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Abstract  

As organs are remodelled by morphogenetic changes and pattern formation during development, their 

material properties may change. To address whether and how this occurs in the mouse neural tube, we 

combined highly resolved mosaic analysis, biophysical modelling and perturbation experiments. We found 

that at early developmental stages the neuroepithelium surprisingly maintains both high junctional tension 

and high fluidity. This is achieved via a previously unrecognized mechanism in which interkinetic nuclear 

movements generate cell area dynamics that drive extensive cell rearrangements. Over time, the 

proliferation rate declines, effectively solidifying the tissue. Thus, unlike well-studied jamming transitions, 

the solidification we uncovered resembles a glass transition that depends on the dynamics of stresses 

generated by proliferation and differentiation. This new link between epithelial fluidity, interkinetic 

movements and cell cycle dynamics has implications for the precision of pattern formation and could be 

relevant to multiple developing tissues. 

Introduction 

Cells within developing tissues reorganize at the same time as pattern formation and tissue growth take 

place. The extent and dynamics of cell rearrangements can change substantially throughout tissue 

development (1, 2). In most cases, these changes have been proposed to result from solid-fluid transitions 

driven by alterations in cell density, internal myosin and/or cadherin-mediated adhesion forces at cell 

junctions, or external mechanical forces (2–7). Cell rearrangements have also been shown in theory and in 

some experimental situations to depend on active stresses within tissues, such as the ones generated by cell 

division (8–11). Yet, in many cases, the dynamics of cell rearrangements and the factors that control them 

are poorly understood. As a consequence, the impact of cell reorganization on pattern formation and 

morphogenesis has remained unclear.  

In the developing spinal cord, pattern formation along the dorsoventral (DV) axis occurs at the earliest stages 

of neural tube formation (12). At these stages, significant cell movements have been observed in the forming 

neural tube of zebrafish embryos, which undergo secondary neurulation (13). Short time-scale live-imaging 

and lineage tracing experiments (14–20) suggest that cell rearrangements also occur in the amniote spinal 

cord, which forms through primary neurulation. However, the quantitative dynamics of cell rearrangements 

during development, and the factors that control them, remain unclear. Here we use highly resolved clonal 

analysis to measure the rate of cell rearrangements in the mouse neuroepithelium over time. We determine 

the contribution of cell divisions and mechanical forces to epithelial dynamics and assess how 

rearrangements can affect pattern formation.  

Results 

Cell rearrangements decline over time 

To reliably and quantitively measure cell rearrangements, we used Mosaic Analysis with Double Markers 

(MADM) to generate extremely sparse clonal labelling (Figure 1, (21, 22)). In this approach, Sox2-CreERT2-

induced recombination results in the expression of red (tdTomato) and green (EGFP) fluorescent proteins, 
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either in distinct daughter cells or in the same cell (Figures 1A, S1, see Methods). Recombination events occur 

with very low probability - we detected between 1 and 4 clones per spinal cord (Figure S1A).  

We induced MADM clonal labelling by injecting pregnant mothers with tamoxifen at embryonic days E8.5, 

E9.5 and E10.5, and harvested the embryos 24h later. The cytosolic localisation of the fluorescent reporters 

allows labelled cells to be detected at the apical surface of the epithelium (Figure 1B, C). In addition, we co-

immunostained the tissue for the tight junction marker ZO1, which allowed us to segment individual cells 

and determine precisely the number and neighbour relationships of labelled cells. 

Previous estimates showed that the net growth rate of the neuroepithelium progenitor layer declines from 

0.084±0.003 h-1 (mean±SEM) at E8.5 to 0.041±0.002 h-1 at E10.5 (23). Consistent with these data, the mean 

clone sizes of MADM clones decline from 4.1±0.3 to 2.1±0.1 cells per clone, which corresponds to a growth 

rate of 0.087±0.009 h-1 and 0.046±0.004 h-1 at E8.5 and E10.5, respectively (Figure S2A-B, see Methods). The 

clone size distributions further show that 2, 4 and 8 cell clones are the most abundant in the E8.5 dataset, 

indicating that cell divide up to 3 times and without significant progenitor loss (Figure S2C). At E9.5 and E10.5 

larger clones are progressively under-represented, consistent with the longer cell cycle length and loss of 

progenitors due to terminal differentiation at these stages. Together, these observations indicated that the 

MADM clones accurately reflect the dynamics of tissue growth. 

To estimate the extent of cell rearrangements, we next analysed the clonal shapes. In many tissues, such as 

the Drosophila wing disc or mouse skin, uniform tissue growth with minimal cell rearrangements results in 

the formation of coherent clones (24, 25). By contrast, cell rearrangements result in clone fragmentation, 

whereby subsets of the labelled cells are surrounded by non-labelled neighbours. We therefore used the 

number of fragments per clone as a readout of cell rearrangements. To exclude effects of clone size, we 

measured the fragments for clones of a given size. The number of fragments per clone depends linearly on 

clone size for small clone sizes (≤4 cells) for which reliable statistics can be obtained (Figure 1D). This allows 

us to define the fragmentation coefficient 𝜙 as the slope of a linear fit to number of fragments as a function 

of clone size (for clone sizes ≤4 cells). We found that MADM clones labelled at E9.5 and E10.5 had very few 

fragments, corresponding to 𝜙 = 0.11 (0.08, 0.15 95%CI) and 0.25 (0.21, 0.30 95%CI), respectively. By 

contrast, clones labelled at E8.5 were highly fragmented with 𝜙 = 0.61 (0.55, 0.68 95%CI) (Figure 1D).  

Consistent with their higher fragmentation, clones labelled at E8.5 had dispersed at a larger maximum 

distance from the clone centroid - 10.2±1.4 m, while clones labelled at E9.5 and E10.5 dispersed up to 

3.3±0.4m and 3.0±0.8 m, respectively (Figure S3A). The dispersal of cells was nearly isotropic with respect 

to clone center, with exception of clones in the pMN domain which have a larger AP/DV aspect ratio 

compared to clones in other domains at E10.5 of development (Figure S3B). This effect is consistent with our 

previous observations and is linked with the differentiation dynamics in the pMN domain (26). Altogether, 

these results indicate that cell rearrangements occur more frequently prior to E9.5 and sharply decline at 

later stages.  

Interkinetic nuclear movements fluidize the neuroepithelium 

To investigate how the high extent of cell rearrangements at early developmental stages is achieved, we used 

a 2D vertex model of the apical surface of the neuroepithelium that we previously developed (26). A distinct 

feature of our model is that it takes into account not only cell division, but also the inter-kinetic nuclear 

movements (IKNM) during the cell cycle, which cause apical area fluctuations. Similar to other vertex models 

(27), our model has distinct behaviours as a function of normalized tension (Λ̅) and normalized contractility 

(Γ̅) parameters. To determine model parameters that reproduce the experimentally observed clone 

fragmentation patterns, we performed a systematic screen in the intermediate region of Λ̅, Γ̅ parameter 

space, where the network configuration is expected to be most similar to epithelial tissues (Figure 2A, see 

Table S2) (27, 28). We traced clones in silico for 16 hours, which corresponds to the duration of Cre activity 

in experiments (see Methods, Figures S1B, S2D). However, we observed that with this configuration, without 
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any sources of noise, the model could not reproduce the experimentally observed clone fragmentation 

regardless of the rates of proliferation, cell loss, or tissue growth anisotropy (Figure S4A-C).  

In other epithelia, fluctuations in the levels of myosin activity at cell junctions cause variation in the line 

tension and edge lengths of cells (29). We reasoned that a similar effect might occur in the neuroepithelium 

and modelled line tension fluctuations as an Ornstein-Uhlenbeck process. To this end, we introduced a noise 

term in Λ̅, drawn from a Gaussian distribution with characteristic deviation time . This increased clonal 

fragmentation (Figures 2A, S4D), and in particular  = 0.02 produced fragmentation coefficients similar to 

experimental observations.  

With line tension fluctuations taken into account, the model remarkably revealed that fragmentation rates 

significantly vary across the Λ̅, Γ̅ parameter space. In particular, two sharp transitions subdivide the 

parameter space into three subregions, which we refer to as regions A, B and C (Figure 2A). Regions A and C 

have high fragmentation (𝜙 ≥ 0.3) and high T1 transition rate, while region B has low fragmentation (𝜙 < 0.3) 

and T1 rate (Figure 2A-B). Previous studies of vertex models have observed a density-independent fluid-to-

solid phase transition, which is characterized by a change in the cell shape index and could be analogous to 

the transition between regions A and B that we observe (1, 7, 27). By contrast, the high rate of T1 transitions 

in region C has not previously been observed and is surprising, given that the ground state of the model in 

this region is solid (27, 28). The high fragmentation coefficient that we observed at E8.5 (Figure 1D) is 

consistent with both high fragmentation regions A and C. Hence, more than one mechanism, captured by 

either region A or C, could explain how the high fragmentation rates are achieved at early developmental 

stages.  

To distinguish potential mechanisms and understand how fragmentation is achieved in the E8.5 neural tube, 

we compared the cell shapes in simulations of regions A vs C (Figures 3, S5). Several first order descriptors of 

cell shape (see Table S3) were similar between regions A and C. For instance, these regions were 

characterized by high cell shape index and low packing order, measured by the fraction of hexagons, which 

are indicators of tissue fluidity (7) (Figure 3A-B). By contrast, a subset of cell shape descriptors differed 

between regions A and C. These included the coefficients of variation (CV) of the cell area, perimeter, and 

elongation, as well as the area ratio slope (Figures 3C, S5). The most striking difference between regions A 

and C was that only region C had high cell area CV, while in region A cell areas were nearly uniform (Figure 

3C).  

To test if the high cell size variability is important for clonal fragmentation in region C, we first quantified the 

cell areas of quartets of adjoining cells undergoing a T1 transition in silico and compared them to randomly 

selected quartets. This analysis showed that T1 transitions occur preferentially between cell pairs with large 

area discrepancy (Figure 3D). We next examined the origin of cell size heterogeneity in region C. The variation 

in cell areas in region C was critically dependent on the implementation of IKNM in the model and it was 

further amplified by the noise in line tension (Figure 3E). As expected, the implementation of IKNM and noise 

increased not only the cell area CV, but also the extent of T1 transitions and clone fragmentation (Figure 3F). 

However, noise decreased the cell shape index in region C (Figure S6), indicating that the relationship 

between cell rearrangement rates and cell shapes is complex when several factors, such as proliferation, 

IKNM and line tension noise, all generate active stresses within the tissue. Further analysis showed that in 

the absence of cell divisions, the rate of T1 transitions and clone fragmentation in region C was close to zero 

(<0.01 cell-1 h-1), as expected from the solid ground state of the network in this parameter region. This 

indicates that cell divisions with IKNM induce a transition that effectively fluidizes the tissue.  

We reasoned that IKNM could lead to increased cell rearrangements in region C either by directly increasing 

the cell area heterogeneity or by dynamically altering the target area of cells during the cell cycle in a specific 

manner. To distinguish these possibilities, we simulated a tissue without IKNM but with target cell areas 

drawn from a random distribution with CV comparable to the experimentally measured one (Methods). 

These simulations show that increasing the target cell area heterogeneity is not sufficient to increase the rate 
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of T1 transitions (Figure 3E-G). By contrast, apical target area that increases exponentially over the cell cycle 

can generate increased T1 transitions. Furthermore, the sharper the increase in exponential growth rate, the 

higher the area heterogeneity, and the higher the rate of T1 transitions (Figure 3E-G). Altogether, this analysis 

suggests that kinetics of cell area growth produced by IKNM generates dynamical changes in relative cellular 

area which are key for rearrangements in region C.  

Having established the different mechanisms by which cell rearrangements are achieved in regions A and C, 

we next asked whether the rearrangements that we observe in the E8.5 neuroepithelium correspond to 

region A or region C. Our analysis of cell shapes in silico indicated that comparing the area CV of E8.5 

neuroepithelia to the model (Figure 3C) would allow us to distinguish between these possibilities. We 

therefore immunostained the tight junctions in E8.5 embryos and segmented the cell shapes. This analysis 

revealed that the CV of cell areas at E8.5 is 0.86±0.02, which is quantitatively consistent with the values 

observed in region C, but not in region A (Figure 3C). This suggests that the high fluidity of the E8.5 epithelium 

is achieved in the regime of high junctional tension and contractility characteristic of region C.  

Cell cycle lengthening and terminal differentiation decrease neuroepithelial cell rearrangements  

The impact of IKNM on clone fragmentation revealed by our model suggests that the cell division rate could 

be critical for controlling the extent of cell rearrangements in the neuroepithelium. Between E8.5 and E10.5 

of development the proliferation rate decreases and terminal differentiation commences (23), which lowers 

the net growth rate of the tissue approximately 2-fold between (Figure S2B). This change in cell division and 

differentiation could represent a change in the active stresses that generate fluctuations in the tissue and in 

this way cause tissue solidification over time. To test this possibility, we lowered the proliferation rate in the 

vertex model simulations from 0.09 to 0.03 h-1. This resulted in a significant decline of the fragmentation 

coefficient of clones throughout most of the Λ̅, Γ̅ parameter space (Figures 4A, S7A). In region C, 𝜙 declined 

~2-fold and a corresponding decline in T1 rates was observed (Figure S7B), while the cell area CV was reduced 

to a lesser extent and remained significantly higher than in region B (Figure S7C). This reduction in the 

fragmentation coefficient in the model is reminiscent of the experimentally observed reduction in 𝜙 (Figure 

1D), suggesting that the decreasing rate of proliferation over time is a key driver of the decline in cell 

rearrangements.  

This analysis predicts that artificially lowering the proliferation rate will lead to decreased cell 

rearrangements. To test this, we induced clones in Sox2CreERT2::Rosa26-Confetti mouse embryos. 

Tamoxifen injection at E7.5, when Sox2 levels are low, and the stochastic activation of one out of four 

possible Confetti reporters allowed us to achieve sparse clonal labelling and at the same time obtain a higher 

absolute number of clones per embryo than with the MADM system (see Methods). 24h after clonal 

induction we cultured the embryos ex vivo in the presence of the cell cycle inhibitors L-mimosine or 

aphidicolin for 42h and subsequently flat mounted them for analysis at E10.0 (Figures 4B, S8A). As expected, 

these treatments resulted in reduced mean clone sizes compared to control embryos (Figure S8B). Crucially, 

comparison of inhibitor to vehicle treated control embryos showed that for a given clone size, the number 

of fragments per clone was significantly reduced in both the L-mimosine and aphidicolin treated conditions 

(Figures 4C, S8C). These results are in agreement with the model prediction and confirm that the proliferation 

rate has a profound influence on the extent of cell rearrangements in the neuroepithelium. 

Alongside with the decline in proliferation rate that occurs across the neural tube, neural progenitors begin 

to terminally differentiate and delaminate from the epithelium at E9.5 of development with rates that vary 

between the progenitor domains. In particular, the pMN domain differentiates at a higher rate than the other 

domains from E9.5 to E10.5 (23). To test the effect of terminal differentiation on cell rearrangements, we 

modelled cell loss in silico by randomly assigning a fraction of cells with a zero target area (see Methods). 

These simulations showed that cell loss leads to a decrease in clone fragmentation throughout the Λ̅, Γ̅ 

parameter space (Figure 4D). 
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To test whether this is consistent with experimental observations, we compared the fragmentation 

coefficients of Confetti clones at E10.5, 64h after tamoxifen injection, in the pD vs pMN domains. Consistent 

with the model predictions, clones in the pMN domain have significantly lower fragmentation coefficient 

(Figure 4E). Altogether, these observations indicate that the decline in cell rearrangements in the neural 

epithelium results from the temporal dynamics of the rate of proliferation and differentiation.  

Neuroepithelial cells maintain their tension and contractility over time 

Our analysis showed that the decline in tissue growth rate has a strong effect on the dynamics of epithelial 

rearrangements. Nevertheless, it is possible that mechanical factors, such as tissue tension and/or 

contractility, could additionally contribute to reducing cell rearrangements during development. To test this, 

we analysed the cell shapes in ZO1 immunostained neural tubes from E8.5 to E11.5 (Figure 5A, see Table S3). 

We then compared them to simulations in order to infer Λ̅ and Γ̅, similar to previous studies (30, 31).  

Our data revealed that cell shapes change over developmental time. Consistent with increasing 

pseudostratification and the 2-fold increase in AB length of the epithelium from E8.5 to E10.5 (23), the apical 

cell area and perimeter decrease approximately 2-fold, maintaining constant cell volume (Figures 5B, S9A). 

Furthermore, p0 and cell elongation decline, while the fraction of hexagons increases (Figures 5C-D, S9B), 

indicating that cells become less elongated and more ordered over development. The area ratio slope, and 

the coefficients of variation of cell area, perimeter, and elongation also slightly decline (Figure 5E, S9C-E), but 

crucially, these parameters maintain overall high values throughout development that are closer to those 

observed in regions B and C, and least similar to region A (Figures 3C, S5). To compare directly the in vivo and 

in silico cell shapes, we plotted the cumulative difference in fraction of hexagons, area slope ratio, p0, p0 CV, 

elongation, elongation CV, area CV, perimeter CV between data and simulations across the Λ̅, Γ̅ parameter 

space (Figure 5F, see Methods). This analysis confirmed that the cell shapes measured at E8.5 map to region 

C of parameter space. At E9.5, E10.5 and E11.5, the data is in good agreement with the simulations for a 

broader range of parameters, however the highest similarity is still in region C. Altogether, this analysis is 

consistent with the idea that that the neuroepithelium is characterized by high line tension and contractility, 

typical of region C, throughout developmental time.  

To further test whether the tissue tension changes during developmental time, we performed laser ablation 

experiments at E8.5 and E11.5 of development using embryos expressing membrane localized fluorescent 

reporter in the neural epithelium (Figure S10A-B). There was no significant difference in the initial recoil 

velocity of the tissue between the two stages, suggesting that the active tension at these stages is similar 

(Figure S10C-D). Altogether, these results suggest that the dynamics of proliferation and differentiation, 

rather than changes in Λ̅ and Γ̅, are the major factors that underlie the change in tissue fluidity over time. 

Given that the neuroepithelium maps to region C of Λ̅, Γ̅ parameter space, we asked what is the significance 

of these mechanical characteristics for neural tube development. We therefore cultured E8.5 mouse 

embryos expressing Sox2-CreERT2::Rosa26:Confetti in vitro for 6 hours in 8M ROCK inhibitor Y-27632, 

which impairs actomyosin organization and reduces tissue tension in the mouse neural tube (32, 33). 

Consistent with previous reports, ROCK inhibition impaired axis elongation and lead to enlarged cell areas 

and decreased apical F-actin accumulation within the neuroepithelium immediately after the ROCK 

treatment (Figure S10E-F), without impairing the ability of cells to divide. In order to track clones, we 

subsequently cultured the embryos without inhibitor for 36h and analysed clone fragmentation (Figure S10G-

H). These data showed that the fragmentation coefficient of treated embryos (0.49 (0.38, 0.6)) was only 

marginally smaller than controls (0.55 (0.50, 0.61)), (Figure S10H). This suggests that a transient decrease in 

tissue tension was not sufficient to induce significant changes in cell rearrangements, reinforcing our findings 

on the specific and crucial role of cell proliferation in regulating tissue fluidity over time.  
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The decline in cell rearrangements helps to maintain boundary precision  

Our analysis indicates that the cell rearrangement rate declines after E9.5 of development. Previous work 

has shown that after E9.5, neural progenitor identities have been specified and are maintained by the 

underlying transcriptional network without requiring morphogen signalling (23, 34, 35). This raises the 

question what is the effect of growth on the precision of gene expression boundaries at these late stages.  

To investigate this, we simulated a tissue that grows to a certain initial size, then marked two domains 

separated by a straight boundary. We then allowed the tissue to grow either with high proliferation rate 

(0.09 h-1) and hence high rate of cell rearrangements, or low proliferation (0.03 h-1), hence low rearrangement 

rate (Figure 6A). We measured the resulting boundary imprecision by its deviation from a straight line (here 

termed “wiggliness”) or the number of cells that become separated from the correct domain (“islands”, see 

Methods). Both measurements showed that after 16h the boundary imprecision was higher in the case of 

high cell rearrangements rate. In region C, the boundary wiggliness for high rearrangements rate 

corresponded to 3.43±0.09, compared to 1.94±0.05 for low rearrangements rate (Figure 6B). Similarly, the 

number of islands along a 50m section of the boundary corresponded to 2.21±0.25 and 0.43±0.11 for high 

and low rearrangement rate, respectively (Figure 6C). These results suggests that the decline in cell 

rearrangements at later developmental stages may help to achieve the observed boundary precision in the 

neural tube (34). 

Discussion 

Morphogenetic processes have recently been linked to transitions in the material properties of tissues (36). 

Here we demonstrate that in the mouse neural tube epithelium, there is significant decline in tissue fluidity 

around E9.5 of development. Previous studies show that tissue rheology can change in the absence of noise 

or fluctuations (3, 4, 37, 38). In contrast, the transition we identified here resembles a glass transition, 

controlled by changes in active stresses within the tissue. We show that in the neuroepithelium, active 

stresses are generated by interkinetic nuclear movements during the cell cycle. Consequently, the 

proliferation rate determines the extent of cell rearrangements and tissue fluidity. The regulation of tissue 

fluidity has previously been linked to changes in cell density, mechanical properties, such as cell adhesion, 

cortical tension, contractility, as well as signaling pathways such as Wnt/PCP and Ffg (2, 3, 5, 6, 37, 39–41). 

By contrast, the role of cell divisions, apart from a few experimental examples (3, 9, 10) and theoretical 

predictions (8, 42), has been largely underappreciated. Given that cell cycle lengthening is observed in 

multiple developing tissues (43–45), our findings raise the possibility that these tissues also undergo effective 

cell-cycle driven increase in rigidity over time.  

A specific feature of our analysis is the implementation of IKNM in the model. This revealed a novel fluid-like 

region, in which the tissue can proliferate and rearrange extensively, while at the same time maintaining the 

high tissue tension necessary for normal neural tube closure in amniotes (32, 33). The extent of cell 

rearrangements in mouse at early stages, albeit high (average clone spread of ~3 cell diameters in 16h), is 

lower compared to cell movements that occur during secondary neurulation in zebrafish (one cell diameter 

per 10-20 minutes (13)). Furthermore, cell rearrangements at early stages do not lead to increased boundary 

imprecision when compared to the precision of morphogen gradients at these stages (34). Nevertheless, our 

simulations indicate that in the absence of morphogen signalling, the rate of cell rearrangements affects the 

straightness of domain boundaries. This suggests that the decreased rate of cell rearrangements at late 

stages may help to maintain high boundary precision. Altogether, these data reveal species-specific 

differences and raise the possibility that the primary neurulation observed in amniotes could be an 

adaptation that allows for precise pattern formation. 

IKNM are characteristic of many epithelia (46–48), hence our conclusions might be relevant to other tissues 

besides the neural tube. Our analysis indicated that IKNMs exert their effect on cell rearrangements by 

affecting the apical surface area kinetics of cells. IKNM causes a rapid increase in the apical area just prior to 
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division, dynamically changing the distribution of cell areas in the tissue which results in large cell area 

variation. Interestingly, in the Drosophila wing disc, the presence of smaller than normal mutant cells has 

been shown to induce clonal fragmentation (24). Yet, in our analysis, imposing “static” cell area variation did 

not lead to high clonal fragmentation, indicating a distinct mechanism whereby the kinetics of cell area 

changes are crucial for epithelial rearrangements. 

Methods 

Experiments 

Mouse strains and generation of clones  

The following strains were previously described: MADM-11TG and MADM-11GT (22), Rosa26-Confetti 

(Brainbow 2.1, (49)), Sox2-CreERT2 (50), mTmG (51). To generate MADM clones in MADM TG/GT trans-

heterozygous Sox2-CreERT2 expressing embryos, MADM-11TG/TG mice were bred to MADM-11GT/GT, Sox2-

CreERT2/+ and pregnant females were injected with 3mg/mouse of tamoxifen. To generate Confetti clones, 

heterozygous Sox2-CreERT2 mice were bred to heterozygous Rosa26-Confetti and pregnant mothers were 

injected with 0.75mg/mouse of tamoxifen. Tamoxifen stock was prepared fresh in sunflower oil.  

The first time point where we observe labelled cells is 8h after tamoxifen injection (Figure S1B), reflecting 

the time it takes for the nuclear translocation of Cre and subsequent onset of reporter expression. Thus, the 

time of Cre activity in the 24h tracing experiments (Figure 1) is considered 16h. 

In the case of MADM clones, G2 recombination followed by X-segregation of chromosomes in mitosis 

produces a GFP and an RFP expressing daughter cell (Figure 1A). G2-Z segregation produces an unlabeled 

and a GFP/RFP coexpressing daughter cell. G1 recombination produces a GFP/RFP coexpressing cell. In our 

dataset, we found an increasing proportion of GFP/RFP coexpressing cells over time (Figure S1C), which 

correlates with the increasing relative G1 duration over time (23). This suggests that the majority of GFP/RFP 

clones result from G1 recombination. 

Immunohistochemistry and imaging 

For E9.5 and later stages, embryos were bisected along the roof plate prior to fixation and along the floor 

plate prior to staining. Embryos were fixed, immunostained and the brachial region flat mounted as 

previously described (23), with 10h washes in PSB, 0.1% Tween after primary and secondary antibody 

incubations. Primary antibodies used were: mouse anti-ZO1 (Invitrogen, 1:90), goat anti-Olig2 (R&D systems, 

1:100), sheep anti-GFP (AbD Serotec, 1:1000), rabbit anti-RFP (Rockland, 1:2000), mouse anti-Nkx2.2 (DSHB, 

1:20). Secondary antibodies: donkey anti-mouse Alexa fluor 647 and donkey anti-goat FITC (Jackson Immuno, 

1:250), donkey anti-rabbit Cy3 (Jackson Immuno, 1:1000).  

For MADM clone analysis, embryos were immunostained against ZO1, RFP, GFP and Nkx2.2. Clones located 

within a 25m interval dorsal to the Nkx2.2 domain were considered to be pMN clones. For Confetti clone 

analysis, embryos were immunostained against ZO1 and Olig2. To stain actin filaments, the following steps 

of the protocol were modified: embryos were fixed in 4% PFA overnight, methanol fixation was omitted, and 

Alexa fluorTM 488 Phalloidin (ThermoFisher Scientific, 1:100) was added together with the secondary 

antibody.  

Imaging was performed using a 40X/1.3 NA oil objective on a LSM880 inverted confocal microscope. Images 

of the apical surface capturing the entire dorsoventral length of the epithelium were acquired through tile 

scanning with Z-slices 0.8m apart. Tiles were configured in the form of a grid and overlapped 10%. 

Subsequently, the tiles were stitched using the BigStitcher plugin in Fiji. 
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Mouse embryo culture and inhibitor treatments     

Heterozygous Sox2-CreERT2 mice were bred to Rosa26-Confetti and pregnant mothers were injected with 

0.75mg/mouse of tamoxifen at E7.5 to induce clonal labelling. Sox2-CreERT2 induction at E7.5, when Sox2 

levels are low, and the stochastic activation of one out of four possible Confetti fluorescent reporters allows 

us to achieve sparse clonal labelling but obtain a higher absolute number of clones per embryo than with the 

MADM system. 24h later, at E8.5, embryos were dissected and cultured with their yolk sac intact in 

temperature controlled roller culture as previously described (52). In order to perturb proliferation, embryos 

were cultured in the presence of 210M L-mimosine (Sigma) or 800nM Aphidicolin (Sigma) for 42 hours. For 

ROCK inhibition, embryos were cultured in the presence of 8M ROCK inhibitor Y-27632 (Calbiochem) for 6h, 

subsequently the medium was replaced to default medium without ROCK inhibitor and the embryos were 

cultured for another 36h. After culture, embryos were harvested and processed for imaging as described 

above.  

Laser ablation 

Homozygous mTmG mice were crossed Sox2-CreERT2 and pregnant mice were injected with 3mg Tamoxifen 

24h prior to harvesting the embryos. Upon recombination, membrane GFP was specifically expressed in the 

neural epithelium, and this was used to localize the tissue. Laser ablation measurements were performed 

using the tdTomato signal, which had a better signal to noise ratio than GFP. To perform the laser ablation, 

whole E8.5 embryos and bisected and flat mounted E11.5 neural tubes were immobilized for live imaging 

using fibrinogen-thrombin clots as previously described (23). The samples were kept in whole embryo culture 

medium in an environmental chamber with 5% CO2 at 37C. Laser ablation was performed on an Andor 

spinning disc system with inverted Axio Observer Z1, C-Apochromat 40x/1.2 water immersion objective (Carl 

Zeiss) using a 355 nm pulsed UV-A nano-laser (Teem photonics) at 1.6-1.8% laser power with 25 pulses (2 

shots/µm) at 1000 Hz. The tissue was cut along a 25µm line oriented along the AP axis at intermediate 

dorsoventral positions. Images were collected with 250ms exposure time and frame rate of 1.5s. For 

determining the recoil velocities, the ablated edges were identified from the fluorescence intensity peaks 

measured using the Fiji plot profile function, and tracked over time. The displacement of the edges was 

measured with respect to the line of the cut at t=0. The initial recoil velocity was computed by dividing the 

initial displacement by the duration of the first frame (1.5s).  

Data analysis 

Clone identification procedure 

Images were processed in Fiji. Labelled progenitor cells were manually marked at their apical surface at the 

level of the ZO1 staining. Fragments were defined as groups of adjacent cells that share an edge or a vertex. 

Clones were defined as groups of labelled progenitor cells in close proximity of each other (<25m to the 

nearest labelled cell). Images of MADM clones were processed manually. In the case of Confetti clones, only 

the RFP, YFP and CFP reporters, which can be detected at the apical surface, were used for analysis, while 

clones labelled by the nuclear GFP were excluded. The sparseness of labelling in the experiments was as 

follows: 108±9, 136±10 and 81±9 cells/mm2 (equivalent to 16±1, 20±1, and 12±1 clones/mm2) for CFP, RFP, 

and YFP, respectively (mean±SEM for 155 images is given). To identify Confetti clones, cell coordinates were 

recorded and subsequently analysed using a custom-built python script. CFP, RFP and YFP channels were 

analysed separately. Labelled cells were assigned to the same fragment if the distance between them was 

<5 m and to the same clone if they were <25m apart. These assignments were consistent with visual 

identification of fragments and clones. Labelled postmitotic neurons that have delaminated from the neural 

epithelium were excluded from our analysis.  
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Fragmentation coefficient estimation 

We determined the fragmentation coefficient 𝜙 by fitting 𝑓 = 𝜙𝑠 + 𝑏 to the respective dataset, where 𝑓 is 

the mean number of fragments for a given clone size, 𝑠 is the size of the clone in cells, and 𝑏 is an offset 

parameter that is chosen in such a way that the line crosses through the point (1,1), reflecting the fact that 

single cell clones have one fragment by definition. For clones analysed 24h after tamoxifen injection, reliable 

statistics could be obtained for clones with 4 cells or less, hence only these clone sizes were used for 

estimating 𝜙. In mouse embryo culture experiments, clones were analysed 64h after tamoxifen injection. In 

this case, reliable statistics could be obtained for clone sizes up to 8 cells and these were used to estimate 𝜙. 

Growth rate estimation 

The growth rate of MADM clones 𝑘𝑔 was inferred from the mean clone size 𝑠 as 𝑘𝑔 = ln(𝑠) /∆𝑡, where ∆𝑡 = 

16h is the time interval of Cre activity in the experiments (Figure S1B and Methods).  

Spread and anisotropy of clones 

To estimate the spread of clones, the coordinates of cell centers in a clone were used to determine the clone 

centroid. The maximum spread of the clone was quantified as the distance between the clone centroid and 

the furthest cell center. To estimate the mean maximum spread for a given developmental stage, clones of 

all sizes were taken into account (including one cell clones). 

Clone anisotropy was quantified by drawing a bounding rectangle around the clone, using the apical cell 

outlines, marked by ZO1, to demarcate cells. Images are always oriented so that the vertical axis is aligned 

with the tissue DV axis. The aspect ratio of the clone is then given by the DV to AP side lengths of the bounding 

rectangle. Note that quantifying the clone shape at the apical surface, rather than the cell bodies or nuclei, 

avoids potential artefacts of tissue mounting, whereby clone shape could be affected by misalignment of the 

apical and basal surfaces of the neural epithelium. 

Segmentation of cell shapes 

The apical surface of E8.5, E9.5, E10.5 and E11.5 embryos was segmented using the Tissue analyzer (TA) 

plugin (53) in Fiji. Cell outlines were automatically identified and manually checked for correctness. TA plugin 

provided description of polygonal mesh including vertices and edges of cell outlines as well as the number 

and identify of cell neighbours. The cell area was calculated using standard formula for the area of the n-gon 

and cell perimeter as sum of length of polygon edges. Cell elongation was calculated as in (26, 30). 

Simulations 

Vertex model description and implementation 

The vertex model used in this study has previously been described (26) and was implemented here using 
Python 3.7. Briefly, the following energy function is minimized in every simulation step: 

𝐸 = ∑
𝐾𝛼

2
(𝐴𝛼 − 𝐴𝛼

0 (𝑡))2 + ∑ Λ𝑖𝑗𝑙𝑖𝑗 +
〈𝑖𝑗〉𝛼

∑
Γ𝛼

2
𝐿𝛼

2

𝛼

 Eq. 1 

where 𝛼 = 1, …, 𝑁𝑐  enumerates all cells, 𝑖 = 1, …, 𝑁𝑣 enumerates all vertices, 𝐾𝛼 is elasticity coefficient, 𝐴𝛼 is 

area of cell 𝛼, and 𝐴𝛼
0 (𝑡) is the preferred area of cell 𝛼 at time 𝑡, Λ𝑖𝑗  is the line tension coefficient associated 

with cell edge between 𝑖 and 𝑗 of length 𝑙𝑖𝑗, and Γ𝛼 is the contractility coefficient of cell 𝛼 with perimeter 𝐿𝛼. 

We assume that parameters are the same for each cell (𝐾𝛼=𝐾, Γ𝛼=Γ), and for each edge (Λ𝑖𝑗=Λ) if no noise 

in the line tension is considered. 𝐴𝛼
0 (𝑡) is a piecewise linear function reflecting the effect of IKNM on the 

apical cell area in the 4 phases of the cell cycle (G1, S, G2, M, also see below). Adopting the same notation as 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.20.477048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

previous studies (26, 27), we use normalized parameters Λ̅ =
Λ

𝐾(𝐴0)3 2⁄  and Γ̅ =
Γ

𝐾𝐴0 where 𝐴0 is the average 

target area during the cell cycle. 

The motion of vertices is determined from the first-order kinetics: 
𝑑𝑟𝑖

𝑑𝑡
= −

1

𝜇

𝜕𝐸

𝜕𝑟𝑖
 , where 𝑟𝑖 is position of vertex 

𝑖, and 𝜇 is the drag coefficient. Tissue growth was considered to be anisotropic with drag coefficients 𝜇′ and 

𝜇′′ in DV and AP directions, respectively (26).   

The following changes were made in the current version of the model: 

Implementation of junctional noise. We considered that fluctuations in the internal line tension follow an 

Ornstein-Uhlenbeck process, 
𝑑Λ𝑖𝑗

𝑑𝑡
= −

1

𝜏
(Λ𝑖𝑗 − Λ𝑖𝑗

0 ) + ξij(𝑡) , where 𝜉𝑖𝑗(𝑡) is white, uncorrelated noise with 

〈 𝜉𝑖𝑗(𝑡) 〉 = 0 and 〈 𝜉𝑖𝑗(𝑡) 𝜉𝑘𝑙(𝑡′)〉 =
2𝜎2

𝜏
𝛿𝑖𝑘𝛿𝑗𝑙𝛿(𝑡 − 𝑡′). We used the following discretization (29): 

Λ𝑖𝑗(𝑡 + Δ𝑡) = Λ𝑖𝑗(𝑡) −
Δ𝑡

𝜏
(Λ𝑖𝑗(𝑡) − Λ𝑖𝑗

0 ) + √
2𝜎2Δ𝑡

𝜏
𝜉𝑖𝑗
̅̅ ̅(𝑡) 

Eq. 2 

where Δ𝑡 is a time step used in the simulation, 𝜏 is the line tension correlation time, 𝜎 is the intrinsic line 

tensions deviation, Λ𝑖𝑗
0 = Λ is a reference line tension that corresponds to the line tension without noise, and 

𝜉𝑖𝑗
̅̅ ̅(𝑡) is drawn from the Gaussian distribution 𝑁(0,1). 

Implementation of T1 and T2 transitions. The T1 transition is defined as in (26). In particular, when an edge 

between two neighbouring cells is shorter than a predefined small length 𝑙𝑇1, this edge is replaced with a 

new edge that is perpendicular to the old edge and has a length 𝑙𝑛𝑒𝑤 = 1.01 𝑙𝑇1.  Using this definition, we 

observed that for negative line tension or in the presence of line tension fluctuations, immediately after a T1 

transition the new edge can shrink instead of extending, thus leading to a reverted T1 transition. This can 

occur multiple times at a given edge, hence we call this an oscillatory T1 transition. 

One strategy to partly mitigate the occurrence of oscillatory T1 transitions is to increase 𝑙𝑛𝑒𝑤/𝑙𝑇1 ratio (54). 

However, particularly in region A, the oscillatory T1 transitions are generic and increasing 𝑙𝑛𝑒𝑤/𝑙𝑇1 does not 

result in decreasing the number of oscillatory T1 transitions. Therefore, instead we approached this by 

keeping track of the oscillatory T1 transitions and subtracting them from the overall count of T1 events in 

our statistics. More specifically, we track how many T1 transitions occurred for every edge, using the 

dictionary data structure in Python. If repeated T1 transitions occurred 𝑛𝑇1 times between time 𝑡0 and 𝑡𝑛𝑇1, 

their contribution to the T1 unique rate, T1UNQ, was considered to be 1/𝑛𝑇1 for times between 𝑡0 and 𝑡𝑛𝑇1. 

T2 transitions are defined as in (26). In particular, cells in which the area becomes very small, have shrinking 

edges. This results in sequential T1 transitions, which finally lead to a double-sided cell with zero area. Such 

cells are removed from the simulation by merging the two vertices that delimit the double-sided cell into one 

vertex. The last T1 transition that results in double-sided cell is counted as a T2 transition, and is not included 

in overall number of T1 transition events. All T1, T1UNQ and T2 rates are estimated in time windows of Δ𝑡=2h 

by dividing number of respective events by the average number of cells in this time window. The T1 rate 

reported in the main text and in Figures 2B, 3B and S7B is defined as T1 unique rate. 

The cell removal from the tissue through differentiation is implemented similar to (26) with the additional 

requirement that if cell was randomly selected for differentiation, the line tension coefficients Λ𝑖𝑗  for this 

cell are no longer fluctuating and have assigned positive value Λ𝑖𝑗=0.2 which fosters shortening of all edges 

of this cell. 

Cell lineage tracing. In order to efficiently analyse in silico clonal populations, the complete information about 

cell lineage, i.e. daughter cell identifiers and division times, are stored. For the analysis of clone 

fragmentation in silico, we used all clones per simulation and 10 independent simulations per parameter set. 
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Parameters of the model. The parameters used are summarized in Table S2. The specific proliferation (𝑘𝑝) 

and differentiation (𝑘𝑛) rates used are given in the figure legends. Every data point across the Λ̅, Γ̅ parameter 

space was obtained by pooling together cells from 10 independent simulations for a given set of parameters 

(Λ̅, Γ̅, 𝑘𝑝 , 𝑘𝑛). 

Vertex model initialization and in silico clone tracing. Similar to (26), the vertex model is initiated with a 

regular hexagonal lattice of 10 rows with 10 cells/row. In the initial simulation phase, the tissue grows for 

16h with Λ̅= -0.184, Γ̅ = 0.07, 𝑘𝑝= 0.09h-1, 𝑘𝑛= 0, and 𝜎 = 0. After the initial simulation phase, the number of 

cells is 460 ±19 (mean ±SE), the time is set to 0, and parameters are modified to target simulation parameters. 

The tissue is then allowed to grow with the target simulation parameters for 8h, subsequently clones are 

labelled and clonal populations of cells are tracked for 16h. 

Analysis of the contribution of cell area heterogeneity and kinetics to clonal fragmentation 

To investigate the area variability of cells undergoing a T1 transition, we defined quadruplets of neighbouring 

cells, designated A, B, C, D, where A and B share a common edge, and C and D do not (see schematic in Figure. 

3D). We further define the cell names based on the cell area, so that the area of A < area of B and area of C 

< area of D. If the common edge between A and B shrinks below 𝑙𝑇1, a T1 transition takes place, as a result 

of which A and B are no longer adjacent, whereas C and D become new neighbours. For comparison, ‘random’ 

quadruplets are generated by randomly finding A and B cells separated by a common edge, and finding cells 

C and D that are adjacent to A and B, but not to each other. Note that because the polygonal mesh has no 

rosettes, that is each vertex has 3 edges associated with it, the assignment of a quadruplet to an edge is 

unique.  

Cell area kinetics during the cell cycle and cell division 

The interkinetic nuclear movement (IKNM) is approximated as a linear combination of two terms, one 

corresponding to linear increase in cell volume and the other interpolating for the change in apical cell 

surface as a function of age of a cell, 

𝐴𝛼
0 (𝑡) =

1

2
(𝑔𝛼Δ𝑡 + 1)(𝜌𝛼(Δ𝑡)2 + 1) Eq. 3 

where 𝑔𝛼  is the growth rate of the cell 𝛼, Δ𝑡 = 𝑡 − 𝑡𝑛𝑒𝑤  is age of the cell that divided at 𝑡𝑛𝑒𝑤 , and 𝜌𝛼(Δ𝑡) is 

piece-wise linear function representing the apical-basal position of the nucleus as a function of Δ𝑡 and cell 

cycle phase (26). This function equals zero in S-phase of the cell cycle, in which nucleus stays basal, and 1 

during the mitosis, when the nucleus is apical. The exact form of 𝜌𝛼(Δ𝑡) is defined in (26). The growth rate 

𝑔𝛼  is drawn from a normal distribution with mean equal to 1/𝑡𝑇 where 𝑡𝑇  is the total cell cycle time, and 

standard deviation 𝜎𝑔=0.45/𝑡𝑇 . Negative growth rates are not allowed. In the simulation the proliferation is 

defined as 𝜆 = ln 2/𝑡𝑇 . The cell divides when cell is in the M-phase, 
Δ𝑡 

𝑡𝑇
> 0.9, and cell volume exceeds a critical 

value, 𝐴𝛼
0 (𝑡) > 𝐴𝑐. The cell divides by introducing a new edge that splits this cell into two daughter cells that 

enter the next cell cycle (26). 

In order to study how the cell area kinetics affects T1 transitions, we use different forms of 𝐴𝛼
0 (𝑡). In Figure 

3E-G different conditions for area kinetics are defined as in Table S4. All conditions except for ‘IKNM’ 

condition have noise in the line tension as in eq. 2 with 𝜏=37s, 𝜎=0.02. 

Comparison between model and data 

In order to compare results of vertex model simulations to experimental data, we use the cumulative distance 

between model and experimental data including the following nondimensional descriptors 𝐷 ∈

{𝑝0, 𝜖, 𝛼, ℎ𝑒𝑥, 𝑝0𝐶𝑉 , 𝜖𝐶𝑉 , 𝐴𝐶𝑉 , 𝑃𝐶𝑉} (see Table S3). For each descriptor 𝐷, we calculate a difference 𝐷Δ =

|𝐷𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ − 𝐷𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ |/𝜎�̂�, where 𝐷𝑒𝑥𝑝
̅̅ ̅̅ ̅̅  is the mean value of 𝐷 obtained for all cells in the simulation for a given set 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.20.477048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

of parameters (Λ̅, Γ̅, 𝑘𝑝, 𝑘𝑛) at final time, 𝐷𝑠𝑖𝑚
̅̅ ̅̅ ̅̅  is the mean value of 𝐷 estimated for the segmented data at a 

specific developmental stage, and 𝜎�̂� is standard deviation of |𝐷𝑒𝑥𝑝
̅̅ ̅̅ ̅̅ − 𝐷𝑠𝑖𝑚

̅̅ ̅̅ ̅̅ | over all samples. The cumulative 

distance Δ𝑡𝑜𝑡/𝑛 is then defined as the sum of the differences 𝐷Δ for all descriptors, normalized to the number 

of descriptors, i.e.: 
Δ𝑡𝑜𝑡

𝑛
=

1

number of descriptors
∑ 𝐷Δ𝐷 . 

Simulations and measurement of boundary precision 

Two types of cells arranged in two domains separated by a straight line at 𝑥 = 0 are marked at 8 h. The model 

has double periodic boundary conditions, hence the cells are uniquely identified within a reference box with 

dimensions 𝑥 ∈ (−𝐷𝑉𝑙𝑒𝑛𝑔𝑡ℎ , +𝐷𝑉𝑙𝑒𝑛𝑔𝑡ℎ), and 𝑦 ∈ (0, 𝐴𝑃𝑙𝑒𝑛𝑔𝑡ℎ). Thus, cells in one domain have 

𝑥 ∈  (−𝐷𝑉𝑙𝑒𝑛𝑔𝑡ℎ , 0), all remaining cells are in the other domain at 𝑡 = 8 h. The boundary shape is 

subsequently measured after 16h of tracking.  

‘Islands’ are defined as connected components of the cell network for each cell type, excluding the largest 

component, which corresponds to the main domain. In order to compare the number of islands for tissues 

of different sizes, the number of islands is divided by 2𝐴𝑃𝑙𝑒𝑛𝑔𝑡ℎ . The number islands for the two domains are 

independent and both are used to calculate the average number of islands. 

‘Wiggliness’ is defined as the total length of the outer boundary of the domain divided by 2𝐴𝑃𝑙𝑒𝑛𝑔𝑡ℎ  at the 

final time. For each domain, the outer boundary is a sum of the lengths of the two boundaries of the main 

domain, and the boundaries of islands of both cell types. In order to compare wiggliness for tissues of 

different sizes, the total length of edges constituting the outer boundary is divided by 2𝐴𝑃𝑙𝑒𝑛𝑔𝑡ℎ. Note that 

the wiggliness of the two domains is the same. 
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Main figures 

 

 

Figure 1. Tracing of cell rearrangements in the developing spinal cord using MADM clones. A. MADM 

labelling. B. Scheme of embryo mounting. C. MADM clones induced at the indicated stages and analysed 24h 

later. Scale bars, 10 μm. D. Mean number of fragments per clone ± SEM. Clones analysed 24h post injection. 

Corresponding 𝜙 with 95% CI. Sample sizes, see Table S1. 
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Figure 2. Regions with distinct clonal fragmentation in the vertex model parameter space. A. Coefficient of 

fragmentation for different values of Λ̅ and Γ̅ , 𝑘𝑝 = 0.09h-1, 𝑘𝑛 = 0. Dashed lines correspond to 𝜙 = 0.3 and 

delineate regions A, B and C. Grey region, fluid ground state of the model. White region, unstable due to area 

collapse. B. Mean rate of T1 transition events (cell-1 h-1) across the Λ̅, Γ̅ parameter space.  
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Figure 3. Cell area kinetics underlies extensive cell rearrangements. A-C. Mean cell shape index, fraction of 

hexagons, and coefficient of variation of apical cell areas for 10 simulations per (Λ̅, Γ̅) parameter set. D. 

Neighboring cells A, B, C, D undergoing T1 transition (T1 cells) or randomly assigned (random). E, F. Mean cell 

area CV (E) and T1 rate (F) for simulations with variable cell area growth during the cell cycle, n=10 

simulations per condition, region C (Λ̅ = -0.074, Γ̅ = 0.12). IKNM+ noise (default condition), IKNM (no noise 

in line tension),  noise (cell divisions without IKNM, with noise in Λ̅), A0 noise (target area randomly drawn 

from a distribution), exp growth (exponential growth of the target area). Details in Table S4. G. Schematic of 

the change in mean cell area during the cell cycle in the conditions in E-F. Error bars SEM.  
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Figure 4. Clone fragmentation is determined by the proliferation and differentiation rates. A. Left, 

fragmentation coefficient for simulations with low proliferation rate 𝑘𝑝 = 0.03h-1. Right, difference in 𝜙 

between high (0.09h-1, Figure 2A) and low (0.03h-1) 𝑘𝑝 . B. Confetti clones induced at E7.5, embryos cultured 

from E8.5 for 42h with vehicle or 210 M L-mimosine. ZO1 immunostaining, white. Scale bars, 10 μm. C. 

Mean number of fragments per clone for a given clone size and fragmentation coefficient (95% CI). D. Left, 

𝜙 for simulations with high differentiation rate 𝑘𝑛 = 0.12h-1. 𝑘𝑝 = 0.09h-1. Right, difference in 𝜙 between 𝑘𝑛 

= 0 (Figure 2A) and 𝑘𝑛 = 0.12h-1. E. Confetti clones generated in B in control condition. Fragments per clone 

± SEM were quantified in the dorsal and pMN domains. 𝜙 (95% CI). Sample sizes, see Table S1. 
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Figure 5. Cell shapes at different stages of neural tube development. A. Top, apical view of the epithelium 

with ZO1 immunostaining. Bottom, cell segmentation. Scale bars, 10 μm. B-E. Quantification of cell shape 

descriptors at different stages. F. Difference between the cumulative distribution of cell shape descriptors 

(p0, 𝛼,ℎ𝑒𝑥 ,𝑝0𝐶𝑉 
,휀𝐶𝑉 ,𝐴𝐶𝑉 ,𝑃𝐶𝑉 ) between simulations and experimental data. Sample sizes, see Table S1. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.20.477048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 

Figure 6. The rate of cell rearrangements influences boundary precision. A. Snapshots of domain boundaries 

in region C (Λ̅ = -0.74, Γ̅ = 0.12) for high and low proliferation rate (𝑘𝑝 = 0.09h-1 and 0.03h-1, respectively) at 

the end of the simulations. Dashed line, 𝐴𝑃𝑙𝑒𝑛𝑔𝑡ℎ . Blue line, outer boundary of the red/gray domain. B. 

Boundary wiggliness after 16h simulation, region C. C. Number of islands per 50 µm in region C.  
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Additional tables and figures 

Table S1. Sample sizes 
 

A. Number of clones analyzed in vivo at different embryonic stages for Figure. 1D., after treatment with cell 

cycle inhibitors ex vivo for Figure. 4B and in different progenitor domains for Figure. 4E.  

 

 

 

 

 

 

 

 

 

B. Number of segmented cells analyzed for Figure. 5A-B and figure. S9.   

 

 

 

 

 

 

  

Condition Number of clones 

MADM E8.5 +24 h 46 

MADM E9.5 +24 h 87 

MADM E10.5 +24 h 94 

L- mimosine treatment 155 

Control condition of L-mimosine treatment 382 

Dorsal domain at E10.0 319 

pMN domain  at E10.0 190 

Condition Number of segmented cells 

Apical surface of E8.5 neural epithelium 6929 

Apical surface of E9.5 neural epithelium 2433 

Apical surface of E10.5 neural epithelium 5520 

Apical surface of E11.5 neural epithelium 3583 
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Table S2. Vertex model parameters and their values in simulations 
 

Parameter Description Value 

Δ𝑡 Simulation time step 0.29 s 

∆𝑙  Simulation length unit 4.6 m 

𝐾 Elasticity 1 au 

Λ̅ Normalized line tension Γ̅= 0, 0.01, …, 0.14 

for each Γ̅ there are 10 equally spaced Λ̅ 

that are delimited by: 

−4√231 4⁄ Γ̅ < Λ̅ <
2√6

27
(√3 − 12 Γ̅)3 2⁄   

Γ̅ Normalized contractility 

𝐴𝑐 Critical cell area 27 µm2 

𝑙𝑇1 T1 transition length threshold  0.046 µm 

𝑙𝑛𝑒𝑤 Edge length after T1 transition 1.01𝑙𝑇1 

𝜇 Medium viscosity 0.12 𝐾 µm2 s 

𝜇′′/𝜇′ AP to DV drag viscosity ratio 50 

𝑡𝑇  total cell cycle time 8 h, 12 h, 20 h 

𝑘𝑝 proliferation rate,  ln 2/𝑡𝑇  0.09 h-1, 0.06 h-1, 0.03 h-1 

𝑘𝑛 terminal neuronal differentiation 

rate 

0, 0.12 h-1 

𝜎 magnitude of noise in internal line 

tension  

0.02 

𝜏 internal line tension correlation time 37 s 

𝜎𝑔 standard deviation of cell growth 

rate (see eq. 3) 

0.45 /𝑡𝑇  
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Table S3. Cell shape descriptors and their definition 

  
Descriptor symbol Name Definition 

𝐴 Cell area Apical surface area of the cells at the level of tight 

junctions (m2) 

𝑃 Cell perimeter Perimeter of the cells at the level of tight junctions 

(m) 

𝑝0 Cell shape index 𝑝0 = 𝑃/√𝐴  

휀 Cell elongation √𝑣1/𝑣2, where 𝑣1 and 𝑣2 are the eigenvalues of the 

second moment matrix of the vertices of the cell, 

𝑣1 ≥ 𝑣2 

𝐴𝐶𝑉  Cell area CV Coefficient of variation of A 

𝑃𝐶𝑉  Cell perimeter CV Coefficient of variation of P 

𝑝0_𝐶𝑉   Cell shape index CV Coefficient of variation of 𝑝0 

휀𝐶𝑉  Cell elongation CV Coefficient of variation of 휀 

ℎ𝑒𝑥 Fraction of hexagons Ratio of hexagons to all polygons in the tissue 

𝛼 Area ratio slope Determined from a fit 
〈𝐴𝑛〉

〈𝐴〉
= 𝛼(𝑛 − 3) + 𝑏, where 

〈𝐴𝑛〉 is the mean area of n-sided cells and n is the 

number of sides, 4 ≤ 𝑛 ≤ 8 
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Table S4. Simulations of cell area kinetics  
 

Condition name Description 

IKNM +noise 𝐴𝛼
0 (𝑡) as in eq. 3 

IKNM 𝐴𝛼
0 (𝑡) as in eq. 3, no noise in the line tension, 𝜎=0 

Λ noise 𝜌𝛼(Δ𝑡) = 1 in eq. 3 for all stages in the cell cycle 

𝐴0 noise 𝜌𝛼(Δ𝑡) = 𝑧 where 𝑧 is drawn from uniform distribution ranging from 0 to 2 

exp growth 𝜆 
exp growth 2𝜆 
exp growth 4𝜆 

linear increase in cell volume is replaced with exponential increase, that is 
𝐴𝛼

0 (𝑡) = 1

2
(exp (𝑔𝛼Δ𝑡) + 1), with no IKNM; different conditions correspond to 

𝑔𝛼=1, 2, and 4. 
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Figure S1. Clonal labelling in the mouse spinal cord. A. Mean number of MADM clones per embryo at 

different stages. B. Confetti clones generated at E9.5 after 8h of induction with tamoxifen. The tissue was 

immunostained against RFP, EGFP and ZO1. Scale bar, 10 μm. C. Fraction of MADM clones resulting from G2-

X segregation, in which daughter cells expressed either GFP or tdTomato (brown), and clones with cells that 

co-expressed GFP and tdTomato resulting from G2-Z or G1 recombination (yellow). Error bars, mean ± SEM. 
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Figure S2. MADM clones reflect the tissue growth grate. A. Mean clone size generated at different stages. 

MADM clone size decreases over time. Error bars, mean ± SEM. B. Comparison of the growth rate measured 

from the net growth rate of the tissue in (5) and the growth rate predicted from the mean MADM clone size. 

The clonal growth rate 𝑘𝑔 was estimated considering that clone size (c) grows exponentially, thus 𝑐(𝑡) =

𝑐0𝑒𝑘𝑔𝑡. C. Clone size distributions at different stages. D. Mean clone sizes of in silico generated clones 

representative of regions A, B and C of parameter space. The clones were tracked for a period of 16h with 

proliferation rate 𝑘𝑝  = 0.09 h-1. Simulation parameters were Γ̅ = 0.12, and Λ̅ = -0.711, -0.393, -0.074 for 

regions A, B, C, respectively. 
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Figure S3. Spread of MADM clones. A. Maximum displacement of labelled cells from the clone centroid for 

clones induced at E8.5, E9.5 and E10.5. Maximum displacement at different stages correspond to 3.1±0.4 cell 

diameters, 1.1±0.1 cell diameters and 1.2±0.3 cell diameters, respectively. Mean±SEM. B. AP/DV aspect ratio 

of the clones at different developmental stages. Clones in the most ventral regions (p3 domain and floor 

plate) were excluded from the analysis.  

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.20.477048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 

Figure S4. Clone fragmentation depends on line tension noise. A-D. Fragmentation coefficient 𝜙 in 

simulations performed for a fixed value of Γ̅ = 0.12 and different values of Λ̅. A. Variable proliferation rate 

𝑘𝑝, no line tension noise (𝜎 = 0). B. Variable differentiation rate 𝑘𝑛, no line tension noise (𝜎 = 0). C. Variable 

ratio 𝜇′′/𝜇′ of the drag viscosity in AP and DV directions, which changes the tissue growth anisotropy (8). 𝜎 

= 0. D. The magnitude of noise in internal line tension is varied 𝜎 = 0, 0.01, 0.02, 0.04 with fixed internal line 

tension correlation time 𝜏 = 37s. The proliferation rate is  𝑘𝑝 = 0.09h-1, no differentiation, and AP to DV drag 

viscosity ratio 𝜇′′/𝜇′ = 50. 
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Figure S5. Cell shape descriptors in simulations. Mean value of cell shape descriptors (cell area, cell 

perimeter, area ratio slope, coefficient of variation of cell perimeter, coefficient of variation of shape index, 

coefficient of variation of cell elongation, as defined Table S3) for simulations performed at different values 

of Λ̅ and Γ̅ for proliferation rate 𝑘𝑝 = 0.09h-1 and differentiation rate 𝑘𝑛 = 0. The mean value was color-coded 

with scale indicated in insets of respective panels. The mean was estimated from all cells pooled together 

from 10 simulations for each pair of (Λ̅, Γ̅) at the final time. 
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Figure S6. Cell shape index in simulations with different apical cell area kinetics during the cell cycle. The 

simulated conditions are as in Figure. 3E-F: IKNM+ noise (default condition), IKNM (no noise in line tension), 

 noise (cell divisions without IKNM, with noise in Λ̅), A0 noise (target area randomly drawn from a 

distribution), exp growth (exponential growth of the target area). See Methods for details. n=10 simulations 

per condition, region C (Λ̅ = -0.074, Γ̅ = 0.12). 
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Figure S7. Fragmentation coefficient, T1 rate and cell area CV at different proliferation rates. A. 

Fragmentation coefficient at different values of Λ̅, Γ̅ for high (𝑘𝑝 = 0.09h-1), intermediate (𝑘𝑝 = 0.06h-1) and 

low (𝑘𝑝 = 0.03h-1) rates of proliferation. Differentiation rate 𝑘𝑛 = 0. B. Rate of T1 transitions with the same 

set of parameters as in A. C. The coefficient of variation of cell areas with the same set of parameters as in 

A. The estimates are mean values from 10 simulations for each pair of (Λ̅, Γ̅) at the final time. 
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Figure S8. Inhibition of cell proliferation affects clone fragmentation and growth. A. Confetti clones (CFP) 

from embryos injected with tamoxifen at E7.5 and cultured ex utero from E8.5 for 42h with 800nM 

aphidicolin or control medium. Scale bars, 10 μm. B.  Mean clone size for aphidicolin (A) and L-mimosine 

(Figure. 4B-C) conditions compared to control. C. Mean number of fragments per clone for a given clone size 

for control (n = 382 clones) vs aphidicolin treated embryos (n = 185 clones). Error bars, SEM. 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2022. ; https://doi.org/10.1101/2022.01.20.477048doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.20.477048
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34 

 

Figure S9. Cell shapes in neuroepithelia collected at different stages. A. Cell perimeter. B. Cell elongation. 

C. Coefficient of variation of cell elongation. D. Coefficient of variation of cell shape index. E. Area ratio slope. 

Mean values ± SEM are shown. Sample sizes as in Figure. 5B-E (see Table S1). 
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Figure S10. The neuroepithelium maintains its contractility and tension over time. A. Apical view of 

membrane tdTomato expressing neuroepithelium at E8.5 before and after laser ablation. Laser cut was 

performed at t = 0 s along the yellow dashed line. The resulting tissue displacement (yellow dotted line) 

relative to the cut line was quantified within the region outlined by cyan rectangle. B. Representative 

kymopgraph showing the change in fluorescence intensity along the red line in A. C, D. Mean tissue 

displacement over time (C) and initial recoil velocity ± SEM (D) after laser ablation at the indicated stages. 

Error bars, SEM. In D, Mann-Whitney test p-value>0.05. Sample size: n = 8 ablations from 4 embryos for E8.5, 

n= 5 ablations in 3 embryos at E11.5 E. Intermediate E8.5 neural plate stained for ZO1 (white) and actin 

(green) after treatment with 8µM Y-27632 or vehicle for 6 hours. First three panels, apical view, right-most 

panels – apicobasal view. The apical enrichment of actin is perturbed in inhibitor treated embryos. F. Mean 

apical cell area in E8.5 embryos treated with Y-27632 for 6h vs controls ± SEM. Double-sided T-test p<10-9. 

Number of cells analyzed: 1728 (Y-27632), 2922 (control). G. RFP labelled Confetti clones in Y-27632 treated 

embryos vs controls. Inhibitor treatment was performed for 6h at E8.5, subsequently embryos were cultured 

for 42h without inhibitor before harvesting for analysis. H. Fragmentation coefficient of control and Y-27632 

clones (mean, 95% CI). Control n= 83 clones, Y-27632 n = 58 clones. Scale bars, 10 μm. Error bars, SEM. 
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