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a-Synuclein is an abundant neuronal protein that is highly enriched in presynaptic nerve
terminals. Genetics and neuropathology studies link a-synuclein to Parkinson’s disease (PD)
and other neurodegenerative disorders. Accumulation of misfolded oligomers and larger
aggregates of a-synuclein defines multiple neurodegenerative diseases called synucleino-
pathies, but the mechanisms by which a-synuclein acts in neurodegeneration are unknown.
Moreover, the normal cellular function of a-synuclein remains debated. In this perspective,
we review the structural characteristics ofa-synuclein, its developmental expression pattern,
its cellular and subcellular localization, and its function in neurons. We also discuss recent
progress on secretion of a-synuclein, which may contribute to its interneuronal spread in a
prion-like fashion, and describe the neurotoxic effects of a-synuclein that are thought to be
responsible for its role in neurodegeneration.

a-Synuclein was identified in the electric or-

gan of Torpedo californica using an antibody to

purified cholinergic vesicles (Fig. 1) (Maro-
teaux et al. 1988). In addition to describing

a presynaptic localization, Maroteaux et al.

(1988) also detected a-synuclein on the nuclear
envelope, hence the name synuclein from syn-

aptic vesicles (“syn”) and the nuclear envelope

(“nuclein”). Note, however, that the nuclear lo-
calization has not been observed in most sub-

sequent studies and was likely caused by an an-

tibody contaminant. A fragment of a-synuclein
comprising residues 61–95 was subsequently

identified in senile plaques in Alzheimer’s dis-

ease brains and was termed the non-Ab-amy-

loid component (NAC) (Ueda et al. 1993). In

parallel, a-synuclein mRNA was found to

change specifically during song acquisition in
zebra finches and was named “synelfin” because

its identity with a-synuclein was not realized

(George et al. 1995). b-Synuclein, the second
member of the synuclein family, was identified

in rat and bovine brain, where it was also local-

ized to presynaptic nerve terminals (Nakajo
et al. 1990; Tobe et al. 1992). In initial studies,

b-synucleinwas also named phosphoneuropro-

tein 14 (Jakes et al. 1994; Nakajo et al. 1993).
The third member of the synuclein family, g-

synuclein, was originally identified as BCSGC1

in metastatic breast cancer (Ji et al. 1997) and
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was subsequently cloned both as persyn (Buch-

man et al. 1998a; Ninkina et al. 1998) and g-
synuclein (Lavedan et al. 1998a).

a-Synuclein became the focus of intense in-

vestigation when its central role in neurodegen-
erative diseases was realized (Polymeropoulos

et al. 1997). a-Synuclein is now known to be

involved in Parkinson’s disease (PD), dementia
with Lewy bodies (which contain a-synuclein

aggregates as amajor component),multiple sys-

tem atrophy, neurodegenerationwith brain iron
accumulation type I, diffuse Lewy body disease,

and Lewy body variant of Alzheimer’s disease

(Spillantini et al. 1997; Wakabayashi et al. 1997;
Arawaka et al. 1998; Gai et al. 1998; see also

Woerman et al. 2017). Lewy bodies containing

a-synuclein are a neuropathological hallmark
of PD, and missense mutations in a-synuclein

(A30P, E46K, H50Q, G51D, A53E, A53T [Poly-

meropoulos et al. 1997; Kruger et al. 1998; Zar-
ranz et al. 2004; Kiely et al. 2013; Proukakis et al.

2013; Pasanen et al. 2014]), as well as a-synu-

clein gene duplications and triplications (Sin-
gleton et al. 2003; Ibanez et al. 2004; Ferese et al.

2015), appear to cause PD.Moreover, polymor-

phisms in regulatory elements of the a-synu-
clein gene predispose individuals to PD and

are linked to an early onset of the disease (Mar-

aganore et al. 2006). Yet, despite decades of in-
tense studies, the cell biology of a-synuclein

remains largely unclear, and its specific neuro-

degenerative effect is poorly understood.

a-SYNUCLEIN STRUCTURE

a-, b-, and g-synucleins are small soluble pro-

teins (140, 134, and 127 amino acids, respective-

ly) that bind to phospholipidmembranes (Clay-
ton and George 1998). The three synucleins

contain a characteristic 11-residue sequence

(consensus XKTKEGVXXXX), which is repeat-
ed seven times in a- and g-synuclein, and six

times in b-synuclein. This 11-residue repeat

forms an amphipathic a-helix similar to apoli-
poproteins upon lipid binding (George et al.

1995). The NAC region is found within this

repeated sequence. The NAC region of a-synu-
clein is relatively hydrophobic and aggregation-

prone in human a-synuclein but not in mouse

a-synuclein nor in the corresponding homolo-

gous region of human b-synuclein (Ueda et al.
1993). Yet, b-synuclein is more homologous to

a-synuclein in the N-terminal sequences (74%)

than g-synuclein (67%). The acidic and gluta-
mate-rich C-terminal sequence of synucleins is

unstructured (Bertini et al. 2007;Wu et al. 2008)

and was implicated in multiple protein interac-
tions (Jensen et al. 1999; Giasson et al. 2003;

Cherny et al. 2004; Fernandez et al. 2004): in

ion, polycation, and polyamine binding (Paik et
al. 1999; Nielsen et al. 2001; Hoyer et al. 2004;

Brown 2007); in modulation of membrane

binding of synucleins (Davidson et al. 1998; Jo
et al. 2000; Perrin et al. 2000; Eliezer et al. 2001;

Volles et al. 2001; Cole et al. 2002; Bussell and

Eliezer 2003; Chandra et al. 2003; Fortin et al.
2004; Nuscher et al. 2004; Bussell et al. 2005);

and in protection of a-synuclein from aggrega-

tion (Crowther et al. 1998; Park et al. 2002, 2004;
see also below). It is the substrate to multiple

posttranslational modifications, some of which

appear to be selectively enriched in a-synuclein
present in Lewy bodies (see discussion below).

All a-synuclein missense mutations are lo-

calized within the membrane-binding domain
of a-synuclein containing the 11-residue re-

peats, although only threemutations affect lipid

binding (Jo et al. 2002; Fares et al. 2014; Ghosh
et al. 2014). Remarkably, the A53T substitution

in human a-synuclein that causes early-onset

PD (Polymeropoulos et al. 1997) is normally
present in mouse a-synuclein, which has no

tendency to aggregate, suggesting that the vari-

ous PD-linked a-synuclein point mutations
produce a neurotoxic effect that is specific to

the human a-synuclein sequence context.

a-SYNUCLEIN CELLULAR POOLS

a-Synuclein exists in an equilibrium between
a soluble and a membrane-bound state, with

its secondary structure depending on its state

(Fig. 2).
Soluble cytosolica-synuclein is intrinsically

unstructured and behaves like a natively unfold-

ed protein (Weinreb et al. 1996; Kim 1997;
Chandra et al. 2003; Fauvet et al. 2012b; Burré

et al. 2013). Recently, a soluble stable tetrameric

a-Synuclein Cell Biology
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form of a-synuclein has been described in hu-

man erythrocytes as defined by analytical cen-

trifugationbutwasnot clearlydetectable byelec-
tron microscopy (Bartels et al. 2011; Wang et al.

2011) and was not found in other preparations

(Binolfi et al. 2012; Fauvet et al. 2012b; Burré
et al. 2013) or by using in vivo nuclear magnetic

resonance (NMR) (Fig. 3) (Theillet et al. 2016).

a-Synuclein binds to lipidmembranes, such
as artificial liposomes, lipid droplets, and lipid

rafts. Upon lipid binding, the seven 11-residue

repeat sequences of a-synuclein adopt an a-he-
lical structure (Davidson et al. 1998; Jo et al.

2000; Perrin et al. 2000; Eliezer et al. 2001; Volles

et al. 2001; Cole et al. 2002; Bussell and Eliezer
2003; Chandra et al. 2003; Fortin et al. 2004;

Nuscher et al. 2004; Bussell et al. 2005). Mem-

brane binding is likely a cooperative effect of the
11-mer sequences, as truncation of theN-termi-

nal domain reduces lipid binding drastically

(Fig. 4). a-Synuclein binding to lipid mem-
branes requires acidic lipid head groups (Jo

et al. 2000; Perrin et al. 2000; Middleton and

Rhoades 2010), such as phosphatidylserine or
phosphatidylinositol, suggesting an interaction

of themembranewith lysines foundonopposite

sides of the a-synuclein a-helix. During lipid

binding,a-synucleinhas been reported to adopt

both a single elongated a-helix and a broken a-
helix depending on the membrane curvature

(Bussell and Eliezer 2003; Chandra et al. 2003;

Bussell et al. 2005). Specifically, membranes
with a larger diameter (≏100 nm) and lower

curvature induce an elongateda-helix ina-syn-

uclein (Bussell and Eliezer 2003; Jao et al. 2004,
2008; Georgieva et al. 2008; Trexler andRhoades

2009). In contrast, in the presence of small high-

ly curved vesicles, a-synuclein adopts a broken
a-helix conformation (Chandra et al. 2003; Ul-

mer et al. 2005; Borbat et al. 2006; Drescher et al.

2008; Trexler and Rhoades 2009), likely to adapt
to the smaller liposome area. a-Synuclein pref-

erentially binds to vesicles of smaller diameter

(Davidson et al. 1998) and therefore associates
with ≏40-nm synaptic vesicles in the brain

(Maroteaux et al. 1988; Iwai et al. 1995; Kahle

et al. 2000). Recently, a-synuclein was shown to
oligomerize into multimers upon binding to

membranes (Burré et al. 2014; Wang et al.

2014; see below).
In contrast to its physiological conforma-

tions outlined above, a-synuclein adopts a b-

Lewy bodiesAmyloid

fibrils
β-Sheet

oligomers

(protofibrils)

Soluble

natively unfolded

monomer

Physiological conformations Pathological conformations

Neurotoxic α-synuclein conformer?
C

C

Synaptic

vesicle

N

N

Multimeric

membrane-bound

helical α-synuclein

Transcellular α-synuclein transfer

Neuron      neuron (PD, Lewy body dementia)

Glia      glia (multiple system atrophy)

C

C

C

C

C

C

N

N
N

N

N
N

SNARE-complex assembly

vesicle fusion

Figure 2. Schematic of a-synuclein conformations associated with its physiological function and pathological
activities. Soluble a-synuclein is natively unstructured and monomeric. After binding to highly curved mem-
branes, such as synaptic vesicles,a-synuclein undergoes a conformational change and folds into an amphipathic
a-helix, which is associated with multimerization and mediates its SNARE-complex chaperoning function.
Under pathological conditions, soluble a-synuclein forms b-sheet-like oligomers (protofibrils), which convert
into amyloid fibrils and eventually deposit into Lewy bodies. Protofibrils and fibrils may propagate from neuron
to neuron in Parkinson’s disease and Lewy body dementia and from glia to glia in multiple system atrophy.
(From Burré et al. 2015; reprinted, with permission, from the authors.)
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sheet amyloid conformation under pathologi-

cal conditions. This b-sheet conformation is
associated with a-synuclein aggregation, fibril

formation, and deposition into Lewy bodies

(Conway et al. 1998, 2000; El-Agnaf et al.
1998; Narhi et al. 1999; Rochet et al. 2000;

Ding et al. 2002; Lashuel et al. 2002; Greenbaum

et al. 2005; Fredenburg et al. 2007; Uversky
2007; Yonetani et al. 2009). The b-sheet confor-

mation is thought to be neurotoxic, but the ex-

act nature of the neurotoxic species remains un-
known (Fig. 2).

a-SYNUCLEIN POSTTRANSLATIONAL
MODIFICATIONS

a-Synuclein is subject to multiple posttransla-
tional modifications, mostly within its carboxy-

terminal tail, including phosphorylation, oxi-

dation, acetylation, ubiquitination, glycation,
glycosylation, nitration, and proteolysis, result-

ing in changes in protein charge and structure,

and leading to alterations in binding affinities
with other proteins and lipids and overall pro-

tein hydrophobicity.

Phosphorylation

Phosphorylation of a-synuclein may regulate
its structure, membrane binding, oligomeriza-

tion, fibril formation, and neurotoxicity (Fuji-

wara et al. 2002; Anderson et al. 2006). a-Syn-
uclein is constitutively phosphorylated, with

serine 87 and serine 129 beingmajor phosphor-

ylation sites (Okochi et al. 2000; Pronin et al.
2000; Fujiwara et al. 2002; Kahle et al. 2002;

Takahashi et al. 2003a; Chen and Feany 2005;

Anderson et al. 2006; Kim et al. 2006; Ishii et al.
2007; Paleologou et al. 2010); repeated cycles of

phosphorylation and dephosphorylation occur

in vivo. Phosphorylation at S129 and S87 has
been shown to inhibit aggregation of a-synu-

clein (Waxman and Giasson 2008; Paleologou

et al. 2010). Similarly, tyrosine phosphorylation
at Y125, Y133, and Y135 is associated with sup-

pression of a-synuclein aggregation and toxic-

ity (Ellis et al. 2001; Nakamura et al. 2001; Ahn
et al. 2002; Negro et al. 2002; Takahashi et al.

2003b; Chen and Feany 2005; Chen et al. 2009).

In addition, phosphorylation of a-synuclein at

S129 and Y125 affects protein–protein interac-
tions (McFarland et al. 2008). The exact kinases

and phosphatases mediating a-synuclein phos-

phorylation and dephosphorylation remain un-
known. Yet, a variety of in vitro and cell-based

studies have identified several kinases capable of

phosphorylating a-synuclein, including phos-
phorylation of a-synuclein at S87 by casein ki-

nase I (Okochi et al. 2000) and Dyrk1A (Kim

et al. 2006); at S129 by casein kinase I and II
(Okochi et al. 2000), G-protein-coupled recep-

tors 1, 2, 5, and 6 (Pronin et al. 2000), LRRK2

(Qing et al. 2009), and polo-like kinases (Inglis
et al. 2009; Mbefo et al. 2010); at Y125 by Fyn

(Nakamura et al. 2001), Syk (Negro et al. 2002),

Lyn (Negro et al. 2002), c-Frg (Negro et al.
2002), and Src tyrosine kinases (Ellis et al.

2001); and at Y126 and Y133 by Syk tyrosine

kinase (Negro et al. 2002).

Acetylation

Amino-terminal acetylation of a-synuclein is

seen both in healthy and PD individuals, and
increases its helical folding propensity, its af-

finity for membranes, and its resistance to ag-

gregation (Kang et al. 2012; Maltsev et al.
2012; Bartels et al. 2014; Dikiy and Eliezer

2014), mediated by attachment of an acetyl

group to the a-amino group of the first amino
acid of a-synuclein (Fauvet et al. 2012a; Kang

et al. 2012; Maltsev et al. 2012; Burré et al.

2013).

Sumoylation

a-Synuclein is primarily modified by SUMO1

via monosumoylation (Dorval and Fraser

2006). Sumoylation of a-synuclein occurs at
only one site, which is yet to be identified, at

the N-terminus of the protein. The functional

significance remains unknown and controver-
sial: Sumoylation has been reported both to in-

hibit aggregation of a-synuclein by promoting

its solubility (Krumova et al. 2011; Shahpasand-
zadeh et al. 2014) and to promote aggregation

(Kim et al. 2011; Oh et al. 2011).
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Ubiquitination

The role of ubiquitination inmodulatinga-syn-

uclein aggregation remains poorly understood.

a-Synuclein colocalizes with ubiquitin in Lewy
bodies (Mezey et al. 1998; Gomez-Tortosa et al.

2000), Lewy neurites (Gomez-Tortosa et al.

2000), and glial inclusions in multiple system
atrophy (Gai et al. 1998). Four E3- and E4-

type ubiquitin ligases have been shown to

ubiquitinatea-synuclein: Parkin, ubiquitin car-
boxy-terminal hydrolase L1 (UCH-L1), C-ter-

minus of Hsp70 interacting protein (CHIP),

and SIAH (Liu et al. 2002; Liani et al. 2004;
Lee et al. 2008; Rott et al. 2008; Tetzlaff et al.

2008). Parkin and UCH-L1 are linked to PD

themselves (Leroy et al. 1998; Shimura et al.
2000), and Parkin and SIAH are present in

Lewy bodies (Liani et al. 2004; Bandopadhyay

et al. 2005). In vitro, a-synuclein is ubiquiti-
nated at K10, K21, K23, K32, K34, K43, and

K96, with K21, K23, K32, and K34 being major

sites (Nonaka et al. 2005; Rott et al. 2008). Stud-
ies in rat brain revealed major ubiquitination of

K21 and K23 (Nonaka et al. 2005).

Glycation

Advanced glycation end products and a-synu-
clein colocalize in the brains of PD patients

(Munch et al. 2000), and glycation of a-synu-

clein has been proposed to be a pathological
hallmark of Lewy bodies (Munch et al. 2000;

Shaikh and Nicholson 2008). Advanced glyca-

tion end products (Munch et al. 2000; Shaikh
and Nicholson 2008), modification of a-synu-

clein with dicarbonyl compounds glyoxal and

methylglyoxal (Lee et al. 2009), and ribosylation
of a-synuclein (Chen et al. 2010) induce cross-

linking of recombinant a-synuclein in vitro, ac-

celerating aggregation, and causing cytotoxicity
(Munch et al. 2000; Shaikh andNicholson 2008;

Chen et al. 2010; Padmaraju et al. 2011).

Glycosylation

a-Synuclein may beO-glycosylated in the brain
at residues 53, 64, 72, and 87 (Wang et al. 2010;

Alfaro et al. 2012). The biological and patholog-

ical roles of a-synuclein glycosylation remain

unknown, although a recent report suggests
that glycosylation of a-synuclein in the NAC

domain inhibits aggregation (Marotta et al.

2012).

Nitration and Oxidation

Nitration and oxidation have been implicated in

the pathogenesis of PD and diffuse Lewy body

disease. Yet, it is unclear whether they are a pri-
mary event leading to aggregation of a-synu-

clein, or whether they occur upon reaction of

reactive nitrogen species with preformed fibrils.
a-Synuclein contains four tyrosines, Y39, Y125,

Y133, and Y136, with Y125 and Y39 being ma-

jor nitration targets (Takahashi et al. 2002; Dan-
ielson et al. 2009). Nitration of a-synuclein is

believed to induce its oligomerization through

cross-linking via oxidation of tyrosine to dity-
rosine, which may serve as a basis for the for-

mation of larger a-synuclein aggregates (Gias-

son et al. 2000). Yet, nitration inhibits fibril
formation of a-synuclein (Norris et al. 2003;

Yamin et al. 2003; Hodara et al. 2004) and pre-

vents fibrillation of nonmodified a-synuclein
(Yamin et al. 2003), suggesting a protective ef-

fect (Yamin et al. 2003). Nitration has also been

reported to inhibit binding of a-synuclein to
lipid vesicles (Hodara et al. 2004; Sevcsik et al.

2011).

Proteolysis

C- and N-terminally truncated versions of a-
synuclein are present in the brains of healthy

individuals and PD patients (Baba et al. 1998;

Li et al. 2005; Liu et al. 2005a; Lewis et al. 2010;
Muntane et al. 2012), suggesting that a-synu-

clein truncation occurs under physiologically

relevant conditions. Lewy bodies contain most-
ly full-length a-synuclein, with the addition of

small amounts of a C-terminally truncated spe-

cies (Baba et al. 1998; Spillantini et al. 1998;
Crowther et al. 1998; Campbell et al. 2001; Li

et al. 2005; Liu et al. 2005a). C-terminal trun-

cation of a-synuclein increases its aggregation
propensity (Rochet et al. 2000; Serpell et al.

2000; Murray et al. 2003; Hoyer et al. 2004; Li

J. Burré et al.
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et al. 2005), because of the lackof charge balance

between the C- and N-terminus (Bertoncini
et al. 2005; Pawar et al. 2005), and could serve

as the nucleus to seed aggregation of full-length

a-synuclein. Yet, the cleaving protease remains
enigmatic. Neurosin (Ogawa et al. 2000; Iwata

et al. 2003; Kasai et al. 2008) and calpain (Mis-

hizen-Eberz et al. 2003; Dufty et al. 2007) are
candidates because of their colocalization in

Lewy bodies. In addition, cathepsin D (Takaha-

shi et al. 2007; Sevlever et al. 2008), matrix met-
alloproteases (Sung et al. 2005; Levin et al.

2009), and ubiquitin-independent degradation

of a-synuclein by the proteasome (Tofaris et al.
2001) have been implicated in C-terminal pro-

teolytic cleavage of a-synuclein.

Summary of a-Synuclein Posttranslational
Modifications

The description above shows that a-synuclein

can be posttranslationally modified at many of

its 140 residues and by a variety of cellular
enzymes. Many of the above studies have

used overexpression systems and have neglect-

ed the physiologically relevant localization of
a-synuclein, the synapse, when testing for the

activity of kinases, phosphatases, or other en-

zymes. Thus, many of these modifications like-
ly represent rare events. It is clear, however,

that the structure of a-synuclein, and thus its

(dys-) function, can be heavily altered by post-
translational modifications. It remains to be

determined which posttranslational modifica-

tions are physiologically relevant and which
arise as a function of a-synuclein-associated

pathology.

a-SYNUCLEIN EXPRESSION
AND LOCALIZATION

a- and b-synucleins are expressed predomi-

nantly in the brain (Jakes et al. 1994), partic-

ularly in the neocortex, hippocampus, stria-
tum, thalamus, and cerebellum (Nakajo et al.

1994; Iwai et al. 1995). Although g-synuclein is

detected in the brain (Buchman et al. 1998b),
it is primarily expressed in the peripheral ner-

vous system—in primary sensory, sympathetic,

and motor neurons (Ji et al. 1997), as well as in

the olfactory epithelium (Duda et al. 1999). It
can also be expressed in ovarian tumors (Lav-

edan et al. 1998). g-Synuclein, however, is also

fairly robustly expressed in non-neuronal tis-
sues and is increased in expression in some

cancers (Ji et al. 1997; Jia et al. 1999; Liu

et al. 2005b; Ahmad et al. 2007). Moreover,
a-synuclein, although highly enriched in the

nervous system, is not limited to nervous tis-

sues. a-Synuclein has been detected in muscle,
kidney, liver, lung, heart, testis, blood vessels,

cerebrospinal fluid (CSF), blood plasma, plate-

lets, lymphocytes, and red blood cells (Ueda
et al. 1993; Jakes et al. 1994; Hashimoto et al.

1997; Askanas et al. 2000; Shin et al. 2000;

Li et al. 2002; Tamo et al. 2002; Kim et al.
2004a; Ltic et al. 2004; Nakai et al. 2007).

Thus, similar to proteins such as N-ethylma-

leimide-sensitive factor (NSF) and synaptoso-
mal-associated proteins (SNAP) (which func-

tion in ATP-dependent dissociation of soluble

NSF attachment protein receptor [SNARE]
complexes), synucleins are enriched in neurons

but are ubiquitously expressed.

Within the nervous system, a-synuclein is
universally expressed throughout the brain

(Lavedan 1998) in a developmentally regulated

manner. In rodents, a-synuclein mRNA expres-
sion begins in late embryonic stages, reaches a

peak in the first few postnatal weeks, and then

declines gradually (Kholodilov et al. 1999; Pe-
tersen et al. 1999). a-Synuclein protein levels

generally mirror mRNA levels, but remain

high during adulthood (Petersen et al. 1999).
a-Synuclein levels in adults can be altered by

various stimuli such as the herbicide paraquat

(Manning-Bog et al. 2002), developmental
injury to the brain (Kholodilov et al. 1999), neu-

rotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tet-

rahydropyridine) (Vila et al. 2000), growth fac-
tors such as nerve growth factor and basic

fibroblast growth factor (Clough and Stefanis

2007), and dopamine (Gomez-Santos et al.
2003, 2005). Overall, little is known about the

characteristics and mechanisms of a-synuclein

expression, a subject that is of potential transla-
tional importance, given the role a-synuclein

levels play in PD predisposition.
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Localization to the Synapse

During the development of cultured neurons,

a-synuclein is first localized to the soma of the

immature neuron and then becomes concen-
trated in presynaptic terminals as synapses are

being formed in murine (Withers et al. 1997;

Hsu et al. 1998) and in humans (Bayer et al.
1999; Galvin et al. 2001). Interestingly, although

a-synuclein is one of the best markers for pre-

synaptic terminals, it is among the last presyn-
aptic proteins to become enriched in terminals

(Withers et al. 1997), suggesting that it does not

play a central function in synapse development.
Targeting of a-synuclein to the synapse may be

mediated by its preference for synaptic vesicle

membranes (Maroteaux et al. 1988; Jensen et al.
1999) and/or binding to the vesicular SNARE

protein synaptobrevin-2 (Fig. 5) (Burré et al.

2010). In support of the latter hypothesis,
knockout of synaptobrevin-2 decreases target-

ing of a-synuclein to the synapse (Burré et al.

2012).

Localization to Mitochondria

Multiple studies reported that a-synuclein lo-

calizes to and binds to mitochondria (Li et al.

2007; Cole et al. 2008; Devi et al. 2008; Naka-
mura et al. 2008; Liu et al. 2009). Because mi-

tochondria, different from synaptic vesicles, are

not specific to nerve terminals, it is difficult to

reconcile the presynaptic localization of a-syn-
uclein with a mitochondrial function. The

potential function of a-synuclein in mitochon-

dria is unclear because both overexpression and
loss of a-synuclein was proposed to cause mi-

tochondrial dysfunction (Ellis et al. 2005;

Smith et al. 2005; Martin et al. 2006; Stichel
et al. 2007). Overexpression of a-synuclein in

multiple cell types, including neurons, can lead

to fragmentation of mitochondria (Kamp et al.
2010; Nakamura et al. 2011), not by prevent-

ing fusion, but by promoting mitochondrial

fission (Nakamura et al. 2011). In vitro, mem-
branes containing the mitochondrial phos-

pholipid cardiolipin can be fragmented by

oligomerized a-synuclein (Nakamura et al.
2011). Interestingly, b- and g-synuclein can

also affect mitochondrial morphology, al-

though to a lesser extent than a-synuclein (Na-
kamura et al. 2011), which suggests the involve-

ment of the N-terminal membrane-binding

domain, which is highly conserved between
the three synuclein isoforms. The A53Tmutant

version of a-synuclein, when overexpressed

in primary neurons, up-regulates autophagic
engulfment of mitochondria (mitophagy)

(Choubey et al. 2011), and mitochondrial de-

generation was reported in transgenic mice
overexpressing A53T a-synuclein (Martin

et al. 2006).
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SNARE complexes. (A) Coimmunoprecipitation of a-synuclein with SNARE complexes reconstituted in
HEK293T cells. Cell lysates were immunoprecipitated with antibodies to (left) a-synuclein or (right) SNAP-
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On the molecular level, a-synuclein overex-

pression appears to inhibit complex I (Li et al.
2007; Devi et al. 2008; Nakamura et al. 2008; Liu

et al. 2009; Chinta et al. 2010; Loeb et al. 2010),

which, in combination with the ability of a-
synuclein to disrupt mitochondrial membrane

integrity, may lead to increased production of

reactive oxygen species (ROS) (Hsu et al. 2000;
Junn and Mouradian 2002; Winklhofer and

Haass 2010). This pathogenic cascade of a-syn-

uclein may overlap with other mitochondrial/
ROS-related neuropathology that causes PD,

such as PINK1, parkin, and LRRK mutations,

or sporadic PD caused bymitochondrial toxins.
The importance of mitochondrial dysfunction

in synucleinopathies is further suggested by

studies in which a-synuclein-dependent mito-
chondrial dysfunction or ROS production were

counteracted by molecular or pharmacological

means, which led to neuroprotective effects in
mammalian systems (Hsu et al. 2000; Clark et al.

2010; Liu et al. 2011) and inDrosophila (Wassef

et al. 2007; Botella et al. 2008).

Localization to the Nucleus, Endoplasmic
Reticulum, and Golgi

a-Synuclein was named in part because of a

presumed localization to the nucleus (Maro-
teaux et al. 1988). Since then, the reports of

nuclear localization of a-synuclein have not

been consistent (Mori et al. 2002; Yu et al.
2007). Phosphorylation of a-synuclein at S129

was proposed to increase its nuclear localization

in transgenic mice overexpressing a-synuclein
with the A30P mutation (Schell et al. 2009). In

the nucleus, a-synuclein is reported to inhibit

histone acetylation (Kontopoulos et al. 2006),
and histone deacetylase (HDAC) inhibitors

were able to rescue neurotoxicity caused by a-

synuclein in cell culture and in transgenic Dro-
sophila (Kontopoulos et al. 2006). In agreement,

inhibition or siRNA-mediated knockdown of

Sirtuin-2, an HDAC, protected against a-synu-
clein mediated dopaminergic neuron death in

culture and transgenic Drosophila models (Ou-

teiro et al. 2007).
a-Synuclein was also proposed to associate

with the Golgi complex and various secretory

and endosomal compartments other than

synaptic vesicles. Endoplasmic reticulum (ER)
associated stress was observed in a cell culture

model of A53T a-synuclein-induced cell death

(Smith et al. 2005). Golgi fragmentation
correlated with small, prefibrillar oligomers of

a-synuclein (Gosavi et al. 2002). Blockade of

ER–Golgi traffic was found to be involved in
a-synuclein toxicity in yeast, and could be res-

cued by overexpression of rab1—a protein in-

volved in ER–Golgi traffic (Cooper et al. 2006).
Overexpression of a-synuclein severely delayed

ER–Golgi transport in non-neuronal cells by

inhibiting ER/Golgi SNARE protein function
(Thayanidhi et al. 2010). These rab and SNARE

effects of a-synuclein in non-neuronal cells

may derive from its native function on the pre-
synaptic membranes.

Localization to the Cytoskeleton

a-Synuclein interacts withmultiple cytoskeletal

components in vitro. The helical membrane-

binding domain of a-synuclein, when bound
to lipids, associates with cellular proteins like

tubulin (Alim et al. 2002; Zhou et al. 2010),

kinesin light chain, dynein heavy chain, and
septin-4 (Woods et al. 2007). However, the pro-

posed effects of a-synuclein on tubulin poly-

merization are unclear, with inhibition reported
by some (Lee et al. 2006a; Zhou et al. 2010) and

enhancement by others (Alim et al. 2002). Im-

portantly, aggregates of themicrotubule-associ-
ated protein tau have been implicated in certain

cases of PD (Kotzbauer et al. 2004), and tau

shows a high association with PD in genome-
wide association studies (Nalls et al. 2011). a-

Synuclein enhances phosphorylation of tau

(Jensen et al. 1999; Haggerty et al. 2011; Qureshi
and Paudel 2011), and tau and a-synuclein can

seed aggregation of each other (Giasson et al.

2003), possibly accelerating the neuropatholog-
ical cascade.

a-Synuclein Expression and Localization
Summary

The description above shows thata-synuclein is

a ubiquitously expressed protein that is highly
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enriched in neurons, in which a-synuclein is

largely concentrated in presynaptic terminals
where it is localized to synaptic vesicles. In

addition to these observations, a significant

number of additional localizations have been
proposed for a-synuclein, as described above,

largely based on overexpression studies. Many

of these results likely represent rare events
whose significance is unclear. For example, syn-

aptic vesicles in presynaptic terminals are not in

contact with microtubules, suggesting that the
vast majority of a-synuclein that is on synaptic

vesicles cannot be bound to microtubules or

tau. Similarly, mitochondria are not nearly as
enriched in presynaptic terminals as synaptic

vesicles or as endogenous a-synuclein, arguing

against a significant association between a-syn-
uclein and mitochondria. The same argument

applies even more to the endoplasmic reticu-

lum, which is not at all enriched in terminals,
and to the nucleus and Golgi apparatus, which

are absent from terminals. Thus, the very fact

that endogenous a-synuclein is normally en-
riched in presynaptic terminals provides good

evidence against many of the localizations

proposed for a-synuclein other than synaptic
vesicles.

a-Synuclein and Protein Degradation
Mechanisms

It is proposed that a-synuclein is degraded by
multiple mechanisms, from the ubiquitin pro-

teasome pathway and autophagy–lysosome sys-

tem to extracellular metalloproteases. Initial
studies showed that proteasome inhibition led

to accumulation of a-synuclein (Bennett et al.

1999; McLean et al. 2001). Then the autoph-
agy–lysosomal pathway was also implicated in

a-synuclein degradation (Webb et al. 2003;

Cuervo et al. 2004; Lee et al. 2004), which was
further narrowed down to chaperone-mediated

autophagy (CMA) (Cuervo et al. 2004; Bandyo-

padhyay and Cuervo 2007).
The ability of a-synuclein to block various

degradation pathways, especially in its oligo-

meric/aggregate form, has garnered consider-
able research interest, which is possibly because

of the attractive notion that this would create a

vicious cycle leading to further accumulation of

a-synuclein oligomers/aggregates. Overexpres-
sion of mutant a-synuclein in cell lines revealed

inhibition of the ubiquitin–proteasome system

(Stefanis et al. 2001; Tanaka et al. 2001), sensi-
tization to proteasome inhibitors because of de-

creased proteasome activity (Petrucelli et al.

2002), or no effect on the proteasome (Mar-
tin-Clemente et al. 2004). Any effect on the pro-

teasome may be direct, as interactions between

monomeric and aggregateda-synuclein and the
proteasomal subunit S60 of the 19S regulatory

complex as well as subunits of the 20S protea-

some have been observed (Snyder et al. 2003;
Lindersson et al. 2004). a-Synuclein aggregates

of various sizes, from soluble oligomers to fila-

ments, were shown to inhibit proteasome activ-
ity (Lindersson et al. 2004; Emmanouilidou

et al. 2010b).

Inhibition of CMA by a-synuclein has also
been widely reported, with decreased levels of

CMA proteins LAMP2A and Hsc70 in PD

brains (Alvarez-Erviti et al. 2010). Although
wild-type (WT) a-synuclein is translocated in-

to lysosomes for degradation via CMA, A30P

and A53T a-synuclein mutants inhibit uptake
(Cuervo et al. 2004), and inhibition of CMA by

a-synuclein causes a compensatory increase in

macroautophagy (Xilouri et al. 2009). However,
inhibition of macroautophagy by WT a-synu-

clein has also been reported (Winslow et al.

2010).

a-SYNUCLEIN IN EXTRACELLULAR SPACE
AND ITS PRION-LIKE SPREAD

Because early symptoms of PD were highly ste-

reotyped, a-synuclein aggregates were thought
to exert their pathogenic effect in a cell-auton-

omous and brain-area-specific manner. How-

ever, this model was first challenged by a pattern
of anatomical progression of Lewy body pathol-

ogy and neuron loss beginning in brainstem

nuclei, extending to the midbrain, and finally
to cortical areas (Braak et al. 2004), which may

account for the symptomatic progression of PD

beyond the most obvious initial motor symp-
toms, such as depression, autonomic and sen-

sory dysfunction, and dementia. One of the

J. Burré et al.
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earliest indications of extracellular a-synuclein

was its detection in the extracellular fluids such
as CSF and blood plasma (Borghi et al. 2000;

El-Agnaf et al. 2003). The amount of extracel-

lular a-synuclein, however, was not clearly cor-
related with PD, as elevation (Lee et al. 2006b),

as well as reduction (Tokuda et al. 2010), of a-

synuclein was reported in blood samples from
PD patients. Although oligomeric a-synuclein

is found at elevated levels in the plasma and

CSF of PD patients (El-Agnaf et al. 2006), it
remains uncertain whether a-synuclein in

bodily fluids is a useful indicator/biomarker

of disease.
Suspicion of prion-like molecular spread of

a-synuclein came from postmortem studies of

PD patients who had received fetal brain tissue
grafts (Lindvall et al. 1994; Olanow et al. 2003).

In patients who died 11–16 years after trans-

plantation, the grafted neurons showed Lewy
bodies that were essentially identical in content

and character to those in the PD-afflicted brain

(Kordower et al. 2008; Li et al. 2008; Kurowska
et al. 2011). Likely, this neuron-to-neuron

spread appears to be a prion-like propagation

of a-synuclein, with evidence accumulating
from in vitro and in vivo models of not only

mutant and WT a-synuclein spread (Desplats

et al. 2009; Luk et al. 2012; Masuda-Suzukake
et al. 2013), but also from extraneuronal spread

of Ab (Petkova et al. 2005; Jucker and Walker

2011) and tau (Clavaguera et al. 2009; Frost
et al. 2009).

Release of a-synuclein appears to be

through unconventional exocytosis pathways.
Although the molecular mechanisms are not

well understood, a growing number of cytosolic

proteins seem to be released into the extracellu-
lar space (Nickel 2003). Some evidence in-

dicates that a-synuclein may be released with

exosomes—luminal vesicles of multivesicular
bodies (MVBs), which are classically under-

stood to be on their way to degradation in lyso-

somes (Emmanouilidou et al. 2010a). This
release appears to be calcium-dependent (Lee

et al. 2005; Paillusson et al. 2013), providing a

neuronal activity-dependent mechanism for a-
synuclein exocytosis, and may suggest spread

along synaptically connected neurons.

Once in the extracellular space, a-synuclein

may be removed by proteolysis by extracellular
enzymes such as matrix metalloproteases (Sung

et al. 2005) or via uptake by surrounding cells.

Extracellular a-synuclein can be endocytosed
by neurons and microglia (Sung et al. 2001;

Zhang et al. 2005), although non-endocytosis-

dependent uptake has also been reported (Ahn
et al. 2006a). Fibrils of recombinanta-synuclein

can also be endocytosed by neurons and lead to

aggregates of Lewy-body-like pathology in cells
expressing endogenous levels of a-synuclein

(Volpicelli-Daley et al. 2011). Exocytosis and

uptake of a-synuclein may be an important
mechanism for the progression and amplifica-

tion of degenerative changes in synucleinopa-

thies from a few cells to the surrounding tissue,
or it may also have a biological function that is

not yet known (see also Hasegawa et al. 2016;

Tofaris et al. 2016).

a-SYNUCLEIN FUNCTION

In addition to its well-validated binding to neg-

atively charged phospholipids (Davidson et al.

1998; Bussell and Eliezer 2003; Chandra et al.
2003), a-synuclein has been reported to inter-

act with a variety of proteins and to perform a

number of functions in conjunction with these
protein interactions. These binding and func-

tional activities include binding and inhibition

of phospholipase D (Jenco et al. 1998; Ahn
et al. 2002; Payton et al. 2004; Gorbatyuk

et al. 2010); regulation of the interaction of

the small GTP-binding protein rab3 with mem-
branes, especially synaptic vesicles (Chen et al.

2013); binding to the SNARE-protein synapto-

brevin-2 and chaperoning SNARE-complex as-
sembly (Figs. 5 and 6) (Burré et al. 2010); bind-

ing to and regulation of tyrosine hydroxylase

(TH) (Masliah et al. 2000; Kirik et al. 2002;
Perez et al. 2002; Baptista et al. 2003; Yu et al.

2004); binding to DJ-1 (Zondler et al. 2014)

and to synphilin (Engelender et al. 1999;
McLean et al. 2001; Ribeiro et al. 2002); regu-

lation of microtubules via binding to tubulin

(Lee et al. 2006a); and enhancement of tau
phosphorylation (Jensen et al. 1999; Haggerty

et al. 2011; Qureshi and Paudel 2011). Yet, the
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physiological significance of most of these in-

teractions remains unclear.

Lipid Transport, Lipid Packing, andMembrane
Biogenesis

The binding of a-synuclein to phospholipids

and the similarity of a-synuclein with class A2
apolipoproteins suggests a role in lipid trans-

port. a-Synuclein has been reported to bind

to fatty acids (Sharon et al. 2001), and may
thus serve as a fatty acid transporter between

the cytosol and membrane compartments, al-

though other studies suggest the contrary
(Lucke et al. 2006). Furthermore, a-synuclein

has been shown to induce membrane curvature

and convert large vesicles into highly curved
membrane tubules and vesicles, as would be

expected for a lipid-binding protein (Varkey

et al. 2010; Westphal and Chandra 2013). In
addition, a-synuclein has been reported to be

a specific inhibitor of phospholipases D1 and

D2 in vitro and in vivo (Jenco et al. 1998; Ahn

et al. 2002; Payton et al. 2004; Gorbatyuk et al.

2010), suggesting that a-synuclein may be in-
volved in cleavage of membrane lipids and

membrane biogenesis. Moreover, it has been

suggested that a-synuclein senses lipid-packing
defects and affects lipid packing (Kamp and

Beyer 2006; Ouberai et al. 2013), indicating

that besides binding to membranes, a-synu-
clein may be able to actively remodel them.

Molecular Chaperone Activity

The biochemical structure of a-synuclein pre-
dicts a function as a molecular chaperone capa-

ble of binding to other intracellular proteins.

This hypothesis was strengthened by three ob-
servations: First, a-synuclein shares structural

and functional homology with the 14-3-3 fam-

ily of molecular chaperone proteins (Ostrerova
et al. 1999). Second, via its C-terminal domain,

a-synuclein suppresses the aggregation of ther-
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authors.) (B) Nativea-synuclein promotes liposome vesicle clustering in a concentration-dependentmanner by
binding to both synaptobrevin-2 and anionic membranes. Bar graph: Quantitation of interacting vesicles.
(Bottom panel) Representative fluorescence images of interacting vesicles on the imaging surface. Data are
means + SD (���P, 0.001 by Student’s t-test; n ¼ 15 random imaging locations in the sample channel).
(From Diao et al. 2013; reprinted, with permission, from the authors.)

J. Burré et al.
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mally denatured proteins (Kim et al. 2000, 2002,

2004b; Souza et al. 2000; Rekas et al. 2004; Ahn
et al. 2006b), and overexpression of a-synuclein

protects dopaminergic neurons from oxidative

stress and apoptosis (da Costa et al. 2000; Kanda
et al. 2000). Third, a-synuclein rescues the le-

thal neurodegeneration caused by knockout of

the cochaperone CSPa in mice by chaperoning
assembly of synaptic SNARE complexes (Chan-

dra et al. 2005; Burré et al. 2010). This function

of a-synuclein is essential for long-term func-
tioning of neurons, asa-,b-, g-synuclein triple-

knockout mice have reduced SNARE-complex

assembly, show neuropathological signs, and
have shortened survival (Burré et al. 2010;

Greten-Harrison et al. 2010; Anwar et al. 2011).

Vesicle Trafficking

A large body of evidence from studies in worm,

yeast, fly, and mouse models shows that a-syn-
uclein is associated with defects in vesicle traf-

ficking. In yeast, a-synuclein inhibits ER–Golgi

trafficking, which can be rescued by overexpres-
sion of the rab GTPase that functions in this

trafficking step (Cooper et al. 2006), and causes

accumulation of transport vesicles by inhibiting
vesicle docking and/or fusion (Gitler and

Shorter 2007). Inmammalian cells,a-synuclein

perturbs ER–Golgi trafficking as well (Gosavi
et al. 2002), and PD-causingmutations increase

this effect (Thayanidhi et al. 2010). a-Synuclein

induces aggregation of rab proteins in yeast (So-
per et al. 2011), triggering defects in endosomal

trafficking. Mutant A30P a-synuclein interacts

with rab3a, rab5, and rab8, potentially compro-
mising synaptic vesicle trafficking, endocytosis,

and a-synuclein transport (Dalfo et al. 2004).

Additionally, abnormal binding of a-synuclein
to rab3a in multiple system atrophy was ob-

served (Dalfo and Ferrer 2005).

Dopamine Synthesis and Transport

a-Synuclein inhibits dopamine synthesis by in-

hibiting the expression and activity of TH (Mas-

liah et al. 2000; Kiriket al. 2002; Perez et al. 2002;
Baptista et al. 2003; Yu et al. 2004), likely by

reducing the phosphorylation state of TH and

stabilizing dephosphorylated inactive TH (Pe-

rez et al. 2002; Peng et al. 2005; Lou et al. 2010;
Wu et al. 2011). In agreement, aging-related

increases in a-synuclein expression in the sub-

stantia nigra negatively correlate with the ex-
pression of TH (Chu and Kordower 2007).

Moreover, a-synuclein affects the dopamine-

transporting vesicular transporter VMAT2:
Knockdown of a-synuclein increases the densi-

ty of VMAT2 molecules per vesicle, whereas

overexpression inhibits VMAT2 activity, inter-
rupting dopamine homeostasis by causing in-

creased cytosolic dopamine levels (Guo et al.

2008).

Neurotransmitter Release and Synaptic
Plasticity

The presynaptic localization of a-synuclein, its

interaction with synaptic vesicles (Maroteaux
et al. 1988; Perrin et al. 2000) and synaptobre-

vin-2 (Burré et al. 2010), its SNARE-complex

chaperoning activity (Burré et al. 2010), and its
changes during periods of song-acquisition-re-

lated synaptic rearrangement in birds (George

et al. 1995) strongly suggests that a-synuclein
plays a role in neurotransmitter release and syn-

aptic plasticity, although its precise function re-

mains unclear. Yet, absence of a-synuclein in
worms, flies, and yeast suggests thata-synuclein

is not required for synaptic transmission or

membrane trafficking in general. Knockout of
a-, a/b-, a/g-, or a/b/g-synucleins does not
induce morphological changes in the brain

(Abeliovich et al. 2000; Chandra et al. 2004;
Burré et al. 2010; Anwar et al. 2011), although

changes in synapse structure (Greten-Harrison

et al. 2010) and an impairment in survival have
been reported in triple-knockout mice (Burré

et al. 2010; Greten-Harrison et al. 2010), sug-

gesting that synucleins contribute to the long-
term operation of a neuron.

The effect ofa-synuclein on neurotransmis-

sion and synaptic plasticity has been investigat-
ed both in knockout and in overexpressing con-

ditions, where a-synuclein has been reported to

both promote and inhibit neurotransmitter re-
lease or have no effect at all. Although some

studies report that a-synuclein does not have
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an effect on neurotransmitter release (Chandra

et al. 2004;Watson et al. 2009; Burré et al. 2010),
other studies report that a-synuclein enhances

synaptic transmission (Steidl et al. 2003; Liu et

al. 2004; Gureviciene et al. 2007, 2009; Greten-
Harrison et al. 2010; Anwar et al. 2011; Vargas

et al. 2014) or decreases release (Abeliovich et al.

2000; Cabin et al. 2002; Yavich et al. 2004, 2006;
Larsen et al. 2006; Senior et al. 2008; Greten-

Harrison et al. 2010; Nemani et al. 2010; Wu

et al. 2010). A recent study has reported an
inhibitory effect of a-synuclein on synaptic-

vesicle endocytosis during intense stimulation,

but not under basal levels (Busch et al. 2014;
Vargas et al. 2014). Whether the inconsistent

results obtained for the effects of a-synuclein

on neurotransmission and synaptic plasticity
could be ascribed to the experimental models

used and the investigated brain regions needs to

be determined.
How does a-synuclein exert its effect on the

neurotransmission machinery? Within the pre-

synaptic terminal, a-synuclein is highly mobile,
as shown by photobleaching experiments, and it

disperses from synaptic vesicles upon stimula-

tion (Fortin et al. 2005).a-Synucleinmodulates
the mobility of synaptic vesicles between pre-

synaptic boutons and maintains the overall

size of the recycling pools at individual synapses
(Scott and Roy 2012). It also organizes into

multimers at synapses, which cluster synaptic

vesicles, thereby restricting their motility
(Wang et al. 2014) and likely attenuating exo/
endocytosis. Multimerization is triggered by

membrane binding and mediates SNARE-com-
plex chaperoning activity (Burré et al. 2014).

Moreover, a-synuclein clusters synaptic-vesicle

mimics in vitro, via binding to the vesicles and
synaptobrevin-2, and thereby prevents fusion of

synaptic-vesicle mimics with plasma-mem-

brane mimics (Fig. 6) (Diao et al. 2013), sug-
gesting that a-synuclein provides a buffer of

synaptic vesicles without affecting neurotrans-

mitter release itself. In vitro, a-synuclein specif-
ically inhibits vesicle docking without interfer-

ing with the fusion process (Lai et al. 2014).

Overexpression causes accumulation of docked
vesicles at synapses and smaller readily releas-

able pools (RRPs) (Larsen et al. 2006). Thus, the

effect of a-synuclein on neurotransmitter re-

lease is likely not mediated by directly affecting
the release machinery, but by regulating vesicle

pools within the presynaptic terminal.

CONCLUDING REMARKS

Although a-synuclein has gained prominence
for its role in neurodegenerative diseases called

synucleinopathies,much about its cellular func-

tion(s) remains unclear, and little is known
about how a-synuclein becomes cytotoxic and

causes neurodegenerationwhen it is mutated or

overexpressed. Diverse studies have proposed
myriad functions for a-synuclein at locations

ranging from the nucleus to mitochondria and

nerve terminals. Of these, the strongest evidence
has accumulated for the localization of a-synu-

clein at nerve terminals, specifically on the

highly curved membrane of synaptic vesicles.
Misfoldeda-synuclein forms oligomers and ag-

gregates that are believed to be toxic, and recent

studies have revealed propagation of misfolded
a-synuclein between neurons. Nucleation and

propagationofa-synucleinmisfolding,whether

from the cytosolic pool or from the membrane-
boundpool, remains controversial. There is now

substantial evidence for toxicity of a-synuclein

oligomers, as well as evidence for either a benign
or protective role of larger aggregates and, po-

tentially, Lewy bodies. Which species of a-syn-

uclein is transferred fromneuron to neuron, and
how it is released, is entirely unknown and is a

subject of intense research. Understanding how

a-synuclein localizes and functions in subcellu-
lar compartments will facilitate understanding

of central questions, such as how a-synuclein

misfolds, which species ofa-synuclein are toxic,
how these species are released and taken up by

neurons, and how these species may nucleate

new aggregates in a healthy cell. The subcellular
localization-specific functions of a-synuclein,

such as those at nerve terminals, increase the

possibility that pathological aggregation and in-
clusionofa-synuclein intoLewybodies depletes

the protein from locations where it functions,

which occurs in addition to the direct toxic ef-
fects ofmisfoldeda-synuclein aggregates. Thus,

these are exciting times in a-synuclein research,

J. Burré et al.
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and much will likely be revealed about this fas-

cinating molecule in the near future.
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J. Burré et al.

20 Cite this article as Cold Spring Harb Perspect Med 2018;8:a024091

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


in a-synuclein stably transfected SH-SY5Y cells. Cell Mol
Neurobiol 28: 35–47.

Gureviciene I, Gurevicius K, Tanila H. 2007. Role of a-syn-
uclein in synaptic glutamate release. Neurobiol Dis 28:
83–89.

Gureviciene I, Gurevicius K, Tanila H. 2009. Aging and a-
synuclein affect synaptic plasticity in the dentate gyrus. J
Neural Transm 116: 13–22.

Haggerty T, Credle J, RodriguezO,Wills J, Oaks AW,Masliah
E, Sidhu A. 2011. Hyperphosphorylated tau in an a-syn-
uclein-overexpressing transgenic model of Parkinson’s
disease. Eur J Neurosci 33: 1598–1610.

� HasegawaM, Nonaka T,Masuda-SuzukakeM. 2016.a-Syn-
uclein: Experimental pathology. Cold Spring Harb Per-
spect Med 6: a024273.

Hashimoto M, Yoshimoto M, Sisk A, Hsu LJ, Sundsmo M,
Kittel A, Saitoh T, Miller A, Masliah E. 1997. NACP, a
synaptic protein involved in Alzheimer’s disease, is differ-
entially regulated during megakaryocyte differentiation.
Biochem Biophys Res Commun 237: 611–616.

Hodara R, Norris EH, Giasson BI, Mishizen-Eberz AJ,
Lynch DR, Lee VM-Y, Ischiropoulos H. 2004. Functional
consequences of a-synuclein tyrosine nitration: Dimin-
ished binding to lipid vesicles and increased fibril forma-
tion. J Biol Chem 279: 47746–47753.

Hoyer W, Cherny D, Subramaniam V, Jovin TM. 2004. Im-
pact of the acidic C-terminal region comprising amino
acids 109–140 on a-synuclein aggregation in vitro. Bio-
chemistry 43: 16233–16242.

Hsu LJ, Mallory M, Xia Y, Veinbergs I, Hashimoto M, Yo-
shimoto M, Thal LJ, Saitoh T, Masliah E. 1998. Ex-
pression pattern of synucleins (non-Ab component of
Alzheimer’s disease amyloid precursor protein/a-synu-
clein) during murine brain development. J Neurochem
71: 338–344.

Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory
M, Wong J, Takenouchi T, Hashimoto M, Masliah E.
2000. a-Synuclein promotes mitochondrial deficit and
oxidative stress. Am J Pathol 157: 401–410.

Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F,
Pollak P, Agid Y, Durr A, Brice A. 2004. Causal relation
between a-synuclein gene duplication and familial Par-
kinson’s disease. Lancet 364: 1169–1171.

Inglis KJ, Chereau D, Brigham EF, Chiou SS, Schobel S,
Frigon NL, Yu M, Caccavello RJ, Nelson S, Motter R, et
al. 2009. Polo-like kinase 2 (PLK2) phosphorylates a-
synuclein at serine 129 in central nervous system. J Biol
Chem 284: 2598–2602.

Ishii A, Nonaka T, Taniguchi S, Saito T, Arai T, Mann D,
Iwatsubo T, Hisanaga S, Goedert M, Hasegawa M. 2007.
Casein kinase 2 is the major enzyme in brain that phos-
phorylates Ser129 of humana-synuclein: Implication for
a-synucleinopathies. FEBS Lett 581: 4711–4717.

Iwai A, Masliah E, YoshimotoM, Ge N, Flanagan L, de Silva
HA, Kittel A, Saitoh T. 1995. The precursor protein of
non-A b component of Alzheimer’s disease amyloid is a
presynaptic protein of the central nervous system.Neuron
14: 467–475.

Iwata A, Maruyama M, Akagi T, Hashikawa T, Kanazawa I,
Tsuji S, Nukina N. 2003. a-Synuclein degradation by
serine protease neurosin: Implication for pathogenesis
of synucleinopathies. Hum Mol Genet 12: 2625–2635.

Jakes R, Spillantini MG, Goedert M. 1994. Identification of
twodistinct synucleins fromhumanbrain. FEBS Lett 345:
27–32.

Jao CC, Der-Sarkissian A, Chen J, Langen R. 2004. Structure
of membrane-bound a-synuclein studied by site-direct-
ed spin labeling. Proc Natl Acad Sci 101: 8331–8336.

Jao CC, Hegde BG, Chen J, Haworth IS, Langen R. 2008.
Structure of membrane-bound a-synuclein from site-di-
rected spin labeling and computational refinement. Proc
Natl Acad Sci 105: 19666–19671.

Jenco JM, Rawlingson A, Daniels B, Morris AJ. 1998. Regu-
lation of phospholipase D2: Selective inhibition of mam-
malian phospholipase D isoenzymes by a- and b-synu-
cleins. Biochemistry 37: 4901–4909.

Jensen PH, Hager H, Nielsen MS, Hojrup P, Gliemann J,
Jakes R. 1999. a-Synuclein binds to Tau and stimulates
the protein kinase A-catalyzed tau phosphorylation of
serine residues 262 and 356. J Biol Chem 274: 25481–
25489.

Ji H, Liu YE, Jia T, WangM, Liu J, Xiao G, Joseph BK, Rosen
C, Shi YE. 1997. Identification of a breast cancer-specific
gene, BCSG1, by direct differential cDNA sequencing.
Cancer Res 57: 759–764.

Jia T, Liu YE, Liu J, Shi YE. 1999. Stimulation of breast
cancer invasion and metastasis by synuclein g. Cancer
Res 59: 742–747.

Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE.
2000. a-Synuclein membrane interactions and lipid spe-
cificity. J Biol Chem 275: 34328–34334.

Jo E, FullerN, RandRP, St George-Hyslop P, Fraser PE. 2002.
Defective membrane interactions of familial Parkinson’s
disease mutant A30P a-synuclein. J Mol Biol 315: 799–
807.

Jucker M, Walker LC. 2011. Pathogenic protein seeding in
Alzheimer disease and other neurodegenerative disor-
ders. Ann Neurol 70: 532–540.

Junn E, Mouradian MM. 2002. Human a-synuclein over-
expression increases intracellular reactive oxygen species
levels and susceptibility to dopamine. Neurosci Lett 320:
146–150.

Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H,
Schindzielorz A, Okochi M, Leimer U, van Der Putten
H, Probst A, et al. 2000. Subcellular localization of wild-
type and Parkinson’s disease-associated mutant a-synu-
clein in human and transgenic mouse brain. J Neurosci
20: 6365–6373.

Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H,
Spooren W, Fuss B, Mallon B, Macklin WB, Fujiwara H,
et al. 2002. Hyperphosphorylation and insolubility of a-
synuclein in transgenic mouse oligodendrocytes. EMBO
Rep 3: 583–588.

Kamp F, Beyer K. 2006. Binding of a-synuclein affects the
lipid packing in bilayers of small vesicles. J Biol Chem 281:

9251–9259.

Kamp F, Exner N, Lutz AK, Wender N, Hegermann J, Brun-
ner B, Nuscher B, Bartels T, Giese A, Beyer K, et al. 2010.
Inhibition of mitochondrial fusion bya-synuclein is res-
cued by PINK1, Parkin and DJ-1. EMBO J 29: 3571–
3589.

Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM.
2000. Enhanced vulnerability to oxidative stress by a-

a-Synuclein Cell Biology

Cite this article as Cold Spring Harb Perspect Med 2018;8:a024091 21

w
w

w
.p

e
rs

p
e

c
ti

v
e

si
n

m
e

d
ic

in
e

.o
rg

 on August 26, 2022 - Published by Cold Spring Harbor Laboratory Press http://perspectivesinmedicine.cshlp.org/Downloaded from 

http://perspectivesinmedicine.cshlp.org/


synuclein mutations and C-terminal truncation. Neuro-
science 97: 279–284.

Kang L, Moriarty GM,Woods LA, Ashcroft AE, Radford SE,
Baum J. 2012. N-terminal acetylation of a-synuclein in-
duces increased transient helical propensity and de-
creased aggregation rates in the intrinsically disordered
monomer. Protein Sci 21: 911–917.

Kasai T, Tokuda T, Yamaguchi N, Watanabe Y, Kametani F,
Nakagawa M, Mizuno T. 2008. Cleavage of normal and
pathological forms of a-synuclein by neurosin in vitro.
Neurosci Lett 436: 52–56.

Kholodilov NG, Neystat M, Oo TF, Lo SE, Larsen KE, Sulzer
D, Burke RE. 1999. Increased expression of rat synuclein
in the substantia nigra pars compacta identified by
mRNA differential display in a model of developmental
target injury. J Neurochem 73: 2586–2599.

Kiely AP, Asi YT, Kara E, Limousin P, Ling H, Lewis P, Prou-
kakis C, Quinn N, Lees AJ, Hardy J, et al. 2013. a-Synu-
cleinopathy associated with G51D SNCA mutation: A
link between Parkinson’s disease and multiple system at-
rophy? Acta Neuropathol 125: 753–769.

Kim J. 1997. Evidence that the precursor protein of non-A b

component of Alzheimer’s disease amyloid (NACP) has
an extended structure primarily composed of random-
coil. Mol Cells 7: 78–83.

Kim TD, Paik SR, Yang CH, Kim J. 2000. Structural changes
in a-synuclein affect its chaperone-like activity in vitro.
Protein Sci 9: 2489–2496.

Kim TD, Paik SR, Yang CH. 2002. Structural and functional
implications of C-terminal regions of a-synuclein. Bio-
chemistry 41: 13782–13790.

Kim S, Jeon BS, Heo C, Im PS, Ahn TB, Seo JH, Kim HS,
Park CH, Choi SH, Cho SH, et al. 2004a. a-Synuclein
induces apoptosis by altered expression in human pe-
ripheral lymphocyte in Parkinson’s disease. FASEB J 18:
1615–1617.

Kim TD, Choi E, Rhim H, Paik SR, Yang CH. 2004b. a-
Synuclein has structural and functional similarities to
small heat shock proteins. Biochem Biophys Res Commun
324: 1352–1359.

Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T,
Min do S, Kim J, Paik SR, Chung KC. 2006. Dyrk1A
phosphorylates a-synuclein and enhances intracellular
inclusion formation. J Biol Chem 281: 33250–33257.

KimYM, JangWH,QuezadoMM,OhY, ChungKC, Junn E,
MouradianMM. 2011. Proteasome inhibition inducesa-
synuclein SUMOylation and aggregate formation. J Neu-
rol Sci 307: 157–161.

Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE,
Muzyczka N, Mandel RJ, Bjorklund A. 2002. Parkinson-
like neurodegeneration induced by targeted overexpres-
sion of a-synuclein in the nigrostriatal system. J Neurosci
22: 2780–2791.

Kontopoulos E, Parvin JD, Feany MB. 2006. a-Synuclein
acts in the nucleus to inhibit histone acetylation and
promote neurotoxicity. Hum Mol Genet 15: 3012–3023.

Kordower JH, Chu Y, Hauser RA, Olanow CW, Freeman TB.
2008. Transplanted dopaminergic neurons develop PD
pathologic changes: A second case report. Mov Disord
23: 2303–2306.

Kotzbauer PT, Giasson BI, Kravitz AV, Golbe LI, Mark MH,
Trojanowski JQ, Lee VM. 2004. Fibrillization of a-synu-
clein and tau in familial Parkinson’s disease caused by the
A53T a-synuclein mutation. Exp Neurol 187: 279–288.

Kruger R, KuhnW,Muller T,WoitallaD, GraeberM, Kosel S,
Przuntek H, Epplen JT, Schols L, Riess O. 1998. Ala30Pro
mutation in the gene encoding a-synuclein in Parkin-
son’s disease. Nat Genet 18: 106–108.

Krumova P, Meulmeester E, Garrido M, Tirard M, Hsiao
HH, Bossis G, Urlaub H, Zweckstetter M, Kugler S, Mel-
chior F, et al. 2011. Sumoylation inhibits a-synuclein
aggregation and toxicity. J Cell Biol 194: 49–60.

Kurowska Z, Englund E, Widner H, Lindvall O, Li JY, Brun-
din P. 2011. Signs of degeneration in 12–22-year old
grafts of mesencephalic dopamine neurons in patients
with Parkinson’s disease. J Parkinsons Dis 1: 83–92.

Lai Y, Kim S, Varkey J, Lou X, Song JK, Diao J, Langen R,
Shin YK. 2014. Nonaggregated a-synuclein influences
SNARE-dependent vesicle docking via membrane bind-
ing. Biochemistry 53: 3889–3896.

Larsen KE, Schmitz Y, Troyer MD, Mosharov E, Dietrich P,
Quazi AZ, Savalle M, Nemani V, Chaudhry FA, Edwards
RH, et al. 2006. a-Synuclein overexpression in PC12 and
chromaffin cells impairs catecholamine release by inter-
fering with a late step in exocytosis. J Neurosci 26: 11915–
11922.

Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T,
Lansbury PT Jr. 2002.a-Synuclein, especially the Parkin-
son’s disease-associated mutants, forms pore-like annu-
lar and tubular protofibrils. J Mol Biol 322: 1089–1102.

Lavedan C. 1998. The synuclein family. Genome Res 8: 871–
880.

Lavedan C, Leroy E, Dehejia A, Buchholtz S, Dutra A, Nuss-
baum RL, Polymeropoulos MH. 1998. Identification, lo-
calization and characterization of the human g-synuclein
gene. Hum Genet 103: 106–112.

Lee HJ, Khoshaghideh F, Patel S, Lee SJ. 2004. Clearance of
a-synuclein oligomeric intermediates via the lysosomal
degradation pathway. J Neurosci 24: 1888–1896.

Lee HJ, Patel S, Lee SJ. 2005. Intravesicular localization and
exocytosis of a-synuclein and its aggregates. J Neurosci
25: 6016–6024.

Lee HJ, Khoshaghideh F, Lee S, Lee SJ. 2006a. Impairment of
microtubule-dependent trafficking by overexpression of
a-synuclein. Eur J Neurosci 24: 3153–3162.

Lee PH, Lee G, Park HJ, Bang OY, Joo IS, Huh K. 2006b. The
plasma a-synuclein levels in patients with Parkinson’s
disease and multiple system atrophy. J Neural Transm
113: 1435–1439.

Lee JT, Wheeler TC, Li L, Chin LS. 2008. Ubiquitination of
a-synuclein by Siah-1 promotes a-synuclein aggregation
and apoptotic cell death. Hum Mol Genet 17: 906–917.

Lee D, Park CW, Paik SR, Choi KY. 2009. The modification
of a-synuclein by dicarbonyl compounds inhibits its fi-
bril-forming process. Biochim Biophys Acta 1794: 421–
430.

Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E,
Harta G, Brownstein MJ, Jonnalagada S, Chernova T, et
al. 1998. The ubiquitin pathway in Parkinson’s disease.
Nature 395: 451–452.

J. Burré et al.
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