
Cell Counting by Regression Using

Convolutional Neural Network

Yao Xue1, Nilanjan Ray1(B), Judith Hugh2, and Gilbert Bigras2

1 Department of Computing Science, University of Alberta, Edmonton, Canada
nray1@ualberta.ca

2 Department of Laboratory Medicine, University of Alberta, Edmonton, Canada

Abstract. The ability to accurately quantitate specific populations of
cells is important for precision diagnostics in laboratory medicine. For
example, the quantization of positive tumor cells can be used clinically to
determine the need for chemotherapy in a cancer patient. In this paper,
we describe a supervised learning framework with Convolutional Neural
Network (CNN) and cast the cell counting task as a regression prob-
lem, where the global cell count is taken as the annotation to supervise
training, instead of following the classification or detection framework.
To further decrease the prediction error of counting, we tune several
cutting-edge CNN architectures (e.g. Deep Residual Network) into the
regression model. As the final output, not only the cell count is estimated
for an image, but also its spatial density map is provided. The proposed
method is evaluated with three state-of-the-art approaches on three cell
image datasets and obtain superior performance.

Keywords: Cell counting · Convolution neural network · Deep residual
net · Detection · Classification

1 Introduction

1.1 Problem Definition

Automatic cell counting is to obtain the number of certain types of cells in a
medical image like microscopic images. It is of great interest to a wide range
of medical scenarios [2,4,23]. An example is the diagnosis and treatment of
breast cancer, which is one of the most common female diseases leading to death
worldwide. The number of proliferating (e.g. Ki67 positive) tumor cells is an
important index associated with the severity of disease clinically. One available
method of quantization involves counting the nuclei of proliferating cells using
traditional image analysis techniques on a microscopic image. However, it has
been proven to be challenging because of inability to distinguish tumor cells from
surrounding normal tissue like vessels, fat and fibrous tissue [11], especially in
reality the resolution of input medical image could be very high, at the same time
the target cells could easily be extremely dense. Consequently, it is quite difficult
to manually count target cells one by one. This is the principal motivation of
automatic cell counting.

c© Springer International Publishing Switzerland 2016
G. Hua and H. Jégou (Eds.): ECCV 2016 Workshops, Part I, LNCS 9913, pp. 274–290, 2016.
DOI: 10.1007/978-3-319-46604-0 20

Cell Counting by Regression Using Convolutional Neural Network 275

1.2 Background

From the perspective of computer vision community, automatic cell counting is
a branch task of the object counting problem. Many methods have chosen to
fulfill object counting task following the detection pipeline [17,20,21,27,30,32].
In this case, an object detection framework is designed to localize each object
(e.g. cell, head or vehicle) one by one, after that a counter naturally takes all
the detected objects and produces the final count. Following the success of deep
learning applied in computer vision like detection, segmentation and localization
[13,14,33], most recent counting-by-detection works choose learning based app-
roach, where each training object has annotation information, sometimes dot
annotation indicating the centroid of the object [8,18,31], sometimes bounding-
box annotation around the object [30]. However, it is well known that the prob-
lem of detecting and localizing individual object instance is far from being solved,
especially in real world application of cell counting, where the cell density can
be extremely high [7,15,29]. For example, the number of cells can easily reach
or exceed thousands per image, and the cells also show huge variations in terms
of type, size, shape and appearance etc. Another related work is Fully Convo-
lutional Neural Network (FCNN) [26], which has remarkable result in semantic
segmentation and spatial density prediction (in some way, object counting can be
seen as an integration over spatial density prediction). To build the end-to-end
and pixel-to-pixel FCNN, its training phase requires the pixel-wise annotation,
which is strongly supervised information and gives much benefit to FCNN, con-
sequently work like [9] is proposed to compensate.

Fig. 1. Counting-by-detection framework, most of which requires the pixel-wise anno-
tation, is not a good choice in cell counting task, where cells could be extremely dense.

Figure 1 shows a cell image example with its two level of annotations: (a)
pixel-wise annotation, where the nuclei of each cell is dot-annotated; (b) global
count, where the total number of cell in the image is provided. Most counting-
by-detection framework takes the strongly supervised pixel-wise annotation as

276 Y. Xue et al.

input during training, and then generate global count (i.e. the total number
of target cells) for test image. However, the automatic cell counting task is to
predict a global count only, thus it is a limitation and also unnecessary to design
an object counting framework relying on the more expensive annotation data,
which will make system unpractical in the real-world application of cell counting.

Fig. 2. Cell counting is better to be modeled as a regression problem rather than a
classification problem.

Here we expand the scope of our related work study from purely cell count-
ing to all the object counting problem. Object (including cell, people, vehicle,
etc.) counting task [3,7,8,15,18,19,24,29,35] benefits a lot from the superior
performance of Convolutional Neural Network (CNN) in recent years. Several
work [3,7,15] exploit CNN to enable their counting system work in dense and
crowded environment. While [24,29] focus on extracting deep features from pre-
trained or fine-tuned CNN models. However a multi-class classification CNN is
usually trained and used. That means the counting problem is cast as a classifi-
cation problem, where the cell count is treated as class ID, and images with the
same number of objects are seen as belonging to the same class. During its test
phase, each test image is predicted with an integer class label (for example: 25,
26 or 53 in Fig. 2), which indicates the number of objects in the image. However
as we know in object classification task, training images of different categories
(for example: cat, bicycle and airplane) are independent to each other, and soft-
max loss function is used in classification CNN architectures [13,14]. Actually, a
classification-orientated CNN model treats cell counts 25 and 53 as far apart as
counts 25 and 26. However from the nature of cell counting, the distance between
different cell counts is very important. It is beneficial to treat the object counting
task as a regression task [29], where counts 25 and 26 should be closer and that
could be correctly reflected in the regression setting.

Taking all the discussion above into consideration, the advantages of cell
counting approach proposed in this paper can be summarized into the following
aspects:

1. To capture the relationship between RGB cell image and its overall cell
count, we cast the cell counting task as developing an end-to-end regression

Cell Counting by Regression Using Convolutional Neural Network 277

framework, which is more suitable for counting task compared to counting
by detection. Additionally, instead of being applied for classification purpose,
a convolutional neural network architecture with Euclidean loss function is
used for regression.

2. As the final output, the proposed approach not only estimate the global num-
ber of certain cells in an image but also produce the spatial density predic-
tion, which is able to describe the local cell density of an image sub-region.
In many clinical imaging systems [10,28,34], researchers have confirmed that
the topographic map that illustrate the cell density distribution is a valuable
tool correlated with the disease diagnose and treatment.

3. We utilize several mainstream CNN architectures (including the Deep Resid-
ual Network [13], AlexNet [14]) into our regression model. To the best of our
knowledge, this is the first piece of work to expand the deep residual network
from classification, detection, segmentation to object counting.

2 The Proposed Framework

2.1 System Overview

In this section, we give a general overview on the proposed approach, details of
every part are provided in the following sections. In this paper, we propose a
supervised learning framework for cell counting task shown in Fig. 3.

In the training phase, a Convolutional Neural Network (CNN) is utilized
to build a regression model between image patch and its cell count number.
We employ several kinds of CNN architectures and use Euclidean loss function
during training, to enable the regression model fit for the cell counting task.
To prepare the training data, we generate a large number of square patches
from every training image. Along with each training patch, there is a patch
count number, which indicates the number of target cells present in the patch.
After that, patch rotation is performed on the collected training patches for
the purpose of making the system more robust to rotational variance and data
augmentation.

In the test phase, one test image is cropped into a number of overlapping test
patches with the same size as the training patches in the sliding-window manner.
Each of these test patches is passed into the CNN-based regression model, and
then the estimated cell count of the input test patch is output from the last layer
of the CNN model. After predicting cell counts for all the patches, we perform a
2-D Linear Interpolation over the estimated cell count and its corresponding x -y
coordinates to build a heatmap, which provides a spatial density prediction as
shown in Fig. 3. Lastly, integrating these interpolated counts on pixel locations
provides us the final count on the test image. The whole procedure is illustrated
in Fig. 3.

2.2 Data Preparation and Processing

In the real application of automatic cell counting, the resolution of input medical
image could be very high, at the same time the target cells could be very dense.

278 Y. Xue et al.

Fig. 3. System overview

Consequently, it is quite difficult to manually count target cells one by one. This
is the original motivation of automatic cell counting. Considering the nature of
these medical images, which need automatic cell counting, data preparation and
processing is naturally necessary. In this work, we crop image into consistent
patches and then perform training and prediction over these patches, in order to
(1) make the approach more robust to scale variance, (2) avoid resizing original
microscope image, which could cause information loss, (3) prepare more training
data to prevent the CNN based regression model from overfitting during training.

The proposed method operates by first partitioning image to smaller patches.
Patches are generated in a sliding window manner: from the top-left corner
of a large W -by-H image with a certain patch size and stride size. Usually,
stride size is set smaller than half of path size to ensure that adjacent patches
have overlapping region. To construct training data, every training patch is

Cell Counting by Regression Using Convolutional Neural Network 279

accompanied by a patch count, which is an integer indicating how many cells
exist in the patch. Then for data augmentation, a training patch is rotated from
0 degree to 360 degree with a certain rotation step, for example 30 degrees.

2.3 Convolutional Neural Network Regression Model

2.3.1 Classification vs. Regression for Counting

As we know, in a CNN-based classification model, the network outputs a vector
whose size is the same size as the number of classes. The i -element in the vector
describes the confidence score that the input image belongs to the i -th class.
During test phase, the index with the highest confidence score is selected as the
final classification result. Softmax loss is widely used for classification problem.

However for counting problems, it is not proper to take cell count num-
ber as class index. The reason why regression is a better choice than classi-
fication for counting task has been explained in detail in introduction part. In
our counting-by-regression model, the difference between ground-truth value and
the estimated value can be better preserved during calculating the error. This
information is quite helpful for optimizing the CNN weights more accurately in
the back-propagation phase. The layer of our regression model outputs a single
number, indicating the number of cells that our model predicts. In our model,
we employ two kinds of CNN architectures, the first one is AlexNet [14] which
consists of 5 convolution layers + 3 fully connected layers; the other is the deep
residual network (ResNet) [13] which we will explain in the next section. In both
of these architectures, the loss function is defined as the Euclidean loss, which
measures the sum of squares of differences between the ground truth and predic-
tion. We train the AlexNet model from scratch with Softmax and Euclidean loss
layer respectively, the performance improvement of regression over classification
is experimentally explained in detail at Sect. 3.4.

2.3.2 Deep Residual Network for Regression

Since the 2012 ImageNet competition, convolutional neural networks have
become popular in large scale image recognition tasks, several milestone net-
works (including AlexNet [14] VGGNet [22] and GoogLeNet [6], etc.) have been
proposed. Recently, the introduction of residual connections into deep convolu-
tional networks has yielded state-of-the-art performance in the 2015 ILSVRC
challenge. This raises the question of whether there is any benefit in introducing
deep residual network (ResNet) [13] in to the cell counting task. In the following
section, we are going to explain the network architecture and its components
used in this paper.

Convolutional layer. It consists of a set of learnable filters. During the forward
pass, we slide each filter along the width and height of the input volume and
compute dot products between its weights and the activation map from previous
layer. Intuitively, the filters will be trained to be active to some type of visual
feature such as an edge of some orientation or a blotch of some color on the first
layer.

280 Y. Xue et al.

Pooling layer. It works by down-sampling the convolutional features using
the max operation (max-pooling) or average operation (average-pooling). Pool-
ing layer is usually inserted between successive convolutional layers, in order to
reduce the amount of network parameters and also to control overfitting.

Batch Normalization layer. In the ResNet architecture, authors [13] deploy
Batch Normalization (BN) layer [25] right after each convolution and before
activation. As we know, normalization is often used as a pre-processing step to
make the data consistent. When the input flows through a deep network, the
weights and parameters adjust the values of the input, sometimes making the
data too big or too small again. Batch Normalization layer allows us to normalize
the data in each mini-batch across the network rather than just performing
normalization once in the beginning, thus this problem is largely avoided. [25]
has demonstrated that batch normalization helps to boost the learning speed
and also increase the overall accuracy.

Fully-Connected layer. As the name implies, each neuron in a Fully-
Connected (FC) layer has full connections to all neurons in the previous layer.
After gathering all the responses from previous layers into each of its neuron,
fully connected layer is responsible for computing a class-specific confidence vec-
tors, where its each neuron outputs a score for a certain class. For example,
the ResNet ends with a 1000-way fully-connected layer, on which the class with
maximum score is selected as its final predicted label.

Overall Architecture. Different from other CNN architectures, ResNet con-
sists of a number of Residual Blocks. Each residual block is a made up of Convolu-
tional layer, Batch Normalization layer and a shortcut that connects the original
input with the output as shown in Fig. 4 (a) and (b), where a Residual Block
with Identity Shortcut (RB-IS) and a Residual Block with Projection Shortcut
(RB-PS) is illustrated, respectively. The mathematical model of residual block
can be summarized as:

yl = F (Xl, {Wl}) + h(Xl) Xl+1 = f(yl) (1)

h(Xl) =

{

Xl identity mapping

WpXl projectionmapping
(2)

Xl and Xl+1 are the input and output of the l-th residual block, F (Xl, {Wl})
stands for the residual function, and f is a activation function (e.g. ReLU). h(Xl)
represents the shortcut connection: identity mapping or projection mapping.
If the dimension of Xl and Xl+1 is the same, the identity shortcuts is used;
otherwise a linear projection Wp is performed on the shortcut connections to
match the dimension, that is projection mapping. The central idea [13] of ResNet
is to learn the additive residual function F with respect to h(Xl), with a key
choice of using an identity mapping and/or projection mapping.

Figure 4 (a) and (b) show two types of Residual Blocks, which are used in
different layers of ResNet model (c) according to whether the dimensions of

Cell Counting by Regression Using Convolutional Neural Network 281

Fig. 4. (a) RB-IS stands for the Residual Block with Identity Shortcut; (b) RB-PS is
the Residual Block with Projection Shortcut; (c) An illustration of the architecture
that we used in this paper.

input and output are the same. Nr1, Nr2, Nr3 and Nr4 represent the number
of residual blocks used in four sections of ResNet model. For example, Nr1 =
3, Nr2 = 4, Nr3 = 6 and Nr4 = 3 in ResNet-50. Additionally, it has been
demonstrated that pre-trained network can be adjusted to be effective for other
computer vision tasks. We modify the last fully-connected layer of ResNet from
outputting a 1000-D vector to outputting 1 item indicating the predicted number
of cells. Additionally, we replace the softmax loss with Euclidean loss. After that,
we perform fine-tuning on the weights in fully-connected layer of the ResNet
using cell datasets, the parameters of previous layers are preserved. Finally, we
obtain three ResNet based regression models for cell counting.

3 Experiment and Performance

3.1 Datasets

First, we describe the three cell datasets, on which the proposed method and
other comparison methods are evaluated. The first dataset [12] involves 100 H&E

282 Y. Xue et al.

stained histology images of colorectal adenocarcinomas. A total of 29,756 nuclei
were marked at/around the center with over 22,000 labeled with the cell type.
The second dataset [1] consists of 200 highly-realistic synthetic emulations of
fluorescence microscopic images of bacterial cells. The third dataset comprise of
55 high-resolution RGB images, each of them is a microscopic image of prolifer-
ative tumor cells area with a resolution of 1920-by-2560 pixels. The tumor cell
size is about 10 to 20 pixels in diameter or 10µm in physical length.

Fig. 5. Example images from the three evaluation datasets and their dotted annotation.
(Color figure online)

Table 1. Details of three datasets: Size is the image size; Ntr/Nte is the number of
images selected for training and testing; AC indicates the average number of cells;
MinC-MaxC is the minimum and maximum numbers of cells in a dataset.

Cell dataset Size Ntr/Nte AC MinC-MaxC

Nuclei [12] 500 × 500 50/50 310.22 1–1189

Bacterial [1] 256 × 256 100/100 171.47 74–317

Ki67 cell 1920×2560 45/10 2045.85 70–4808

To build this Ki-67 cell image dataset, a 10X microscopic field represent-
ing the highest proliferative area was acquired using a Nikon Eclipse E600
microscope with 0.25 aperture and a QImaging Micropublisher 5.0 RTV cam-
era equipped with a Sony ICX282 CCD, finally it gives us 24-bit color pictures
with a resolution of 1920× 2560 pixels. All of the three evaluation cell datasets
have their dotted annotation available, which represents the location of cells as
shown in Fig. 5. For the three datasets, we randomly select images for training
and testing. Details of the three evaluation datasets are summarized in Table 1.

Cell Counting by Regression Using Convolutional Neural Network 283

3.2 Implementation Details

The proposed method is implemented in Matlab, and we utilize Caffe [33], a fully
open source implementation of Convolutional Neural Network, which affords
clear access to Matlab/Python with support for GPU computation. As discussed
in image partion part, each original RGB images is partitioned under certain
rotation, stride size, and patch size. After taking experiments under different
settings, we use stride size = 30 (pixels), patch size = 60 × 60 (pixels) and
rotation step = 30 for the nuclei data; stride size = 20 (pixels), patch size =
40 × 40 (pixels) and rotation step = 30 for the bacterial data; stride size = 50
(pixels), patch size = 200 × 200 (pixels) and rotation step = 30 for the Ki-67
cell data. All the experiments are run on a machine with Intel Core i7-4790K
CPU@4.00 GHz× 8 and GPU GeForce GTX TITAN Black/PCIe/SSE2.

3.3 Evaluation Metric and Counting Examples

In all the experiments, we use the Mean Relative Error (MRE) and Mean
Absolute Error (MAE) as the metric for quantitative evaluation: where N is
the total number of test images, ti and pi are the true and predicted numbers
of cells in the i -th test image. MRE and MAE are defined as follows:

MRE =
1

N

N
∑

i=1

|ti − pi|

ti
(3)

MAE =
1

N

N
∑

i=1

|ti − pi| (4)

3.4 Counting Performance Using Different Models

First, we are going to investigate the performance difference between Classi-
fication (C) model and Regression (R) model for the cell counting task. The
whole framework follows the pipeline shown in Fig. 3. As for the CNN archi-
tecture, we employ AlexNet (5conv + 3fc) and ResNet (50 layers) separately.
And softmax loss function and Euclidean loss function are used respectively in
the classification and regression model. We conduct this comparison experiment
on all the three cell datasets and evaluate the performance in terms of Mean
Relative Error and Mean Absolute Error (std also provided). Table 2 shows that
on all the three datasets regression model shows lower prediction error by con-
siderable margins than the classification model, which experimentally support
the discussion in Sect. 2.3.1. It is also necessary to note that the AlexNet based
regerssion model outperforms the ResNet based classification model. Table 3
shows the counting performances using ResNets with different number of layers.
The 50/101/152-layer ResNet based regression models are used in this experi-
ment. We can observe that ResNet-152 model shows the lowest prediction error,
followed by ResNet-101 and ResNet-50 respectively.

284 Y. Xue et al.

Fig. 6. Spatial density prediction and counting results on the cell datasets. Figure 6
provides several cell counting results on the three evaluation datasets. Original cell
image is shown in on left side; the middle panel shows the patch level prediction,
which is a middle result of our cell counting result; The right panel shows the spatial
density prediction map (measured in number/square pixel) as well as the global counts
of ground-truth and our prediction. From the patch level prediction curve, we can see
that our estimated counts for each patch approximate the pattern of ground truth
counts well.

Cell Counting by Regression Using Convolutional Neural Network 285

Table 2. Counting performance in terms of MRE and MAE±std comparison between
Classification (C) and Regression (R) model

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

AlexNet(C) 0.2175 0.0918 0.1226

AlexNet(R) 0.2019 0.0651 0.0959

ResNet(C) 0.2104 0.0772 0.1170

ResNet(R) 0.1925 0.0539 0.0775

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

AlexNet(C) 20.7636±13.9416 12.9667±4.5361 213.5302±65.7220

AlexNet(R) 18.5720±12.6055 9.2591±3.3142 151.2059±44.6032

ResNet(C) 19.8742±13.5217 11.8711±3.8247 169.5076±50.2124

ResNet(R) 17.1437±11.5073 8.2064±2.8515 128.7426±40.5621

Table 3. Counting performance in terms of MRE and MAE±std using different models.

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

ResNet-50(R) 0.1925 0.0539 0.0775

ResNet-101(R) 0.1845 0.0507 0.0697

ResNet-152(R) 0.1666 0.0450 0.0641

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

ResNet-50(R) 17.1437±11.5073 8.2064±2.8515 128.7426±40.5621

ResNet-101(R) 16.3164±10.8762 7.7542±2.4580 116.3076±39.0215

ResNet-152(R) 14.9275±10.4368 7.4741±2.2248 108.3014±40.4698

3.5 Comparison with State of the Art

We carry out experimental performance comparison between our method and
three other state-of-the-art approaches (presented in [5,16,24]) on three evalu-
ation datasets. The counting result from ResNet-152 regression model is used
as our approach result during this comparison. Figure 7 provides the cell counts
of ground-truth and four predictions of “Le.count” [16], “Le.detect” [5], “Deep-
Feat” [24] and “The proposed” on every test image. To quantify Fig. 7, Table 4
reports the performance in terms of Mean Relative Error (MRE) and Mean
Absolute Error (MAE) over the three evaluation datasets.

The proposed method has achieved very competitive result on Nuclei dataset
and Ki67 dataset, MRE = 16.66 % and 6.41 % respectively. The images from
Nuclei and Ki67 datasets contain 310.22 and 2045.85 cells on average, our pro-
posed method is able to predict with only 14.93 and 108.30 cells in terms of mean
absolute error; while other three methods gives 33.89–71.80 and 189.35–259.67
error cells on average.

286 Y. Xue et al.

Table 4. Counting performance (MRE) and (MAE±std) comparison on the three
evaluation datasets.

MRE Nuclei-dataset Bacterial-dataset Ki67-dataset

DeepFeat [24] 0.3581 0.1751 0.1249

Le.count [16] 0.2674 0.0208 0.1151

Le.detect [5] 0.3206 0.1083 0.1540

The proposed 0.1666 0.0450 0.0641

MAE±std Nuclei-dataset Bacterial-dataset Ki67-dataset

DeepFeat [24] 71.8046 ± 51.4109 25.4792 ± 19.1504 189.3559 ± 53.6329

Le.count [16] 51.4479 ± 39.8087 6.4061 ± 3.5657 185.9391 ± 60.5042

Le.detect [5] 33.8995 ± 23.9252 18.1937 ± 13.4393 259.6736 ± 85.0594

The proposed 14.9275 ± 10.4368 7.4741 ± 2.2248 108.3014 ± 40.4698

On Bacterial dataset, the proposed method gives MRE = 4.50 %, but [16]
makes 2.4 % further improvement over our result. The central idea of [16] is to
estimate a density function whose integral over any image region gives the count
of objects within that region. In its learning phase, each cell is dot-annotated
and is assigned a real-valued Sift feature vector describing the local appearance.
It means that for each cell, [16] needs its x -y coordinate on an image and then
compute the Sift feature on the image sub-region around this cell. In comparison,
the proposed method only takes the number of cells as annotation to an image
patch during training. As one can imagine, for an image containing hundreds
to thousands of cells, the complexity and time consuming of [16] will increase
greatly. Furthermore, when it comes to the much more dense datasets (Nuclei
and Ki67), the Sift descriptor based learning of [16] becomes less reliable.

It is also necessary to mention that the MRE values of all the four methods
on Nuclei dataset are higher than those on other two datasets, because Nuclei
dataset has several test images, which only contains a few cells e.g. 1, 4 or 8. For
example, predicting the cell count from 1 (ground truth) to 2 or from 4 (ground
truth) to 6 will greatly affect the final MRE value.

4 Conclusions

In this paper, we propose a novel regression based framwork for cell counting. As
the output, spatial density map and global cell count are provided. The proposed
method is able to handle dense cell microscopy image, where the cells also present
huge variation in appearance. We have experimentally demonstrated that the
proposed approach achieved superior performance compared with several recent
related methods.

Cell Counting by Regression Using Convolutional Neural Network 287

Fig. 7. The estimated count versus ground-truth of different approaches on the three
evaluation datasets.

288 Y. Xue et al.

References

1. http://www.robots.ox.ac.uk/vgg/research/counting/
2. Goldhirsch, A., Gelber, R.D., Gnant, M., Piccart-Gebhart, M., Thrlimann, B.,

Coates, A.S., Winer, E.P., Senn, H.-J.: Tailoring therapies - improving the man-
agement of early breast cancer: St. gallen international expert consensus on the
primary therapy of early breast cancer 2015. Ann Oncol first published online 4
May 2015. doi:10.1093/annonc/mdv221

3. Li, H., Zhang, C., Wang, X: Cross-scene crowd counting via deep convolutional
neural network. In: Computer Vision and Pattern Recognition (CVPR) (2015)

4. Rimm, D.L., Camp, R.L., Chung, G.G.: Automated subcellular localization and
quantification of protein expression in tissue microarrays. Nat. Med. 8, 1323–1327
(2002)

5. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells
using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P.,
Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33415-3 43

6. Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A., Szegedy, C., Liu, W.: Going deeper with convolutions. In: Com-
puter Vision and Pattern Recognition (2014)

7. Yang, L., Liu, S., Cao, X., Wang, C., Zhang, H.: Deep people counting in extremely
dense crowds. In: ACM International Conference on Multimedia (2015)

8. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in
breast cancer histology images with deep neural networks. In: Mori, K., Sakuma,
I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp.
411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5 51

9. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks
for weakly supervised segmentation. In: ICCV (2015)

10. Hart, N.S., Collin, S.P., Garza-Gisholt, E., Hemmi, J.M.: A comparison of spatial
analysis methods for the construction of topographic maps of retinal cell density.
PLoS One 9(4), e93485 (2014)

11. Cantaloni, C., Eccher, C., Bazzanella, I., Aldovini, D., Bragantini, E., Morelli, L.,
Cuorvo, L.V., Ferro, A., Gasperetti, F., Berlanda, G., Dalla Palma, P., Fasanella,
S., Leonardi, E.: Proliferative activity in human breast cancer: Ki-67 automated
evaluation and the influence of different ki-67 equivalent antibodies. Diagn. Pathol.
(2011)

12. Tsang, Y.W., Cree, I.A., Snead, D.R.J., Rajpoot, N.M., Sirinukunwattana, K.,
Raza, S.E.A.: Locality sensitive deep learning for detection and classification of
nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging (2016)

13. Ren, S., Sun, J., He, K., Zhang, X.: Deep residual learning for image recognition.
In: CVPR (2015)

14. Sutskever, I., Krizhevsky, A., Hinton, G.E., Imagenet classification with deep con-
volutional neural networks. In: Neural Information Processing Systems, pp. 1097–
1105 (2012)

15. Lebanoff, L., Idrees, H.: Counting in dense crowds using deep learning. In: CRCV
(2015)

16. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Neural
Information Processing Systems (NIPS) (2010)

17. Lin, Z., Davis, L.S.: Shape-based human detection and segmentation via hierarchi-
cal part-template matching. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI)
32, 604–618 (2010)

http://www.robots.ox.ac.uk/vgg/research/counting/
http://dx.doi.org/10.1093/annonc/mdv221
http://dx.doi.org/10.1007/978-3-642-33415-3_43
http://dx.doi.org/10.1007/978-3-642-40763-5_51

Cell Counting by Regression Using Convolutional Neural Network 289

18. Liu, F., Yang, L.: A novel cell detection method using deep convolutional neural
network and maximum-weight independent set. In: Navab, N., Hornegger, J., Wells,
W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 349–357. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24574-4 42

19. Habibzadeh, M., Krzyżak, A., Fevens, T.: White blood cell differential counts
using convolutional neural networks for low resolution images. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013. LNCS (LNAI), vol. 7895, pp. 263–274. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-38610-7 25

20. Sivic, J., Rodriguez, M., Laptev, I., Audibert, J.-Y.: Density-aware person detec-
tion and tracking in crowds. In: IEEE International Conference on Computer Vision
(ICCV) (2011)

21. Kholi, P., Barinova, O., Lempitsky, V.: On detection of multiple object instances
using hough transforms. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 34,
1773–1784 (2012)

22. Zisserman, A., Parkhi, O.M., Vedaldi, A.: Deep face recognition. In: BMVC (2015)
23. McShane, L.M., Gao, D., Hugh, J.C., Mastropasqua, M.G., Viale, G., Zabaglo,

L.A., Penault-Llorca, F., Bartlett, J.M., Gown, A.M., Symmans, W.F., Piper, T.,
Mehl, E., Enos, R.A., Hayes, D.F., Dowsett, M., Nielsen, T.O., Polley, M.Y., Leung,
S.C.: An international ki67 reproducibility study. J. Natl. Cancer Inst. 105(24),
1897–1906 (2013)

24. Pujol, O., Segúı, S., Vitrià, J.: Learning to count with deep object features. In:
Computer Vision and Pattern Recognition (CVPR) (2015)

25. Szegedy, C., Ioffe, S.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: ICML (2015)

26. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR (2015)

27. Subburaman, V.B., Descamps, A., Carincotte, C.: Counting people in the crowd
using a generic head detector. In: IEEE Ninth International Conference on
Advanced Video and Signal-Based Surveillance (AVSS), pp. 470–475 (2012)

28. Messinger, J.D., Zhang, T., Bentley, M.J., Gutierrez, D.B., Ablonczy, Z., Smith,
R.T., Sloan, K.R., Curcio, C.A., Ach, T., Huisingh, C., McGwin Jr., G.: Quantita-
tive autofluorescence and cell density maps of the human retinal pigment epithe-
lium. Invest. Ophthalmol. Vis. Sci. 55(8), 4832–4841 (2014)

29. Tota, K., Idrees, H.: Counting in dense crowds using deep features. In: CRCV
(2015)

30. Wang, M., Wang, X.: Automatic adaptation of a generic pedestrian detector to
a specific traffic scene. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2011)

31. Zisserman, A., Xie, W., Noble, J.A.: Microscopy cell counting with fully convolu-
tional regression networks (2015)

32. Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a sin-
gle image by bayesian combination of edgelet part detectors. In: IEEE Computer
Society Conference on IEEE International Conference on Computer Vision (ICCV)
Vision and Pattern Recognition (CVPR) (2005)

33. Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T., Jia,
Y., Shelhamer, E.: Caffe: convolutional architecture for fast feature embedding. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

http://dx.doi.org/10.1007/978-3-319-24574-4_42
http://dx.doi.org/10.1007/978-3-642-38610-7_25

290 Y. Xue et al.

34. Zhang, X., Chen, Y.: Study of cell behaviors on anodized tio 2 nanotube arrays
with coexisting multi-size diameters. Nano-Micro Lett. 8, 61–69 (2015)

35. Xie, Y., Xing, F., Kong, X., Su, H., Yang, L.: Beyond classification: structured
regression for robust cell detection using convolutional neural network. In: Navab,
N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol.
9351, pp. 358–365. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4 43

http://dx.doi.org/10.1007/978-3-319-24574-4_43

	Cell Counting by Regression Using Convolutional Neural Network
	1 Introduction
	1.1 Problem Definition
	1.2 Background

	2 The Proposed Framework
	2.1 System Overview
	2.2 Data Preparation and Processing
	2.3 Convolutional Neural Network Regression Model

	3 Experiment and Performance
	3.1 Datasets
	3.2 Implementation Details
	3.3 Evaluation Metric and Counting Examples
	3.4 Counting Performance Using Different Models
	3.5 Comparison with State of the Art

	4 Conclusions
	References

