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Abstract. Spreadsheets compose a notably large and valuable dataset
of documents within the enterprise settings and on the Web. Although
spreadsheets are intuitive to use and equipped with powerful functional-
ities, extracting and reusing data from them remains a cumbersome and
mostly manual task. Their greatest strength, the large degree of freedom
they provide to the user, is at the same time also their greatest weak-
ness, since data can be arbitrarily structured. Therefore, in this paper we
propose a supervised learning approach for layout recognition in spread-
sheets. We work on the cell level, aiming at predicting their correct layout
role, out of five predefined alternatives. For this task we have considered
a large number of features not covered before by related work. Moreover,
we gather a considerably large dataset of annotated cells, from spread-
sheets exhibiting variability in format and content. Our experiments,
with five different classification algorithms, show that we can predict cell
layout roles with high accuracy. Subsequently, in this paper we focus on
revising the classification results, with the aim of repairing misclassifi-
cations. We propose a sophisticated approach, composed of three steps,
which effectively corrects a reasonable number of inaccurate predictions.

Keywords: Speadsheet · Tabular · Table · Document · Layout
Recognition · Analysis · Classification

1 Introduction

Spreadsheet applications have evolved to be a tool of great importance for trans-
forming, analyzing, and representing data in visual way. In industry, a consider-
able amount of the enterprise knowledge is stored and managed in this format. 
Domain experts use spreadsheets for financial analysis, logistics and planning. 
Also, spreadsheets are a popular format on the Web. Of particular importance are 
those that can be found in Open Data platforms, where governments, impor-tant 
institutions, and non profit organizations are making their data available.
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All this make spreadsheets a valuable source of information. However, they
are optimized to be user-friendly rather than machine-friendly. The same data
can be formatted in different ways depending on the information the user wants
to convey. It is relatively easy for humans to interpret the presented informa-
tion, but it is rather hard to do the same algorithmically. As a result, we are
constrained to cumbersome approaches that limit the potential reuses of data
maintained in these files. A typical problem that arises in most enterprises is
that due to the lack of visibility the data stored in spreadsheets is not available
for enterprise-wide data analysis or reuse.

Our goal is to overcome these limitations by developing a method that allows
to discover tables in spreadsheets, infer their layout and other implicit informa-
tion. We believe that this approach can provide the means to extract a richer
and more structured representation of data from spreadsheets. This representa-
tion will act as the base for transforming the data into other formats, such as a
relational table/s or a JSON documents.

In this paper we discuss an extended version of our work, which was first
introduced at [1]. Here, we focus as well on layout inference via cell classifi-
cation, describing all the important aspect of our approach. However, we also
put emphasis on the post-classification process, where we attempt to correct
incorrect predictions.

The paper is organized as follows: In Sect. 2, we define the classification
problem for layout inference in spreadsheets. We present the dataset used as
ground truth, in Sect. 3. We describe, in Sect. 4, our cell classification approach.
Here, we list all defined cell features, explain how the most promising were
selected, and provide the evaluation results from the classification experiments. A
thorough report of our misclassification repairing approach can be found Sect. 5.
Finally, we review related work on table identification and layout discovery in
Sect. 6.

2 The Classification Problem

The objective of capturing the tabular data embedded in spreadsheets can be
treated as a classification problem where the individual sections of a table have
to be identified. In this section, initially, we define these sections or building
blocks that form our classes. Subsequently, we specify the granularity on which
the classification task will be performed.

2.1 Spreadsheet Layout Building Blocks

Considering that tables embedded in spreadsheets vary in shape and layout, it
is rather challenging to directly recognize them as a whole. Thus, we opt to
recognize their building blocks, instead.

We define five building blocks for spreadsheet tables: Headers, Attributes,
Metadata, Data and Derived (see Fig. 1). A “Header” (H) cell represents the
label of a column and can be flat or hierarchical (stacked). Hierarchical structures
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Title: Group Stage Comparison of UEFA European Championship Finalists 

( 2008 and 2012)

Group Stage
Total

Match 1 Match 2 Match 3

GF GA GF GA GF GA GF1 GA2

2008

Germany 2 0 1 2 1 0 4 2

Spain 4 1 2 1 2 1 8 3

2012

Italy 1 1 1 1 2 0 4 2

Spain 1 1 4 0 1 0 6 1

1Goal For 2Goal Against

Header

Data

Derived

Metadata

A ri-

butes

Metadata

Fig. 1. The building blocks [1].

can be also found in the left-most or right-most columns of a table, which we
call “Attributes” (A), a term first introduced at [2]. Attributes can be seen as
instances from the same or different (relational) dimensions placed in one or
multiple columns in a way that conveys the existence of a hierarchy. We label
cells as “Metadata” (M) when they provide additional information regarding the
worksheet as a whole or specific sections. Examples of Metadata are the table
name, creation date, and the unit of the values for a column. The remaining cells
form the actual payload of the table and are labeled as “Data”. Additionally,
we use the label “Derived” (B) to distinguish those cells that are aggregations
of other Data cells’ values. Derived cells can have a different structure from the
core Data cells, therefore we need to treat them separately. Figure 1 provides
examples of all the aforementioned building blocks.

2.2 Working at the Cell Granularity

One potential solution for the table identification and layout recognition tasks
is to operate under some assumptions about the structure of spreadsheet tables.
That means expecting spreadsheets to contain one or more tables with typical
layouts that are well separated from each other. In such scenario we could define
simple rules and heuristics to recognize the different parts. For example, the top
row could be marked as Header when it contains mostly string values. Addition-
ally, cells containing the string “Table:” are most probably Metadata. However,
this approach can not scale to handle arbitrary spreadsheet tables. Since, the
corpora we have considered include spreadsheets from various domains, we need
to find a more accurate and more general solution.

For this reason, our approach focuses on the smallest structural unit of a
spreadsheet, namely the cell. At this granularity we are able to identify arbi-
trary layout structures, which might be neglected otherwise. For instance, it is
tricky to classify rows when multiple tables are stacked horizontally. The same
applies for the cases when Metadata are intermingled with Header or Data.
Nevertheless, we acknowledge that the probability of having misclassifications
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Fig. 2. The cell classification process [1].

increases when working with cells instead of composite structures such as rows
or columns. Therefore, our aim is to come up with novel solutions that mitigate
this drawback.

Figure 2 illustrates the three high-level tasks that compose our cell classifi-
cation process. Initially, the application reads the spreadsheet file and extracts
the features of each non-blank cell. Here we considered different aspects of the
cell, summarized in Sects. 4.1 and 4.2. In the next step, cells are classified with
high accuracy (see Sect. 4.3) based on their features. Finally, a post-processing
step improves even further the classification results. Using rules and machine
learning techniques we identify cells that are most probably misclassified, and
attempt to infer their true label (i.e., layout role).

To complete the picture, Fig. 2 also includes the Table Reconstruction task,
which forms a separate topic, and is therefore left as future work.

3 The Gold Standard

The supervised classification processes requires a ground truth dataset, which is
used for both training and validation. In Sect. 3.1 we briefly describe the three
spreadsheet corpora used to extract a representative set of spreadsheets. To cre-
ate the training data we developed a spreadsheet labeling tool (see Sect. 3.2),
which provides the means to annotate ranges of cells. Given that tool, we ran-
domly selected and annotated files from the three corpora for which we provide
statistics in Sect. 3.3.

3.1 Spreadsheet Corpora and Training Data

For our experiments we have considered spreadsheets from three different
sources. EUSES [3] is one of the oldest and most frequently used corpora. It
has 4, 498 unique spreadsheets, which are gathered through Google search, using
keywords such as “financial” and “inventory”. The ENRON corpus [4] contains
over 15, 000 spreadsheets, extracted from the Enron email archive. This corpus
is of a particular interest, since it provides access to real-world enterprise spread-
sheets. The third corpus is FUSE [5] that contains 249, 376 unique spreadsheets,
extracted from Common Crawl. Each spreadsheet in FUSE is accompanied by a
JSON file that contains metadata and statistics. Unlike the other two corpora,
FUSE can be reproduced and extended.
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3.2 The Annotation Tool

Using the Eclipse SWT1 library we developed an interactive desktop applica-
tion that ensures good quality annotations. The original Excel spreadsheet is
embedded into a Java window and protected from user alteration. To create an
annotation, the user selects a range of cells (region) and then chooses the appro-
priate predefined label. A rectangle, which is filled with the color associated to
the label, covers the annotated region. The application evaluates the annotations
and rejects the inappropriate ones. For example, the user cannot annotate ranges
that are empty or overlapping with existing annotations. The data from all the
created annotations are stored in a new sheet, named “Range Annotation Data”.
The sheet is protected and hidden once the file is closed. Figure 3 provides an
example of an annotated sheet.

Fig. 3. Annotated sheet [1]. (Color figure online)

In addition to the building block described in Sect. 2, we have introduced the
possibility to annotate a region (area) that represents a whole table. A rectangle
with thick blue borders marks its boundaries.

We need the “Table” annotation for two main reasons: Firstly, we can govern
the labeling process, to assure valid annotations. For example, Data can only
exist inside a Table. However, Metadata can be left outside when they provide
information relevant to multiple Tables. Secondly, these annotations will help us
evaluate the Table Reconstruction task, in the future.

1 https://www.eclipse.org/swt/.
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3.3 Annotation Statistics

The graphs below provide an overview of the collected annotations and the
contribution of each corpus. We considered each corpus individually and assigned
a unique number to their files. Using a random number generator we extracted
subsets of files. From these, we annotated a total of 465 worksheets (216 files)
and 898 tables (Fig. 4).

In Fig. 5 we examine the annotated cells. The total number of cells for each
label (class) is placed at the top of the column bar. There was a small amount of
cells that did not match any of the defined labels. These are usually random notes
that do not have a clear role, and do not provide additional context (information)
about the table. We decided to omit such cells.

As can be seen in Fig. 5, the number of Data cells is by orders of magnitude
larger than the other label numbers. To adjust the class distribution we under-
sampled the Data class. We consider from each table in our dataset the first,
the last row, and three random rows in between. By applying this technique the
Data class was reduced to 32, 875 instead of 808, 179 cells. Considering also the
other four classes the final gold standard consists of 52, 948 cells in total.

288

119
58

465

FUSE ENRON EUSES TOTAL

(a) Sheets

562

236

100

898

FUSE ENRON EUSES TOTAL

(b) Tables

Fig. 4. Annotation statistics [1].
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69%
64%

82%

16%

39%

25%
26%

11%

61%

15%
6%

10% 8%

23%

ATTRIBUTES DATA HEADER METADATA DERIVED

FUSE ENRON EUSES

4,222 808,179 9,791 3,369 2,691

Fig. 5. Annotated cells [1].
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4 Cell Classification

4.1 Feature Specification

We have grouped the defined features into 5 categories: content, cell style, font
style, reference, and spatial. The content features describe the cell value, but
not its format. The cell style features capture the formatting applied to the
cell, excluding the font formatting. The later is recorded by font style features.
Reference features explore the Excel formulas and their references in the same or
other worksheets. The last group, spatial features, describe the “neighborhood”
of the cell (i.e., the adjacent cells). Here, we do not define the individual features,
instead more details can be found at [1].

4.2 Feature Selection

We used Weka2, a well known tool for machine learning tasks, for feature selec-
tion and classification. Initially, we binarized nominal features with more than
two values, which gave us 219 features in total. We used the “RemoveUseless”
option to remove the features that do not vary at all or vary too much. Addition-
ally, we manually removed those features that are practically constant (i.e., at
least 99.9% of cases the value is the same). Furthermore, we decided to exclude
from the final set features that check the style and content type of the neighbors.
Although, these features are promising, they need further refinement. Thus, we
plan perform thorough experiments with them in the future.

The remaining 88 features were evaluated using the InfoGainAttribute, Gain-

RatioAttribute, ChiSquaredAttribute, ConsitencySubset, and CfsSubset feature
selection methods. For each one of them we performed 10 folds (runs). A bidi-
rectional Best First search was used for ConsitencySubset and CfsSubset, while
the other methods can only be coupled with Ranker search.

From the results we considered features that score high in all these selec-
tion methods. Although, we were predominantly influenced by ConsistencySubset

results, since, when tested, they provide the highest classification accuracy. We
also included in the final set features that are strong indicators despite the fact
that they describe small number of instances. “Words Like Table” is an example
of such features, where 48 out of total 49 positive (true) cases are instances of
the Metadata class.

Tables 1 and 2 list the selected features, 43 in total. Those suffixed with ? repre-
sent boolean features. While, those suffixed with # represent numeric features.

In general spreadsheets exhibit different characteristics depending on the
domain they come from. Therefore, we expect that some of this features might
not works as well for other spreadsheet datasets. For example, reference features
are more important for industrial rather than for Web spreadsheets, since the
former are characterized by heavier use of formulas. We note that an independent
feature selection might be required for other spreadsheet datasets, in order to
achieve near optimum accuracy.

2 http://www.cs.waikato.ac.nz/ml/weka/.
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Table 1. Selected content and style features [1].

Content Cell style

LENGTH# INDENTATIONS#

NUMBER OF TOKENS# H ALIGNMENT DEFAULT?

LEADING SPACES# H ALIGNMENT CENTER?

IS NUMERIC? V ALIGNMENT BOTTOM?

IS FORMULA? FILL PATTERN DEFAULT?

STARTS WITH NUMBER? IS WRAPTEXT?

STARTS WITH SPECIAL? NUMBER OF CELLS#

IS CAPITALIZED? NONE TOP BORDER?

IS UPPER CASE? THIN TOP BORDER?

IS ALPHABETIC? NONE BOTTOM BORDER?

CONTAINS SPECIAL CHARS? NONE LEFT BORDER?

CONTAINS PUNCTUATIONS? NONE RIGHT BORDER?

CONTAINS COLON? MEDIUM RIGHT BORDER?

WORDS LIKE TOTAL? HAS NO DEFINED BORDERS?

WORDS LIKE TABLE?

IN YEAR RANGE?

Table 2. Selected font, reference and spatial features [1].

Font Reference Spatial

FONT SIZE# IS AGGREGATION FORMULA? ROW NUMBER#

FONT COLOR DEFAULT? REFERENCE VALUE NUMERIC? COLUMN NUMBER#

IS BOLD? HAS 0 NEIGHBORS?

NONE UNDERLINE? HAS 1 NEIGHBOR?

HAS 2 NEIGHBORS?

HAS 3 NEIGHBORS?

HAS 4 NEIGHBORS?

4.3 Cell Classifiers

In our evaluation, we considered various classification algorithms, most of which
have been successfully applied to similar tasks in the literature. Specifically, we
considered CART [6] (SimpleCART in Weka), C4.5 [7] (J48 in Weka), Random
Forest [8] and support vector machines [9] (SMO in Weka). The latter uses
the sequential minimal optimization algorithm developed by [10] to train the
classifier. Here, with SMO we considered both polynomial kernel and RBF kernel.

We evaluated the classification performance using 10-fold cross validation.
The Random Forest (RF) gave the highest overall accuracy of 98.2%. Also, RF
outperformed the other algorithms, in all the defined classes. To provide a more
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concrete picture on the classification accuracy, we also tested Random Forest
against the full dataset of annotated cells (828, 252). There was a slight decrease
in performance specifically for Metadata and Derived, but the general accuracy
did not suffer. More detailed results can be found at [1].

5 Post-processing

In this section, we discuss techniques for handling the misclassifications that
occur during the cell classification process. It is in our benefit to revise these
incorrect predictions as it will make the subsequent tasks, such as table identi-
fication and schema extraction in spreadsheets, much more easier and accurate.
In the following paragraphs, we discuss two approaches. We start with what can
be considered a näıve approach, and afterwards we motivate and describe our
more sophisticated solution.

5.1 Näıve Approach

Our initial empirical analysis of the classification results hinted that neighboring
cells could be potentially used to recover some of the misclassifications. Intu-
itively, the label assigned to a cell should match, in most of the scenarios, at
least that of the neighboring cells in the same row and/or column.

Here, we define the neighborhood as a 3-by-3 window around a cell, shown in
Fig. 6. The red cell in the center, marked with “x”, represents a misclassification,
surrounded by 8 neighboring cells.

n1 n2 n3

n4 n5

n6 n7 n8

Fig. 6. A 3 × 3 cell neighborhood. (Color figure online)

Not necessarily all neighboring cells have a label. For example, empty and
hidden cells do not get labeled, since we omit them from the classification process.
Also, another special case are the misclassified cells at the boundaries (extremes)
of the worksheet (i.e., the minimum and maximum allowed row/column in the
spreadsheet application). Such cells have less than eight neighbors, since one of
the neighboring columns and/or rows does not exist.

We would like to standardize the number of neighbors for any arbitrary
cell to eight. We accomplish this by adding two artificial labels: “Empty” and
“Imaginary”. The latter shall be used for (non-existing) neighbors outside the
boundaries of the worksheet, while the first for all the other cases of un-labeled
neighboring cells.
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Having seven labels in total, we implemented a script to find distinct arrange-
ments of labels in the neighborhood of incorrectly classified cells. From 1, 237
misclassifications, resulting from the classifications in the full dataset (828, 252
cells), there were 672 unique neighborhood label arrangements.

We identified the first 40 most repeated arrangements and manually inferred
generic rules (i.e., not bound to specific labels) from them. These rules are
divided into two sets: identification and relabeling. Intuitively, we use the first
rule-set to identify incorrect classifications, and afterwards we relabel them using
the second rule-set. Using this technique we managed to repair 152 misclassified,
but lose 14 correctly classified cells. Here, we do not provide details about the
individual rules, instead the complete list can be found at [1].

Though this method is able to recover a number of incorrect classifications, it
has several limitations. Our subsequent experiments revealed that in almost half
of the cases there are misclassified cells in the neighborhood itself, as illustrated
in Fig. 7. Beside these observations, there are other good reasons to look further
than the immediate neighborhood. For example, a Header cell that is relatively
far from all Data cells in a worksheet is probably a misclassification. Another
example comes from tables with missing values, which translates at Data cells
having empty immediate neighbors. In such scenario, we need to look at more
distant neighbors to determine if a Data cell is misclassified or not.

Fig. 7. Occurrences of misclassifications in the immediate neighborhood.

In the following section we propose a new approach for detecting and fixing mis-
classified cells. This approach is based on a good mixture of features, extracted
from the immediate and the distant neighbors. The results from our evalua-
tion are very encouraging and confirm the advantages of taking into account a
broader neighborhood context.

5.2 Region Based Approach

In this section we present our region-based approach (RBA) for handling mis-
classifications. At the core of RBA, is the intuition that grouping adjacent cells of
the same label should form regions of rectangular shape. That is because tables
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have well separated sections, such as the Data and Header sections, which tend
to be rectangular instead of an arbitrary rectilinear polygonal shape. Here, we
consider as adjacent cells only immediate neighbors on the left, right, top, and
bottom (see Fig. 6). Additionally, we define rectangular region as a well formed
matrix of cells of the same label. Intuitively, in such a matrix, all rows have the
same number of cells. The same is true when we examine the columns of the
matrix.

(a) Load (b) Standardize (c) Identify

Label Score

Data 0.30

Header 0.60

Metadata 0.05

A ribute 0.05

Derived 0.00

(d) Relabel

Fig. 8. Region based approach. (Color figure online)

We claim that non-rectangular cell regions point towards misclassifications.
In other words, some cell/s break the regularity of the region. For us these
cells are potential misclassifications. Hence, the aim of our approach becomes to
isolate them, and subsequently determine the correctness of their label. Figure 8a
illustrates how a misclassification, the cell marked with an x, can introduce
irregularities.

Also, in Fig. 8 we introduce the tasks that compose RBA. Initially, we load
the classification results. We then create strictly rectangular regions per each
label. In the subsequent step, we identify incorrect classifications. Finally, we
predict the true label for those regions flagged as misclassified.

Standardization and Confinement. This task starts by building what we
call Row Label Intervals (RLI). We define these intervals as a sequence of cells of
the same label in a row. Figure 9a displays the intervals from the example shown
in Fig. 8a. The first, third, and fourth row contain one interval each, while the
second row contains two intervals of different labels.

A B C

1

2

3

4

(a) Row Intervals

A B C

1

2

3

4

(b) Regions

Fig. 9. Original worksheet. (Color figure online)
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As we emphasized in the previous section, we are interested in strictly rect-
angular (cell) regions. We try to achieve this by merging RLIs of same label.
This is only possible when the RLIs in adjacent rows have the same start and
end. Otherwise we introduce shape irregularities. Based on this reasoning, for
our running example, we merge the intervals in the third and fourth row, as
illustrated in Fig. 9b. Using this technique we manage to isolate the single-cell
region that prevented the rest of the green cells to form a well-shaped cluster.

We were not able to merge the blue row intervals from 1st and 2nd row,
since they have a different start column. However, clearly there is the potential
to build a larger blue region, that is B1:C2. This would have isolated the cell A1.
The latter is desirable, since at this phase we aim at pinpointing irregularities.

One way to tackle this challenge is by creating regions column-wise, in addi-
tion to row-wise. We pivot (transpose) the worksheet, so that the columns of the
original worksheet become the rows of the transformed worksheet. Afterwards, it
is easy to construct row intervals, following the steps described previously. The
results are shown in Fig. 10a. Once we attempt to merge the RLIs, we get the
output shown in Fig. 10b. As intended we create a large blue region, and isolate
the blue interval that does not fit well with the rest.

1 2 3 4

A

B

C

(a) Pivot Intervals

1 2 3 4

A

B

C

(b) Regions

Fig. 10. Pivoted worksheet. (Color figure online)

Our standardization procedure produces two alternative partitioning strate-
gies for the labeled cells. For some worksheets the optimum partitions might
come from one of the directions (i.e., row-wise or column-wise). However, for
others we need both directions to ensure that for each misclassified cell there is
at least a region that confines it from correct classifications. Thus, we have to
keep both outputs, which has the drawback of augmenting the number of regions
in the worksheet. One possible and required action for reducing this number is
to filter out duplicate regions from the outputs. Figure 11 summarizes the overall
standardization procedure, which includes the duplicates filtering step.

Confinement Assessment. To assess the validity of this procedure we decided
to evaluate it on the classification results. We divide the resulting regions into
three categories based on the ratio of misclassified cells they contain. We call
“Correct” those regions that do not contain any misclassification. For those that
only contain misclassifications we use the term “Misclassified”. The remaining
cases, regions that contain both correct and incorrect classifications, we call
“Mixed”. Figure 12a provides the number of regions per category.
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Fig. 11. Standardization procedure.

Mixed regions might raise concerns at first glance, since they occur a notice-
able number of times. However, they are a natural by-product of the procedure.
Consider again Fig. 10b, the first cell of the green region (interval) at the top
row is misclassified, as pointed out in Fig. 8a. In this example, the Mixed region
occurs when processing the transformed (pivoted) worksheet. However, in the
general case both variants of the worksheet can produce such regions.

Additionally, we have performed a more detailed analysis of Mixed regions.
The results are displayed in Fig. 12b. We note that for the majority of cases the
number of correctly classified cells is greater than that of misclassified cells. Also,
there are 69 cases where the numbers are equal, and an insignificant number of
cases with more misclassified cells.

Fig. 12. Region analysis.

To simplify our subsequent operations, we decided to maintain only two cate-
gories of regions. Those that mostly contain incorrect classifications (>0.5) are
marked as Misclassified, the rest as Correct. These brings the number of regions
per category to 845 and 26, 187 respectively.

Filtering by Size. As mentioned before, one of the drawbacks of our standardiza-
tion procedure is the considerable number of outputted regions. Ideally, we would
like to keep only those that have the most potential to be Misclassified. There-
fore, we analyzed the Misclassified regions, with the purpose of identifying some
of their typical characteristics. Our analysis revealed that these regions exhibit
small sizes (i.e., number of cells in the region), as shown in Fig. 13. Clearly, the
larger is the size of a Misclassified region the least are the occurrences.
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Fig. 13. Size occurrences in misclassified regions.

Based on the results in Fig. 13, we decided to consider only regions of size 1–3
from the procedure outputs, since they have significant number of occurrences.
After, performing this filter, for our dataset, we get 12, 724 regions. Out of these,
806 are Misclassified, and 11, 918 are Correct regions. We utilize this reduced
dataset for the tasks described in the following sections.

Detecting and Repairing Misclassifications. We have defined misclassifi-
cation detection and repairing (relabeling) as supervised learning tasks. For this,
we have created a set of features, which are formally described in the following
paragraphs. Most of these features are used for both detection and repairing.

Region Features. Table 3 summarizes the features that are used to characterize
each rectangular region. We use the same convention as in Sect. 4.2 to distinguish
numerical features from boolean ones. We note that predicted label does not fit in
any of these categories, since it is a nominal feature. Here, we have additionally
introduced the categories “Simple” and “Compound”. As their formal definition
will show, compound features are derived from multiple simple ones (some of
them not explicitly listed in the table).

All features, introduced in this section, are based on the conception that a
region can be solely represented with the rectangle that bounds its cells and the
label of these cells. The worksheet itself can be seen as a Cartesian Coordinate
system, where the point (1, 1) is at the top left corner. The values of the x-axis
increase column-wise, while for y-axis they increase row-wise.

Having such coordinate system, it is relatively easy to convert the regions
into abstract rectangles. The coordinates for the top-left vertex of the rectangle
are the column and row number of the top-left cell in the region. Its width
and height can be calculated by counting respectively the number of cells in
a column and in a row of the region. For example, the large green region in
Fig. 9b will be represented with the rectangle having as top-left vertex the point
(1, 3), width = 3, and height = 2.

The simple features characterize various aspects of the rectangle (region). A
rectangle is horizontal when width > height, is vertical when width < height,
and is square when width = height. The feature count cell describes how many
cells are in the region (i.e., the area of the rectangle). Additionally, we count the
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Table 3. Region features.

Nr. Simple Nr. Compound

1 IS HORIZONTAL? 9 SIMILARITY {TOP,BOTTOM,LEFT,RIGHT}#

2 IS VERTICAL? 10 DISSIMILARITY {TOP,BOTTOM,LEFT,RIGHT}#

3 IS SQUARE? 11 EMPTINESS {TOP,BOTTOM,LEFT,RIGHT}#

4 COUNT CELLS# 12 INFLUENCE {TOP,BOTTOM,LEFT,RIGHT}#

5 COUNT ITS KIND#

6 DISTANCE FROM ITS KIND#

7 DISTANCE FROM ANY KIND#

8 PREDICTED LABEL

number of regions in the worksheet having the same label (i.e., its own kind)
as the current region. Simple feature number 6 and 7 respectively capture the
smallest Euclidean distance of this region to a region of the same label and to
a region of any label. Finally, the predicted label stores the label (i.e., assigned
from the cell classification task as described in Sect. 4) of the cells in the region.

With the compound features we analyze the neighborhood of a region, simi-
larly to the näıve approach (see Sect. 5.1). However, this time the neighborhood
is made of other regions, instead of cells. Therefore, below we refine some of the
previously used concepts and add some new ones.

– Current Region (R): The region whose neighborhood we are studying.
– Direction (D): Can be Top, Bottom, Left, or Right.
– Neighbor (N): Any region other than the current one.
– Nearest neighbors (NNs): The neighboring regions with the smallest

Euclidean distance from the current region in the specified direction.
– Similar neighbors (SNs): Neighbors that have the same label as the current

region.
– Dissimilar neighbors (DNs): Neighbors that have different label from the

current region.

As shown in the above list, we study the neighborhood in four directions, omit-
ting intermediate directions like top-right. Moreover, we use the concept of near-
est neighbor, to distinguish from other neighbors in the vicinity of the current
region. However, as we shall see in the following paragraphs, we consider more
distant neighbors as well. Additionally, we examine the label of the neighbors, to
determine if they are similar or dissimilar to the current region. Further more,
we are interested in regions with specific label, as we later show in the definition
of influence.

It is important to emphasize that unlike the näıve approach, the number of
neighboring regions varies. Moreover, they might come in different sizes (con-
sidering both width and height). Therefore, we need a method to weight the
importance of each neighbor. For this we utilize two measures: overlap-ratio and
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distance. The former quantifies how much of the specified direction is dominated
by a neighbor. The latter how far or close is the neighbor. Clearly, a nearer
neighbor should be given more weight.

Equation 1, illustrates how the overlap ratio is calculated. Here, r stands for
the current rectangle, n for the selected neighbor, and d for the current direction.
For a neighbor at the top and bottom we measure the overlap by projecting it
and the region itself to the x-axis. The length of the segment shared by both
these regions represents the overlap. For left and right neighbors we do the same,
but instead using the projections to the y-axis. We transform the overlap into a
ratio by dividing it with the width or the height (i.e., respectively, the length of
the vertical or horizontal edge) of the current region.

OverlapRatio(r, ni, d) =
Overlap(r, ni, d)

EdgeLength(r, d)

where ni ∈ Neighbors(r, d) and d ∈ Directions

(1)

Once we have the overlap ratio and the distance to the neighbor, we can calculate
its weight as shown in Eq. 2. In the denominator, we add one to the distance
to account for cases where the latter is zero. Clearly, this equation captures the
intuition that the weight for a neighbor should increase for smaller distances and
bigger overlap ratios.

weighti = OverlapRatio(r, ni, d) ·
1

1 + Distance(r, ni)
(2)

We can now define the similarity for a region and its neighbor, as shown in Eq. 3.
Similarity takes a value greater than zero when the neighbor is a SN and is one
of the NNs. In such scenario, the value of the similarity equals the weight of the
neighbor.

similarityi =

{

0 Label(r) �= Label(ni) ∨ ni �∈ Nearest(r, d)
weighti otherwise

(3)

dissimilarityi =

{

0 Label(r) = Label(ni) ∨ ni �∈ Nearest(r, d)
weighti otherwise

(4)

Likewise we calculate the dissimilarity for a neighbor, as shown in Eq. 4. The
only difference from the definition of similarity is that here the neighbor must
be a DN, in addition to being a NN.

Influence goes beyond the immediate neighborhood (i.e., the nearest neigh-
bors). It quantifies how much distant neighbors influence the current region. For
example, this can be useful in the scenario where two Correct regions of the same
label are separated by a Misclassified region. Knowing that there is considerable
influence from a SN might save the region from accidentally being marked as
Misclassified. Good influence can come also from other labels. For instance, a
strong Data influence from the bottom neighborhood, can reinforce the belief
that Header is the most plausible label for the current region.
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Influence is tightly coupled with the selected label at that time, as shown in
Eq. 5. Here, l stands for the label. Also, we have updated the function Nearest

by adding the optional parameter label. When this parameter is set, the function
returns only the nearest neighbors for a specific label in the given direction.
Influence gets a value greater than zero when there exist at least one neighbor
with the requested label. When there are multiple such neighbors, we prefer the
influence from the nearest ones.

influencei =

{

0 Label(ni) �= l ∨ ni �∈ Nearest(r, d, l)
weighti otherwise

(5)

All the previous equations hint that there can be more than one nearest neighbor.
In order to get the total value of a feature for a direction, we need to sum up
the values for the individual NNs. Equations 6 and 7 respectively show how to
perform this for similarity and influence. We can calculate the total dissimilarity

for a direction the same way.

total similarityd =

|Nearest(r,d,Label(r))|
∑

i=1

Similarity(r, ni, d) (6)

total influenced,l =

|Nearest(r,d,l)|
∑

i=1

Influence(r, ni, d, l) (7)

Emptiness, the last compound feature, is the feature that tries to capture the
(partial or complete) non-existence of nearest neighbors in a direction. Emptiness
takes the maximum value when there are no neighbors in a direction. When the
NNs partially overlap with the current region, emptiness takes a value between
zero and one. Equation 8 illustrates how to calculate the value of this feature for
a specific direction. Note in this equation that we do not set the label parameter
for the Nearest function. Thus, it returns the complete set of NNs.

total emptinessd = 1 −

|Nearest(r,d)|
∑

i=1

OverlapRatio(r, ni, d) (8)

We can add additional flavors to the compound features by aggregating them
to the level of row (left and right), column (top and bottom), and overall neigh-
borhood (all four directions). Equation 9 illustrates how to calculate the overall
value, using as example the similarity feature. As shown, we normalize the value
from a direction using the ratio of the edge length (in that direction) to the
perimeter of the current region.

overall similarity =

|Directions|
∑

j=1

(

EdgeLength(r, dj)

Perimeter(r)
· similaritydj

)

(9)
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Misclassification Identification. We define Misclassification Identification (MI)
as a machine learning task, whose goal is to distinguish real Misclassified regions
from the dataset of candidate regions. For this binary classification problem
we have considered all the simple features mentioned in the previous section.
Additionally, we use the compound features for all four directions and their three
flavors (i.e., row, column, overall). However, for influence we define a special
version. We only consider the influence from neighbors of the same label, and
omit the influence from the rest. This brings the total number of features, used
for MI, to 36 (i.e., 8 simple + 28 compound).

Table 4. Comparing classifiers for misclassification identification task.

Rand. forest

-I 100

SMO RBF

-C 19.0, -G 0.1

Logistic

-R 1.0E-14

JRIP

-N 10.0

F1 measure 0.97 0.96 0.95 0.96

True negative rate 0.64 0.58 0.47 0.60

False negative rate 0.03 0.03 0.04 0.04

For our evaluation we experimented with several classification algorithms. Again,
we used the Weka tool. We firsed tuned the parameters of the individual classi-
fiers. Subsequently, we used Weka Experimenter3 to run 10 fold cross-validation
with 10 repetitions. The results are displayed in Table 4. The values represent
the average of all runs. Random forest achieves the highest F-measure and simul-
taneously has the highest true negative rate. With what regards false negative
rate, there is not substantial difference between the classifiers. Considering these
results, we selected the Random Forest classifier for our subsequent analysis.

Fig. 14. Misclassification identification results.

In Fig. 14 we display the results from one of the cross-validation repetitions
(seed = 1). We have provided the numbers in terms of regions and in terms

3 https://sourceforge.net/projects/weka/files/documentation/3.8.x/

Final edited form was published in "International Joint Conference on Knowledge Discovery, Knowledge Engineering, 

and Knowledge Management. Porto 2016", S. 78 - 100. ISBN: 978-3-319-99701-8 

https://doi.org/10.1007/978-3-319-99701-8_4

18 

 

 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

https://sourceforge.net/projects/weka/files/documentation/3.8.x/


of individual cells. We get more False Negative cells (i.e., wrongly flagged as
Misclassified) in comparison to the näıve approach. However, the number of True
Negative cells (i.e., correctly predicted Misclassified) is several times bigger for
the RBA approach.

Relabeling. We define the task of relabeling as that of predicting the most plau-
sible true label for regions flagged as Misclassified. For this task we use all the
simple features, except of predicted label. From the compound features we use
only influence, capturing it for each label and direction. We add to the set of
directions also the three combined variants (flavors): row, column, and overall.
With this addition, the total number of features used for relabeling becomes 42
(i.e., 7 simple + 35 influences).

The dataset to train our model for relabeling comes from the original anno-
tated cells (i.e., the ground truth). Similarly to what we did with the predicted
labels, we construct rectangular regions from the annotations. At the end, we
keep only those of size three or smaller for training. This brings the total number
of regions in this dataset to 11, 934.

Table 5. Relabeling: trained on annotated regions.

Rand. forest

-I 350

SMO RBF

-C 16.0 -G 1.0

Logistic

-R 1.0E-8

JRIP

-N 2.0

F1 measure 0.64 0.59 0.67 0.49

True negative rate 0.65 0.59 0.67 0.49

False negative rate 0.11 0.13 0.10 0.16

For our evaluation we used the same classification algorithms as for misclas-
sification identification. In a similar fashion, we first tuned the parameters of
the classifiers on the training datasets. Subsequently, we evaluated their perfor-
mance on the 573 regions identified as Misclassified. The results are provided in
Table 5.

Fig. 15. Relabeling results.

Figure 15 displays the relabeling results for Logistic Regression (LR) classi-
fier. We pick this classifier, since as shown in Table 5 it achieves the best results.
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Again, we provide the numbers in regions and in cells. Although, we managed
to predict the true label for most of the regions flagged Misclassified, there is a
considerable number of wrong predictions.

One possible solution to decrease the number of incorrect predictions is to use
the predicted class (label) probabilities, instead of fixed membership. By default,
the LR classifier assigns the class with the highest probability to an instance.
We can interfere in this process, and only relabel those regions for which the
prediction has high confidence. Effectively, this means setting a threshold for
the class probability.

We assessed the validity of this approach by analyzing the probabilities
(scores) assigned by the LR classifier during the relabeling task. For each region
we have recorded the highest predicted class score. Then we created the distinct
list of these scores from the whole task. For each value in the list we identify
the regions that got a score greater than or equal. Then we calculate the differ-

ence between the number of correctly relabeled and the number of incorrectly
relabeled. The results are provided in Fig. 16. The largest difference is 192, and
is achieved for score 0.59. For this score we get 363 correct versus 171 incorrect
predictions. However, we decided to be more conservative and set the (score)
threshold 0.83. We get a better trade off, since we only get 113 wrong region
(re-)labels, and a considerable number of 300 correct region (re-)labels.

Fig. 16. Confidence score analysis.

6 Related Work

6.1 Spreadsheet Layout Inference

Comparing with related work, we have exclusively focused on the cell level. In
this way we can infer the layout of arbitrary tables and arrangements in spread-
sheets. Related work proposes approaches that work with larger structures, such
as rows and columns. These fail to recognize that the contained cells could have
different layout roles. In other words, these approaches lose important informa-
tion, by assuming homogeneous structures. Furthermore, working on a cell level
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enables us to make use of many features, not considered before by related work.
Currently, there is no scheme that allows to aggregate these features for larger
structures without compromising the accuracy. Above all, our approach is auto-
matic, using machine learning techniques. Thus we overcome the cumbersome
task of manually defining heuristics (as some of the related work do), which are
limited by the human nature.

At [2] the authors present their work on what they call data frame spread-
sheets (i.e., containing attributes or metadata regions on the top/left and a
block of numeric values). Using linear-chain, conditional random field (CRF),
they perform a sequential classification of rows in the worksheet, in order to
infer its layout. Their next immediate focus is extracting the hierarchies found
on the top (Header) and left (Attribute) regions. This aspect of their work is fur-
ther extended at [11]. Additionally, in their first paper, they have experimented
with the extraction of the data in the form of relational tuples. They do this
based on the information they inferred about the structure of a data frame.

At [12], the authors present their work on schema extraction for Web tabular
data, including spreadsheets. They extensively evaluated various methods for
table layout inference, all operating at the row level. The CRF classifier combined
with their novel approach for encoding cell features into row features (called
“logarithmic binning”) achieves the highest scores.

The paper [13] presents work on header and unit inference for spreadsheets.
Unlike us, the authors take a more software engineering perspective. They utilize
the inferred table structure to identify unit errors. The authors have defined a set
of heuristics-based spatial-analysis algorithms, and a framework that allows them
to combine the results from these algorithms. Additionally, they have evaluated
their approach in two datasets, containing 10 and 12 spreadsheets, respectively.

At [14], the authors present DeExcelerator, a framework which takes as input
partially structured documents, including spreadsheets, and automatically trans-
forms them into first normal form relations. For spreadsheets, their approach
works based on a set of simple rules and heuristics that resulted from a manual
study on real-world examples. Their framework operates on different granularity
levels (i.e., row, column, and cell), considering the content, formating, and loca-
tion of the cell/s. They evaluated their system on a sample of 50 spreadsheets
extracted from data.gov, using human judges (10 database students).

6.2 HTML Tables

One of the typical ways to present information (facts) is by organizing data
in a tabular format. As a result, the problems of table recognition and layout
discovery have been encountered by various research communities. Some of the
most recent studies are related to HTML (Web) tables. In [15], decision trees and
support vector machines (SVM) are considered to differentiate between genuine
and non-genuine Web tables. The authors defined structural, content type, and
a word group features. The [16] reports the study of large sample of Web tables,
which yielded a taxonomy of table layouts. It also discusses heuristics, which
are based on features similar to the paper above, to classify Web tables into the
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proposed taxonomy. In [17], the authors describe the creation of the Dresden
Web Table Corpus, by proposing a classification approach that works on the
level of different table layout classes.

7 Conclusions

In conclusion, we have presented an updated version of our work, first introduced
at [1]. Via cell classification, we aim at identifying the layout and structure of
the data in spreadsheets. We defined five labels (classes), based on literature
review and our thorough empirical analysis of spreadsheets coming from various
domains. Using our specialized tool we initially annotated a considerable sample
of worksheets, and subsequently extracted a big variety of predefined features
for each annotated cell. The latter, composes our gold standard, which we used
for feature selection and for evaluating classifiers. Our experiments show that
with the selected features and a Random Forest classifier we can achieve high
overall accuracy.

Moreover, we have devised a strategy to fix some of the incorrect classifi-
cation. Our aim is to get rid of random noise (misclassifications) that might
occur in worksheets where we mainly make correct predictions. We attempt to
go beyond the rather simplistic approach we discussed at [1], by proposing a
three-step process. Initially we cluster our cells into rectangular regions. Sim-
ilarly to the cell classification, we characterize these regions with a variety of
sophisticated features. Subsequently, we use a classifier to identify regions that
only contain misclassified cells. Later, we attempt to predict their true label,
using another specialized classifier. Our evaluation shows that we perform well
at the misclassification identification task, but not as good for the relabeling
task. In the future, we plan to define more features for the latter task, and
experiment with other classification algorithms as well.
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