−1 (3.34)

for the gravitational spinning shockwave, where we defined zissw ≡ zi − zssw. Again their
dependence on the celestial coordinates is that of CFT three-point correlators. Compar-
ing (3.33) and (3.34) to the two-point functions (3.12) and (3.13) in the spinning shockwave
backgrounds we again find agreement.

20This quantity is the momentum space form factor of the scalar stress-energy tensor Tµν = ∂µφ∂νφ−
1
2gµν∂

λφ∂λφ. Such a quantity is not a good observable in gravity, however once we contract with the conformal
primary wavefunction it becomes the matrix element of the integrated quantity

∫
d4x
√
−gf(x)qµqνTµν(x).
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4 Boundary on-shell action localization

In the previous section we made use of the fact that the classical solution to the equations of
motion on AF backgrounds is the generating functional for tree-level correlation functions in
CCFT. In AdS/CFT this role is played by the boundary on-shell action. In asymptotically
flat space we, similarly, expect the on-shell action to localize near the asymptotic boundary
at infinite radial distance and that it will generate correlation functions in the boundary the-
ory.21 For massless particles we anticipate localization on the celestial sphere at null infinity
as we will now show, focusing for simplicity on the two-point function. The procedure can,
however, be extended to higher functions by turning on the appropriate number of sources.

The action for a complex massless scalar φ minimally coupled to the background metric
gµν is given by

S =
∫

d4x
√
−gφ∗(x)�φ(x)−

∫
d4x
√
−g∇µ[φ∗(x)gµν∇νφ(x)] , (4.1)

where we have already isolated the boundary term

Sbdy ≡ −
∫

d4x
√
−g∇µ[φ∗(x)gµν∇νφ(x)] , (4.2)

and we must include additional source terms, Ssrc =
∫
d4x(Jφ∗ + J∗φ). We assume that all

our backgrounds have an asymptotically flat spacetime region described at leading order by
the Minkowski metric

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2) . (4.3)

We reach past and future time-like infinity by respectively taking t→ −∞ and t→ +∞
while keeping r fixed, spatial infinity corresponds to taking r →∞ while keeping t fixed,
while past and future null infinity are reached by taking r →∞ while respectively holding
advanced time v = t+ r and retarded time u = t− r fixed. The surface term in the action is
an integral over the null boundary I − ∪I +. Following [27], we may define a general null
hypersurface in terms of the zero of a piecewise smooth function τ(x) whose sign is chosen
so that the direction of growing τ points outward. Gauss’s theorem can then be written as

Sbdy = −
∫
d4x
√
−gδ(τ(x)) [φ∗(x)gµν∇νφ(x)]∇µ(τ(x)) . (4.4)

The contribution to (4.4) from I ± is then obtained from

τ+(x) = − 1
v(x) + γ , τ−(x) = + 1

u(x) + γ , (4.5)

21The fact that the classical action contains all the relevant information for the tree-level scattering
on a background is a well-known statement (see the nice discussion in appendix B of [98] for plane-
wave backgrounds). In the eikonal case, this localization has also been shown recently for point-particle
backgrounds in [45]. Here we extend such analysis to derive a more general statement which include both
classical “eikonal” and quantum contributions to the wave scattering.
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in the limit γ → 0 which pushes the hypersurface to null infinity. In the asymptotic region
near I + we have v(x) = u + 2r, while near I − we have u(x) = v − 2r. Evaluating the
integral over r by means of the δ-function we find for the boundary action

SI−∪I + = − lim
r→∞

∫ 2π

0
dϕ

∫ π

0
dθ sin θr2

[∫ +∞

−∞
du
(
φ∗n+

µ ∂
µφ
)

+
∫ +∞

−∞
dv
(
φ∗n−µ ∂

µφ
)]
(4.6)

where n+
µ = ∂µ(+1

2v) and n−µ = ∂µ(−1
2u).

The flux factor defined by (4.6) is what determines the two-point function for the wave
scattering, as pointed out in the classical analysis of [45]. In the spirit of the scattering
problem we can decompose the field φ as a superposition of the incoming and the outgoing
contributions

φ(x) = φin(x) + φout(x) , φin(x) = eip·x , (4.7)

where the momentum pointing towards the celestial sphere is parametrized by pµ = ω(1, p̂),
and we can focus on the in-out contributions to the scattering from the action

S in/outI−∪I + ≡ −
∑
η=±

∫
I η

d3x
√
−gindφ∗in(x)nνη∂νφout(x) . (4.8)

The wave equation for the scalar field can be written in terms of the scalar effective source
as showed in section 2,

ηµν∂µ∂νφ(x) = Jeff(x) (4.9)

where Jeff includes the external source J and the coupling of the field to the non-trivial
background. This equation can be formally solved by using standard Green’s functions
methods,

φout(x) =
∫
C

dk0

2π

∫
d3k

(2π)3
eik·x

(k0)2 − |~k|2
J̄eff(k0,~k = |~k|k̂) , (4.10)

where the contour C specifying the Green’s function is chosen according to the boundary
conditions. We will focus on the cases of advanced and retarded Green’s functions which
correspond to placing all sources in the causal future or past of the field.

We then take the large r limit, holding either v or u fixed, to obtain the leading
component of the scalar field around each null boundary: I − from the advanced contribution
or I + from the retarded, (see e.g. [69, 99]). The saddle point approximation then localizes
the k̂ integral near I ± at k̂ = ±x̂ where x̂ = ~x/r and we obtain

φout(t∓ r, r, x̂) = −c±
1

4πr

∫
R

dωk
2π e∓iωk(t∓r)J̄eff(±ωk, ωkx̂) +O

(
r−2

)
(4.11)

where c+ = 1, c− = 0 for the retarded choice of contour and c+ = 0, c− = 1 for the advanced.
This is more general than the eikonal wave scattering solution in [45], because it also allows
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for quantum contributions to the scattering of waves on top of the (classical) background.
We are now ready to compute the boundary term as a function of the momentum22

S in/outI + (p) =− 1
8π2 lim

r→∞
c+

∫
I +

dudθdϕ sin θ eiωu

×
∫
R
dωk (iωkr − 1)J̄eff(ωk, ωkx̂)e−iωkue−iωr(p̂·x̂−1)

(4.12)

for the future null boundary, and

S in/outI− (p) =− 1
8π2 lim

r→∞
c−

∫
I−

dvdθdϕ sin θ eiωv

×
∫
R
dωk (iωkr − 1)J̄eff(−ωk, ωkx̂)e−iωkve−iωr(p̂·x̂+1)

(4.13)

for the past null boundary. The integrals over retarded and advanced time localize ωk = ω,

S in/outI−∪I +(p) = − 1
4π lim

r→∞

∑
η=±

cηη

∫
dθdϕ sin θ (iωr)J̄eff(ω, ηωx̂)e−iωr(p̂·x̂−η) , (4.14)

where η = ± for I ±. To solve the integrals over the angles we again make use of the saddle
point approximation setting x̂ = ±p̂ for I ± which yields

S in/outI−∪I +(p) =
(
c+ + c−

2

)
J̄eff(ω, ωp̂) . (4.15)

This is a very interesting result: the boundary term in the action localizes to the Fourier
transform of the effective source evaluated at large distances along the incoming momentum.
The normalisation of the result depends on the choice of contour and with the advanced
or retarded prescriptions the boundary action is essentially half of the effective source. If
one considers linear combinations of solutions, which would still have vanishing bulk action
when all sources are at the boundary, one sees that for the antisymmetric combination,
corresponding to using the causal propagator, the boundary action vanishes while the
symmetric combination gives a boundary action equal to the effective source.

The relation with the two-point function discussed in the section 2 is then easily found.
From (2.5) and using (4.10) and (4.15) we find

M2(p1, p2) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2
δφ̄out(−p1)
δJ̄(p2)

= lim
p2

1→0
lim
p2

2→0
p2

2
δJ̄eff(−p1)
δJ̄(p2)

= lim
p2

1→0
lim
p2

2→0
p2

2

δ
[ (

2
c++c−

)
S in/outI−∪I +(−p1)

]
δJ̄(p2)

,

(4.16)

where we have set p = p1 as the incoming momentum. It is important to note that all
the quantities in (4.16), and their corresponding physical interpretation, depend implicitly

22Note that while in section 2 we used the in-in formalism labeling states by η = −1 (incoming) and η = +
(outgoing), here we are working in the in-out formalism.
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on the choice of contour. This shows that, similarly to the AdS/CFT case, the boundary
on-shell action is the generating functional of the two-point function. It is straightforward to
extend this derivation to a complex massless scalar minimally coupled to a Kerr-Schild gauge
background, which is flat by definition. In appendix B, we also extend this construction to
a U(1) gauge field minimally coupled to a gravitational Kerr-Schild background.

5 Conformal Faddeev-Kulish dressings for backgrounds

In the previous sections we have considered only the leading contribution to the two-point
function. At higher orders in perturbation theory, infrared divergences will appear as a
consequence of the non-trivial asymptotic dynamics in the presence of long-range massless
interactions. This can be seen by iteratively solving the wave equations.

In the electromagnetic case (2.10) for Kerr-Schild type potentials (2.7), where the
non-linear A2 term vanishes, we have

φ̄(p) = − 1
p2

∞∑
n=0

∫ n∏
`=1

d4k(`)

(2π)4
A(1)

2 (p,−k(1))
k(1)2

A(1)
2 (k(1),−k(2))

k(2)2 . . .
A(1)

2 (k(n−1),−k(n))
k(n)2 J̄(k(n)) .

(5.1)
This solution can be re-summed in the eikonal approximation, where we treat the integrated
momenta k(`) as soft, by expanding propagators e.g. 1/(k(1) + p1)2 → 1/2k(1) · p1 and
dropping powers of k(`) in numerators. The connected part of the amplitude then becomes

Acon,IR
2 (p1, p2) = exp

[
e

∫
d4k

(2π)4
Ā(−k) · p2
k · p2

]
A(1)

2 (p1, p2) . (5.2)

Thus we see that the amplitude factorises into an exponential pre-factor capturing the IR di-
vergences and a hard factor in a manner familiar from scattering amplitudes [50]. Noting that∫

d4k

(2π)4
Ā(−k) · p2
k · p2

= i

∫
ds pµ2Aµ(p2s) (5.3)

we see that the prefactor has the well known operator interpretation as a Wilson line for
the hard particles. This result is actually slightly more general than for just Kerr-Schild
backgrounds as in this approximation we would additionally neglect the A2 contributions
even if they were present. For electromagnetic potentials sourced by uniform velocity
charged particles, that is Coulomb and shockwave potentials, the integral is given by

e

∫
d4k

(2π)4
Ā(−k) · p2
k · p2

= eQp2 · u
8π3

∫
d4−2εk δ(u · k)

(k2 + i0+)(k · p2 + i0+) = ieQ

8πε (5.4)

where we introduced an i0+ prescription for the propagators and used dimensional reg-
ularisation, with the corresponding parameter ε, to remove the IR divergence. In this
background, as the IR divergences are independent of the momenta, they are invisible to
the Mellin transform and so the two-point function in the celestial basis can be similarly
factorised into a divergent soft factor and an IR finite hard factor

ÃIR
2 (∆1,∆2) =

∫ ∞
0

2∏
i=1

dωiω
∆i−1
i Acon,IR

2 (ω1, ω2, q1, q2) = Ãsoft
2 Ã

(1)
2 , (5.5)
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with Ãsoft
2 = eiQe/8πε. As we will see below, this factorisation can be understood in terms

of the conformal hard-soft factorisation of scalar QED amplitudes studied in [57].
While the electromagnetic case is essentially trivial this is not so for gravitational

backgrounds where there is non-trivial momentum dependence in the IR divergent factor.
After iteratively solving the wave equation (2.39), again considering Kerr-Schild backgrounds
or simply neglecting non-linear terms,

φ̄(p) = − 1
p2

∞∑
n=0

∫ n∏
`=1

d4k(`)

(2π)4
M′2(p,−k(1))

k(1)2
M′2(k(1),−k(2))

k(2)2 . . .
M′2(k(n−1),−k(n))

k(n)2 J̄(k(n))

(5.6)
where we defined an off-shell tree-level amplitudeM′2(p, k) = −h̄µν(p+ k)

[
pµkν − 1

2ηµν(p ·
k+k2)

]
, and taking the eikonal limit, the connected part can again be written as a prefactor

times the tree amplitude

Mcon,IR
2 (p1, p2) = exp

[
−
∫

d4k

(2π)4
h̄µν(−k)p2µp2ν

2k · p2

]
M(1)

2 (p1, p2) . (5.7)

Again the exponential prefactor has exactly the form of a Wilson line, familiar from the
eikonal approximation of scattering amplitudes in gravity [100–102]. For the linearized
geometry describing uniform velocity particles, which includes linearized Schwarzschild and
Aichelburg-Sexl geometries, the metric perturbation in harmonic gauge (2.65) implies an
IR divergent prefactor

−
∫

d4k

(2π)4
h̄µν(−k)p2µp2ν

2k · p2
= −(p2 · u)2Gr0

π2

∫
d4−2εk δ(u · k)

(k2 + i0+)(k · p2 + i0+) = − i(p2 · u)Gr0
ε

(5.8)

where r0 is a constant corresponding to the mass M in the case of Schwarzschild or lightcone
energy P+ in the case of the shockwave. Thus we see that the all-order amplitudes in non-
trivial gravitational backgrounds can also be split into a hard part and a IR divergent phase.

The same splitting occurs in the celestial basis but in this case the soft prefactor
becomes an operator acting on the amplitude. In the case of the shockwave, using the
null momentum parameterisation (3.1) and taking uµ = qµ as in (3.25), we can write the
celestial two-point amplitude as

M̃IR
2 (∆1,∆2) = M̃soft

2 M̃
(1)
2 (∆1,∆2) (5.9)

with

M̃soft
2 = exp

[
− iGP

+

ε

(
η1e

∂∆1 |z1sw|2 − η2e
∂∆2 |z2sw|2

)]
(5.10)

where we see the appearance of the dimension shifting operators e∂∆k . For particle-like
backgrounds, we can derive a dressing for the background states which removes these
divergent terms at all orders in perturbation theory in the two-point function calculation
by using the matching to four-point amplitudes discussed in section 2.3.
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5.1 QED amplitudes

The IR divergences in QED amplitudes have long been known to exponentiate [50, 51]. Let
us denote by p1, p3 = PA the incoming momenta and p2, p4 = PB the outgoing momenta.
We take the momenta p1 and p2 to be massless probe particles while PA and PB are particles
generating the non-trivial background.23 The S-matrix element can be written as

〈p2PB|S|p1PA〉 = W4,QED〈p2PB|S|p1PA〉hard , (5.11)

where 〈PBp2|S|PAp1〉hard is the hard IR-finite part and the IR divergent prefactor W4,QED
can be reproduced by replacing the external particles by Wilson lines

W4,QED = 〈0|
∏
n=1,3

Wpn,QED(−∞, 0)
∏

m=2,4
Wpm,QED(0,∞) |0〉 , (5.12)

with

Wp,QED(a, b) = exp
(
−ie

∫ b

a
ds pµAµ(ps)

)
. (5.13)

For the case of the Coulomb background the two-point amplitude is related to the eikonal
scattering from a massive particle where PµA = PµB = Muµ with u a unit time-like vector e.g.
uµ = (1, 0, 0, 0). The exponential IR divergent prefactor is, using dimensional regularisation
with d = 4− 2ε,

W4,QED = exp
{
− 1

16π2ε

∑
n,m=A,B

enemηnηm
βnm

[1
2 ln

(1 + βnm
1− βnm

)
− iπδηn,ηm

]

− 1
16π2ε

∑
n,m=1,2

enemηnηm [ln (2|pn · pm|)− iπδηn,ηm ]

− 1
8π2ε

∑
n=1,2
m=A,B

enemηnηm

[
ln
(2|pn · Pm|

M2

)
− iπδηn,ηm

]}
(5.14)

where for massive particles we define the relative velocity

βnm =
[
1− M4

(Pn · Pm)2

]1/2

. (5.15)

The first line in (5.14) corresponds to IR divergences due to virtual photon exchange
between the background particles and are not present in the two-particle amplitude where
the background is entirely classical. Similarly the second line is due to photon exchange
between the probe particles and is again not present in the two-particle amplitude as it is a
quantum effect and would require including dynamical photons. The last term corresponds
to exchange between the background and probe particles and these IR divergences are

23Here, and below, we take all momenta to be positive energy and explicitly write the factors η = ±
previously included in the momenta.
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present in the classical computation of the two-point amplitude, which however only includes
absorption by the probe particles and so is reduced by a factor of two.

In the case where the background particles are also massless the IR divergent prefactor
can be written more compactly,

W4,QED = exp
{
− 1

8π2ε

∑
n<m

enemηnηm [ln (2|pn · pm|)− iπδηn,ηm ]
}

(5.16)

where the double sum goes over all ordered pairs of legs and we have dropped n = m terms
in the sum which are necessary for the complete cancellation of IR divergences. These
terms do not occur in the two-point amplitude and so are not relevant to our considerations.
This is also consistent with the treatment of IR divergences of celestial amplitudes in [57].
Importantly, the imaginary term only receives contributions from pairs of legs that are
either both incoming or both outgoing.

For the Coulomb background in the charged particle rest frame we have,

PµA →M(1,~0) , PµB →M(1,~0) , (5.17)

which implies

βAA = βBB = βAB → 0 , PA · pm = PB · pm → −Mp0
m . (5.18)

We can now focus on the mixed contributions, take the probe of charge e1 = e2 = e and
the high energy particle generating the background of charge eA = eB = Q. Then (5.14)
becomes, since the real contributions involving PA and PB cancel out,

WCoul
4,QED = exp

{
ieQ

4πε

}
. (5.19)

This phase is a fully classical contribution, and it is indeed what we would expect from
the scattering on a stationary background within the classical eikonal approach (see [45], for
example). In particular, using the Mandelstam variables s = −(p1 +PA)2, u = −(p1−PB)2,
t = −(p1 − p2)2, the eikonal limit corresponds to −t� s ' −u and in this limit the real
ln |s| and ln |u| contributions cancel while the ln |t| contributions are sub-leading. The
imaginary terms however do not cancel and can be identified with the IR divergent phase
factors seen in the two-point amplitude in the Coulomb background (5.4). The agreement
is up to a factor of two which is due to the fact that the formula (5.16) includes couplings
of the exchanged photons to both the background and the probe particles and so gives
twice the contribution seen in the two-point amplitude (5.4).

A similar calculation can be done for the electromagnetic shock wave solution by taking
the massless limit for PA and PB and by taking them collinear with a null vector qsw,
PA = PB = P+qsw. We can then use the matching condition in (5.14)

PµA → P+(1, 0, 0, 1) , PµB → P+(1, 0, 0, 1) , (5.20)

and get from (5.14) that

W sw
4,QED = exp

{
ieQ

4πε

}
. (5.21)
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This corresponds to the IR divergent phase due to photons exchanged between the massless,
high energy particles of charge eA = eB = Q generating the background and the probe
particles of charge e1 = e2 = e which is captured by the classical two-point amplitude.
There is again a factor of two difference due to the two-point amplitude corresponding to
the fact that the background corresponds to a single Wilson line, and therefore we are
double-counting the coupling to the probe particle.

In [57] it was shown how to define IR finite celestial amplitudes in massless scalar QED
(neglecting collinear divergences) by dressing the external charged particles by clouds of
Goldstone modes. This corresponds to the Faddeev-Kulish dressing method [52] but with
an alternative choice of the dressing factor that is consistent with conformal invariance but
not energy finiteness. The dressing of single particle states is given by

e−iR
QED
k |ωk, zk, z̄kek〉 (5.22)

with RQED
k = ηkekΦ(zk, z̄k) where Φ(z, z̄) is a free, periodic, two-dimensional boson with

two-point function
〈Φ(zi, z̄i)Φ(zj , z̄j)〉 = 1

8π2ε
ln |zij |2 (5.23)

and which has the interpretation as the Goldstone boson for the spontaneous breaking
of the large U(1) gauge symmetry [58]. The real part of the IR divergent prefactor of
scattering amplitudes can be written as a correlation function of the operators eiR

QED
k and

so is cancelled by the product of single particle dressing factors.
To make contact with the two-point amplitude we note that properly accounting for

the phase terms is essential and so we introduce two bosons Φ+ and Φ− which have the
two-point functions

〈Φηi(zi, z̄i)Φηj (zj , z̄j)〉 = ηiηj
8π2ε

(ln |zij |2 − iπδηi,ηj ) . (5.24)

We define the dressing factor for in-/out-going particles as

R∓,QED
k = ekΦ∓(zk, z̄k) (5.25)

where we absorb the factor of ηk into the definition of the fields Φηk . To define a dressing
factor for the background we consider the OPE of the two dressing factors for the background-
generating, high-energy particles which are collinear. As we are taking the background
to be entirely classical we can take as a background dressing operator the appropriately
normalised normal ordered product

eiR
QED
sw = : e

i
2R
−,QED
PA e

i
2R

+,QED
PB : (5.26)

so that
RQED
sw = Q

2 (Φ+(zsw, z̄sw) + Φ−(zsw, z̄sw)) . (5.27)

The soft factor of the two-point function can be written as

Ãsoft
2 = 〈eiR

QED
sw eiR

−,QED
1 eiR

+,QED
2 〉 , (5.28)
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where the terms involving the contractions between RQED
1 and RQED

2 are sub-leading and
neglected, thus we see that the dressing factors will cancel the divergent phase and give an
IR finite result. As described in [57], IR finite celestial amplitudes between massless scalars
are obtained by dressing the conformal primary operator for outgoing or incoming states
O±∆k

(zk, z̄k) with exp(−iekΦ±(zk, z̄k)) where the dressed operator Ô±∆k+δk has a shifted

dimension, with δk = − e2k
8π2ε , and is defined by appropriately accounting for the collinear

singularity

Ô±∆k+δk(z, z̄) = lim
w→z
|z − w|−2δk : e−iekΦ±(z,z̄) :: O±∆k

(w, w̄) : . (5.29)

We similarly define a dressed shockwave operator by taking the operator product of the
undressed shockwave operator Osw and the dressing exp(−iRQED

sw ),

Ôsw(zsw, z̄sw) = lim
z→zsw

: e−i
Q
2 (Φ+(zsw,z̄sw)+Φ−(zsw,z̄sw)) :: Osw(z, z̄) : (5.30)

where, as we are treating the shockwave classically, there are no collinear singularities or
shifts of dimension. The IR finite two-point amplitude in the shockwave background is then

Ãdressed
2 = 〈Ôsw(zsw, z̄sw)Ô−∆1

(z1, z̄1)Ô+
∆2

(z2, z̄2)〉 (5.31)

where the extra factors arising from the contractions between the Goldstone bosons cancel
the IR divergent phases.

5.2 Gravitational amplitudes

Similar results are known for the virtual infrared divergences of gravitational amplitudes [51].
Let us again denote by p1, p3 = PA the incoming momenta and p2, p4 = PB the outgoing
momenta. Starting with the case of scattering from a massive particle we take the momenta
p1 and p2 as massless probe particles while PA and PB are massive background particles.
The S-matrix for the four-point amplitude can again be written as

〈p2PB|S|p1PA〉 = W4,GR〈p2PB|S|p1PA〉hard , (5.32)

where 〈p2PB|S|p1PA〉hard is the hard IR-finite part and W4,GR is the infrared divergent
factor. The IR divergences can be again be found by replacing the external legs by Wilson
lines and computing the appropriate expectation value [100, 102]

W4,GR = 〈0|
∏
n=1,3

Wpn,GR(−∞, 0)
∏

m=2,4
Wpm,GR(0,∞) |0〉 , (5.33)

with

Wp,GR(a, b) = exp
(
−iκ2

∫ b

a
ds pµpνhµν(ps)

)
(5.34)
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which in d = 4− 2ε dimensions is given by [51]

W4,GR = exp
{
G

4πε
∑

n,m=A,B
ηnηmM

2 1 + β2
nm

βnm(1− β2
nm)1/2

[1
2 ln

(1 + βnm
1− βnm

)
− iπδηn,ηm

]

+ G

4πε
∑

n,m=1,2
ηnηm (2|pn · pm|) [ln (2|pn · pm|)− iπδηn,ηm ]

+ G

2πε
∑
n=1,2
m=A,B

ηnηm (2|Pn · pm|)
[
ln
(2|Pn · pm|

M2

)
− iπδηn,ηm

]}
. (5.35)

This can also be derived from the one-loop soft function, by generalizing the derivation done
in massless case [100] to the case of massive lines [103, 104]. In the first two lines of (5.35)
we can recognize the pure massive and massless contributions to the virtual IR divergences
which are not reproduced by the classical two-point amplitude. The first term corresponds
to including corrections to the background while the second term in (5.37) is the standard
massless contribution, [100], and it suppressed in classical calculations on backgrounds
because it has a quantum nature. In the last line we have the mixed contributions which
are present in the background two-point function and are thus captured by the classical
calculation. When the background particles are massless we can write (5.35) in a compact
form as in QED,

W4,GR = exp
[
G

2πε
∑
n<m

ηnηm (2|pn · pm|) (ln 2|pn · pm| − iπδηn,ηm)
]

(5.36)

For the Schwarzschild background, we have the same matching condition as for the
Coulomb case and we can use (5.17) and (5.18). In particular, considering the mixed
contribution in (5.35) we get,

W Schw
4,GR = exp

{
− iMG

ε

(
p0

1 + p0
2

)}
. (5.37)

This classical contribution can be compared with the two-point amplitude in the
Schwarzschild background (5.8) with r0 = M , where it can be seen, after using energy
conservation η1p

0
1 + η2p

0
2 = 0 with η1 = −η2, that there is agreement up to a factor of two

which has the same physical explanation as in the QED case. A related phase has been
found in the study of soft factors for low energy graviton amplitudes [105].

For the Aichelburg-Sexl metric we can use the matching condition in (5.20) which
implies PA · pj → −2P+p−j so we get from (5.35)

W sw
4,GR = exp

{
−2iP+G

ε

(
p−1 + p−2

)}
, (5.38)

which is the IR divergent phase for a probe particle travelling in a gravitational shock-wave
background. Using the light-cone energy conservation η1p

−
1 + η2p

−
2 = 0 with η1 = −η2 we

again, as in all the previous cases, find a factor of two difference compared to the two-point
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amplitude in the Aichelburg-Sexl background (5.8) with r0 = P+ due to the identification
of two Wilson lines with a single background.

As for scalar QED, it is possible to define IR finite amplitudes of massless scalars
in the gravitational case by using the appropriate dressing [56] which can be extended
to the celestial amplitudes [57]. The dressing in [56] is defined in terms of a Goldstone
boson C(z, z̄) for the supertranslation symmetry such that the correlation function of
exponentiated operators reproduces the IR divergences of massless scalars. In order to
capture the phase information we will introduce two scalar fields C±(z, z̄), for incoming (−)
or outgoing (+) particles, which have the two-point function

〈Cηi(zi, z̄i)Cηj (zj , z̄j)〉 = − ηiηj4π2ε
|zij |2(ln |zij |2 − iπδηi,ηj ) . (5.39)

The IR divergences of massless scalars can then be reproduced by the correlation function
of the exponentiated operators eiR

±,GR
k

Wn,GR = 〈eiR
±,GR
1 . . . eiR

±,GR
n 〉 (5.40)

where
R±,GR
k = κ

2ωkC
±(zk, z̄k) . (5.41)

We can use the same operators to reproduce the IR divergences of celestial amplitudes
by making the replacement ωi → exp(∂∆i

). To define IR finite two-point functions we must
define a dressing for the background and, as in the QED case, this can be done by taking
the collinear limit of dressings for the background particles. For the shockwave background
we find the dressing

RGR
sw = κP+

4 (C+(zsw, z̄sw) + C−(zsw, z̄sw)) (5.42)

so that the correlator
M̃soft

2 = 〈eiRGR
sw eiR

−,GR
1 eiR

+,GR
2 〉 (5.43)

correctly reproduces the IR divergences of the two-point amplitude in the shockwave
background, again neglecting subleading quantum corrections. Correspondingly, we can
define dressed operators

Ô±∆k
(zk, z̄k) = e−iR

±,GR
k O±∆k

(zk, z̄k) , Ô∆sw(zsw, z̄sw) = e−iR
GR
sw O∆sw(zsw, z̄sw) , (5.44)

such that the IR finite two-point amplitude is

M̃dressed
2 = 〈Ôsw(zsw, z̄sw)Ô−∆1

(z1, z̄1)Ô+
∆2

(z2, z̄2)〉 . (5.45)

The extension of the Goldstone boson dressing to massive particles, which correspond
to the Schwarzschild background, has been discussed in [56] however it is slightly more
involved and as the two-point function in massive backgrounds does not yet have such a
clear interpretation as a three-point function we leave this case to future work.
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6 Conclusions

Flat space scattering amplitudes have been recast as CFT correlators on the celestial
sphere, in a way that makes manifest the symmetries we would expect for an underlying
holographically dual theory. The asymptotic symmetry analysis, however, suggests the
existence of a celestial conformal field theory also for more general asymptotically flat
backgrounds. The main goal of this paper was to start exploring its properties for Kerr-
Schild backgrounds in four spacetime dimensions.

To that end we focused on a particularly simple object: the two-point amplitude for
the scattering of a massless field on top of such backgrounds which we have computed using
the method of Boulware and Brown. For general asymptotically flat curved spacetimes
the global Lorentz symmetry of the S-matrix is broken, but this does not prevent us
from giving an interpretation for the scattering of conformal primaries in these geometries.
Indeed, at least for point-like backgrounds all the semiclassical two-point amplitudes can
be related to suitable Lorentz-invariant four-point amplitudes in flat space which do have
a clear CCFT interpretation. Moreover, we can define classical point-like backgrounds
as the ones generated by three-point amplitudes with an off-shell coherent emission in
the ~ → 0 limit [36] which guarantees that a proper holographic description must exists
for such backgrounds, thanks to the holographic map from S-matrix elements to CCFT
correlators. The backgrounds in this class for which we computed celestial amplitudes are
Coulomb, Schwarzschild and the electromagnetic and gravitational shockwave. We have
also studied the classically spinning counterparts of these solutions, i.e.

√
Kerr, Kerr and

their corresponding ultra-boosted limits, which exhibit interesting finite-size spin effects
and might ultimately require an intrinsic worldsheet-type description.

We find that the celestial two-point amplitudes on the electromagnetic and the grav-
itational shockwave backgrounds at leading order in the coupling exhibit the structure
of vanilla three-point functions in a CFT. This can be attributed to the fact that such
backgrounds can be interpreted directly as conformal primaries on the celestial sphere [97].
Interestingly, the kinematic delta functions of flat space three-point amplitudes are absent,
suggesting that no shadow or light-ray transform prescription [106–109] that alleviates
them in flat space is needed. For massive scalar point-like backgrounds like Coulomb and
Schwarzschild, we similarly find a power-law, rather than distributional, behaviour in the
celestial sphere coordinates for the two-point function which calls for an interpretation of the
corresponding bulk solutions in terms of dual operators in the CCFT. We also considered
classically spinning backgrounds, both massless and massive, where new interesting features
arise. For example, the celestial two-point amplitudes for the

√
Kerr, Kerr and spinning

shockwave solutions are well-behaved in the UV and not restricted to the principal series
provided an appropriate analytic continuation in spin is performed. All these features make
the study of these amplitudes very interesting from the holographic perspective, and we are
looking forward to finding a full description of such bulk solutions in terms of conformal
primary operators.

In AdS/CFT, the on-shell action plays a special role in the derivation of the holographic
two-point function as it localizes along the boundary. A similar calculation can be done
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for asymptotically flat backgrounds: we have shown that the boundary on-shell action
evaluated at null infinity is the effective source for the wave equation localized on the
celestial sphere, both for spinless and spinning wave scattering. The boundary action is
therefore the generating functional for tree-level correlation functions on the celestial CFT,
consistent with the holographic principle.

Finally, we have studied the infrared sector for wave scattering on top of backgrounds.
As expected, infrared divergences exponentiate into a divergent phase dressing for the
two-point amplitude. While this is irrelevant for cross-section observables, it is crucial in
order to define an infrared finite S-matrix. For point-like backgrounds we have derived
a conformal Faddeev-Kulish dressing along the lines of [57], which removes the IR phase
divergences at all orders in perturbation theory and which is generated by a pair of Goldstone
bosons arising from the spontaneous breaking of large gauge and gravitational symmetries.
This solves the problem of describing the infrared dynamics for two-point amplitudes on
asymptotically flat point-like backgrounds. We expect our result to be valid also for spinning
backgrounds, since the spin dependence drops out for the infrared dynamics as we showed
explicitly by considering the conformally soft limit of wave scattering on such backgrounds.

We conclude with some open questions. An important step is to understand what
operators or combination thereof represents bulk massive background solutions, beyond the
simple shockwave case. It is conceivable that a suitable combination of conformal primaries
can represent physical massive black holes in the CCFT, and this is a promising direction
for further studies. Here, we have only considered in detail the scattering of massless scalars.
The perturbiner method, however, can also be extended to the scattering of spinning waves,
as we showed in the appendices, and it would be interesting to study spinning two-point
amplitudes. Finally, it would be nice to understand to what extent the energy scale of bulk
gravitational solutions is going to affect the dual description in the CCFT. So far we have
treated such energy scale as a parameter by considering the scattering of external conformal
primaries on the original geometry, but perhaps there exists an alternative intrinsic dual
description of geometry itself purely in terms of conformal primaries. A last tantalizing
possibility would be to study the two-point function with ingoing boundary conditions at
the horizon for asymptotically flat black hole solutions, which would allow the exploration
of the structure of the dual CFT description.

Acknowledgments

We would like to thank Tim Adamo, Davide Billo, Andrea Cristofoli, Alok Laddha and
Nathan Moynihan for interesting discussions. TMCL was supported by Science Foundation
Ireland through grant 15/CDA/3472. AP is supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 852386). RG has received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-Curie grant agreement No.
764850 “SAGEX”.

– 34 –



J
H
E
P
1
0
(
2
0
2
2
)
0
7
3

A Spinning wave scattering on backgrounds

We generalize the analysis of scalar wave scattering on gravitational backgrounds, section 2,
to the spinning case with s = 1, 2.

Let’s consider first a U(1) vector field Aµ minimally coupled to a gravitational Kerr-
Schild background, where the corresponding action is

S = −1
4

∫
d4x
√
−ggµρgνσFµνFρσ +

∫
d4x
√
−gJµAµ . (A.1)

We have the following equation of motion

�Aµ −∇µ∇νAν −RµνAν = −Jµ , (A.2)

where the underlined quantities refer to the background Kerr-Schild metric. To construct the
two-point amplitude with the perturbiner method, it is convenient to work with cartesian
Kerr-Schild coordinates. The equation of motion in Lorenz gauge can be written in terms
of an effective source current

ηαβ∂α∂βA
µ = Jµeff , ∇µAµ = 0 , (A.3)

where

Jµeff = ∂α
(
hαβ∇βAµ

)
− ηαβ∂α(ΓµβγA

γ)− Γµλσg
λβ∇βAσ +RνµA

µ − Jµ . (A.4)

This can be inverted to give the classical solution in terms of the source

Aµcl(x) =
∫

d4p

(2π)4
eip·x

(p0)2 − |~p|2 + iε
J̄µeff(p0, ~p) (A.5)

which can in practice be solved iteratively for weakly curved backgrounds. We can perform
the standard LSZ reduction to define the two-point amplitude for spin 1 fields on the
Kerr-Schild gravitational background

A2(pσ1
1 , pσ2

2 ) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2 ε
∗σ1
µ (−p1)εσ2

ν (p2)δĀ
µ
cl(−p1)

δJ̄ν(p2)
. (A.6)

A similar procedure can be carried out for graviton perturbations on a Kerr-Schild back-
ground, by using the Einstein-Hilbert Lagrangian coupled to a matter source

S = 2
κ2

∫
d4x
√
−GR[G]+

∫
d4x
√
−GLmatter , Jµν ≡−

1√
−G

∂(
√
−GLmatter)
∂Gµν

. (A.7)

We can then express the total metric as the sum of the spin-2 tensor perturbation Hµν and
the Kerr-Schild background gµν

Gµν = gµν +Hµν , (A.8)

and we can express the perturbative wave equation in terms of trace-reversed perturbations

Htr
µν ≡ Hµν −

1
2gµνH

α
α , ∇µ(Htr)µν = 0 . (A.9)
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The wave equation for the spin 2 perturbation on the Kerr-Schild background is therefore
defined as

�(Htr)µν −Rαβ
(
gµν(Htr)αβ − (Htr)µνgαβ + 2gβ(µ(Htr)ν)α

)
+ 2Rµ ν

α β(Htr)αβ = 2 δEµν [Htr]− Jµν(x) , (A.10)

where δEµν includes all the quadratic, cubic and higher order contributions of (Htr)µν to
the Einstein tensor and the equation has to be solved self-consistently in powers of κ. At
each order in perturbation theory, an effective source can be defined for (Htr)µν

Jµνeff (x) ≡ ∂α
(
hαβ∇β(Htr)µν

)
− 2ηαβ∂α(Γ(µ

βρ(H
tr)ν)ρ)− 2gαβΓ(µ

αρ∇β(Htr)ν)ρ

− 2Rµ ν
α β(Htr)αβ +Rαβ

[
gµν(Htr)αβ − (Htr)µνgαβ + 2gβ(µ(Htr)ν)α

]
+ 2 δEµν [Htr]− Jµν(x) (A.11)

such that the equation of motion is

ηαβ∂α∂β(Htr)µν = Jµνeff (A.12)

which can be solved iteratively for (H̄tr)µνcl as a function of the source. As before we can
perform the standard LSZ reduction to define the perturbative two-point amplitude

M2(pσ1
1 , pσ2

2 ) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2 ε
∗σ1
µν (−p1)εσ2

αβ(p2)δ(H̄
tr)µνcl (−p1)
δJ̄αβ(p2)

. (A.13)

Summarizing, it is always possible to define an effective source for the wave scattering of
massless spin-s perturbations on Kerr-Schild backgrounds in perturbation theory. If we
collectively define our scalar, vector and tensor perturbations as

ΨI = {φ,Aµ, Htr
µν} , (A.14)

then the solution wave equation in cartesian Kerr-Schild coordinates can be always written
in the form

ΨI,cl(x) =
∫

d4p

(2π)4
eip·x

(p0)2 − |~p|2 + iε
J̄I,eff(p0, ~p) . (A.15)

B Spinning boundary on-shell action localization

We show here that we can extend the relation between the boundary on-shell action and
the generating functional of the two-point function for a U(1) gauge field minimally coupled
to a Kerr-Schild gravitational background, working for simplicity in radial gauge Ar = 0.

The original action in (A.1) is equivalent to

S = 1
2

∫
d4x
√
−gAµ

(
δνµ∇ρ∇ρ −∇µ∇ν −R ν

µ

)
Aν

−
∫

d4x
√
−ggµρgνξ∇[µ

(
Aν](∇[ρAξ])

)
, (B.1)
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where the boundary term can be now isolated

Sbdy = −
∑
η=±

∫
I η

d3x
√
−gindA[ξ(x)nρ]∇[ρAξ](x) . (B.2)

We can now write the incoming and the outgoing gauge theory solutions as

Aµin,σ(x) = ε∗µσ (p)eip·x ,

Aµout(t∓ r, r, x̂) = −c±
1

4πr

∫
R

dωk
2π e∓iωk(t∓r)J̄µeff(±ωk, ωkx̂) +O(r−2) , (B.3)

where we have considered only the leading radiative component of the gauge field around
the null boundaries I ±. This means that we can write the in/out boundary contribution
as a function of the momentum for the future null boundary as

S in/outI + (pσ) = − 1
(8π2)c+ lim

r→∞
r

∫
I +

dudθdϕ sin(θ)

×
∫
R
dωk

[
e−ip·xε∗[ξσ (p)nρ]∇[ρ

(
e−iωkuJ̄eff,ξ](ωk, ωkx̂)

)
− ε∗σ,ξ(p)

(
e−iωkuJ̄

[ξ
eff(ωk, ωkx̂)nρ]

)
∇ρeip·x

]
, (B.4)

and for the past null boundary

S in/outI− (pσ) = − 1
(8π2)c− lim

r→∞
r

∫
I−

dvdθdϕ sin(θ)

×
∫
R
dωk

[
eip·xε∗[ξσ (p)nρ]∇[ρ

(
eiωkvJ̄eff,ξ](−ωk, ωkx̂)

)
− ε∗σ,ξ(p)

(
eiωkvJ̄

[ξ
eff(−ωk, ωkx̂)nρ]

)
∇ρeip·x

]
. (B.5)

We notice that in radial gauge Arin = Jeff,r = 0 some of the terms are vanishing,24 and
following some steps similar to the scalar case, we are left with

S in/outI−∪I +(pσ) =
(
c+ + c−

2

)
ε∗ξσ (p)J̄eff,ξ(ωp, ωpp̂) , (B.6)

which depends on the contour prescription as in section 4. Therefore, we can conclude
that the boundary on-shell spinning action is the generating functional of the two-point
amplitude:

M2(pσ1
1 , pσ2

2 ) = − lim
p2

1→0
lim
p2

2→0
p2

1p
2
2ε
∗σ1
µ (−p1)εσ2

ν (p2)δĀ
µ
out(−p1)
δJ̄ν(p2)

= lim
p2

1→0
lim
p2

2→0
p2

2 ε
∗σ1
µ (−p1)εσ2

ν (p2)δJ̄
µ
eff(−p1)
δJ̄ν(p2)

= lim
p2

1→0
lim
p2

2→0
p2

2 ε
σ2
ν (p2)

δ
[(

2
c++c−

)
S in/outI−∪I +(−pσ1

1 )
]

δJ̄ν(p2)
. (B.7)

24It is an interesting problem to extend this derivation to other gauges, like the harmonic one.
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This calculation can be generalized also to the tensor source of graviton perturbations
in (A.11), but the steps are quite involved we leave this for future work. It has been shown
explicitly in [110] how to isolate the boundary terms in the Einstein-Hilbert action up to
quadratic order in the graviton perturbation, and we believe that the procedure can then
be generalized recursively also at higher orders in perturbation theory.

C Hyperbolic slicings of Schwarzschild and Kerr

We have shown in section 3 that the wave scattering on asymptotically flat backgrounds
can be recast as a celestial two-point function on the CCFT. A complementary approach to
celestial holography in Minkowski spacetime makes use of the so-called hyperbolic slicing, as
shown in the seminal work of Soludukhin and de Boer [1]. The relevance is two-fold. First of
all, this allows to make contact with the standard AdS3/CFT2 holography [3, 28]. Second,
this gives a manifestly Lorentz-invariant description for the bulk physics in a way that
smoothly connects to the celestial conformal field theory (indeed Weyl-invariant theories
are very interesting models for flat space holography25).

Here we show that we can also provide, at least locally in some coordinate patch, a
hyperbolic slicing of asymptotically flat space solutions like Schwarzschild and Kerr in 4
dimensions starting from their Kerr-Schild form. Besides the importance of showing how
the Euclidean AdS3 geometry and its conformal boundary arises from these geometries in
the future and past Milne regions, this justifies the use of the conformal flat space basis for
the scattering on top of those backgrounds. Moreover, it might also be relevant for setting
up the holographic bulk reconstruction method in asymptotically flat spacetimes, which is
well-developed in the AdS/CFT literature [118, 119].

C.1 Warm up: Minkowski flat metric

Let’s start with the usual Minkowski spacetime in cartesian coordinates (x0 = t, x1, x2, x3)

ds2
Mink = ηµνdx

µdxν . (C.1)

In this case the change of coordinates we are seeking boils down to choosing Minkowski
proper distance as the new time coordinate τ = 1

2 log(−x2). In detail [3]

xµ =
(

1
2ρe

τ

(
1 + |z|2

ρ2 + 1
)
,

(z + z̄)
2ρ eτ ,− i(z − z̄)

2ρ eτ ,
1
2ρe

τ

(
1− 1− |z|2

ρ2

))
, (C.2)

where we have expressed our Cartesian coordinates in terms of (τ, ρ, z, z̄). Clearly
(t, x1, x2, x3) ∈ R4, while (τ, ρ, z, z̄) ∈ R2 × C2. If we express everything in terms of

25This coordinate system was first studied by Dirac in 1949 for the so-called point-form quantization [111],
where the dilatation operator is the time-translation Hamiltonian in the bulk. Then this was revisited
further in the early 80’s by a variety of people [112–117] in order to understand dual resonance models at
the early stages of the development of string theory.
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spherical coordinates (t, r, θ, ϕ) ∈ R× (0,+∞)× [0, π)× [0, 2π) we get

t = 1
2ρe

τ

(
1 + |z|2

ρ2 + 1
)
, r = 1

2e
τG(z, z̄, ρ) ,

θ = arccos
(
ρ2 + |z|2 − 1
ρG(z, z̄, ρ)

)
, ϕ = i arctanh

(
z̄ − z
z + z̄

)
, (C.3)

where we have conveniently defined a function

G(z, z̄, ρ) =
√

((ρ− 1)2 + |z|2) ((ρ+ 1)2 + |z|2)
ρ2 (C.4)

which has a singularity on the light-cone. By applying now the change of coordinates (C.3)
to the Minkowski metric we get

ds2
Mink = e2τ

(
−dτ2 + ds2

AdS3

)
, ds2

AdS3 = 1
ρ2

(
dρ2 + dzdz̄

)
. (C.5)

C.2 Schwarzschild metric

We use the Kerr-Schild form of the Schwarzschild metric

ds2
Schw,(±) = ds2

Mink + 2GM
r

(
dt′ ± dr

)2
, (C.6)

where the sign ± denotes the two possible choices for this coordinate system, which is
well-adapted to ingoing (+ sign) or outgoing (− sign) null geodesics in the Schwarzschild
geometry. Indeed, (C.6) is usually called Eddington-Finkelstein system of coordinates.26

This representation of the metric is highly convenient for the holographic approach:
the principal ingoing/outgoing null directions provide an intrinsic characterization of
the spacetime in the dual picture. In this case we would like to use the Schwarzschild
proper distance as our new coordinate time: in EF coordinates, this will approach again
τ → 1

2 log(−x2) at large distances like in flat space. We can therefore set

t′ = 1
2ρe

σ

(
ζζ̄ + 1
%2 + 1

)
, r = 1

2e
σG(ζ, ζ̄, %) ,

θ = arccos
(
%2 + ζζ̄ − 1
%G(ζ, ζ̄, %)

)
, ϕ = i arctanh

(
ζ̄ − ζ
ζ + ζ̄

)
, (C.7)

where (σ, %, ζ, ζ̄) are the analogue of (τ, ρ, z, z̄) for equation (C.3) with the crucial replacement
t → t′. We then obtain, focusing for simplicity to outgoing null geodesics, that for each
slice labelled by the new time coordinate σ the metric becomes asymptotically

ds2
Schw,(−)

∣∣∣
dσ=0

= e2σ
[

(d%)2 + dζdζ̄

%2

]

+ %eσ
4GM

(1 + |ζ|2)3 (d%)2 − %2eσ
8GMd%(ζ̄dζ + ζdζ̄)

(1 + |ζ|2)4 +O
(
%3
)

(C.8)

26This follows from defining a new the time coordinate t′ from the standard Schwarzschild representation

dt′ = dt± dr

1− 2GM/r
,

where t is the coordinate time.
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(a) Outgoing case: u = t′ − r (b) Ingoing case: v = t′ + r

Figure 3. The region in orange shows, in the (r, t′) space, the patch covered by the hyperbolic
system of coordinates adapted to outgoing (see figure 3(a)) or ingoing (see figure 3(b)) null geodesics.
The straight lines in blue represent null geodesics, while the red lines represent (one side of) the
hyperbolic slices at fixed time σ.

in the expansion of % near the boundary (identified with % = 0). We see that we find exactly
an empty AdS3 metric up to order %0. The Ricci scalar on each slice up to order %6 reads

Rσ−slice,(−) = −6e−2σ +O(%5) , (C.9)

which confirms the interpretation of the AdS3 for the asymptotic structure on each slice.27 A
completely parallel calculation can be done for ingoing null geodesics (+): we have compared
the two cases in figure 3, where the region of validity for this system of coordinates is also
highlighted.

C.3 Kerr metric

As for Schwarzschild, it is highly convenient to use the Kerr-Schild form of the Kerr metric
(see for example [120, 121])

ds2
Kerr,(±) = ds2

Mink + 2GMr̃

a2 cos2 θ + r̃2

(
dr ± dt− a sin2 θdϕ

)2
, (C.10)

where r̃ is defined implicitly from

r̃4 − r̃2
(
r2 − a2

)
− a2(r cos θ)2 = 0. (C.11)

It is worth noticing that r̃ → r for a→ 0: the Kerr metric in the Kerr-Schild form gives
manifestly the Schwarzschild metric in the Kerr-Schild form when a→ 0.

Let us focus on the coordinates adapted to outgoing null geodesics. If apply the
transformation (C.7) to the Kerr metric, on each hyperbolic slice we get, in the small %

27This shows also that further coordinate transformations can be done to achieve an AdS3-like metric
structure up to higher orders in the % variable on each hyperbolic slice.
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expansion,

ds2
Kerr,(−)

∣∣∣
dσ=0

= e2σ
[

(d%)2+dζdζ̄
%2

]

+%eσ 4GM(d%)2

(1+|ζ|2)3 +%a16GMid%(ζdζ̄−ζ̄dζ)
(1+|ζ|2)4 −%e−σa2 16GM(ζ̄dζ−ζdζ̄)2

(1+|ζ|2)5

+%2a
16iGM

(
ζ̄2(dζ)2−ζ2(dζ̄)2

)
(1+|ζ|2)5 −%2eσ

8GMd%(ζ̄dζ+ζdζ̄)
(1+|ζ|2)4 +O(%3)

(C.12)

which again confirms the interpretation of AdS3 plus corrections in the %→ 0 expansion.
Moreover, if we compute the Ricci scalar on each σ-slice we find, as expected,

Rσ−slice,(−) = −6e−2σ +O(%2). (C.13)

As for Schwarzschild, the procedure can be repeated for ingoing null geodesics and the
region of validity of this construction is highlighted again in figure 3.

C.4 Gaussian normal coordinates for Schwarzschild and Kerr

A Gaussian normal coordinate system provides a foliation of spacetime with spacelike
hypersurfaces, in way that is convenient for the holographic interpretation (see [1]). We
would like the new σ time coordinate to measure the proper time of “stationary” observers,
i.e. observers with constant spatial coordinates. These coordinates always exist, at least
locally: one merely takes each spatial position on the 3-manifold of the foliation Σσ, builds
the geodesic orthogonal to Σσ and takes these to define the new proper time.28

Instead of explicitly solving the geodesic equation (which would be quite cumbersome
in our coordinates), we will perform a redefinition of our σ in the asymptotic expansion in
% in order we remove the undesired terms. Again, without loss of generality we will focus
on outgoing null geodesics. After performing the change of coordinate (C.7) to the Kerr
solution in Kerr-Schild coordinates (C.10), we perform the following change of variable

σ → σp + %3
pe
−σpGM(4σp − 1)

2(1 + |ζp|2)3 , %→ %p − %4
pe
−σpGM(12σp + 1)

2(1 + |ζp|2)3 ,

ζ → ζp + %4
pe
−2σp 8iaGMζp

(1 + |ζp|2)4 + %5
pe
−σpGM(12σp + 1)ζp

(1 + |ζp|2)4 ,

ζ̄ → ζ̄p − %4
pe
−2σp 8iaGMζ̄p

(1 + |ζp|2)4 + %5
pe
−σpGM(12σp + 1)ζ̄p

(1 + |ζp|2)4 , (C.14)

28The related observers are called fundamental comoving observers, and the fundamental property of this
system is that geodesics remain orthogonal to Σσ for all σ in the region of validity of the construction.
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to get the metric in Gaussian normal coordinates,

ds2
Kerr,(−) = e2σp d%

2
p+dζpdζ̄p
%2
p

−e2σp(dσp)2−%peσpσp
16GM

(
2d%2

p−dζpdζ̄p
)

(1+|ζp|2)3

+%pa
48id%pGM(ζpdζ̄p−ζ̄pdζp)

(1+|ζp|2)4 −%pa2e−σp
16GM(ζpdζ̄p−ζ̄pdζp)2

(1+|ζp|2)5

+%2
pe
σpσp

96d%pGM(ζpdζ̄p+ζ̄pdζp)
(1+|ζp|2)4 +a%2

p

48iGM
(
ζ̄2
p (dζp)2−ζ2

p (dζ̄p)2
)

(1+|ζp|2)5 +O(%3
p).

(C.15)

Upon setting a = 0, this gives also the result for the Schwarzschild metric in (C.8),

ds2
Schw,(−) = e2σp (d%p)2 + dζpdζ̄p

%2
p

− e2σp(dσp)2 − %pσpeσp
16GM

(
2(d%p)2 − dζpdζ̄p

)
(1 + |ζp|2)3

+ %2
pσpe

σp 96GM(d%p)(ζpdζ̄p + ζ̄pdζp)
(1 + |ζp|2)4 +O(%3

p) . (C.16)

It is easy to check that the Ricci scalar of the foliation is still constant and negative on
each slice of fixed σp and we therefore still have an asymptotically AdS3 space (because the
redefinitions of the coordinate, despite involving σ, start at order %3), both for Schwarzschild
and Kerr. Using Brown-Henneaux boundary conditions [122], our result shows that the
asymptotic metric on the foliation is clearly preserved under the action of conformal Killing
vectors near the boundary, which suggests the presence a two-dimensional CCFT structure
for Schwarzschild and Kerr. Moreover, such Killing vectors can be locally uplifted to the
superrotation Killing vectors of asymptotically flat spacetimes [28, 123].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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