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Abstract

The invasion of Theileria sporozoites into bovine leukocytes is rapidly followed by the destruction of the surrounding host
cell membrane, allowing the parasite to establish its niche within the host cell cytoplasm. Theileria infection induces host
cell transformation, characterised by increased host cell proliferation and invasiveness, and the activation of anti-apoptotic
genes. This process is strictly dependent on the presence of a viable parasite. Several host cell kinases, including PI3-K, JNK,
CK2 and Src-family kinases, are constitutively activated in Theileria-infected cells and contribute to the transformed
phenotype. Although a number of host cell molecules, including IkB kinase and polo-like kinase 1 (Plk1), are recruited to the
schizont surface, very little is known about the schizont molecules involved in host-parasite interactions. In this study we
used immunofluorescence to detect phosphorylated threonine (p-Thr), serine (p-Ser) and threonine-proline (p-Thr-Pro)
epitopes on the schizont during host cell cycle progression, revealing extensive schizont phosphorylation during host cell
interphase. Furthermore, we established a quick protocol to isolate schizonts from infected macrophages following
synchronisation in S-phase or mitosis, and used mass spectrometry to detect phosphorylated schizont proteins. In total, 65
phosphorylated Theileria proteins were detected, 15 of which are potentially secreted or expressed on the surface of the
schizont and thus may be targets for host cell kinases. In particular, we describe the cell cycle-dependent phosphorylation
of two T. annulata surface proteins, TaSP and p104, both of which are highly phosphorylated during host cell S-phase. TaSP
and p104 are involved in mediating interactions between the parasite and the host cell cytoskeleton, which is crucial for the
persistence of the parasite within the dividing host cell and the maintenance of the transformed state.
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Introduction

The transforming parasites Theileria annulata and T. parva
belong to the Apicomplexan phylum that also includes Toxoplas-
ma and Plasmodium spp. T. annulata and T. parva invade bovine

leukocytes and are the causative agents of the leukaemia-like

diseases Tropical Theileriosis and East Cost Fever (ECF),

respectively. In contrast to Plasmodium and Toxoplasma, Theileria
rapidly destroys the surrounding host cell membrane following

invasion and associates with host cell microtubules, thus establish-

ing its niche in the leukocyte cytoplasm [1]. Once free in the

cytoplasm the Theileria sporozoite differentiates into a multi-

nucleated schizont which, uniquely for a eukaryotic cell, reversibly

transforms the host cell (reviewed in [2]).

Theileria-dependent transformation results in the uncontrolled

proliferation of the infected cell driven by autocrine factors [3–5].

Parasitised cells become resistant to apoptosis [6] and acquire

increased invasiveness and a metastasic phenotype [7–9]. Impor-

tantly, the transformed phenotype of infected cells is entirely

reversible upon killing the parasite, making Theileria-induced
transformation a unique model to study leukocyte transformation.

Several host cell kinases including phosphoinositide 3-kinase (PI3-

K,) Src family kinases, casein kinase II (CK2), protein kinase A

(PKA), Akt/PKB, and c-Jun N-terminal kinase (JNK), and

downstream transcription factors, are constitutively activated in

Theileria-infected cells in a parasite-dependent manner and

contribute to the transformed phenotype [4,10–20]. While the

modification of host cell signalling pathways in response to

Theileria infection has been quite thoroughly studied, very little is

known about the parasite factors involved.

Recently the first analysis of the Theileria proteome was

published, in which 21.5% (812 proteins) of all predicted T.
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annulata schizont proteins were detected in lysates from purified

parasites and following parasite membrane enrichment [21].

Schizont proteins that are predicted to be expressed on the

parasite surface or secreted into the cytoplasm are of particular

interest as potential modifiers of host phenotype, and in this

context it is rather surprising that no obvious Theileria-encoded
kinases or phosphatases possess a predicted signal peptide or

transmembrane domain(s) [22,23].

The cytoplasm-dwelling schizont is strictly intracellular, and

ensures its persistence within continuously proliferating host cells

by associating with the mitotic apparatus and by becoming

‘‘incorporated’’ into the central spindle during host cell cytokinesis

[24]. As part of this process, the host cell mitotic kinase polo-like

kinase 1 (Plk1) is recruited to the schizont surface in a cell-cycle

dependent manner, and its kinase activity was found to be essential

for the association of the parasite with central spindles. Binding of

Plk1 to the schizont surface is negatively regulated by the activity

of host cell CDK1, but the parasite ligand(s) involved in the

interaction, and the identity of parasite-associated Plk1 sub-

strate(s), remain unknown. More recently we reported that EB1,

an important regulator of microtubule dynamics, also binds to the

parasite surface in a cell cycle-dependent manner via a specific

EB1-binding motif present in the Theileria surface protein p104

[25]. Plk1 is not the only host cell kinase found to associate with

the schizont membrane. One central feature of Theileria-induced
transformation is the parasite-dependent constitutive activation of

the transcription factor NF-kB [26], and this is mediated by the

formation of activated IkB kinase (IKK) signalosomes at the

parasite surface [18]. Again, the parasite ligand(s) involved in this

interaction are unknown.

Considering the extensive changes in kinase activity that occur

in response to Theileria infection, and also the cell cycle-

dependent regulation of Plk1 and EB1 association with the

schizont, we became interested in analysing phosphorylation

events that occur at the parasite surface. We made use of

antibodies that specifically detect phospho-threonine (p-Thr),

phospho-threonine-proline (p-Thr-Pro) and phospho-serine (p-

Ser) epitopes, and observed significant phosphorylation of the

schizont during host cell interphase. The availability of well-

established protocols to synchronise parasitised cells in specific

phases of the cell cycle [24,27] prompted us to perform label-free

mass spectrometry analysis on schizonts purified from cells blocked

in S-phase and mitosis. We identified 65 phosphorylated schizont

proteins, including 15 that possess a predicted signal peptide and/

or transmembrane domain, and thus have the potential to be

targeted by host cell kinases. In particular we describe cell cycle-

specific phosphorylation of two important surface antigens, p104

(TA08425) and TaSP (TA17315), which are involved in interac-

tions between the parasite and the host cell cytoskeleton [25,28].

Materials and Methods

Cell culture, flow cytometry & parasite enrichment
TaC12 is a T. annulata schizont-infected cell line obtained by

in vitro infection of peripheral blood cells [29]. BoMAC is an

SV40-transformed cell line of Theileria-uninfected bovine macro-

phages [30]. Both cell lines were cultured as described previously

[24]. For cell cycle arrest in prometaphase, cells were treated with

0.1 mg/ml nocodazole (Biotrend) for 16 h, and harvested by

shake-off. For synchronisation in S-phase cells were incubated for

24 hours in medium containing 4 mM thymidine, as described

[24]. For flow cytometry analysis, TaC12 cells were washed with

PBS, and analysed as described [31]. Raw data analysis was

performed using the cytometric analytic software Flow JoX. For

parasite enrichment 108 TaC12 cells (per sample) were incubated

for 1 hour in medium containing 3 mg/ml nocodazole to

depolymerise microtubules, then washed once in ice cold PBS

(5 min at 2006g). The host cell membrane was perforated using

activated aerolysin (Peter Howard, Department of Microbiology

and Immunology; University of Saskatchewan; Saskatoon Saskta-

chewan Canada) essentially as described [27]. Briefly, cells were

resuspended in ice-cold HEPES buffer (10 mM HEPES, 150 mM

NaCl, 20 mM KCl, pH 7.4) containing 1 mM CaCl2 and

incubated with 50 mg aerolysin for 1 hour on ice. This was

carried out in the presence of 50 nM calyculin A (Millipore) to

minimise dephosphorylation. Unbound aerolysin was washed

away with 10 ml HEPES buffer containing 1 mM CaCl2, and

cell pellets were resuspended in an equal volume of HEPES buffer

containing 1 mM CaCl2 and 50 nM calyculin A. Mitotic samples

were additionally treated with 2 ml/ml DNase (Benzonase

Nuclease, .250 units/ml, Sigma). Cells were incubated at 37uC

for 30 min to allow host cell membrane perforation, and subjected

to mechanical lysis using a syringe (TERUMO, NN-2070S; 20

Gx2L; 0.9670 mm). A 50% Nycodenz (Axon) stock-solution (w/

v) was prepared in buffered solution (0.128 M NaCl, 5 mM Tris-

HCl (pH 7.5) containing 3 mM KCl and 0.3 mM EGTA), and

used to make 40%, 30% and 5% Nycodenz solutions in 16PBS.

A Nycodenz step gradient was prepared in 30 ml COREX tubes

(No 8445) consisting of 15 ml 5% Nycodenz solution underlaid

with 5 ml 30% and 1.5 ml 40%. 1 ml cell suspension was loaded

on top of the gradient and centrifuged at 4506g at 18uC for

20 min. The fraction between the 5% and 30% phases was

collected and washed in 50 ml PBS, pelleted (10 min at 4506g),

snap-frozen in liquid nitrogen and stored at 280uC.

Generation of a rat polyclonal anti-Theileria schizont
antibody
Schizonts were purified from unsynchronised TaC12 cells. One

rat was immunised three times with 60 mg schizont protein

suspension (per injection) resuspended 1:1 in PBS and GERBU

Adjuvant 100 (3100). This work was carried out at the central

animal facility of the University of Bern in strict accordance to the

guidelines of the Swiss Tierschutzgesetz (TSchG; Animal Rights

Laws) and European regulations, and approved by the ‘‘Amt für

Landwirtschaft und Natur’’ in Bern (Permit Number: BE105/10).

Immunofluorescence microscopy & Western blotting
The following primary antibodies were used: mouse mAb 1C12

(anti-p104) and the rabbit polyclonal anti-TaSP were used as

described [25]. Anti-a-tubulin (clone DM1A, Sigma, 1:3000

dilution), rat polyclonal anti-T. annulata schizont antibody

(1:1000), mouse mAb anti-T. parva HSP70 [32] 1:2000 dilution,

mouse mAb anti-p-Thr-Pro (Cell signalling; 9391, 1:1000

dilution), mouse anti-p-Ser (BD Transduction Laboratories TM,

1:3000), rabbit polyclonal antibody anti-p-Thr (Cell signalling;

9381, 1:3000), mouse mAb p-Tyr-100 (Cell signalling, 9411

1:1000). Mouse anti-BrdU (Clone G3G4; mouse IgG1, kappa light

chain, University of Illinois). For IFA secondary antibodies

conjugated with Alexa Fluor 488 or Texas Red (Molecular

Probes) were used. Cells were fixed and permeabilised for

microscopy using 4% PFA or ice-cold methanol as described

[25]. For analysis of host and parasite DNA synthesis, TaC12 cells

were synchronised in S-phase as described above, and incubated

with 10 mM BrdU for 2 h at 37uC prior to fixation with 4% PFA

and analysis with anti-BrdU antibodies. DNA was labelled using

DAPI and cells were mounted using DAKO mounting media.

Wide-field fluorescence microscopy was performed with a Nikon

Eclipse 80i microscope as described [25], and images processed
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using Photoshop. For Western blotting cell pellets (TaC12 cells

and purified schizonts) were lysed for 30 minutes in 8 M urea lysis

buffer (8 M urea (freshly prepared), 100 mM ammonium carbon-

ate pH 8, 16 protease inhibitor mix (Roche), 100 nM calyculin

A), briefly sonicated, and the lysate supernatant obtained by

centrifuging for 5 min at 16,0006g.

LC-MS/MS analysis
Protein from T. annulata schizont samples was dispensed into

low protein-binding microcentrifuge tubes (Sarstedt, Leicester,

UK) and made up to 160 ml by addition of 25 mM ammonium

bicarbonate, 10 mM NaF, 300 mMNa3VO4, 1 mM benzamidine,

2 mM PMSF, 10 mM beta-glycerophosphate and 16 Sigma

Phosphatase inhibitor cocktail 2 (Sigma-Aldrich), 16mini EDTA

free protease inhibitor cocktail (Roche). Proteins were denatured

using 100 ml of 1% (w/v) RapiGestTM (Waters MS Technologies,

Manchester, UK) in 25 mM ammonium bicarbonate followed by

three cycles of freeze-thaw, and two cycles of 10 min sonication in

a water bath. The sample was then incubated at 80uC for 10 min,

reduced (addition of 100 ml of 60 mM DTT and incubation at

65uC for 10 min) and alkylated (addition of 100 ml of 180 mM

iodoacetamide and incubation at room temperature for 30 min in

the dark). Trypsin (Sigma-Aldrich) was reconstituted in 50 mM

acetic acid to a concentration of 0.2 mg/ml. Digestion was

performed with 100 ml of trypsin at 37uC overnight. The

RapiGestTM was removed from the sample by acidification (1 ml

of trifluoroacetic acid and incubation at 37uC for 45 min) and

centrifugation (15,0006g for 15 min). Peptide samples were

divided into two tubes, one for global protein quantitation

(equivalent of 100 mg protein) and one for phosphoproteome

analysis (equivalent of 900 mg protein). Peptide samples for

phosphoproteome analysis were enriched using titanium dioxide

(TiO2) phosphopeptide enrichment and Clean-up Kit (Proteabio)

following the manufacturers protocol.

Peptide mixtures from either whole lysates or phosphopeptide

enriched samples were analysed by on-line nanoflow liquid

chromatography using the nanoACQUITY-nLC system (Waters

MS technologies, Manchester, UK) coupled to an LTQ-Orbitrap

Velos (ThermoFisher Scientific, Bremen, Germany) mass spec-

trometer equipped with the manufacturer’s nanospray ion source.

The analytical column (nanoACQUITY UPLCTM BEH130 C18

15 cm675 mm, 1.7 mm capillary column) was maintained at 35uC

and a flow-rate of 300 nl/min. The gradient consisted of 3–40%

acetonitrile in 0.1% formic acid for 90 min then a ramp of 40–

85% acetonitrile in 0.1% formic acid for 3 min. Full scan MS

spectra (m/z range 300–2000) were acquired by the Orbitrap at a

resolution of 30,000. Analysis was performed in data dependent

mode. The top 20 most intense ions from MS1 scan (full MS) were

selected for tandem MS by collision induced dissociation (CID)

and all product spectra were acquired in the LTQ ion trap. Ion

trap and orbitrap maximal injection times were set to 50 ms and

500 ms, respectively.

Data analysis
Protein quantitation was achieved using intensity based label

free protein quantitation [33,34]. Thermo RAW files were

imported into Progenesis LC–MS (version 4.1, Nonlinear

Dynamics). Replicate runs were time-aligned using default settings

and an auto-selected run as a reference. Peaks were picked by the

software using default settings and filtered to include only peaks

with a charge state of between +2 and +6. Peptide intensities of

replicates were normalised against the reference run by Progenesis

LC-MS. Spectral data were transformed to.mgf files with

Progenesis LC–MS and exported for peptide identification using

the PEAKS Studio 7 (Bioinformatics Solutions Inc.) search engine.

Multiple search engine platform provided by PEAKS Studio

named inChorus was used, which combines searching results from

PEAKS DB (Bioinformatics Solutions Inc.), Mascot (Matrix

Science), OMSSA (National Center for Biotechnology Informa-

tion) and X!Tandem (Global Proteome Machine Organization).

Tandem MS data were searched against a custom database that

contained the common contamination and internal standards,

PiroplasmaDB-3.0_TannulataAnkara_AnnotatedProteins and

UniProt_Bos_taurus (Bovine) reviewed proteins. The search

parameters were as follows; precursor mass tolerance was set to

10 ppm and fragment mass tolerance was set to 0.5 Da. One

missed tryptic cleavage was permitted. Carbamidomethylation was

set as a fixed modification and oxidation (M), phosphorylation at

S, T, and Y set as variable modifications. The false discovery rates

were set at 1% and at least two unique peptides were required for

reporting protein identifications. The mass spectrometry proteo-

mics data have been deposited to the ProteomeXchange

Consortium (http://www.proteomexchange.org) via the PRIDE

partner repository with the dataset identifier PXD000899 and

DOI 10.6019/PXD000899 [35]. Phospho-epitope prediction was

performed using Phosida online phosphorylation site database

(PHOSIDA Posttranslational Modification Database, used on 30.

March 2014: http://www.phosida.com) and NetPhosK [36]

http://www.cbs.dtu.dk/services/NetPhosK/. The TMpred tool

on the ‘‘SIB ExPASy Bioformatics Resources Portal’’ was used to

predict protein topology of TaSP [37]. The sequence of p104

(TA08425) from TaC12 cells is published with the accession

number XM_948006 [25]. Other T. annulata protein information

was found using http://www.eupathdb.org (version 3 Feb 2014;

ApiDB: integrated resources for the apicomplexan bioinformatics

resource center. 2007 Jan; 35(NAR Database issue): D427-30 [38].

Results and Discussion

Immunofluorescence analysis (IFA) of Theileria infected
cells reveals cell cycle-dependent phosphorylation of the
schizont
To investigate whether general phosphorylation of the Theileria

schizont surface changes as the infected cell progresses through the

cell cycle, we decided to analyse T. annulata infected macro-

phages (TaC12) by IFA using three different phospho-site specific

antibodies: p-Thr, p-Thr-Pro and p-Ser. To verify the specificity of

these phospho-antibodies, fixed cells were incubated with lambda

protein phosphatase (lPPase) prior to IFA analysis (Figure 1A).

lPPase treatment completely abolished the detection of p-Ser, p-

Thr and p-Thr-Pro epitopes, while the signal obtained with a

polyclonal anti-schizont antibody used to visualise the parasite was

not affected by the treatment. Treatment of TaC12 cell lysates

with lPPase resulted in a marked reduction in signal intensity with

all phospho-specific antibodies by western blotting (Figure 1B).

Thus we were satisfied that these antibodies specifically recognise

phospho-epitopes in Theileria-infected cells.

We detected p-Thr, p-Thr-Pro and p-Ser epitopes within the

schizont and at the parasite surface during interphase (Figure 2

and S1A–C), while no distinct labelling of the parasite was

observed with anti-p-Tyr antibodies (Figure S1D). p-Ser epitopes

were additionally found to accumulate strongly at the ‘‘tips’’ of the

schizont in many interphase cells (Figure S1C). It is well

established that progression of cells into mitosis is accompanied

by a massive increase in phosphorylation [39–41]. This was

reflected in our own results, as the overall intensity of host cell

phosphorylation increased during mitosis (figure S2). In prometa-

phase cells phosphorylation of the schizont was almost undetect-

Phosphorylation of Theileria annulata Schizont Surface Proteins

PLOS ONE | www.plosone.org 3 July 2014 | Volume 9 | Issue 7 | e103821

http://www.proteomexchange.org
http://www.phosida.com
http://www.cbs.dtu.dk/services/NetPhosK/
http://www.eupathdb.org


able compared to the highly phosphorylated host cell cytoplasm

(Figure S1 and S2). As the host cell progressed through metaphase

and into anaphase phosphorylation of the schizont was observed

once again, with phosphorylation on the schizont and within the

host cell cytoplasm detected with p-Thr antibodies (Figure 2). As a

control, unsynchronised uninfected bovine macrophages (Bo-

MAC) were analysed with phoshpo-specific antibodies (Figure

S3). As in TaC12 cells, pSer and pThr epitopes were detected in

the nucleus in interphase, and dispersed within the cytoplasm

during mitosis. The schizont was strongly phosphorylated during

host cell telophase and cytokinesis, with some labelling of the

surface obtained with anti-p-Thr-Pro antibodies (Figure S1 B).

The p-Thr-Pro antibody used in this study is reported to recognise

threonines and some serines that are specifically targeted by

proline-directed kinases, namely cyclin-dependent kinases (CDKs)

with a consensus motif of S/T-P-X-K/R, and mitogen-activated

protein kinases (MAPKs) that recognise P-X-S/T-P motifs [42].

Our data therefore indicate the presence of CDK and/or MAPK

substrates on the parasite surface during host cell interphase,

telophase and cytokinesis.

To investigate the cell cycle-dependent differences in schizont

phosphorylation in more detail, we treated TaC12 cells with

thymidine to synchronise them in S-phase, and with nocodazole to

synchronise them in mitosis as described [24]. Phosphorylated

histone H3 was strongly detected by both Western blotting and

IFA during mitosis and was absent during S-phase, confirming

successful cell synchronisation (Figure S4). Consistent with our

results in unsynchronised cells (Figures 2 and S1), the schizont was

distinctly labelled with p-Ser, p-Thr and p-Thr-Pro antibodies

during S-phase, while less clear phosphorylation of the parasite

could be detected in cells blocked in mitosis (Figure 3). When

TaC12 cells were released for 6 hours from a thymidine block and

allowed to accumulate in G2 phase [24], p-Thr epitopes were

mainly detected within the parasite cytoplasm and in parasite

nuclei (data not shown). These initial analyses indicate that

phosphorylation of the schizont varies as the host cell progresses

through the cell cycle, and is compatible with the hypothesis that

differential phosphorylation of substrates at the parasite surface

might contribute to cell cycle-dependent host-pathogen interac-

tions. Considering the phosphorylation of the schizont surface

during interphase, we next wanted to identify parasite phospho-

proteins by mass spectrometry.

Enrichment of schizonts from cells synchronised in S-
phase and mitosis
To facilitate a comparative phosphoproteome analysis we

decided to purify schizonts from both S-phase and M-phase

synchronised cells. Since a published protocol [27] was very

inefficient for the isolation of schizonts from synchronised mitotic

cells (data not shown), we tested several modifications to the

protocol, and found that a low-speed Nycodenz step gradient

Figure 1. Validation of specificity of anti-p-Ser, p-Thr and p-Thr-Pro antibodies. A: TaC12 cells were fixed (with 4% PFA) and incubated
overnight with or without lPPase at 30uC before labelling with anti-p-Ser, p-Thr and p-Thr-Pro antibodies. DNA is visualised with DAPI (blue). Merge:
phospho-epitopes (green), anti-schizont (red), DAPI (blue). Scale bar represents 10 mm. B: Lysates of TaC12 cells were incubated overnight with (2) or
without (1) lPPase at 30uC prior to Western blot analysis with anti p-Ser, pThr and p-Thr-Pro antibodies. As a control for equal loading the
membranes were probed with mouse anti-Theileria-HSP70 antibody.
doi:10.1371/journal.pone.0103821.g001
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could be used to separate schizonts from mitotic host cell debris

(Figure 4). We found that these modifications enabled reproduc-

ible enrichment of parasites from M- and S-phase cells with a

reduced purification time. The successful enrichment of parasites

was verified by Western blotting with anti-Theileria Hsp70 and

anti-(host cell) tubulin antibodies (Figure 4C) and IFA (data not

shown).

Whole TaC12 cells and enriched parasite samples were lysed

and an equal amount of protein was subjected to Western blot

analysis. This confirmed that phoshpo-epitopes were preserved

following schizont enrichment, and allowed us to analyse changes

in phosphorylation patterns between S-phase or M-phase

synchronised whole cells (TaC12) and enriched parasites (schiz-

onts) (figure 5). In whole cell lysates of TaC12 cells the signal

detected with all three phospho-antibodies increased in mitotic

cells (Figure 5 lane 3 in each case and figure S5) compared to

unsynchronised cells or those blocked in S-phase (lanes 1 and 2).

This was as expected [39–41], and confirmed our IFA data that

showed that overall phosphorylation of the host cell increased

during mitosis (Figure S2). Conversely, phospho-epitopes were

readily detected in schizont lysates enriched from both S-phase

and mitotic cells. This indicates that the schizont is phosphorylated

in both S-phase and in mitosis, although we cannot exclude the

possibility that some bovine phospho-peptides were also present

following parasite enrichment. These data support our observa-

tions made with IFA that in S-phase cells, the level of schizont

phosphorylation is high in comparison to host cell phosphorylation

(Figure S2).

The ability to isolate Theileria schizonts from its host cell has

provided an invaluable tool in the field of Theileria research, and

has facilitated high resolution imaging of the parasite surface [43]

as well as a recent proteome analysis of the schizont [21]. While

ultracentrifugation with a percoll gradient can be used to produce

highly pure preparations of schizonts [27], we recommend the use

of the rapid method presented here, which requires minimal

handling, for enrichment of schizont proteins for subsequent

biochemical analysis. This method is particularly useful where

prior synchronisation of the host cell is desired.

Label-free mass spectrometry analysis of Theileria
schizonts from synchronised cells
For the mass spectrometry analysis T. annulata parasites were

enriched from host cells synchronised in S-phase or M-phase as

described (work flow summarised in Figure 4A). For each

condition, three replicates were prepared. Each sample was split

into two; one for direct analysis by LC MS/MS (Global) while the

other was subjected to phospho-peptide enrichment (TiO2

enrichment). Three replicates of both M-phase and S-phase were

run simultaneously and the raw data were analysed with

Figure 2. p-Thr epitopes are detected on the schizont during host cell interphase and cytokinesis. Unsynchronised TaC12 cells were
fixed with methanol and representative cells from different cell cycle stages are shown. A p-Thr specific antibody was used to detect phosphorylation
at threonine residues and the anti-schizont polyclonal antibody is used to label the parasite. DNA is labelled with DAPI. Merge: anti-pThr (green), anti-
schizont (red), DAPI (blue). Scale bar represents 10 mm.
doi:10.1371/journal.pone.0103821.g002
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Progenesis LC-MS (Nonlinear Dynamics) and PEAKS Studio 7

(Bioinformatics Solutions Inc.). In total we detected 1317 proteins,

of which 430 are of T. annulata origin, and 887 are bovine

(Figure 6, Tables S1 and S7). 31 Theileria proteins were detected

in this study that were absent from a previous Theileria proteomic

analysis [21]. While most of the Theileria proteins were detected in

all replicate samples, three proteins were detected only in M-

phase, and 32 were found only in S-phase samples (Table S2).

In the comparative search performed with Progenesis, the ion

intensities recorded for all samples (six ‘‘Global’’ samples or six

TiO2-enriched samples) were compared. With this search the

abundance of 328 Theileria proteins was calculated and compared

between S-phase and mitotic samples. Of these, the relative

abundance of 32 proteins could be compared in a statistically

significant manner (p-value ,0.05) (Table S3). All of the schizont

proteins that were detected with higher abundance from S-phase

Figure 3. Synchronisation of TaC12 cells in S- and M-phase. TaC12 were treated with thymidine for 24 hours or nocodazole for 16 hours to
synchronise cells in S-phase or mitosis. Synchronised cells were fixed with 4% PFA and analysed with anti-p-Thr, anti-p-Thr-Pro and anti-p-Ser
antibodies. The parasite was detected with anti-p104 or TaSP antibodies and DNA is visualised with DAPI. Merge: phospho-epitopes (green), schizont
(red), DAPI (blue). A: Thymidine synchronised TaC12 cells in S-phase. B: Nocodazole synchronised TaC12 cells in mitosis. Scale bar represents 10 mm.
doi:10.1371/journal.pone.0103821.g003
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samples (max fold change .1.5) are involved in protein

transcription and translation. For example, the hypothetical

protein TA05730, detected with a 41-fold higher abundance in

samples from S-phase cells, belongs to the ribosomal protein L1

superfamily (Superfamily SSF56808). On the other hand, expres-

sion of parasite histones was found to be up to 7 fold higher in

schizonts enriched from M-phase blocked cells when compared to

those from S-phase cells (Table S3). In general histone synthesis

coincides with DNA synthesis, and an increase in histone

expression has been described during S phase in mammalian

cells [44]. It was previously shown that T. parva initiates DNA

synthesis when the host cell is in mitosis [45], although this has

never been tested for T. annulata. We therefore analysed the

incorporation of the thymidine analogue 5-bromo-2-deoxyuridine

(BrdU) into host and parasite nuclei while cells were released from

S-phase-block. We found that the incorporation of BrdU into

parasite nuclei correlated inversely with host cell DNA synthesis

and increased as the host cells progressed through mitosis (Figure

S6), consistent with the observations made for T. parva [45], and

providing an explanation for the increase in parasite histone

expression observed during host cell mitosis.

We identified 124 bovine and 65 schizont proteins with at least

one phosphorylation site (Table S4, S5, S7). Because our study was

designed to enrich for schizont proteins and to reduce bovine

proteins from our samples, we dare not speculate too much upon

the bovine phospho-proteins identified in our study. Therefore we

make no attempt to draw conclusions regarding the potential cell

cycle dependent or Theileria-dependent phosphorylation of bovine

proteins. However, because no phospho-proteome analysis of

Theileria-infected cells has been published, we provide our data as

a Table S7 for those interested. Of the 65 newly identified

Theileria phospho-proteins, 27 are annotated in EupathDB as

hypothetical proteins. A number of Theileria encoded enzymes

were identified in our analysis, including a putative glycogen

synthase kinase (TA02550), and a serine-threonine protein kinase

(TA19110). We were particularly interested in phosphorylated

schizont proteins that have the potential to interact with the host

cell and for this reason we focused on proteins that are predicted to

be expressed on the surface of the parasite or to be secreted into

the host cell cytoplasm. Of the 65 phosphorylated schizont

proteins identified, 15 possess a predicted signal peptide,

transmembrane-domain(s) or a GPI anchor sequence (Table 1).

Our analysis revealed phosphorylation on the hypothetical

protein TA14665 (Table 1) that possesses a predicted signal

peptide, nuclear localisation signal and a PEST motif, and has as

such been highlighted as a candidate manipulator of host cell

phenotype [23]. Another potentially interesting phosphorylated

protein found in our analysis is TA19115 (Sfil-subtelomeric

fragment related protein family member); a 272 kDa protein that

belongs to a Theileria-specific, hypervariable sub-telomeric repeat

family and possesses 21 FAINT (Frequently Associated in

Theileria) domains [22]. While the function of FAINT domains

remains unknown, they are particularly abundant in secreted

Theileria proteins and, as such, have been predicted to play a role

Figure 4. Enrichment of schizonts from cells synchronised in S-phase or M-phase. A: Overview of the workflow: TaC12 cells were
synchronised in S-phase (thymidine block) or mitosis (nocodazole block). Schizonts were enriched, lysed, and analysed directly by LC MS/MS or after
TiO2 enrichment of phosphopeptides. Raw data were analysed using Progenesis and PEAKS. B: Schizonts were enriched using a Nycodenz step
gradient. The sample is shown before (left) and after (right) centrifugation. The fraction containing enriched schizonts is indicated with an arrow. C:
Western blot analysis of whole cell lysates (1) compared to purified schizonts (2). Equal amounts of protein from whole TaC12 lysates and enriched
schizonts purified from S-phase and mitosis synchronised cells were subjected to Western blotting using an anti-Theileria-HSP70 antiserum to detect
the parasite and anti-tubulin to detect host cell tubulin.
doi:10.1371/journal.pone.0103821.g004
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in host cell modification [22,46]. Based on the presence of a

predicted signal peptide and the multiple FAINT domains, this

protein can be considered a candidate for host cell modification.

Analysis with kinase prediction software (Phosida) indicates that

the receptor tyrosine kinase ALK (Anaplastic lymphoma kinase)

has the potential to phosphorylate TA19115 at Y1891.

Cell cycle-dependent phosphorylation of schizont
surface antigens, TaSP and p104
We found that most of the phosphorylated peptides that we

identified following TiO2 enrichment were found in all samples

(Figure 6B). However, in several cases, the peptide abundances

were significantly different between samples. Two well-charac-

terised schizont surface proteins, TaSP (TA17315) and p104

(TA08425) were found to be differentially phosphorylated in host

cell S- and M-phase. TaSP is an abundant surface protein that was

reported to interact with host cell alpha tubulin, and thus

contributes to the association of microtubules with the schizont

surface [28]. Three phosphorylated serines (S303, S304 and S305)

were identified in the C-terminal domain that is exposed to the

host cell cytoplasm (Figure 7, Tables 1, S5 and S6,) [47]. Two of

these sites (S303 and S305) were phosphorylated with up to a 350-

fold increase in schizonts enriched from S-phase cells compared to

M-phase cells (Figure S7A). Prediction tools suggest that these sites

could be targets of Akt, PKA or glycogen synthase kinase 3

(GSK3) (Table 1). The activity of both Akt and PKA in Theileria-

infected cells has been reported and linked to the proliferation or

survival of infected cells respectively [16,17].

Fourteen phosphorylation sites were detected on p104

(TA08425), a schizont surface protein that possesses four FAINT

domains and a C-terminal domain that is highly disordered and

rich in prolines, serines and basic residues. The C-terminal

domain of p104 encompasses many ‘‘PxxP’’ Src homology 3

(SH3)-binding motifs that have the potential to interact with

multiple binding partners, and a verified ‘‘SxIP’’ motif that

mediates the cell cycle-dependent interaction of the parasite with

the host cell microtubule plus end tracking protein (+TIP) EB1

[25]. Of the 14 phosphorylated residues identified on p104, several

are potential targets of PKA (consensus motif R-R/K-X-S/T) or

CK2 (S/T-D/E-X-E/D) (Table 1), both of which are constitu-

tively activated in Theileria infected cells [16,20]. Four of the 14

phosphorylated residues (S601, S607, S800 and S802) are more

highly phosphorylated during S-phase (p,0.0013). On one

peptide that spans S601 and S607, a 9000-fold increase in

phosphorylation was detected in parasites enriched from S-phase

cells compared to M-phase cells (Figures 7 and S7B, Table S6)

(p = 0.0006). Importantly, phosphorylation sites that were strongly

increased in S-phase samples have a significant p-value, while the

total protein expression levels of p104 did not change between S-

phase and mitosis (Figure S7C, Table S3).

S601 and S607 of p104 fulfil the consensus motif for both CDKs

(S/T-P-X-K/R) and MAPKs (P-X-S/T-P) (Table 1). Specificity of

MAPK and CDK activity is further regulated by the presence of

docking motifs on target substrates, and in this context it is

Figure 5. Western blot analysis of whole cell and purified schizont lysates with anti-phospho-antibodies. The phosphorylation pattern
of asynchronous (lane 1) and synchronised TaC12 cells in S-phase (2) and mitosis (3) and corresponding samples with enriched schizonts were
analysed with anti-p-Thr, anti-p-Thr-Pro and anti-p-Ser antibodies by Western blot. An equal amount of protein was loaded in each lane. Anti-Theileria
HSP70 was used as a loading control. Signal intensity for each lane was quantified and the ratios are indicated underneath (also depicted in figure S5).
doi:10.1371/journal.pone.0103821.g005

Phosphorylation of Theileria annulata Schizont Surface Proteins

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e103821



important to note that in addition to phosphorylated motifs,

several MAPK docking motifs (R/K)1–2,-(X)2–6-W-X-W) (where W

represents a hydrophobic residue) and cyclin-docking motifs (R/

K-X-L) are present within p104 [42,48]. In addition to being

present within p104, several putative CDK or MAPK sites were

phosphorylated within the 15 potentially surface expressed

proteins described in Table 1. The identification of phosphory-

lated CDK/MAPK motifs on surface proteins by mass spectrom-

etry is consistent with the detection of p-Thr-Pro epitopes by IFA

on the parasite surface, and indicates that proline-directed kinases

phosphorylate the schizont during host cell S-phase (Figure S1). It

has been shown by several groups that of the MAPK family, JNK

is constitutively activated in Theileria-transformed cells while

extracellular signal-related kinase 2 (ERK-2) and p38 are not

active [9–11,15]. It could therefore be of interest to investigate

whether Theileria surface expressed proteins are substrates of

Figure 6. Overview of the mass spectrometry results. A: Identified proteins using Progenesis and PEAKS. B: Mean peptide counts per sample
corresponding to T. annulata proteins identified using Progenesis following TiO2 enrichment of S-phase (n = 3) or mitotic (n = 3) samples. C. Overview
of identified T. annulata proteins.
doi:10.1371/journal.pone.0103821.g006

Phosphorylation of Theileria annulata Schizont Surface Proteins

PLOS ONE | www.plosone.org 9 July 2014 | Volume 9 | Issue 7 | e103821



T
a
b
le

1
.
Li
st

o
f
p
h
o
sp
h
o
ry
la
te
d
p
ro
te
in
s
w
it
h
a
p
re
d
ic
te
d
tr
an

sm
e
m
b
ra
n
e
-d
o
m
ai
n
an

d
/o
r
a
si
g
n
al

p
e
p
ti
d
e
.

A
c
c
e
ss
io
n

D
e
sc
ri
p
ti
o
n

P
e
p
ti
d
e

c
o
u
n
ts

S
e
q
u
e
n
c
e

P
h
o
sp

h
o
-

e
p
it
o
p
e

K
in
a
se

p
re
d
ic
ti
o
n

H
ig
h
e
st

d
e
te
c
ti
o
n

in
S
o
r
M

p
h
a
se

#
T
M

D
o
m
a
in
s

S
ig
n
a
lP

P
re
d
ic
ti
o
n

T
A
0
3
4
9
5

H
yp

o
th
e
ti
ca
l

2
SG

V
LE
SN

LS
P
K
LT
S

S7
4
1

P
K
C

2

S7
4
4

C
K
1
,
C
D
K
1
,
M
A
P
K

S1
0
5
0

T
T
R
LN

SN
IS
SP

V
N
V
P

S1
0
5
4

C
K
1
,
G
SK

3
,
C
A
M
K
2
,
P
K
A
,
P
K
G
,
P
K
C
,
C
D
K
5

T
A
0
5
1
4
5

H
yp

o
th
e
ti
ca
l

4
EL
R
ID
SS
K
T
LP

S2
4
9

C
A
M
K
2
,
P
K
A

1
0

T
A
0
5
2
1
5

H
yp

o
th
e
ti
ca
l

1
FR

K
SF
SD

V
R
LA

S1
0
4
5

1

T
A
0
5
4
5
5

A
B
C
tr
an

sp
o
rt
e
r

2
S1
3
5
2

P
K
A
,
P
K
D
,
A
u
ro
ra
,
C
H
K
1

9

IN
K
R
V
SI
S
P
EC

LS
P
SN

Q
R

S
1
3
5
4

M
it
o
si
s

S
1
3
5
9

C
D
K
5

T
A
0
8
4
2
5

P
1
0
4

1
8

D
EL
V
M
SP

IP
T
T

S2
5

M
A
P
K
,
N
EK

6
,
G
SK

3
S
p
h
as
e

P
K
R
P
V
S
P
Q
R
P
V
S
P
R
R
P
E

S
6
0
1

P
K
A
,
C
D
K
2
,
C
A
M
K
2
,
M
A
P
K
,
C
D
K
1

S
p
h
as
e

S
6
0
7

C
D
K
2
,
C
A
M
K
2
,
M
A
P
K
,
P
K
C
,
C
D
K
1

P
K
SP

K
SP

K
R
P
E

S6
2
2

C
K
1
,
C
D
K
2
,
M
A
P
K
,
C
D
K
1
,
P
K
C

P
K
SP

K
SP

K
V
P
F

S6
5
2

C
K
1
,
M
A
P
K
,
C
D
K
1
,
G
SK

3

K
K
R
R
R
SD

G
LA

L
S7
6
9

P
K
A
,
C
A
M
K
2
,
P
K
G

D
G
LA

LS
T
T
D
LE
SE

S7
7
5

N
EK

6

T
7
7
6

C
K
2

T
7
7
7

C
K
2
,
N
EK

6
,
C
D
K
1

S
p
h
as
e

IV
T
M
K
R
S
K
S
FD

D
LT
T
V
R
EK

S
8
0
0

C
K
1
,
N
IM

A
,
P
K
A
,
P
K
G

S
p
h
as
e

S
8
0
2

P
K
A
,
C
A
M
K
2
,
C
H
K
1

T
8
0
7

C
K
2
,
P
K
C

V
D
D
D
G
T
EA

D
D
E

T
8
2
9

C
K
2

ED
T
H
P
SK

EK
H
L

T
8
3
9

T
A
1
7
3
1
5

T
aS
P

6
SH

P
A
R
S
SS

FS
R
IN

S
3
0
3

G
SK

3
S
p
h
as
e

3
Y
e
s

S3
0
4

P
K
A
,
P
K
C
,
C
D
K
1

S
3
0
5

C
A
M
K
2
,
A
K
T
,
C
D
K
1

S
p
h
as
e

T
A
1
4
9
9
0

C
at
io
n
tr
an

sp
o
rt
in
g
A
T
P
as
e

1
V
P
G
N
I S
G
D
N
IF

S
3
1
1

C
K
2

S
p
h
as
e

9

T
A
1
7
3
0
0

cd
p
-d
ia
cy
lg
ly
ce
ro
l
sy
n
th
as
e

1
IN
R
A
SS
SQ

N
SL

S1
0
1

G
SK

3
,
C
A
M
K
2
,
P
K
D
,
C
H
K
1

7

T
A
0
5
1
9
0

H
yp

o
th
e
ti
ca
l

1
C
D
IIL
SI
D
D
K
N

S8
0
2

C
K
2

2

T
A
1
4
3
7
0

H
yp

o
th
e
ti
ca
l

9
K
SS
T
G
S
P
R
SK

M
S
2
1

C
K
1
,
C
D
K
1
,
M
A
P
K
,
P
K
C
,
G
SK

3
M
it
o
si
s

1

Q
N
A
V
SS
G
D
E
SD

IS
T

S2
5
3

C
K
2
,
G
SK

3
,

S2
4
7

C
K
1
,
D
N
A
P
K
,
A
T
M
,
P
K
C

T
A
1
9
7
2
0

H
yp

o
th
e
ti
ca
l

2
G
K
A
LD

S
D
D
ED

F
S
4
2
3

C
K
2

S
p
h
as
e

1

T
A
1
4
6
6
5

H
yp

o
th
e
ti
ca
l

1
LA

R
R
S
SS
Q
T
G
FV

S
2
4
7

P
K
A
,
C
A
M
K
2
,
P
K
D
,
C
H
K
1

M
it
o
si
s

1
Y
e
s

Phosphorylation of Theileria annulata Schizont Surface Proteins

PLOS ONE | www.plosone.org 10 July 2014 | Volume 9 | Issue 7 | e103821



JNK, and if so, whether this might contribute to maintaining the

transformed phenotype.

In our previous work we showed by gel shift assay that

endogenous p104 is highly phosphorylated in unsynchronised cell

cultures (which mainly consist of cells in G0-G1-phase, Figure

S4A), with a slight increase in the overall phosphorylation of p104

detected in mitotic cells [25]. Because the interaction of many plus

end tracking proteins with EB1 is regulated by phosphorylation in

the vicinity of the SxIP motif, we focused in detail on a short

fragment (p104521–634) that encompasses the EB1-binding domain

and 21 potentially phosphorylated sites (dashed underlined in

Figure S4). We showed that this short fragment, like the

endogenous protein, is phosphorylated and that in this case the

‘‘up-shift’’ observed in mitotic cells compared to unsynchronised

cells was incredibly striking. This indicated to us that this region is

subjected to extensive cell cycle-dependent regulation of phos-

phorylation. We went on to show that CDK1 activity is partially,
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Figure 7. Schematic overview showing all phosphorylated sites
detected on A) TaSP (TA17315) and B) p104 (TA08425).
Detected phosphorylation sites are indicated with the amino acid
number. White circles (P) represent phosphorylation sites detected in
both mitotic and S-phase samples. Grey circles (P) represent
phosphorylation sites with a significant difference in abundance
between S-phase and mitotic samples. TaSP: schematic topology as
predicted by TMpred: 1st TM: 3-21 aa; 2nd TM: 205-223 aa and 3rd TM
262-288 aa. Two phosphorylated serines (S303 and S305) in the C-
terminal domain were more highly phosphorylated in S-phase schizont-
samples (p,0.01). p104 is predicted to have a GPI-anchor (GPI).
Phosphorylation of four serines (S601, S607, S800 and S802) was
significantly increased in S-phase when compared to mitosis.
doi:10.1371/journal.pone.0103821.g007
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but not completely, responsible for phosphorylating p104 during

mitosis. In our current work, we identified three phosphorylated

serines within this fragment, and show that two of them (S601 and

S607) are in fact highly phosphorylated during S-phase (Figure 7

and S7, Table S6). Together, the data from our present and

previous work indicate that p104 is extensively phosphorylated,

and that distinct residues are differentially phosphorylated in a cell

cycle-dependent manner. Considering the multiple protein-bind-

ing domains in p104, it will be of interest to further investigate the

putative interaction of p104 with other host cell proteins, and the

cell cycle-dependent changes in phosphorylation described here

should be taken into account.

Concluding remarks
The work presented here represents the first, albeit partial,

analysis of phosphorylation events on T. annulata schizont

proteins. In particular, we identified cell cycle-dependent phos-

phorylation of the abundant surface proteins TaSP and p104 that

have the potential to be involved in host-parasite interactions, or

even signal-transduction pathways involved in the transformation

process. These data certainly warrant further mass spectrometry

based investigations of phosphorylation events in Theileria infected
cells. In particular the application of multiple fractionation steps to

increase sequence coverage is likely to be of value. A recent

comparative microarray analysis between non-infected, Theileria-
infected, and Theileria- cured bovine lymphosarcoma cells

revealed over 3000 Theileria-dependent changes in host cell gene

expression, in particular genes encoding transcription factors and

modifiers of chromatin [49]. A comparative phospho-proteomic

analysis of host cell proteins between Theileria-infected, non-

infected and cured cell lines is likely to provide insights into this

fascinating phenomena of reversible transformation that could be

of high impact in the wider field of signal transduction.

Supporting Information

Figure S1 p-Thr, p-Ser and p-Thr-Pro epitopes are detected on

the schizont during host cell interphase, mitosis and cytokinesis. A-

D: Unsynchronised TaC12 cells were fixed with 4% PFA and

labelled with specific antibodies detecting A: p-Thr, B: p-Thr-Pro,

C: p-Ser and D: p-Tyr epitopes. An anti-schizont polyclonal

antibody is used to label the schizont and DNA is labelled with

DAPI. Merge: anti-phospho-epitope (green), anti-schizont (red)

and DAPI (blue). Scale bar represents 10 mm.

(TIF)

Figure S2 Quantified fluorescence intensity on parasite or in

host cell cytoplasm. A: Immunofluorescence signal of unsynchro-

nised TaC12 cells in S-phase or mitosis were analysed using

ImageJ. Images were captured using the same exposure time for

each cell. Mean fluorescence intensity was calculated in an area at

the parasite or in the host cell cytoplasm (Yellow circles). A

representative image following p-Thr labelling is show. B:

Comparison of the mean fluorescence intensity of the phospho-

epitope specific antibodies p-Thr, pThr-Pro and p-Ser at the

parasite and in the host cell cytoplasm in mitosis and in S-phase.

Statistically significant differences were observed between S-phase

and mitosis samples for the host cell cytoplasm intensity for each

antibody used (pThr p= 761028, pThr-Pro p= 0.0014, Ser

p= 0.0004), and between parasite and host cell in S-phase samples

(pThr p= 1.761029, pThr-Pro p= 2.761025, pSer p= 3610212).

**** denotes a p value ,0.0001, while *** denotes a p value

between 0.001 and 0.0001 (unpaired t-test, two-tailed).

(TIF)

Figure S3 Detection of p-Thr, p-Ser and p-Thr-Pro epitopes in

uninfected bovine macrophages (BoMAC) during host cell

interphase and mitosis

(TIF)

Figure S4 Synchronisation of TaC12 cells in S- or M-phase. A:

Asynchronous TaC12 cells and cells incubated for 24 h in

thymidine (S-phase) or 16 h in nocodazole (M-phase) were fixed

in 80% ethanol and the DNA content was labelled with propidium

iodide prior to FACS analysis. B: Lysates from TaC12 cells

(unsynchronised, S-phase or M-phase) were analysed by Western

blot using anti-cyclin-A and anti-p-Histone H3 antibodies. As a

loading control anti-Theileria-HSP70 was used. C: Following

synchronisation TaC12 cells were fixed with 4% PFA and labelled

with a polyclonal anti-schizont antibody and anti-p-Histone H3.

DNA was visualised with DAPI. Merge: anti-p-Histone3 (green),

anti-schizont (red) and DAPI (blue). Scale bar represents 10 mm.

(TIF)

Figure S5 Relative signal intensity following western blotting of

TaC12 and schizont lysates with anti-p-Thr, p-Thr-Pro and p-Ser

antibodies. Relative intensities were measured using ImageJ, and

correspond to the western blots shown in figure 5.

(TIF)

Figure S6 Parasite DNA replication occurs as the host cell

progresses through mitosis. A: TaC12 cells were synchronised in

S-phase with thymidine treatment, and released into fresh

medium. BrdU (10 mM) was added to the culture 2 hours prior

to analysis at 6, 8, 10 and 12 hours after thymidine release. Cells

were fixed with 4% PFA and BrdU incorporation into host (H)

and parasite (P) nuclei was analysed by IFA. Quantification of cells

that had incorporated no BrdU (H2/P2) are excluded from the

graph for clarity. n = 702120 cells per time point. B: Represen-

tative images of cells at 6 hours (left) and 12 hours (right) post

thymidine release are shown. The schizont is labelled green and

BrdU is red. Scale bar represents 10 mm.

(TIF)

Figure S7 TaSP (TA17315) and p104 (TA08425) protein and

phosphopeptide abundances. A: Three phosphorylation-sites were

detected in TaSP. Two phosphorylated residues were found with a

higher abundance in S-phase (p,0.01). Data were analysed with

Progenesis. The max fold change for each significant (p,005)

paired scanning event for peptides that were differentially detected

between S- and M-phase are shown in a table (data extracted from

table S6). The normalised peptide abundance for peptide

SSSFSRINEDCC in S-phase and mitosis samples is presented as

a histogram (consensus of all paired scanning events). B: 14

phospho-sites in p104 were detected (bold in the protein-

sequence). Two detected phosphorylated peptides (corresponding

to four phospho-sites) were more abundantly detected in S-phase

samples (p,0.002). The max fold change for each significant (p,

005) paired scanning event for peptides that were differentially

detected between S- and M-phase are shown (data extracted from

table S6). The normalised peptide abundance for peptides

RPVSPQRPVSPR and SKSFDDLTTVR in S-phase and mitosis

samples (consensus of all paired scanning events) is shown. The

sequence corresponding to p1045212634 is underlined (dashed). C:

Protein abundance of the Theileria surface proteins p104 and

TaSP in the ‘‘Global’’-analysis using Progenesis.

(DOCX)

Table S1 All T. annulata proteins detected by LC MS/MS are

listed with the corresponding protein information.

(XLSX)
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Table S2 List of all T. annulata proteins detected only from

mitotic or S-phase synchronized samples.

(XLSX)

Table S3 List of all T. annulata proteins for which the relative

abundance could be compared between all six samples (p,0.05;

Progenesis).

(XLSX)

Table S4 List of all phosphoepitopes detected, with the

corresponding protein ID and description (‘‘Global’’ analysis and

TiO2 enriched samples). One peptide hit proteins were also

included and are indicated in the list.

(XLSX)

Table S5 List of all phosphopeptides detected using PEAKS and

Progenesis, with the corresponding protein ID and description

(‘‘Global’’ analysis and TiO2 enriched samples).

(XLSX)

Table S6 List of all detected T. annulata phosphorylated

peptides for which the relative abundance could be compared

(p,0.05) between all the 6 samples (‘‘Global’’ analysis and TiO2

enriched samples; analysed using Progenesis).

(XLSX)

Table S7 List of all detected bovine proteins and phosphorylated

peptides. Proteins containing at least one phosphorylated residue

are listed.

(XLSX)
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