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Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a
selectively permeable barrier that supports nutrient absorption and waste secretion while
preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in
regulating interactions between the mucosal immune system and luminal contents, which
include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular
space is sealed by the tight junction, which is maintained by a complex network of protein
interactions. Tight junction dysfunction has been linked to a variety of local and systemic
diseases. Twomolecularly and biophysically distinct pathways across the intestinal tight junc-
tion are selectively and differentially regulated by inflammatory stimuli. This review discusses
the mechanisms underlying these events, their impact on disease, and the potential of using
these as paradigms for development of tight junction-targeted therapeutic interventions.

M
ucosal surfaces and the epithelial cells that

line them are present at sites where tissues
interface directly with the external environment

or internal compartments that are contiguous

with the external environment. Examples in-
clude the gastrointestinal tract, the pulmonary

tree, and the genitourinary tract. In many cases

the mucosa must balance the opposing goals of
facilitating selective transport while also form-

ing a barrier that restricts free exchange across

the paracellular space. Crucial to both of these
properties is the apical junctional complex. This

structure, first described in 1963 (Farquhar and

Palade 1963), is composed of three junctions
that, from apical to basal, are known as the tight

junction (zonula occludens), adherens junction

(zonula adherens), and desmosome (macula

adherens). The tight junction is a selectively

permeable barrier that generally represents the
rate-limiting step of paracellular transport. The

adherens junction and desmosome provide es-

sential adhesive andmechanical properties that
contribute to barrier function but do not seal

the paracellular space. The tight junction is the

primary focus of this article.
This article will focus on the gastrointestinal

tract. In part, thismirrors the state of knowledge

regarding tight junction biology within organ
systems. The gut has been studied in greatest

detail due to the relative accessibility of the

intestines by endoscopy, the highly ordered
architecture, and the remarkable physical and

biochemical stressors faced by the gastrointesti-

nal mucosa. The latter include the most diverse
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microbiome of the body, peristalsis, and the

continuous washing of luminal contents over
the surface. Within this context, the intestinal

epithelia must direct selective active and passive

vectorial transport of ions, nutrients, water, and
waste products (Ferraris and Diamond 1997;

Kato and Romero 2011; Turner 2016). Finally,

it should be recognized that the gastrointestinal
tract is the primary site at which the immune

system samples foreign materials that are essen-

tial to immune education (Chung et al. 2012;
Hooper et al. 2012; Kim et al. 2016). This fact

makes the regulatory systems that prevent aber-

rant immune activation while promoting ap-
propriate immune responses particularly im-

portant within the gastrointestinal tract. It is

therefore not surprising that almost any sub-
stantial defect in mucosal immune regulation

results in enterocolitis in experimental animals

and humans (Kuhn et al. 1993; Powrie et al.
1994; d’Hennezel et al. 2009; Glocker et al.

2009; Hayes et al. 2015; Kiesler et al. 2015;

Mishima et al. 2015).

MUCOSAL ANATOMY

Mucosal surfaces share a common organization

(Fig. 1). In general, from lumen to serosa,
mucosae are composed of an epithelial layer

that sits on an acellular basement membrane.

Beneath this, a loose connective tissue layer,
which may include blood vessels, lymphatics,

immune cells, and other components, is termed

the lamina propria. Both epithelium and lami-
na propria contribute to the villus and crypt

architecture of the small intestine (Fig. 1). The

underlying muscularis mucosae represents the
deepest extent of the mucosa and separates

the mucosa from the submucosa. The submu-

cosa contains larger vessels, lymphatics, adipose
tissue, and scattered immune cells. The submu-

cosa is thought to also cushion themucosa from

forces exerted during peristalsis. Themuscularis
propria takes different forms depending on the

tissue. For example, the gastric muscularis pro-

pria contains three distinct sets of muscle fibers
with differing orientations, whereas the small
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Figure 1. Small intestinal mucosal architecture. (A) Low magnification image of hematoxylin and eosin-stained
section of normal human duodenum. Many of the structural features that are common throughout the gastro-
intestinal tract and other mucosal surfaces can be appreciated. (B) Line diagram indicating specific structures
that comprise the intestinal wall. The open spaces between fibers of the muscularis propria represent artefactual
separation that occurred during tissue processing. (From Podolsky et al. 2015; reprinted, with permission from
John Wiley & Sons#2015.)
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intestine and colon possess only longitudinal

and circumferential muscle fibers. In many,
but not all sites, the muscularis propria is cov-

ered by a thin layer of epithelium, the serosa.

Epithelial organization varies widely across
tissues. The airways (e.g., bronchioles), are

lined by a pseudostratified columnar epithelium

with abundant apical cilia, whereas air spaces
(i.e., alveoli), are lined by a single layer of

squamous type 1 and cuboidal, surfactant-pro-

ducing type II epithelial cells. In contrast, the
transitional epithelium of the bladder is strati-

fied and contains specialized umbrella cells that

allow the bladder to distend as needed. The oral
cavity and esophagus are lined by stratified squ-

amous epithelium, whereas the remainder of

the gastrointestinal tract is lined by a simple
(i.e., composed of a single layer), columnar

epithelium. The organization of these epithelial

cells and patterns of differentiation vary by site.
For example, the stem and proliferative zone

of the gastric mucosa is located within the

glandular neck, with the specialized parietal
and chief cells located in the deep glands. In

contrast, stem cells and Paneth cells are concen-

trated within the base of intestinal glands (i.e.,
the crypts).

The small intestinal epithelium is composed

of a single layer of columnar cells, many with a
well-developed microvillus brush border. At

least two populations of stem cells are present

within the crypts, one that cycles actively and
expresses the wnt pathway orphan receptor

Lgr5, and a second, quiescent population that

can replenish the Lgr5-positive pools after dam-
age (e.g., radiation) (Barker et al. 2007; Powell

et al. 2012; Wong et al. 2012). The crypts are

also populated by Paneth cells, which release
antimicrobial peptides and contribute to main-

tenance of the stem cell niche (Bevins and

Salzman 2011), as well as enteroendocrine cells;
neither of which are actively proliferative.

Daughter cells produced by division of Lgr5-

positive stem cells migrate out of the crypt
and toward the villus. For the first part of this

journey, proliferation continues as cells migrate

through the transit amplifying zone. Although
considered undifferentiated, epithelial cells with-

in this region express abundant apical chloride

channels as well as basolateral ion transport

proteins necessary to support massive transcel-
lular chloride secretion that generates an

osmotic gradient to draw water into the

lumen. Patients with cystic fibrosis, in which
the most prominent chloride channel, cystic fi-

brosis transmembrane conductance regulator

(CFTR), is defective, can develop intestinal
obstruction as a result of insufficient luminal

hydration (Collins 1992). Conversely, CFTR ac-

tivation by cholera toxin results in voluminous,
watery diarrhea (Gabriel et al. 1994). As epithe-

lial cells exit the transit amplifying zone prolif-

eration ceases and gene expression patterns
change such that the same cells become special-

ized for nutrient absorption. Thus, in general

terms, the villus is an absorptive compartment
whereas the crypt is secretory.

INTESTINAL INTERCELLULAR JUNCTIONS

Migration along the crypt-villus axis is accom-

panied by expression of nutrient absorptive
proteins, such as the apical sodium-glucose

cotransporter SGLT1 (Hwang et al. 1991). Junc-

tional proteins contribute to this coordinated
migration and differentiation. For example,

E-cadherin overexpression within the intestinal

epithelium retards migration from crypt to
villus, suppresses proliferation, induces apopto-

sis within the crypt, and delays absorptive cell

differentiation (Hermiston et al. 1996). Con-
versely, disruption of E-cadherin function by

transgenic expression of a dominant negative

N-cadherin accelerates migration and is accom-
panied by aberrant differentiation, loss of po-

larity, and premature cell death (Hermiston and

Gordon 1995). Complete E-cadherin knockout
within intestinal epithelial cells results in a

far more severe phenotype that includes villus

blunting, a marker of premature epithelial
death (i.e., before migration to the upper vil-

lus), and incomplete brush border development

(Bondow et al. 2012; Kohlnhofer et al. 2016).
Notably, E-cadherin-deficient intestinal epithe-

lia also display loss of claudin-1 and increased

claudin-4 expression. This indicates that, in
addition to defects in transcellular transport

protein expression, E-cadherin deficiency dis-
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rupts paracellular transport pathways. Consis-

tent with this, electron dense probes are easily
able to traverse the paracellular pathway within

E-cadherin-deficient intestinal epithelia.

In the normal intestine, E-cadherin expres-
sion is relatively constant over both longitudinal

(i.e., proximal small intestine to distal colon),

and vertical (i.e., crypt to villus), axes. In con-
trast, expression of tight junction proteins var-

ies significantly over both axes as well as during

development (Holmes et al. 2006). For example,
claudin-8 expression is only detectable from the

ileum to the distal colon, whereas claudin-18 is

detectable in the stomach and duodenum but
not in the ileum and colon (Holmes et al. 2006).

Claudin-2 is highly expressed in the neonatal

period by both crypt and villus, or surface in
the colon, intestinal epithelial cells. At these

times, claudin-15 expression is low and limited

to the crypt. This pattern reverses over the first
30 to 90 days of life inmice (Holmes et al. 2006).

As discussed below, definition of functions spe-

cific to each claudin protein is necessary to un-
derstand the physiological and pathophysiolog-

ical significance of these temporal and spatial

expression patterns. For example, whereas
knockout mice lacking claudin-2 develop nor-

mally (Muto et al. 2010) and claudin-15 defi-

cientmice display intestinal glucosemalabsorp-
tion as a result of reduced luminal sodium

(Tamura et al. 2011), knockout mice lacking

both claudin-2 and claudin-15 die in the first
month of life (Wada et al. 2013). These obser-

vations are easily understood with the knowl-

edge that active nutrient uptake across the apical
enterocyte membrane is energized by the gradi-

ent between luminal and intracellular sodium

as well as recognition that the diet contains
insufficient sodium to drive this absorption.

Differential expression of claudins 2 and 15 is

therefore essential to maintenance of the so-
dium gradient across the apical membrane.

This is because the paracellular channels formed

by these claudins are required for transcellularly
absorbed sodium to recycle to the lumen and

power further cycles of nutrient absorption. The

unique functions of claudins 2 and 15 that
might explain the need for their differential ex-

pression are incompletely understood.

TIGHT JUNCTION MOLECULAR
ARCHITECTURE

Tight junctions are not visible by light micros-

copy and are inconspicuous when viewed by
transmission electron microscopy (Fig. 2A). In

contrast, freeze fracture electron microscopy

shows a complex three-dimensional structure
composed of paired intramembranous strands

within adjacent cells (Fig. 2B). The composition

of the strands was a subject of debate, with pro-
tagonists of both lipids and proteins (Lingaraju

et al. 2015).While not fully resolved, this debate

was largely abandoned in 1986, when zonula
occludens-1 (ZO-1) became the first identified

tight junction protein (Stevenson et al. 1986,

1988). Shortly thereafter, a second peripheral
membrane protein, cingulin, was reported (Citi

et al. 1988). This cemented the field’s focus on

proteins (as shown in Fig. 2C), which has, for the
most part, continued to the present.

When the first transmembrane protein of

the tight junction, occludin, was discovered in
1993 (Furuse et al. 1993), it was heralded as

the “Holy Grail” of tight junction biology

(Gumbiner 1993). This was followed by a series
of studies indicating critical roles for occludin

and included reports that occludin overexpres-

sion could drive formation of intracellular mul-
tilamellar bodies with closely apposed lipid

bilayers, similar to those in tight junctions

(Furuse et al. 1996), and that occludin both en-
hanced steady-state barrier function in cultured

monolayers and increased the number of strands

seen by freeze-fracture electronmicroscopy (Mc-
Carthy et al. 1996). Occludin functions appear

to require the cytoplasmic C terminus (Chen

et al. 1997; Matter and Balda 1999; Odenwald
et al. 2016), which is heavily phosphorylated in

tight junction-associated occludin (Cordenonsi

et al. 1997; Sakakibara et al. 1997; Wong 1997)
and binds to ZO-1, ZO-2, and ZO-3 (Itoh et al.

1999). Further, introduction of a synthetic

peptide corresponding to part of occludin’s
second extracellular loop (ECL2) disrupted epi-

thelial paracellular barrier function (Wong and

Gumbiner 1997). Finally, as discussed below,
occludin is essential for some mechanisms of

in vitro and in vivo tight junction regulation.
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Despite the data above, many recognized
that a single occludin isoform could not be

the principal tight junction transmembrane

protein, as tight junctions across different
anatomical sites vary in size- and charge-selec-

tive permeability (Gumbiner 1993). Consistent

with this, it was discovered that embryonic stem
cells lacking occludin differentiated into polar-

ized epithelia with functional tight junctions

(Saitou et al. 1998). This was followed by a
report that, despite multiple abnormalities,

occludin knockout mice are viable and lack

major defects in intestinal barrier function
(Saitou et al. 2000). As a result, many dismissed

occludin as an irrelevant protein. A more nu-

anced, inclusive interpretation is that occludin
plays a regulatory rather than structural role.

Consistent with this, two tight junction-associ-

ated, occludin-related proteins, tricellulin
(marvelD2) andmarvelD3, have been identified

to complete the tight junction-associated

MARVEL protein (TAMP) family (Ikenouchi
et al. 2005; Raleigh et al. 2010). As implied by

its name, tricellulin is concentrated at tricellular

tight junctions. Tricellulin mutations have been
linked to some forms of human hereditary deaf-

ness (Riazuddin et al. 2006), as havemutations in

the tricellular junction protein angulin-2 (Higa-
shi et al. 2013, 2015; Kim et al. 2015). Deafness

also occurs in occludin knockout mice (Kitajiri

et al. 2014).
Recognition that occludin was not absolute-

ly required for barrier function and could not

explain differential selectivities of tight junc-
tions at different sites drove the continued search

for transmembrane tight junction proteins. This

led to the discovery of claudin-1 and claudin-2
(Furuse et al. 1998a). This family of 27 genes in

mammals is characterized by four transmem-

brane domains, similar to the TAMP family,
but is unrelated to the TAMPs or other tight

junction proteins (Furuse et al. 1998a; Morita
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Figure 2. The apical junctional complex. (A) Transmission electron micrograph showing junctional complexes
between two villous enterocytes. The tight junction (TJ) is just below the microvilli (Mv), followed by the
adherens junction (AJ). The desmosomes (D) are located basolaterally. (B) Freeze-fracture electron micrograph
showing apical microvilli (Mv) and tight junction strands (TJ) in a cultured intestinal epithelial cell. (C) Line
drawing of the apical junctional complex of an intestinal epithelial cell. Tight junction proteins include claudins,
zonula occludens-1 (ZO-1), and occludin, whereas E-cadherin, a-catenin, and b-catenin interact to form the
adherens junction. Myosin light chain kinase (MLCK) is associated with the perijunctional actomyosin ring.
Desmosomes are formed by interactions between desmoglein, desmocollin, desmoplakin and keratin filaments.
(Parts A and C, from Turner 2009; reprinted, with permission; part B, from Shen et al. 2011; reprinted, with
permission from Annual Reviews#2011.)
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et al. 1999). The first extracellular loop (ECL1)

of claudin proteins contains several conserved
sequences, andmost claudins also include a car-

boxy-terminal PDZ-binding sequence that in-

teracts with the PDZ1 domain of ZO proteins
(Itoh et al. 1999). It is well-documented that

many claudin proteins form paracellular pores,

and that the charge selectivity of these pores is
defined by amino acids within ECL1 (Colegio

et al. 2003; Li et al. 2014; Weber et al. 2015).

The relationship of this to health and disease
was initially shown by genetic linkage of para-

cellin-1, or claudin-16, to the autosomal reces-

sive disease of renal hypomagnesemia with hy-
percalciuria and nephrocalcinosis (Simon et al.

1999). The divalent cation channel formed by

claudin-16 (Gong et al. 2015) is essential for
reabsorption of magnesium and calcium ions

from the urinary space. Human claudin poly-

morphisms have also been linked to biliary dis-
ease (Hadj-Rabia et al. 2004) and deafness (Wil-

cox et al. 2001). Interestingly, a ZO-2 mutation

that disrupts binding to claudins also causes
biliary disease (Carlton et al. 2003).

While it is clear that claudin proteins form

paracellular pores, the role of claudin proteins in
forming the paracellular barrier is less clear-cut.

The strongest evidence in favor of claudin-de-

pendent barrier function comes from the severe
epidermal barrier defects displayed by claudin-1

knockoutmice (Furuse et al. 2002) and the strik-

ing abilityof claudin proteins to form tight junc-
tion-like strands when expressed in fibroblasts,

which do not normally form such strands

(Furuse et al. 1998b). Notably, occludin is re-
cruited into these claudin-dependent strands.

Twenty-seven human claudin genes have

been identified, but it is not clear that all of these
are expressed as proteins (Liu et al. 2016). No-

tably, claudin-13 is expressed in rodents, but is

absent in humans. The barrier and permeability
properties of tight junctions are defined in sig-

nificant part by the ensemble of claudin proteins

expressed, and this varies between and within
tissues (Holmes et al. 2006). The specific claudin

proteins expressed within the gastrointestinal

tract vary as a function of location, stage of
pre- and postnatal development, and presence

of disease (Heller et al. 2005; Holmes et al.

2006). In short, the molecular architecture of

tight junctions is variable, with the specific com-
position reflecting the local environment and

functional demands.

TUMOR NECROSIS FACTOR-MEDIATED
REGULATION OF TIGHT JUNCTION
PERMEABILITY

Organ-specific features of tight junction-de-

pendent barrier function have been studied in
the lungs (Schlingmann et al. 2016), kidneys

(Pei et al. 2016), and gastrointestinal tract

(Wada et al. 2013), but have been analyzed in
greatest detail in the context of gastrointestinal

disease (Clayburgh et al. 2005; Heller et al. 2005;

Weber et al. 2008, 2010; Su et al. 2009; Mar-
chiando et al. 2010a). In vitro, reductionist

models of barrier loss in inflammatory bowel

disease (IBD) include epithelial responses to ex-
ogenous tumor necrosis factor-a (TNF) and

interleukin-13 (IL-13), which have each been

implicated in Crohn’s disease and ulcerative co-
litis, the two forms of IBD.

Themechanism of TNF-induced tight junc-

tion (i.e., non-apoptotic) barrier losswas initial-
ly reported in 2002 (Zolotarevsky et al. 2002).

Previous work had determined that epithelial

myosin light chain kinase (MLCK) was a critical
physiological regulator of increased tight junc-

tion permeability induced by activation of so-

dium nutrient cotransport (Turner et al. 1997;
Herrmann and Turner 2016). However, studies

of MLCKwere hampered by the lack of specific

inhibitors, knockdown/knockout cell lines, and
knockout mice, which resulted in the necessary

reliance on nonspecific agents such as ML-7

(Bain et al. 2003). This changed when an exqui-
sitely specific MLCK inhibitor was developed

and tested in TNF-treated Caco-2 intestinal ep-

ithelial monolayers (Zolotarevsky et al. 2002).
Remarkably, the inhibitory peptide, PIK, rapid-

ly and completely reversed TNF-induced barri-

er loss of up to≏30%.Greater degrees of barrier
loss were not correctable by MLCK inhibition,

likely because these were due to epithelial apo-

ptosis. Subsequent work showed that TNF not
only activatedMLCKenzymatic activity acutely,

but also enhanced MLCK expression in Caco-2
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monolayers (Wang et al. 2005). It was subse-

quently shown that either enzymatic MLCK
inhibition, using PIK, or genetic MLCK inhibi-

tion, using mice lacking the epithelial long

MLCK isoform, was able to reverse or prevent,
respectively, TNF-dependent, barrier loss and

diarrhea in mice (Clayburgh et al. 2005). Fur-

ther analysis showed that MLCK was up-
regulated within intestinal epithelia in mouse

models (Wang et al. 2006) as well as human

IBD, where magnitude of expression correlated
with disease severity (Blair et al. 2006). Finally,

long MLCK knockout mice were significantly

protected from immune-mediated experimen-
tal IBD (Fig. 3A) (Su et al. 2013).

Three important aspects of this last study

are worth noting. First, although the mice stud-
ied lacked long MLCK in all tissues, tissue-

specific constitutively active MLCK expression

within intestinal epithelial cells restored the dis-
ease phenotype of long MLCK knockout mice

to one indistinguishable from wild-type mice

(Su et al. 2013). This shows that the protection
afforded by long MLCK knockout was caused

by loss of intestinal epithelial longMLCK rather

than long MLCK expressed in endothelium or

other cell types.
Second, whereas they were protected from

immune-mediated colitis, long MLCK knock-

out mice were not protected from dextran
sulphate sodium (DSS) colitis. Notably, DSS

induces colitis via direct epithelial injury, which

is not the mechanism of human inflammatory
bowel disease (IBD). This example can serve as

an important warning when attempting to

translate in vitro observations to an in vivo
model. In the case of long MLCK knockout,

the protection observed using an immune-

mediated colitis model was due to preservation
of the tight junction barrier. That model was

appropriate for analysis of epithelial tight

junctions because the initial disease-inducing
signal came from the immune system. Use of

a model where disease was initiated by direct

epithelial damage (e.g., DSS colitis), would, in
contrast, be inappropriate because the direct

epithelial perturbation induced by DSS makes

it impossible to study epithelial responses to
biologically relevant perturbations (e.g., cyto-

kines or cell-mediated attack). In addition,
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Figure 3. Tight junction flux pathways in disease. Transgenic, intestinal epithelial-restricted expression of
constitutively active-MLCK restores sensitivity of long MLCK2/2 mice to CD4þCD45RBhi-adoptive transfer
colitis, an immune-mediated experimental inflammatory bowel disease (IBD). (A) Long myosin light chain
kinase (MLCK) is essential for myosin II regulatory light chain (MLC) phosphorylation and claudin-2 upre-
gulation during immune-mediated experimental IBD. Long MLCK2/2 mice are protected from disease-asso-
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constitutively active MLCK catalytic domain (CA-MLCK) restores disease-associated MLC phosphorylation
and claudin-2 upregulation. Serine-19-phosphorylated MLC (phosphoMLC) or claudin-2 (green) and nuclei
(blue) are shown. Bar ¼ 10 um. (B) Diagram of intestinal permeability pathways in disease. Pore and leak
pathways are regulated by claudin-2 expression and MLCK-dependent occludin endocytosis, respectively. The
unrestricted pathway is a tight junction-independent pathway at sites of epithelial damage (e.g., apoptosis) that
is present in advanced disease. (From Su et al. 2013; adapted, with permission, from Elsevier#2013.)
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because DSS causes severe epithelial damage

and mucosal ulceration, the barrier loss and
disruption of other epithelial functions make

it impossible to use this as a model of disease-

driven epithelial dysfunction. Conversely, the
immune-mediated colitis model used above,

which relies on adoptive transfer of naı̈ve effec-

tor T cells into an immunodeficient recipient,
could be problematic for studies of immuno-

regulation because, for example, the immuno-

deficient recipients lack endogenous regulatory
T cells. Nevertheless, exceptions to these gener-

alizations must be considered. For example the

adoptive transfer colitis model has been used in
studies that transferred naı̈ve effector T cells

along with potential regulatory T-cell popula-

tions (Powrie et al. 1993). Those experiments
allowed direct analysis of the effects of trans-

ferred cells without interference from endoge-

nous immune regulatory elements. Similarly,
the massive epithelial injury induced by DSS

has been useful in analyses of mucosal repair

mechanisms that mediate recovery from DSS
colitis (Brown et al. 2007).

Third, the failure of long MLCK knockout

to limit severity of DSS colitis is readily under-
stood when one considers the critical role of

MLCK in cell migration and wound healing

(Russo et al. 2005; Chen et al. 2014). Thus,
although some have expressed surprise at

the failure of MLCK inhibition to prevent

colitis induced by chemical injury or epithelial
apoptosis and therefore questioned whether

MLCK is a relevant therapeutic target, the pro-

tection of long MLCK knockout mice from
immune-mediated experimental IBD, but not

direct epithelial injury, is expected. Further,

the inability of MLCK inhibition to prevent
cell death-related barrier loss explains the ulti-

mate development of immune-mediated colitis

in long MLCK knockout mice as the result of
immune attack that ultimately led to epithelial

apoptosis-dependent, and tight junction-inde-

pendent, barrier loss (Su et al. 2013).
Some investigators have argued that, be-

cause MLCK could, theoretically, phosphory-

late substrates other than myosin II regulatory
light chain, a more appropriate study would be

to analyze mice lacking nonmuscle myosin IIA

heavy chain specifically within the intestinal

epithelium (Naydenov et al. 2016). However,
these tissue-specific nonmuscle myosin IIA

heavy chain-deficient mice display barrier de-

fects and intestinal disease under basal (i.e., un-
stressed) conditions. This is likely because of

chronic defects in epithelial cell migration and

homeostatic wound repair, as the entire myosin
motor apparatus is perturbed in these mice.

These constitutive abnormalities limit the util-

ity of these mice for study of tight junction
physiology and pathophysiology. In contrast,

targeting MLCK, an established regulator of

tight junction permeability (Turner et al.
1997; Zolotarevsky et al. 2002; Clayburgh et al.

2005; Ma et al. 2005; Su et al. 2009, 2013), does

not disrupt basal epithelial function in either
long MLCK knockout mice or mice with intes-

tinal epithelial specific constitutively active

MLCK expression. Thus, despite some recent
discussion, the critical role of MLCK in intesti-

nal epithelial tight junction regulation remains,

as does the value of targeting intestinal epi-
thelial MLCK and defining the molecular

mechanisms by which MLCK regulates tight

junctions.

IL-13-MEDIATED REGULATION OF TIGHT
JUNCTION PERMEABILITY

Unlike TNF, which induces barrier loss within

only a few hours, IL-13 requires at least 16 hours
(Clayburgh et al. 2005; Heller et al. 2005; Wang

et al. 2005; Weber et al. 2010). Further, whereas

the MLCK inhibitor PIK can reverse TNF-
induced barrier loss, it is ineffective against

IL-13-induced barrier loss (Weber et al. 2010).

The latter is explained by the observation
that IL-13 augments paracellular permeability

by increasing claudin-2 expression (Heller et al.

2005; Weber et al. 2010), which has been
shown to create paracellular cation-selective

pores (Furuse et al. 2001; Amasheh et al. 2002;

Li et al. 2014; Weber et al. 2015). Intriguingly,
claudin-2 is selectively upregulated by IL-13

(Weber et al. 2010), whereas other stimuli

regulate expression of multiple tight junction-
related proteins. For example, TNF enhances

transcription of MLCK, multiple claudins
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(1, -2, -12, -15, and -16), all three tight junc-

tion-associated MARVEL proteins (TAMPs;
occludin triceullin, and marvelD3), and ZO-1

(Raleigh et al. 2010; Weber et al. 2010).

It is worth noting that claudin-2 andMLCK
do not operate in isolation. TNF, the prototyp-

ical regulator of MLCK in tight junction dys-

regulation, can enhance claudin-2 transcription
(Mankertz et al. 2009; Weber et al. 2010). In

addition, mice expressing constitutively active

MLCKwithin the intestinal epithelium also dis-
play increased expression of claudin-2 (Weber

et al. 2010). Finally, claudin-2 upregulation in

the context of immunemediated colitis ismark-
edly attenuated in long MLCK knockout mice

(Fig. 3A) (Su et al. 2013).

PORE AND LEAK PATHWAYS

TNFand IL-13, which enhance paracellular per-
meability via distinct mechanisms that differ-

entially regulate the biophysical properties of

the tight junction barrier, have been remarkably
useful tools in defining the cell biology of

paracellular barrier function. This was initially

apparent when, as noted above, it was found
that MLCK inhibition could reverse TNF-, but

not IL-13-, induced barrier loss (Weber et al.

2010). In contrast, claudin-2-targeted siRNA
was able to attenuate IL-13-induced increases

in claudin-2 expression and barrier loss (Weber

et al. 2010). Further analyses showed that,
whereas both cytokines induced similar reduc-

tions in transepithelial electrical resistance

(TER), a measure of paracellular ion conduc-
tance, only TNF enhanced paracellular flux

of the large paracellular probe 4 kD dextran

(Weber et al. 2010). IL-13 specifically increased
paracellular flux of monovalent cations (i.e., so-

dium), but not anions or 4 kD dextran. TNF, in

contrast, increased paracellular flux of both cat-
ions and anions to similar degrees. These data

indicate that two distinct pathways across the

tight junction are preferentially activated by
the model cytokines IL-13 and TNF. These

pathways can be referred to as pore and leak

(Anderson and Van Itallie 2009; Turner 2009;
Shen et al. 2011). The pore pathway, which is

selectively activated by IL-13, is a high-capacity,

charge- and size-selective paracellular conduc-

tance route. Conversely, TNF increases flux
across the low-capacity, charge-nonselective,

and relatively size-nonselective leak pathway

(Fig. 3B).
Beyond cytokines, permeability of pore and

leak pathways can be regulated by modulating

tight junction protein expression in cultured
monolayers. Detailed analyses have shown that

claudin-2 expression increases the density of

cation-selective, paracellular pores with a diam-
eter of 7-8 Å (Van Itallie et al. 2008; Li et al.

2014). Development of a novel paracellular

patch clamp technique has recently allowed
biophysical analyses demonstrating that these

pores are actively gated and display a flickering

behavior, with unstable open and closed con-
formations and a third, stable, closed confor-

mation (Weber et al. 2015). This raises hope

that it may be possible to develop pharmacolog-
ic agents that modulate these conformations

and regulate claudin-dependent ion channels

similar to drugs that regulate transmembrane
ion channels (e.g., dihydropyridine deriva-

tives). Notably, the existence of flickering

paracellular pores was previously predicted on
theoretical grounds (Cereijido et al. 2008), and

mathematical modeling showed that indepen-

dent opening and closing of these pores could
explain the logarithmic relationship between

number of tight junction strands and TER

(Claude 1978; Weber and Turner 2017).
It is now evident that many of the claudins

establish paracellular pores and that, whereas

the charge-selectivities of these pores vary,
they all display similar size-selectivities. Howev-

er, the functions of other claudins remain some-

what controversial. Some investigators have
concluded that claudin proteins should be

classified as either pore-forming or sealing

claudins (Amasheh et al. 2011; Krug et al.
2014). Others have argued that, whereas clau-

dins can form strands, it may be the strands

themselves that are responsible for the barrier
(Lingaraju et al. 2015), or, alternatively, that the

sealing claudins enhance the barrier by regulat-

ing pore-forming claudins (Van Itallie et al.
2001; Angelow et al. 2007; Turner et al. 2014).

This remains an essential problem that must be
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solved if we are to fully understand the mecha-

nisms by which tight junctions form selectively
permeable barriers.

In contrast to the pore pathway, the molec-

ular identity of the leak pathway, which con-
ducts macromolecules, remains unclear. Flux

across this pathway can, as indicated above,

be enhanced by TNF. Similarly, knockdown of
ZO-1 or occludin in cultured epithelial mono-

layers can increase leak pathway flux (Yu et al.

2005, 2010; Van Itallie et al. 2009; Al-Sadi et al.
2011; Buschmann et al. 2013). Given the occlu-

din downregulation observed in TNF-treated

cultured monolayers and human IBD, the
known interactions between ZO-1 and the actin

cytoskeleton (Fanning et al. 2002), and the es-

sential contributions of MLCK to leak pathway
regulation (Zolotarevsky et al. 2002; Clayburgh

et al. 2005), one might conclude that critical

interactions between these proteins are respon-
sible for sealing of the leak pathway and that

their loss enhances flux across this pathway in

disease. While this may be correct, it does not
exclude a separate compelling hypothesis that

leak pathway flux occurs across tricellular junc-

tions (Krug et al. 2009; Nayak et al. 2013; Higa-
shi et al. 2015). Thesemodelsmight be linked by

the observation that occludin deficiency results

in redistribution of tricellulin from its normal
localization at tricellular tight junctions to bi-

cellular tight junctions (Ikenouchi et al. 2008;

Buschmann et al. 2013). This is, however, not
completely consistent with available data, as tri-

cellulin overexpression leads to localization at

bicellular and tricellular tight junctions and re-
duces leak pathway flux (Krug et al. 2009).

OCCLUDIN AS A MOLECULAR
INTEGRATOR OF TIGHT JUNCTION
REGULATION

A series of in vitro and in vivo studies have

showed that caveolin-dependent endocytosis is

essential for barrier loss following actin depoly-
merization or TNF exposure (Fig. 4A) (Shen

and Turner 2005; Schwarz et al. 2007; Mar-

chiando et al. 2010b). Given the enigmatic
nature of occludin function, one could debate

whether occludin itself or some other molecule

was the critical target of such endocytosis.

However, in vivo occludin overexpression limit-
ed TNF-induced barrier loss and completely

prevented TNF-induced diarrhea, thereby

demonstrating the essential role of occludin
(Marchiando et al. 2010b). Consistent with

this, occludin knockdown in cultured epithelia

increased leak pathway flux and prevented fur-
ther cytokine-induced barrier loss (Van Itallie

et al. 2010; Buschmann et al. 2013). While it in-

vites more speculation than available data allow,
it is interesting to note that the 125 Å diameterof

the enhancedparacellular fluxpathway in occlu-

din-deficient intestinal epithelial cells is close to
the 100 Å (i.e., 10 nm) diameter of a potential

tricellular channel described in freeze-fracture

studies over 40 years ago (Staehelin 1973).
The data discussed above show that occlu-

din internalization, and likely downstream

degradation, is essential for TNF-induced
barrier loss but do not explain the underlying

mechanisms. One possible explanation comes

from the observation that the many described
interprotein interactions at tight junctions are

continuously remodeled, even at steady-state

(Shen et al. 2008). These highly dynamic inter-
actions and subtle changes in their kinetics (Fig.

4A) may link the observations that occludin or

ZO-1 knockdown induce similar increases in
leak pathway permeability (Van Itallie et al.

2009; Yu et al. 2010). Such a model could also

explain the role of specific residues that link
occludin to ZO-1 in TNF-induced acceleration

of occludin exchange at the tight junction (Tash

et al. 2012; Buschmann et al. 2013). Notably,
occludin has also been reported to interact

directly with caveolin-1 (Van Itallie and

Anderson 2012).
Occludin interactions with ZO-1might also

be regulated by casein kinase 2 (CK2) phos-

phorylation of residues near and within the
occludin carboxy-terminal coiled-coil domain

(Smales et al. 2003; Raleigh et al. 2011; Dorfel

et al. 2013). Inhibition of occludinS408 phos-
phorylation reduced occludin exchange (i.e.,

enhanced anchoring) at the tight junction

(Fig. 4B). Remarkably, this also reduced pore
pathway conductance of small cations (Raleigh

et al. 2011). A complex series of experiments
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showed that, when phosphorylated at residue
S408, tight junction-associated occludin forms

dimers that are freely diffusible within the plane

of the membrane. In contrast, S408 dephos-
phorylation resulting from CK2 inhibition

caused occludin to associate with ZO-1 and,

in turn, ZO-1 to associate with claudin-2 (Fig.
4B). This complex diffused less freely than oc-

cludin dimers within the junction.However, the

mobile fraction of claudin-2, which is normally
very low, nearly doubled (Raleigh et al. 2011).

This suggests that claudin-2 is only able to form

paracellular cation pores when residing within
the stable (i.e., immobile) pool at the tight

junction. While complicated, this model shows

how subtle changes in tight junction protein
interactions can cause dramatic changes in bar-

rier function. Consistent with the proposed

inhibition of claudin-2 pore function, CK2 in-
hibition was able to completely reverse IL-13-

induced increases in paracellular cation flux

without blocking increased claudin-2 expres-
sion (Raleigh et al. 2011). Thus, as MLCK

and occludin : ZO-1 interactions are potential

targets for restoration of leak pathway defects,
correction of disease-associated increases in

pore pathway permeability may be accom-

plished by regulation of tripartite interactions
between occludin, ZO-1, and claudin-2, per-

haps by modulating CK2 activity.

CONCLUDING REMARKS

It has been 30 years since the original identifi-
cation of the first tight junction protein, ZO-1

(Stevenson et al. 1986). Our understanding
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Figure 4.Molecularmechanisms of leak and pore pathway regulation. (A) Tight junction complex remodeling at
steady-state and in response to tumor necrosis factor (TNF). Dashed black lines indicate energy-independent
diffusion of claudins (green, blue) and occludin (red) within the membrane; the mobile fractions of occludin
and claudin are both increased by TNF. Solid black lines indicate energy-dependent zonula occludens-1 (ZO-1)
(orange) exchange between tight junction and cytosolic pools. Occludin endocytosis (white arrow) is driven by
TNF-induced myosin light chain kinase (MLCK) activation and requires both caveolin-1 and ZO-1. (B) Phos-
phorylation regulates interactions between tight junction proteins and can be exploited to modify claudin-2
channel activity. Diagram shows interactions and dynamic behavior of proteins involved in tight junction
regulation by casein kinase 2 (CK2). Upper panel. CK2-mediated phosphorylation of occludin S408 facilitates
dimerization and diffusionwithin themembrane, thereby limiting occludin binding to ZO-1 and claudin-2 and
allowing flux across claudin-2 pores. Lower panel. CK2 inhibition and occludin dephosphorylation promotes
formation of occludin:ZO-1:claudin-2 complexes that reduce claudin-2 anchoring and pore function at the
tight junction. (Part B, from Raleigh et al. 2011; reprinted, with permission from The Rockefeller University
Press# 2011.)
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of tight junctions and their remarkable func-

tions has grown exponentially during that
time. From the first anti-ZO-1 antibodies,

which could not recognize the human protein,

to contemporary studies of knockout mice, hu-
man specimens, and patients with genetically

encoded diseases of the tight junction, the field

has traveled a great distance. However, signifi-
cant frontiers remain to be explored. These

range from detailed understanding of tight

junction protein structures and interactions
to biological functions in health and disease

to the development of agents that modify

function. Several examples have been dis-
cussed, but many mechanisms remain to be

discovered. The success of such endeavors is

an essential prerequisite to unlocking the
potential of tight junction modulation as a

therapeutic intervention.
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