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Abstract

Background: Our understanding of the molecular pathways that underlie melanoma remains incomplete. Although several
published microarray studies of clinical melanomas have provided valuable information, we found only limited concordance
between these studies. Therefore, we took an in vitro functional genomics approach to understand melanoma molecular
pathways.

Methodology/Principal Findings: Affymetrix microarray data were generated from A375 melanoma cells treated in vitro
with siRNAs against 45 transcription factors and signaling molecules. Analysis of this data using unsupervised hierarchical
clustering and Bayesian gene networks identified proliferation-association RNA clusters, which were co-ordinately expressed
across the A375 cells and also across melanomas from patients. The abundance in metastatic melanomas of these cellular
proliferation clusters and their putative upstream regulators was significantly associated with patient prognosis. An 8-gene
classifier derived from gene network hub genes correctly classified the prognosis of 23/26 metastatic melanoma patients in
a cross-validation study. Unlike the RNA clusters associated with cellular proliferation described above, co-ordinately
expressed RNA clusters associated with immune response were clearly identified across melanoma tumours from patients
but not across the siRNA-treated A375 cells, in which immune responses are not active. Three uncharacterised genes, which
the gene networks predicted to be upstream of apoptosis- or cellular proliferation-associated RNAs, were found to
significantly alter apoptosis and cell number when over-expressed in vitro.

Conclusions/Significance: This analysis identified co-expression of RNAs that encode functionally-related proteins, in
particular, proliferation-associated RNA clusters that are linked to melanoma patient prognosis. Our analysis suggests that
A375 cells in vitro may be valid models in which to study the gene expression modules that underlie some melanoma
biological processes (e.g., proliferation) but not others (e.g., immune response). The gene expression modules identified
here, and the RNAs predicted by Bayesian network inference to be upstream of these modules, are potential prognostic
biomarkers and drug targets.
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Introduction

Clinical aspects of melanoma
Malignant melanoma is a devastating form of cancer with a

particularly high incidence in New Zealand (NZ) and Australia

[1]. Although early-stage melanoma is curable, advanced

melanoma is very difficult to treat and is comparatively resistant

to chemotherapy. Very few agents (e.g. interferon-alpha2b) are

useful as adjuvant chemotherapy after primary tumours have been

excised. For disseminated melanoma there are currently only a

small number of chemotherapeutic agents in general use (e.g.

temozolomide and dacarbazine), which are not effective in all

patients [2]. Emerging approaches such as BRAF inhibition

(PLX4032, [3]) and immune-based therapies ([4–8]) hold great
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promise, but are unlikely to be effective for all melanoma patients.

We urgently need to improve our understanding of the complex

and variable molecular pathogenesis of melanoma, and based on

this understanding, develop biomarkers to allow better matching

of patients to therapeutic approaches. This study attempts to

address this challenge.

Melanoma molecular pathways
The molecular pathways that underlie melanoma are complex.

The roles of twenty-five molecules strongly associated with

malignant melanoma are summarised as briefly as possible below,

so that when functional genomic approaches based on mRNA

data are used later in this study, we can assess whether these

molecules and the molecular pathways they constitute are

identified.

Inherited mutations cause a genetic predisposition to melano-

ma, including mutations in cell cycle genes such as CDKN2A [9],

CDK4 [10], RB1 [11] and MDM2 [12], as well as melanocyte

differentiation and activation genes such as MC1R, TYR, TYRP1
and ASIP [13]. Somatic mutations in other genes are thought to

play a role in disease progression. For example, phosphatidylino-

sitol 3-kinases (PI3K) and their downstream targets of the protein

kinase B (Akt) family are constitutively activated in many

melanomas [14]. The gene encoding the phosphatase PTEN is

also commonly mutated in melanoma [15], which reduces PTEN’s

ability to dephosphorylate phosphoinositides and to inhibit PI3K-

Akt signalling pathways, and therefore increases proliferation and

decreases apoptosis [16].

Other molecules commonly involved in melanoma progression

include NRAS[17] and BRAF [18,19], which appear to occur in

mutually exclusive sets of tumours [20] and lead to constitutively

active MEK–ERK signalling. This causes up-regulation of p38/

Jun N-terminal kinase (JNK) activity and activation of c-Jun,

which promotes the transcription of Jun targets including MMP2,
RACK1 and CCND1 [21]. Constitutively active MEK–ERK

signalling also causes phosphorylation and activation of the

transcription factor MITF [22], which promotes the expression

of its target genes including BCL2, CDKN1A, TYR, TBX2 and

CDK2 [23,24]. MITF expression is also promoted by transcription

factors such as Pax3 and Sox10 [25] and inhibited by the

transcription factor BRN2 [26]. The overall expression ofMITF in

melanoma is associated with clinical outcome [27], however,

melanomas are heterogeneous, appearing to contain individual

cells with different phenotypic and gene expression patterns [28].

WhenMITF expression in melanomas is examined on a cell by cell

basis, the slow-growing stem-cell-like melanoma-initiating cell

population appears to have low MITF expression, and in accord

with this, inhibition of MITF in B16 mouse melanomas reduces

proliferation and up-regulates the stem cell marker Oct4 [29]. It

appears that the BRAF and MITF signalling pathways described

above synergise to give melanoma cells their neoplastic, and later

their invasive and metastatic, phenotypes. For example, p16INK4

inactivation and BRAF mutation can accompany MITF amplifi-

cation in melanoma cell lines, and ectopic MITF expression

appears to work in synergy with BRAF mutation to transform

primary human melanocytes [30].

Inferring molecular pathway activity from gene
expression data
Melanoma research was one of the earliest fields in which

expression profiling was applied to tumour classification [31].

RNAs over-expressed in melanoma have been used to predict

melanoma invasiveness, metastasis, prognosis and immunotherapy

response, and are thought to represent transcriptional signatures of

some of the melanoma molecular pathways described above [32–

36]. The abundance of RNAs encoding proteins that are targets of

the same transcription factors [37] or that function within the

same molecular pathways [38] are sometimes correlated in an

evolutionarily conserved and tissue-specific manner [39,40].

Therefore the activity of signalling pathways may potentially be

inferred from the abundance and correlation of those RNAs

known to be transcribed when the pathways are active [41,42].

This principle has been used to identify molecular pathways

associated with the transformation of melanocytes into melanomas

[43], and contributes to in silico models of gene-to-gene

relationships known as gene networks [44]. In a gene network, a

connection between two RNAs (sometimes referred to as an

‘‘edge’’) implies either co-expression of the two RNAs or the

regulation of the abundance of one RNA by the abundance of the

other, either directly or via intervening signalling molecules and

transcription factors. In gene networks RNAs are usually referred

to as ‘‘nodes’’, connections between them referred to as ‘‘edges’’

and groups of RNAs that are highly correlated with one other are

referred to as ‘‘clusters’’. There are several types of gene networks

that model RNA-to-RNA relationships using different assump-

tions, ranging from simple non-directional correlation-based

methods [39], sometimes referred to as relevance networks, to

complex Bayesian gene networks, which can model directional

and synergistic relationships between molecules [45,46]. Until

recently, due to computational limitations, most directional gene

network methods could only model interactions between a few

hundred genes at a time. However, in 2010, a method to identify

whole-genome-scale Bayesian gene networks using massively

parallel supercomputers was developed [47], which is used in this

study.

Combination of cell line and tumour gene expression
data in this study to understand melanoma pathways
In this study we find that the association of tumour clinical

features with either individual RNAs or inferred molecular

pathway activity is not consistent across published melanoma

microarray datasets. Given this lack of consistency, and the

consequent difficulty of using data from the diverse melanomas of

patients to understand melanoma molecular pathways, we instead

take an in vitro functional genomic approach. We generate

microarray data from the melanoma cell line A375 exposed to a

set of targeted siRNA disruptions, and used these data to identify

co-expressed clusters of genes that are strongly conserved between

siRNA-treated A375 cells and melanomas from patients. Several

of these individual clusters encode proteins with shared cellular

functions; we show that those clusters related predominantly to

cellular proliferation are significantly associated with the prognosis

of metastatic melanoma patients.

Results

Published melanoma studies fail to identify consistent
gene or molecular pathway signatures
In several individual published microarray studies of melanomas

from patients, sets of genes appear to be differentially expressed in

association with three aspects of tumour biology: progression,
metastasis and prognosis. We wished to assess whether the genes

associated with these clinical features were consistent across the

multiple published studies. Therefore, the raw data from several

well-designed microarray studies that addressed progression, metas-

tasis and prognosis were retrieved (Table 1). Quality control

assessment indicated that all data was of acceptable quality and

re-analysis of each dataset from Table 1 identified sets of

Gene Networks Associated with Melanoma Prognosis
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differentially expressed RNAs similar to those previously pub-

lished, although the different studies appeared to vary widely in

their statistical power. However, a statistical meta-analysis using

the R ‘metaMA’ package with false discovery rate controlled to

#5% [48] was unable to identify any sets of RNAs consistently

associated with progression, metastasis or prognosis. Venn diagrams are

shown in Figure 1 to illustrate the relative lack of consistency

between RNAs differentially expressed in the various studies.

We then used pathway level analysis to analyse the differential

expression of functionally-linked gene sets associated with

melanoma progression, metastasis and prognosis. The Gene Annotation

Tool to Help Explain Relationships (GATHER) [49] and Principal

Coordinates and Hotelling’s T2 (PCOT2) [42] applications failed to

find any TRANSFACPro [50], Gene Ontology (GO) [51], or

Kyoto Encyclopaedia of Genes and Genome (KEGG) [52] gene

sets that were consistently differentially expressed in more than

one study of melanoma prognosis or progression. GATHER analysis

only identified two gene sets consistently differentially expressed in

the studies of metastasis (G-protein coupled receptor signalling,

GO.0007186 and epidermis development, GO.0008544; Bayes

Factor $5, p#0.05). In summary, our analysis of published

melanoma microarray studies addressing tumour progression,

metastasis and prognosis identified little concordance between the

different studies at the levels of individual RNAs or gene sets.

Generation of a microarray dataset using siRNA
knockdowns in cultured A375 melanoma cells
Given the lack of consistent RNA signatures for melanoma

progression, metastasis and prognosis from microarray studies of

melanomas from patients, and the consequent difficulty of using

data from the diverse melanomas of patients to understand

melanoma molecular pathways, we took an in vitro functional

genomics approach. This involved multiple siRNA knockdown

experiments in the A375 melanoma cell line, in which the

abundance of specific target mRNAs were reduced in separate

cultures of melanoma cells before Affymetrix U133plus2 micro-

array analysis. The principle of this study was that each siRNA

experiment would alter the activity of a subset of signalling

pathways and consequently the abundance of mRNAs down-

stream of those pathways, allowing clustering and gene network

analysis to identify the strongest statistical relationships between

any of the 54,000 probe sets, across the siRNA-treated cells. We

selected 45 siRNAs (Table 2) that targeted molecules known to be

important in melanoma cell biology and were able to produce $2

fold reduction in the abundance of their target mRNAs.

Additional selection criteria were: (i) that the target molecules

were recorded in the Ingenuity Pathways Analysis (IPA) systems

biology database (http://www.ingenuity.com/) to influence the

expression of $50 downstream mRNAs, and (ii) they were

relatively abundant in A375 cells (on average $50th percentile of

abundance in the microarray data). RNA from A375 cultures

transfected with these 45 siRNAs, along with control inactive

fluorescently-labelled siRNAs, were analysed using Affymetrix

microarrays. The distribution of target ‘knock-down’ efficacy is

shown in Figure 2.

Identification of biologically-relevant clusters in the A375
microarray dataset using unsupervised methods that
make no prior assumptions about cluster membership
To explore whether this A375 dataset contained biologically

sensible information, we first attempted to identify biologically

relevant clusters of RNAs that were correlated across the A375

siRNA microarray dataset. As discussed in the introduction, we

would expect mRNA targets of transcription factors [37] or

mRNAs encoding proteins of common function [53] to be more

highly correlated than expected due to chance. Hierarchical

clustering was performed in R using Ward’s method and the

dendrogram cut to identify 200 clusters of probe sets (see

Methods). Each cluster was then analysed using the GATHER

web tool accessed through an R script to identify any GO or

TRANSFAC gene sets for which clusters were significantly

enriched. 66 clusters with at least one enriched gene set were

identified; eight of these were significantly enriched for the targets

of specific transcription factors (Table 3) and five were significantly

enriched for cell cycle-associated GO gene sets (GO paths

GO:0007049 {3 clusters} and GO:0008283 {2 clusters}). GO

paths for which other clusters were enriched included: DNA

recombination (GO:0006310), transcription (GO:0006350), pro-

tein folding (GO:0006457), intracellular apoptosis induction

(GO:0008629) and regulation of phosphorylation (GO:0042325).

Similar results were obtained when we identified stably observed

clusters using bootstrap resampling through the ‘pvclust’ R

package; we found 134 clusters with ‘approximately unbiased’ p-

values $0.95, 51 of which had at least one enriched GO path; of

these seven had functional enrichment for cellular proliferation.

In one particular cluster, 61 of 67 RNAs were targets of the cell

cycle-associated transcription factor E2F1. This is shown by

plotting heatmaps of Spearman’s correlation coefficient (r) and

Figure 1. Intersection between gene signatures identified by microarray studies of melanoma tumour prognosis, metastasis and
invasion. (A). The intersection between RNAs identified in four studies of prognosis ([78];[79];[56];[57]). (B). The intersection between RNAs identified
in four studies of metastasis ([56];[28];[54];[55]). (C) The intersection between RNAs identified in three studies of invasion ([80];[81]; [82]).
doi:10.1371/journal.pone.0034247.g001

Gene Networks Associated with Melanoma Prognosis
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gene expression (Figure 3). Many of the RNAs represented in this

cluster were also correlated (or negatively correlated) with the

RNAs encoding the E2F family members themselves (which were

also part of the cluster, and are arrowed in Figure 3A). This cluster

is also significantly enriched for genes that encode members of the

cell cycle-associated GO gene set GO:0007049.

To evaluate the potential clinical relevance of these clusters, we

assessed whether the RNAs we identified as co-expressed across

the A375 siRNA microarray data were also co-expressed across

microarray data from primary and metastatic melanomas from

patients. A composite Affymetrix U133A microarray dataset from

primary melanomas using three published studies [54–56], and a

separate composite Affymetrix U133A dataset from metastatic

melanomas using four published studies [54–57] were assembled

and normalised from raw data by the RMA method. Ward’s

method hierarchical clustering using the Agnes function in R with

either: (i) all probe sets or (ii) only those probe sets with median

signals $1.5x the 39 BioB probe set (i.e. well above the level of

noise in the microarrays) suggested that the A375 cell data lay

approximately equidistant between the primary and metastatic

melanoma data sets, which were more similar to one another than

they were to the A375 cell data (data not shown). Using the probe

sets from the A375 cell cluster that is shown in Figure 3, we

calculated Spearman’s r across both the primary and the

metastatic tumour microarray data (Figure 4 A and B,

respectively). As a control, Spearman’s r was also calculated

across the tumour data for equally sized but randomly chosen

RNA sets (Figure 4C–D). For these randomly chosen RNA sets

relatively few RNAs were seen to correlate highly with one another

(Figure 4E–F). Similar results were found for clusters enriched for

SOX9, FOXO4 and MAZ targets. For these gene sets, in primary

melanoma data 43%, 32% and 39% of possible probe set pairs,

respectively, had Spearman’s r$0.6. In metastatic melanoma data

Table 1. Gene signatures from multiple microarray studies of melanomas from patients.

Author Melanoma samples

Prognostic

signatures

Progression

signatures

Metastatic

signatures Reference

Winnepenninckx et al. primary melanoma + + [58]

Mandruzzato et al. metastatic melanoma + [78]

Riker et al. (GSE7553) primary vs. mixed
metastatic

+ [55]

Jaeger et al. primary vs. cutaneous metastatic + [54]

Haqq et al. primary vs. mixed
metastatic

+ + [83]

John et al. lymph node metastases + [79]

Xu et al. (GSE8401) melanoma tumours + + [56]

Pfaff-Smith et al. primary vs. mixed
metastatic

+ + [80]

Jeffs et al. melanoma cell lines + [82]

Hoek et al. melanoma primary
cultures

+ [28]

Talantov et al. normal skin vs nevus vs primary
melanoma

+ [81]

Bogunovic et al. metastatic melanoma + [57]

The table summarises melanoma prognostic, progression and metastatic gene signatures that have been generated from a set of high-quality published microarray
studies.
+indicates that the array study generated the corresponding type of signature.
doi:10.1371/journal.pone.0034247.t001

Figure 2. Frequency distribution of % ‘knock-down’ of target mRNA abundance. X-axis represents the percentage knock down in mRNA
target abundance that was induced by the specific siRNA, as reported by microarrays (calculated based on mRNA abundance in the siRNA-targeted
array/median mRNA abundance in all other arrays). The left y-axis represents the frequency of knockdown for each of the x-axis bins (blue bars) and
the right y-axis represents the cumulative frequency (pink line).
doi:10.1371/journal.pone.0034247.g002
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Table 2. siRNA targets.

OGS

degree of target knockdown (relative to the

median array)

% reduction in

expression Batch

ABL1 22.01 50% KD2

AKT1 22.79 64% KD2

CCNA2 22.87 65% KD2

CCNB1 22.84 65% KD2

CCNB2 23.96 75% KD3

CCND3 22.91 66% KD2

CDC16 22.98 66% KD2

CDC2 22.72 63% KD1

CDC25B 22.08 52% KD1

CDC37 22.17 54% KD2

CDK2 22.6 62% KD2

CDK4 23.42 71% KD2

CDK7 22.53 60% KD1

CDKN2C 22.37 58% KD2

CEBPD 22.02 50% KD2

CEBPZ 22.96 66% KD2

CHEK1 22.8 64% KD2

CTNNB1 22.19 54% KD1

ETS1 21.98 49% KD3

FOXM1 22.69 63% KD2

FOXO3A 22.72 63% KD1

GABARAP 23.6 72% KD2

HDAC2 22.84 65% KD2

HDAC3 22.77 64% KD2

HSF2 24.62 78% KD1

MAP2K1 23.44 71% KD2

MAPK1 22.05 51% KD2

MCM2 25.96 83% KD3

MITF 214.51 93% KD3

NCOR2 22.32 57% KD2

NMI 24.77 79% KD2

PCNA 22.7 63% KD1

PIAS1 23.04 67% KD3

PIK3CB 22.15 53% KD2

RB1 24.34 77% KD1

RBL2 22.53 60% KD2

RELA 22 50% KD2

SKP2 23.4 71% KD2

SP1 21.99 50% KD3

SP100 23.06 67% KD2

STAT1 23.29 70% KD2

STAT3 25.75 83% KD3

STAT6 22.21 55% KD2

TCEA1 23.04 67% KD1

TP53 22.74 64% KD1

‘OGS’ designates the official gene symbol of the target mRNA, ‘Degree of knockdown’ is the fold reduction in expression of the target RNA after siRNA incubation
relative to median expression of the target RNA in all microarrays, ‘% reduction in expression’ is the % that the target RNA expression is reduced relative to median
expression of the target RNA in all other microarrays, and ‘Batch’ is the experimental batch in which the siRNA was used.
doi:10.1371/journal.pone.0034247.t002
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56%, 61% and 31% of possible probe set pairs, respectively, had

Spearman’s r$0.6.

In summary, unsupervised clustering of microarray data from

siRNA-treated A375 cells identified RNA clusters that encoded

proteins with common functional annotations, as well as RNA

clusters that shared common transcription factor binding motifs in

their gene promoters. We showed that members of four of these

A375 cell-derived clusters were also correlated in both primary

and metastatic melanomas, suggesting that the A375 microarray

dataset did indeed contain ‘biologically sensible’ and clinically

valid information.

Systematic analysis in the A375 data of gene sets
associated with specific transcription factors or biological
functions
We then screened pre-defined gene sets that shared common

transcription factor promoter motifs (based on the TRANSFAC

Pro database) or functional annotations (based on the GO

database) for high correlations in any of: (i) the siRNA-treated

A375 dataset, (ii) primary melanomas, and (iii) metastatic

melanomas. Gene sets with high correlations between their

constituent RNAs in both the A375 and clinical melanoma data

may represent cases where the siRNA-treated A375 data can

provide a valid model for gene regulatory processes that occur in

the melanomas of patients. Conversely, gene sets with high

correlations between their constituent RNAs in clinical melanoma

microarray data but not in the A375 data may represent cases

where clinically important RNA clusters are not adequately

modelled by our siRNA-treated A375 cells.

All possible gene sets with $5 members were retrieved from: (i)

the TRANSFAC Pro v 8.2 database (356 gene sets, each

containing genes with a common transcription factor binding

motif in their promoters) and (ii) the GO v 1.81 database (1,229

gene sets, each encoding proteins with common function). For

each TRANSFAC and GO gene set, using each of the three

microarray datasets, we used an R script to calculate the fraction

of gene pairs that correlated so that the absolute value of

Spearman’s correlation coefficients (|r|) was$0.5. We found that

several gene sets had a similar, albeit relatively low, frequency of

correlated gene pairs in all three of the A375, primary and

metastatic melanoma datasets – e.g. E2F1, PAX3, CREBP, cell

cycle and DNA repair gene sets (Figure 5). We also found gene sets

with members that were more frequently correlated across

tumours than across the A375 microarray data. These included

immune response, heparin sulphate proteoglycan synthesis, amino

acid acetylation, MYC/MAX, POU3F2 and GCNF gene sets

(Figure 5). Interestingly, a GO gene set associated with death

receptor-induced apoptosis was more frequently correlated in the

A375 microarray than in primary or metastatic tumours (Figure 5).

In summary, we identified several gene sets, including gene sets

associated with the cell cycle, that had similar frequencies of

correlation in both siRNA-treated A375 cells and in melanomas

from patients. These may represent active transcriptional

pathways regulating biological processes that occur in melanomas

and appear to be effectively modelled in siRNA-treated A375 cells

in vitro. However, transcriptional pathways underlying some other

processes such as immune response appear to be identified across

the melanoma tumours (in which complex tumour cell-leukocyte

interactions occur) but are not apparent in the microarray data

from A375 cells cultured in the laboratory.

Bayesian gene network analysis
In order to predict more complex RNA-to-RNA relationships in

the siRNA-treated A375 cells, including upstream regulators of the

co-expressed clusters described above, and the putative direction

of RNA-to-RNA relationships, we analysed the A375 cell

microarray data using a whole-genome Bayesian gene network

inference method [47], which identified 1,645,882 edges (can be

downloaded, with a brief explanatory file, from http://www.

bioinformatics.auckland.ac.nz/doc/project_data/Supplementary_

FIle_1.txt).

As described in the introduction, gene network nodes with large

numbers of downstream ‘‘children’’ are putative master-regulators

of biological processes, and are often known as ‘‘hubs’’. 11 of the

Table 3. Enrichment of transcription factor targets in A375 clusters.

Cluster TRANSFAC Annotation

Number of RNAs in

cluster

with annotation

ln Bayes

factor

probability of obtaining $

this Bayes factor by

chance

9 V$CDC5_01: cell division control protein 5 65 5.37 0.01

9 V$E2F1_Q6: E2F-1 61 6.51 0.01

79 V$SOX5_01: Sox-5 32 7.62 0

79 V$SOX9_B1: SOX (SRY-related HMG box) 35 6.46 0.01

101 V$KROX_Q6 61 10.56 0

101 V$MAZ_Q6 71 5.84 0

101 V$MAZR_01: MAZ related factor 50 4.27 0.02

113 V$CMYB_01: c-Myb 9 6 0.04

246 V$YY1_02: Yin and Yang 1 13 5.31 0.05

266 V$FOXO4_01: fork head box O4 24 5.11 0.02

282 V$WHN_B: winged-helix factor nude 10 6.49 0.03

283 V$OCT1_02: octamer factor 1 13 7.29 0.01

358 V$NRF1_Q6 5 6.27 0.04

The first column is the cluster identifier. The second column is the enriched TRANSFAC Pro v8.2 transcription factor motif in the promoter of the genes in the cluster. The
third column is the numbers of RNAs with the transcription factor target annotation in the cluster. The fourth and fifth columns are from the GATHER web tool –
indicating the Bayes factor and the permutation p-value for the Bayes factor (indicating how often $ this Bayes Factor may be expected due to chance), respectively.
doi:10.1371/journal.pone.0034247.t003
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Figure 3. Heatmaps illustrating relationships across data from A375 cells treated with siRNAs in vitro between members of a cluster
of mRNAs found to be enriched for an E2F1 promoter motif. (A) Heatmap illustrating Spearman’s correlations within the cluster. The colour
key at the top left maps Spearman’s correlation coefficients between probe sets to colour, note that the range of r is +0.4 to +1. Probe sets encoding
E2F-family proteins are indicated by arrows. (B) Heatmap illustrating expression values of probe sets in this cluster (rows) in the A375 siRNA
knockdown arrays (columns), the colour key at the top left maps Z-transformed expression values to heatmap colours.
doi:10.1371/journal.pone.0034247.g003
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25 molecules described in the introduction as important for

melanoma pathogenesis were identified as hubs in the Bayesian

gene network: SOX10, CCND1, RB1, and BCL2 all had over 50

children, while PTEN, TYR, CDKN2A, BRAF, PAX3, AKT1 and

MITF had between 30 and 50 children. In line with the clustering

analysis described above, several members of the E2F transcription

factor family were hubs in the gene network, with E2F4

(38707_r_at), E2F7 (241725_at), and E2F1 (2028_s_at) having

181, 103 and 43 network children, respectively. Reassuringly, 226

of the 327 combined children of these three E2F transcription

factors have E2F binding sites in their promoters, a significantly

greater proportion than would be expected due to chance

(empirical p#0.05). As well as identifying hubs, Bayesian gene

networks also identify clusters of co-expressed RNAs, which are

downstream of the same hub. Identifying these clusters may be

seen as a more conservative use of this network method than

identifying directional edges, and is the primary use made of

Bayesian gene networks in this paper. Reassuringly, every one of

the 200 clusters identified by the hierarchical clustering method

above had at least 70% of their members included among clusters

identified by the gene network method.

Figure 4. RNAs that are correlated in an E2F1-associated A375 cell-derived cluster are also correlated in datasets of primary and
metastatic melanomas. A and B show heatmaps of Spearman’s correlation coefficients between the E2F1 cluster probe sets shown in Figure 3,
across primary and metastatic melanoma data. C and D show heatmaps of Spearman’s correlation coefficients between members of a random list of
probe sets the same size as the E2F cluster used in panels A and B, across primary and metastatic melanoma datasets. E and F show in red kernel
density plots of the correlations shown in A and B, respectively. In grey they show Spearman’s correlations across primary and metastatic melanoma
datasets, respectively, between 10 random list of probe sets the same size as the E2F cluster. The colour key at the top left of each heatmap maps
Spearman’s correlation coefficient between probe sets to colour. The deepest red colour represents the Spearman’s correlation coefficient of 21 and
the deepest green colour Spearman’s correlation coefficient of 1. Note that, in order to illustrate the broad range of correlations observed, the scale
used here is different from that used in Figure 3.
doi:10.1371/journal.pone.0034247.g004
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Are Bayesian gene network hubs and clusters associated
with melanoma patient survival?
We wished to determine whether the Bayesian gene network

hubs and clusters identified from the A375 microarray data were

associated with prognosis. Therefore, we used the ‘Survival’

package in R to generate Cox proportional Hazards models to

estimate the association between the abundance of RNAs in

tumours and the survival of melanoma patients. Two survival

models were generated: (i) based on gene expression in metastatic

melanomas using an Affymetrix microarray dataset [57] and (ii)

based on gene expression in primary melanomas using an Agilent

microarray dataset [58], which was mapped to Affymetrix probe

IDs using Entrez gene ID annotations. We then used this

melanoma microarray survival information to assess whether gene

network hubs and clusters were significantly associated with

patient survival.

Firstly, to establish a baseline, we considered whether the

abundance of RNAs that encoded proteins with particular classes

of functional annotation were significantly associated with patient

survival. We hypothesised that RNAs encoding the types of

proteins that perform important oncogenic functions (e.g.

invasion, DNA replication, or immune response) may be more

strongly associated with the survival of patients than the

abundance of RNAs that encode proteins that do not play known

roles in cancer. For both primary tumours (the Winnepenninckx et

al., 2006 dataset [58], Figure 6A) and metastatic tumours (the

Bogunovic et al., 2009 dataset [57], Figure 6B), no one functional

category was clearly more or less associated with patient survival

than all RNAs taken together. This analysis was repeated for all

Bayesian gene network hubs with $50 downstream children but

again it did not identify any particular functional category with

strong patient survival associations (data not shown).

We then repeated this analysis focussing on hubs with children that

encoded proteins of common function. We used the GATHER web tool

to identify hubs with children significantly (Bayes Factor $5 and

p#0.05) enriched for GO paths. We found that 204 hubs had

children significantly enriched for one of 60 GO paths, which

covered a broad range of functions including transcription,

metabolism, signal transduction, stress response, DNA repair,

and cellular proliferation. Box plots were used to visualise the

strength of association between the expression of these hub

mRNAs in primary (Figure 6C) and metastatic (Figure 6D)

melanomas and patient survival. Functional enrichment of

children had little influence on the strength of association between

hub mRNA abundance and patient survival in the Winnepen-

ninckx et al. primary tumour dataset (Figure 6C), however, it

appeared to have a strong influence on the strength of association

between hub abundance and patient survival in the Bogunovic et

al. metastatic tumour dataset (Figure 6D). For example, 64% of the

hubs that had their children enriched for cell cycle regulation

functions had statistically significant associations with patient

survival. Interestingly, in all cases where hubs had children

enriched for cell cycle functions, the hub itself also encoded a

protein with cell cycle function. Conceivably, by providing a

summary of the abundance of their cell cycle-related co-expressed

children, these hubs may in effect be quantifying the activity of cell

cycle pathways in metastatic melanoma tumours.

The hubs with children enriched for cell cycle functions

included: MCM5 (initiation of DNA replication – this cluster has

73% intersection with the E2F1-associated cluster identified by

simple clustering analysis and shown in Figure 3), TYMS, DTL,

CENPU, PRIM1, MELK1 and PBK (PDZ binding kinase, a serine/

threonine kinase). All hubs with children enriched for various GO

paths related to cell cycle, mitosis or proliferation with Bayes

Factor $5 and p#0.05 are shown in Table S1. Displaying the

edges between the cell cycle-associated hubs and their children as

a directed graph using the Cytoscape application showed that

most of the cell cycle-associated clusters were relatively indepen-

dent of one another, although some were extensively interlinked

(Figure 7).

Figure 5. Correlations within functionally-related gene sets in A375 cells and melanomas. All possible gene-gene correlations within
gene sets defined by TRANSFAC and GO were calculated. The proportion of the gene pairs within each gene set that had Spearman’s |r|$0.5 was
calculated separately for A375 siRNA microarray data (blue bars), a composite Affymetrix dataset from three primary melanoma studies (red bars), and
a composite Affymetrix dataset from four metastatic melanoma studies (green bars). The x-axis represents TRANSFAC or GO gene sets. The y-axis
represents the proportion of gene pairs from each gene set that had Spearman’s |r|$0.5 for the A375 data, primary tumour data, and metastatic
tumour data, respectively.
doi:10.1371/journal.pone.0034247.g005

Gene Networks Associated with Melanoma Prognosis

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e34247



Figure 6. Association between melanoma patient survival and the abundance of RNAs identified as gene network hubs that have
their gene network children enriched for specific GO annotation categories. The x-axes represent GO annotations. GO annotations with
related functions are coloured and grouped together: red (cell cycle related); sky blue (DNA repair related); green (RNA related); purple (transcription
related); dark blue (metabolism related); yellow (protein related) and grey (miscellaneous). The left-most box (white) in each panel represents all RNAs
on the microarray. The y-axes represents minus logbase2 p value, based on a Cox proportional hazards model, to indicate the strength of association
between RNA abundance and patient survival. The horizontal line (y = 4.32) represents a threshold for a significant association with survival
(equivalent to p = 0.05, above this line is a significant association). Within each box the dark horizontal line represents the median, the coloured area
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Several of these A375 gene network hubs and downstream cell

cycle-associated clusters are potentially clinically relevant, since

hub RNA-to-child RNA correlations were found in both the A375

and metastatic tumour (Bogunovic [57]) data set. For example, 16

of the A375 data-derived network hubs with cell cycle-enriched

children also had Spearman’s correlations of |r|$0.4 with$10 of

their children across the tumours in the Bogunovic clinical

melanoma data set (Table S2). As an example, the Spearman’s

correlations in the A375 and Bogunovic datasets between the hub

DTL and its gene network children are listed in Table S3.

Gene network hubs used to classify melanoma patient
outcome
Given that a subset of the A375 gene network hubs appeared to

be clinically relevant molecules, we used those 181 gene network

hubs with $50 children and with an association with metastatic

melanoma patient survival of p#0.005 to construct a classifier for

patient survival. This was done using metastatic melanoma

microarray data [57], after separating tumours into two classes:

(i) tumours from patients who died before 2 yrs (n = 10), and (ii)

tumours from patients who lived beyond 3yrs (n = 16). Shrunken

centroid classifiers were developed use the PAMR method [59],

and cross-validation suggested the optimal classification was

obtained using eight of the gene network hub RNAs (Figure S1A).

This analysis allowed 85% (12/16) of patients alive after 3 yrs to

be correctly classified, and 90% (9/10) of patients dead before

2 yrs to be correctly classified in a cross-validation experiment.

Expression patterns for the eight RNAs relative to the patient

classes are shown in Figure S1B.

In summary, Bayesian gene network analysis of the A375

microarray data identified hubs with children enriched for

numerous biological functions. In metastatic melanomas, gene

network hubs with downstream children enriched for cell cycle

functions are strongly associated with patient prognosis. Hence

these hubs are candidate biomarkers for cell cycle activity and

patient prognosis. Additional candidates as prognostic markers

were identified in a pilot class prediction experiment.

Laboratory investigation of Bayesian gene network hubs
While many of the Bayesian gene network hubs are already well

known in cancer biology, some hubs represented molecules that

had not been well characterised in terms of their role in cancer

cells. We subjectively selected three poorly characterised hubs for

further study – all had sets of child RNAs that were significantly

enriched (GATHER Bayes Factor $5 and p#0.05) for functions

that were easy to assess in the laboratory: (i) ELMOD1 (231930_at)

has only 8 gene network children, however all encode proteins

associated with programmed cell death (GO:0012501 – MARK4,

NGFRAP1, PIK3R2, PRKCA, PRSS23, SEPT4, TIA1, and TUBB4).

(ii) TMCO1 (210768_x_at) has 92 network children, a significant

subset of which encode proteins associated with the GO

annotation of apoptosis (GO:0006915 – e.g. BIT1, CRADD,

EBAG9, NOL3, PSEN2, SPATA4 and SPIN2), and (iii) UBE2S

(202779_s_at) has 67 network children, a significant subset of

which encode proteins associated with the cell cycle (GO:0007049

– e.g. AURKB, BUB3, CCNF, CDK5RAP1, CHAF1B, CHEK2,

GTSE1, KIF22, KIFC1, MAD2L1, RAD54L, RFC5, RNASEH2A,

RPA1 and RPA3) and DNA damage response/repair

(GO:0006974 – e.g. CHAF1B, CHEK2, DDB2, GTSE1, KIF22,

NEIL3, RAD54L, RFC5, RPA1 and RPA3).

The coding regions of ELMOD1, TMCO1 and UBE2S were

amplified by proof-reading PCR from an A375 cell cDNA

template and ligated into the pcDNA3.3-TOPO TA expression

vector. After the sequence of these plasmids was checked, they

were transfected into 293T epithelial cells and Mel501 melanoma

cells, along with control plasmids encoding lacZ. Initial assessment

using MTT assays suggested that transfection of 293T cells with

the UBE2S expression plasmid caused a significant increase in cell

numbers after 2 and 4 days, relative to lacZ control plasmids and

untreated cells (Figure 8A, t-test p value #0.05). This is broadly

consistent with the role predicted for UBE2S by the gene network

as a positive regulator of many cell cycle children. In contrast,

transfection with the ELMOD1 and TMCO1 expression plasmids

caused a significant decrease in cell numbers relative to lacZ

controls and untreated cells in 293T cells (Figure 8B, t-test p value

#0.05), broadly consistent with the role predicted by the gene

network as a positive regulator of many children associated with

apoptosis. Transfection with the ELMOD1 and TMCO1 expression

plasmids into Mel501 melanoma cells also caused a trend towards

decrease in cell numbers relative to lacZ controls and untreated

cells in 293T cells, however this was not statistically significant

(Figure 8C, t-test p values = 0.08 and 0.13 at 2 and 4 days,

respectively).

In the course of our work we learned that UBE2S had already

been characterised under another name [60]. This characterisa-

tion concurred with our own overexpression-MTS experiment,

and showed that UBE2S increased the rate of the cell cycle by

targeting and degrading the von Hippel-Lindau protein. There-

fore, we did not follow UBE2S further in the laboratory. We

studied the effect of transfection of lacZ control, ELMOD1 and

TMCO1 expression plasmids on the cell cycle by flow cytometry of

propidium iodine-stained cells. In both 293T cells (data not shown)

of the box the interquartile range. Panels A and B include all RNAs on the microarrays that have the specified GO annotations. Panels C and D include
the Bayesian network hub RNAs, for which the function of downstream gene network children is significantly enriched for the specified GO
annotations. Panels A and C represent primary tumours [58] while panels B and D represent metastatic tumours [57].
doi:10.1371/journal.pone.0034247.g006

Figure 7. The edges immediately downstream of gene network
hubs that were enriched for cell cycle-associated children. Each
red dot represents a probe set of either a gene network hub that has
significant cell cycle enrichment of children, or one of the children. Blue
lines represent gene network edges.
doi:10.1371/journal.pone.0034247.g007
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and Mel501 cells (Figure 8D), transfection of the ELMOD1 and

TMCO1 expression plasmids had no obvious effect on the

proportion of cells with 2N and 4N DNA content, but it did

substantially increase the proportion of cells with degraded DNA

in the hypodiploid peak, consistent with the induction of apoptosis.

293T cells transfected with lacZ control, ELMOD1 and TMCO1

expression plasmids were then analysed by Western blotting with

an antibody raised against the caspase-3 target PARP, which

showed PARP cleavage in the cells transfected with the ELMOD1

and TMCO1 expression plasmids but not in the cells transfected

with the control expression plasmid. Transfection of 293T cells

with GFP-tagged ELMOD1 and TMCO1 expression plasmids using

the pIRESeGFPII backbone indicated that the overexpressed

proteins localise in structures within the cytoplasm (Figure 8E).

The expression levels of UBE2S and TMC01 but not ELMOD1

RNA in metastatic melanomas appear to be significantly

associated with the survival of patients (Figure 8G–I).

In summary, three relatively uncharacterised genes, which the

gene networks predicted would influence the abundance of

apoptosis-associated or cell cycle-associated RNAs, were found

to alter apoptosis and cell number when overexpressed in vitro. The

expression levels in metastatic melanoma tumours of two of these

genes (UBE2S and TMCO1) appear to be significantly associated

with the time to relapse in melanoma patients.

Discussion

Meta-analysis of melanoma microarray studies
RNA signatures from melanoma microarray studies have

provided useful information about many aspects of the biology

of this tumour type (see the papers summarised in Table 1).

Therefore, at the start of this study we attempted a meta-analysis

of published microarray data related to melanoma progression,

metastasis and prognosis, hoping to identify consistent gene signatures

for these clinical features. However, we found there was very little

concordance between the different studies, despite the fact they

appeared to have been carried out to a high standard. We noted

that each of the published studies contained different patient

groups, different tumour sites, and different histopathological

tumour types. These differences may be in part responsible for the

distinct gene signatures produced by the different microarray

studies. A recently published review of melanoma microarray

studies [61] has reached similar conclusions about discordance

between melanoma microarray studies.

siRNA-treated A375 cells appear to model some but not
all transcriptional relationships present in melanoma
tumours
Given the diversity of melanomas in patients discussed above,

we proposed that rather than perform a meta-analysis of patient

tumours, a more effective way to obtain new insights into

melanoma biology could be to generate a microarray dataset in

A375 cells, in which transcription factors and signalling molecules

were targeted using siRNAs. We hoped that this approach would

generate a dataset with controlled differences between siRNA-

treated cultures, to increase our sensitivity for revealing meaning-

ful molecular pathways. Similar approaches have been used

successfully in other cancers to understand oncogenic signalling

pathways. For example, Bild et al. transfected cultures of quiescent

primary mammary epithelial cells with specific oncogenes and

performed microarray analysis to identify clinically relevant

oncogenic pathways in breast cancer [62], and the connectivity

map project [63] also takes the approach of deeply studying cancer

cell lines placed into in a large number of different ‘‘states’’ in vitro.

The dataset produced by this experiment was analysed using

whole genome Bayesian networks, and since this method is

relatively new, in parallel using a simple hierarchical clustering

method. Reassuringly, both methods identified similar co-

expression clusters. It was interesting that eleven of the molecules

previously implicated in melanoma pathogenesis (described in the

introduction) were identified as hubs in the Bayesian gene

networks generated from our A375 cell dataset, including: BRAF,

CCND1, RB1, PTEN, TYR, CDKN2A, and SOX10. However, the

interactions between these molecules that are known experimen-

tally (at the level of either transcription or post-translational

signalling) were in general not identified by the gene networks. It is

possible that these interactions simply do not operate in cultured

A375 cells, or that the 45 siRNA disruptions used in this study did

not introduce sufficient variability in the expression of these

molecules to allow latent relationships between them to be

identified.

Like all in vitro cell work, our use of A375 cells, cultured in the

laboratory potentially comes at the cost of losing biological

validity. To assess the similarity between A375 cells and

melanomas in patients at a transcriptional pathway level, we

compared the RNA correlations within biologically-relevant gene

sets identified across A375 cells with those identified across both

primary and metastatic melanomas. We found that several gene

sets (e.g. those related to the cell cycle) were approximately

equivalently correlated across both the A375 cells and the clinical

data. We identified other gene sets that were more frequently

correlated in the clinical microarray data than in the A375 cell

data, such as gene sets associated with immune response. Immune

response plays a major role in melanoma biology [64] and has

prognostic implications for melanoma patients [57,65] and, as

described in the introduction, therapies that modify immune

pathways in melanoma hold great promise for a subset of

melanoma patients. However, the fact that the transcriptional

pathways associated with melanoma immune response and

inflammation are not apparent in our A375 cell data limits our

Figure 8. Laboratory investigation of gene network hubs. A–C, general cell biological effects of plasmid over-expression. Human 293T
embryonic kidney cells (A and B) and human Mel501 melanoma cells (C) were transfected with control plasmids encoding lacZ and with plasmids
encoding UBE2S (A), ELMOD1 (B and C) and TMCO1 (B and C). At 0, 2 and 4 days after the transfection, the number of viable cells was assessed using
MTT assays. X-axes represent time in days while y-axis represent the OD570 absorbance (indicating viable cell number). Error bars represent standard
deviation of the mean from four replicate wells. All graphs are representative of at least three independent experiments. D, Cell cycle analysis.
48 hours after transfection of plasmids into Mel501 cells, the cells were analysed by flow cytometry to identify the % cells in different phases of the
cell cycle. Numbers show the percentage of hypodiploid cells. E, Fluorescent microscopy suggests that GFP-tagged over-expressed Elmod1 and
TMC01 proteins have a punctate cytoplasmic distribution. F Western blotting indicates PARP cleavage in cells transfected by Elmod1 and TMC01
plasmids. 48 h after transfection of Mel501 melanoma cells with Elmod1 and TMC01 plasmids, protein lysates were analysed by Western blot using
anti-b-actin and anti-PARP (a Caspase target degraded during apoptosis) antibodies. G–I, survival analysis in metastatic melanoma. Graphs compare
survival of patients whose metastatic melanomas had above (green) or below (red) the 50th percentile of the particular RNA expression in the
Bogunovic 2009 data series [57]. All experimental data shown in panels A–F of this figure are representative of at least three independent
experiments.
doi:10.1371/journal.pone.0034247.g008
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ability to study these biological processes using melanoma cell lines

in vitro. This limitation is not surprising, given that the immune

cells that participate in these pathways in tumours are absent from

the A375 cell cultures. Other gene sets that were more frequently

correlated in the clinical microarray data than in the A375 cell

data include heparin sulphate proteoglycan synthesis and amino

acid acetylation, as well as targets of the transcription factors

MYC/MAX, POU3F2 and GCNF. It is possible that these

processes/transcription factors are highly active in tumour stromal

cells, and therefore are not identifiable in cultured A375 cells.

Hub genes are predicted by the Bayesian gene network to be

regulators of the expression of their children. Experimental

evaluation of the directional gene expression relationships between

gene network parents and their children is beyond the scope of this

study. Nevertheless, we followed up three hubs from the A375 cell

gene networks that were not well characterised. These were chosen

based on the enrichment of their downstream network children for

functions (cell cycle and apoptosis) that could be easily examined in

our laboratory and that were clinically relevant. It was encouraging

that in the pilot experiments presented here, overexpression of

RNAs encoding these hubs appeared to alter the specific functions

associated with hub children. Further studies are now needed to

confirm the levels of plasmid expression achieved and to define the

mechanisms by which hub overexpression alters cell biology.

Associations between the abundance of genes
highlighted by the A375 gene networks and patient
survival
We found that in metastatic tumours, the abundance of gene

network hub RNAs enriched for children with cell cycle and DNA

repair functions, but not several other functions, were frequently

associated with patient survival. Some of the hub genes we identified

had previously been associated with survival in the original

Bogunovic et al. study of this dataset [57]. These findings fit well

with the known role of cell proliferation pathways in melanoma

progression. For example, mitotic incidence is the second most

powerful prognostic factor after thickness for primary melanoma

[66], and many of the inherited melanoma predisposition genes

encode proteins involved in the cell cycle (see Introduction). The cell

cycle clusters identified by the gene network, and the hubs that are

predicted by the network to drive the expression of these clusters,

may in the future assist selection of biomarkers for the prognosis of

metastatic melanoma lesions, to supplement the assessment of

histological grade as a prognostic indicator.

Our choice of the 45 siRNAs transfected into the A375 cells was

in fact biased towards RNAs encoding proteins with specific

functions. The GO database indicated that of the 45 siRNAs used,

21 were associated with regulation of the cell cycle (GO:0000074),

22 with regulation of transcription (GO:0045449), and 24 with

regulation of metabolism (GO:0019222). Since gene network

inference depends upon variation in gene expression between the

siRNA-targeted cell cultures, large numbers of siRNAs related to

proliferation may have increased the resolution of our gene

networks for proliferation-associated transcriptional pathways, and

therefore contributed to our identification of survival-associated

cell cycle clusters. However, the effect of siRNA choice on gene

network results may be complex, since we did not see dominant

network clusters associated with the functions of metabolism and

transcription, for which our siRNA set was also enriched. We are

unsure why no strong relationship was seen between abundance of

hub RNAs enriched for children with cell cycle functions and

patient survival in the primary tumour data [58]. It is possible that

the effect of cell cycle pathways on tumour biology is only

significant in metastatic tumours. However, this seems unlikely

since our supervised clustering analysis (Figure 5) showed similar

correlations of cell cycle-associated gene sets in primary and

metastatic melanomas. To clarify this issue, annotation of other

previously published Affymetrix studies of primary melanomas

with patient survival data would be useful.

Given the clear association between cell proliferation transcrip-

tional modules identified in this study and patient prognosis, these

modules have potential clinical usefulness. For example, an 8-gene

classifier developed from Bayesian gene network hubs correctly

classified the prognosis of 23/26 metastatic melanoma patients in

a pilot cross-validation study (Figure S1). While this is very

encouraging, given the very small number of patients that could be

used for this class prediction, and the cross-validation strategy that

therefore had to be employed, further studies using large

independent test sets are now needed to validate this classifier.

As another potential use, gene expression modules associated with

specific drug targets may provide biomarkers to allow patient

stratification. For example, the cell cycle-associated gene network

hub TYMS is a target of 5-fluorouracil, a drug that has been

studied in melanoma in the past [67] but has not proved generally

successful in melanoma patient populations. It is possible that

those melanoma patients with high expression of RNAs that are

clustered with/downstream of TYMS in our analysis, indicating

active molecular pathways involving TYMS, may be better

candidates for topical 5-fluorouracil treatment than other patients.

Assessment of the effects of cross-hybridisation
As described in themethods, we showed that, for one cluster of co-

regulated RNAs in the A375 melanoma cell dataset, the highly

correlated gene pairs were not conserved in a similar dataset

generated in MCF-7 breast cancer cells (Figure S2A). This analysis

was then repeated for all probe sets (Figure S2B and S2C). This

implies that cell type-specific transcriptional pathways, and not

cross-hybridisation, are the dominant driver of the RNA-to-RNA

relationships on which this study was based. However, the extent of

cross-hybridisation in Affymetrix data remains an area of debate,

with some researchers suggesting that cross-hybridisationmay cause

problems for correlation-based analysis of microarray data [68],

while others conclude that this is not the case, and that ‘‘the observed

long-range correlations in microarray data are of a biological nature

rather than a technological flaw’’ [69]. Our data supports this latter

view, although further studies may be needed to address this issue

fully. Cross-hybridisation will not be an issue when the techniques

described here are applied to RNAseq data.

Conclusion
In this study, we used siRNAs to knock down the abundance of

45 functionally important mRNAs in A375 melanoma cells. A

variety of methods were then used to reverse engineer co-

expression clusters and gene networks from this data. We

identified several gene sets that were correlated both across

siRNA-treated A375 cells and across melanomas from patients (e.g.

gene sets associated with the cell cycle), as well as other gene sets

that were correlated only across the clinical melanomas (e.g. gene

sets associated with immune function). Several clusters enriched

for cell cycle functions and the hubs upstream of these clusters in

the gene networks were significantly associated with patient

survival, suggesting new prognostic biomarkers, and underlining

the importance of the transcriptional pathways that control the cell

cycle for melanoma biology. Our analysis also illustrated the

frequent co-expression of functionally-related RNAs. We hope

that bioinformatic methods like those used here can work

alongside traditional tumour biology studies to improve our

understanding of melanoma and to derive new biomarkers and
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drug targets suited to the tumours of individual patients. In

addition, we hope that the methods described here for estimating

the correlation of genes that share the same biological functions

will be useful to estimate the validity of cell culture models for

specific aspects of other human diseases.

Materials and Methods

Cell culture and transfection
A375 melanoma cells [70] and HEK293T (293T) embryonic

kidney epithelial cells were obtained from the American Type

Culture Collection (ATCC, Manassas, USA). Mel501 cells [71]

were provided by Dr Ruth Halaban (Yale University School of

Medicine, New Haven, CT). A375 cells were chosen for the in vitro

functional genomics experiments described here since their

transcriptome appears to be moderately representative of clinical

melanoma tumours; for example they are positioned close to

several tumours in a multidimensional scaling analysis [31]. A375

and 293T cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with 10% foetal calf serum.

Mel501 cells were cultured in opti-MEM medium (Invitrogen,

Carlsbad, USA) supplemented with 7% foetal calf serum. All cells

were maintained at 37uC in a fully humidified atmosphere

containing 5% CO2. For transfection with siRNAs (20 nM final

concentration, Dharmacon siGenome Smartpools, Dharmacon,

Lafayette, USA) cells were seeded in 6-well plates, and the

following day when cell density had reached 30% confluence, cells

were washed and media replaced with 1 mL of opti-MEM

containing 30 ml Oligofectamine (Invitrogen, Carlsbad, USA) and

10 nM siRNA duplexes. 48 hours after transfection cells were

harvested using TRIzol (Invitrogen, Carlsbad, USA) and RNA

extracted using the RNeasy RNA Extraction system according to

the manufacturer’s instructions (Qiagen, Hilden, Germany). The

45 siRNA transfections into A375 cells were performed in three

experimental batches. RNA quality was confirmed using an

Agilent 2100 bioanalyser. For transfection with plasmids, the same

procedure was followed except that 5 ul Lipofectamine 2000

reagent (Invitrogen, Carlsbad, USA) and 2 ug plasmid were mixed

in 1 mL opti-MEM medium and incubated at room temperature

for 15 min before being added to the washed cells for 48 hours.

Microarray analysis and data processing
Biotin-labelled cRNA was generated and hybridised to

Affymetrix Human Genome U133plus 2.0 microarrays following

the manufacturer’s instructions (Affymetrix, Santa Clara, USA).

All microarray data used in this manuscript is MIAME compliant

and has been deposited in GEO. The GEO accession number for

microarray data from siRNA-treated A375 cells is GSE31534.

The GEO accession number for microarray data from siRNA-

treated MCF-7 cells is GSE 31912. Array analysis was performed

using the statistical framework ‘R’ (http://cran.r-project.org/). All

microarrays passed quality control using the ‘AffyQCreport’ R

package. Microarray ‘CEL’ files from the siRNA-treated A375

cells, and from previously published studies, were normalised using

the Robust Multichip Averaging (RMA) algorithm [72] provided

by the R ‘affy’ package. To remove any possible batch effects we

scaled each probe set based on its median expression in each

experimental batch. Gene lists were tested for enrichment of

particular functional categories using the GATHER web tool [49],

as well as using the Ingenuity Pathways Analysis (IPA) software

(http://www.ingenuity.com/).

Spearman rank correlation coefficients, which are based on the

correlations between the ranks of variables, were generated using

the ‘cor’ function in the R base package. Whole-genome Bayesian

gene networks were reverse engineered from the siRNA-treated

A375 cell microarray data by estimating large numbers of sub-

networks in parallel that were later amalgamated, as described

[47], using massively parallel supercomputers at the Tokyo

University Human Genome Center. Kaplan-Meier survival

analysis with both log-rank significance tests and significance tests

using Cox proportional hazards models were performed using the

R ‘survival’ package (http://cran.r-project.org/web/packages/

survival/). Class prediction was performed using shrunken

centroid classifiers with the ‘‘pamr’’ R package [59].

Meta-analysis of published melanoma microarray
datasets
For all ‘‘cel’’ files quality control was performed using the

‘AffyQCReport’ package [73] in R. Re-normalisation of all arrays

together was in all cases performed from raw data in.cel files using

the RMA method with background correction, and differential

expression was analysed using LIMMA (Linear Models for

Microarray Data) [74]. The ‘‘metaMA’’ package in R [75] was

used to perform statistical meta-analysis. The GATHER web tool

[49] was used to identify whether any lists of differentially

expressed RNAs were enriched for the targets of specific

transcription factors (using the TRANSFAC Pro database v8.0,

[50]), or for molecules with a common function (the Gene

Ontology (GO) database, [51]). The PCOT2 multivariate analysis

method in R [42] was also used to identify correlated differential

expression KEGG gene sets [76]. When composite data sets were

generated from multiple published melanoma microarray studies,

to remove study cohort effects we scaled each probe set based on

its median expression in each study.

Hierarchical clustering
All 54,000 probe sets on the A375 cell microarrays were

hierarchically clustered using Ward’s method [77] with dissimi-

larities between observations calculated using 12|r| to allow

positively and negatively correlated genes to be included in the

same cluster. Clusters were chosen so that: cluster size was .5

probe sets, the minimum correlation between any two probe sets

within a cluster was $0.4, and the median correlation of all

possible combinations of the members of each cluster was $0.5.

The 200 clusters selected contained in total 1,753 probe sets; 35%

of the clusters contained 5–10 probe sets, 9% contained 10–20

probe sets, with 13 clusters containing $30 probe sets. For over-

representation analysis using the GATHER web tool, significant

enrichment of cluster members was said to have occurred when:

Bayes Factor$5 and permutation p#0.05. For this descriptive

investigation of the A375 cell data, the cutting of the dendrogram

into 200 clusters and the parameters used for cluster membership

filtering were arbitrary choices. However, trials using different

cluster numbers and parameters for cluster filtering did not

produce clusters that were significantly enriched for any additional

gene sets. When we repeated this clustering using only those probe

sets with median expression of $1.5x the 39 BioB probe set (a

probe set that can be used as an indicator of the noise threshold),

five clusters associated with the cell cycle and seven associated with

transcription factor targets were identified but no additional GO

paths or transcription factor motifs for which clusters were

enriched were identified.

Evaluation of cross-hybridisation artefacts
It has been suggested that a fraction of the probe sets in

Affymetrix microarrays may cross-hybridise with multiple mRNA

transcripts, which could lead to spurious clustering and gene
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network relationships. Therefore, we calculated the Spearman’s

correlation coefficients between all possible combinations of probe

sets from the cluster shown in Figure 3 across: (i) our A375 siRNA

Affymetrix Human Genome U133 plus 2.0 dataset and (ii) an

unpublished Affymetrix Human Genome U133 plus 2.0 dataset

from our laboratory, in which we have used a set of 70 siRNAs to

target MCF-7 breast cancer cells. Given that the identical

microarray platform was used in the A375 and MCF-7 siRNA

datasets, if cross-hybridisation was the dominant driver of the

clustering observed in the A375 cells, then we would expect to see

similarly high correlations between the same probe sets in the

MCF-7 cells. In fact, we found that the high correlations observed

between probe sets in the A375 cells were largely absent from the

MCF-7 data (Figure S2A). We then repeated this on a whole-

genome scale, by calculating the Spearman’s r in the MCF-7 data

for the 54,681 probe set pairs that had Spearman’s |r|$0.8 in the

A375 data (Figure S2B), and by calculating the Spearman’s r in

the A375 data for the 184,911 probe set pairs that had Spearman’s

|r|$0.8 in the MCF-7 data (Figure S2C). These analyses

suggested that Affymetrix Human Genome U133 plus 2.0

microarray probe set pairs that were highly correlated in data

from A375 cells were in general not highly correlated in data using

the same microarray platform from MCF-7 cells and vice versa,
suggesting that cross-hybridisation between Affymetrix probe sets

was not the most significant driver of the clustering we observed

across the A375 dataset.

Whole genome Bayesian gene network analysis
This was carried out using massively parallel supercomputers at

Human Genome Center of the University of Tokyo as previously

described [45]. In brief, this method uses a heuristic algorithm

called the neighbor node sampling & repeat (NNSR) method to estimate

100,000 overlapping small sub-networks selected from the

intermediate global network structure, which is improved by the

estimated sub-networks during the method. Edges that were

present in at least 20% of these sub-networks were combined into

a final 1,645,882 edge gene network for analysis (can be

downloaded, with a brief explanatory file, from http://www.

bioinformatics.auckland.ac.nz/doc/project_data/Supplementary_

FIle_1.txt).

To illustrate the information underlying this network, Figure S3

explores the relationships between those gene network parents that

were targeted by siRNA when generating the data set from which

the gene networks were inferred, and their 1,800 gene network

children. Although this analysis was by necessity performed on the

same data set from which networks were inferred, the Bayesian

gene network inference method used does not utilise information

about the effects of the siRNA treatments on individual probe sets.

Correlations between these parents and their children are

significantly larger then correlations between randomly chosen

nodes (Figure S3A). These children show a trend to be down-

regulated by parent knockdown when parent and child correlate

positively across the dataset, and to be up-regulated by parent

knockdown when parent and child correlate negatively (Figur-

e S3B–D). The regulation of child abundance after parent

knockdown was generally small in magnitude, consistent with

the expected dilution of the effect of knocking down any single

parent by the undiminished effects of the remaining parents that

were not knocked down. This Bayesian network method was

primarily used in this study to identify co-expressed clusters rather

that directional regulation. Future experimental evaluation of

directional network predictions will be interesting but this is

beyond the scope of this study.

Cloning
Coding regions were amplified using Platinum Taq DNA

Polymerase (Invitrogen, Carlsbad, USA) from cDNA that had

been reverse transcribed from A375 cell RNA, then cloned

directly into the pcDNA3.3-TOPO-TA expression vector. Liga-

tion products were used to transform One-shot Top10 competent

cells (Invitrogen, Carlsbad, USA) and colonies selected by PCR

using gene-specific primers. Plasmid DNA was extracted using a

Zyppy Plasmid Miniprep Kit (Zymo, Orange, USA) and the

inserts sequenced on both strands. Plasmids for transfection were

prepared using a QIAGEN endo-free Plasmid Maxi Kit according

to the manufacturer’s instructions (Qiagen, Hilden, Germany).

The oligonucleotide primers used for cloning are described in

Table 4.

Analysis of culture growth, the cell cycle and apoptosis
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide) colorimetric assays were used to estimate viable cell

number according to the manufacturers instructions (Invitrogen,

Carlsbad, USA). Briefly, A375, Mel501 and 293T cells were

seeded in 96-well plates at 3,000, 6,000 and 12,000 cells/well

respectively. 10 ml of MTT (5 mg/ml) was added into each well;

after 4 h incubation at 37uC 100ml of lysis buffer was added and

plates were incubated at 37uC overnight. The next day the plates

were read at OD570. Each condition was analysed in six replicate

wells and all experiments were repeated at least three times.

For cell cycle analysis, cells in each well of a 6-well plate were

trypsinised, washed three times by ice cold PBS then fixed in 3 ml

of 70% ethanol in PBS added dropwise while vortexing. Cells were

stained with 50 mg/ml propidium iodine (PI), 0.1 mg/ml RNase

A, 0.05% (v/v) Triton X-100 at 37uC for 40 min then assayed by

Flow Cytometry, with the results analysed using ModFit LT

software (Verity, Topsham, USA) according to the manufacturer’s

instructions. All cell cycle analysis experiments were repeated at

least three times.

For Western blotting to identify caspase activation during

apoptosis, cells were trypsinised and washed three times with ice

cold PBS, then pellets were mixed with lysis buffer (50 mM

Tris.NaCl, 150 mM Na.Cl, 1% (v/v) Triton X-100, 1 mM

EDTA, 1 mM EGTA and 1% (v/v) Protease Inhibitor Cocktail

(‘‘Complete’’, Roche, Basel, Switzerland)) and incubated for

30 min on ice. Lysates were then micro-centrifuged at 4uC at

13,000 rpm for 15 min then 20 mg loaded into each well of 10%

SDS-PAGE gels, separated, then transferred to BioTrace NT

nitrocellulose membranes (PALL, Port Washington, USA).

Membranes were blocked for 2 h at room temperature in blocking

buffer (Tris-buffered saline containing 1% (v/v) Tween-20 and 5%

(w/v) skim milk powder) and then incubated with anti-Poly ADP-

ribose polymerase (PARP) antibody (Cell Signalling Technology,

Table 4. Primers.

Primer

orientation

RNA

target Sequence (59 to 39)

forward ELMOD1 CACCATGAAGCACTTCCTGAGAATG

reverse ELMOD1 GGATCCCTACATGTTGATTAAACCTTCCG

forward UBE2S CACCATGAACTCCAACGTGGAGAAC

reverse UBE2S TCACGGTGGAAGGAGGAA

forward TMCO1 CACCATGAGCACTATGTTCGCGG

reverse TMCO1 TCAAGAGAACTTCCCAGAAGGA

doi:10.1371/journal.pone.0034247.t004
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Danvers, USA) at 4uC overnight. The next day the membranes

were washed in blocking buffer and incubated with goat anti-

rabbit IgG–peroxidase antibody, washed three times in blocking

buffer, then incubated with ECL plus reagents (GE healthcare,

Pittsburgh, USA) for 5 min before scanning. All PARP Western

blotting experiments were repeated at least three times.

Supporting Information

Figure S1 Class prediction based on the gene network
hub probe sets. (A) Shrunken centroid classifiers were

developed and assessed by cross-validation using eight gene

network hub probe sets. (B) For these eight probe sets, the

normalised expression signals in metastatic melanoma tumours

from the Bogunovic et al. (2009 [57]) dataset (y-axis) are plotted

across the 26 tumours (x-axis). Green represents patients who died

before 2 yrs and red patients who lived beyond 3 yrs.

(TIF)

Figure S2 Affymetrix probe set-to-probe set correla-
tions are not conserved between cell types. (A) The kernel
density plot shows the distribution of Spearman’s correlation

coefficients between all members of an E2F1-associated A375 cell-

derived cluster (which was shown in Figure 3) in the A375 cell data

(red) and in a similar MCF-7 cell dataset (green). (B) Spearman’s

correlation coefficients were calculated in the MCF-7 data (green)

for the 54,681 probe set pairs that had |Spearman’s correlation

coefficients| $0.8 in the A375 data (red). Spearman’s correlation

coefficients were calculated in the A375 data (red) for the 184,911

probe set pairs that had |Spearman’s correlation coefficients|

$0.8 in the MCF-7 data (green).

(TIF)

Figure S3 Relationships between gene network parents
that were targeted by siRNA and their gene network
children. (A) The distribution of Spearman’s correlation

coefficients between parents that were targeted by siRNAs and

their 1,800 gene network children is shown in red. The

distribution of Spearman’s correlation coefficients between ten

randomly chosen sets of 1,800 genes is shown in grey as a control.

(B) For each of the 1,800 gene network children shown in A, the

ratio of (expression after siRNA knockdown of the parent) to

(median expression across all microarrays) was calculated. This

ratio will always be ,=21 or .=1). For all 1,800 parent-child

edges, this ratio (y-axis) was plotted against Spearman’s correlation

(x-axis). This shows a trend for the gene network children of

parents targeted by siRNAs to be down-regulated after parent

knockdown when parent and child correlate positively, and to be

up-regulated after parent knockdown when parent and child

correlate negatively. C and D show the distributions of fold change

after parent knockdown for those network edges where parent and

child were positively and negatively correlated, respectively.

(TIF)

Table S1 The hubs in the Bayesian network with
children significantly enriched (Bayes Factor $5 and
p#0.05) for functions related to cell cycle, mitosis or

proliferation. Hub probe ID and hub official gene symbol

(OGS) are given in the first two columns. The GATHER Bayes

Factor and the probability of obtaining this Bayes factor due to

chance are shown in columns 4 and 5. Column 6 lists the children

of the gene network hub that have the enriched annotation listed

in column 3. Column 7 shows the Cox proportional hazards

(coxPH) survival p-value for the association of hub RNA

abundance in metastatic tumours with patient survival, with those

hubs with p-values #0.05 highlighted in yellow.

(XLSX)

Table S2 A375 Bayesian network hubs that have
children significantly enriched for cell cycle functions.
Affymetrix probe set ID (parent probe ID) and official gene symbol

(parent OGS) are shown in columns 1 and 2. The number of

children of these hubs in theA375 Bayesian gene network is shown

in column 3. Of these children, the number and % that have

|Spearman’s r| $0.4 with their parents are shown in columns 4

and 5, respectively.

(XLSX)

Table S3 Conserved correlations between the hub DTL
(probe ID 222680_s_at) and its children between the
A375 in vitro siRNA dataset and metastatic tumours in
patients of the Bogunovic study. The gene network parent

(222680_s_at) and gene network child probe set ID and OGS are

given in the first 4 column. Column 5 shows the |Spearman’s r|

between the parent and child across the A375 siRNA dataset,

while column 6 shows the |Spearman’s r| between the parent and

child across the Bogunovic metastatic tumour dataset. In columns

5 and 6 |Spearman’s r| $0.4 are highlighted in orange. Columns

7 and 8 show the Cox proportional hazards p-value for association

between probe set abundance in metastatic tumours and patient

survival for parent and child, respectively. In columns 7 and 8

p#0.05 are highlighted in green. (Note that the presence of some

gene network edges with relatively low |correlation coefficients|,

as seen here, is expected in Bayesian gene networks due to some

network edges having high partial residual correlations even

though they have low correlations across the data.

(XLSX)
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